1
|
Meng Z, Ouyang H, Hu Y, Chen B, Dong X, Wang T, Wu M, Yu N, Lou X, Wang S, Xia F, Dai J. Surface-engineered erythrocyte membrane-camouflage fluorescent bioprobe for precision ovarian cancer surgery. Eur J Nucl Med Mol Imaging 2024; 51:3532-3544. [PMID: 38867107 DOI: 10.1007/s00259-024-06793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Fluorescence imaging-guided surgery has been used in oncology. However, for tiny tumors, the current imaging probes are still difficult to achieve high-contrast imaging, leading to incomplete resection. In this study, we achieved precise surgical resection of tiny metastatic cancers by constructing an engineering erythrocyte membrane-camouflaged bioprobe (AR-M@HMSN@P). METHODS AR-M@HMSN@P combined the properties of aggregation-induced emission luminogens (AIEgens) named PF3-PPh3 (P), with functional erythrocyte membrane modified by a modular peptide (AR). Interestingly, AR was composed of an asymmetric tripodal pentapeptide scaffold (GGKGG) with three appended modulars: KPSSPPEE (A6) peptide, RRRR (R4) peptide and cholesterol. To verify the specificity of the probe in vitro, SKOV3 cells with overexpression of CD44 were used as the positive group, and HLF cells with low expression of CD44 were devoted as the control group. The AR-M@HMSN@P fluorescence imaging was utilized to provide surgical guidance for the removal of micro-metastatic lesions. RESULTS In vivo, the clearance of AR-M@HMSN@P by the immune system was reduced due to the natural properties inherited from erythrocytes. Meanwhile, the A6 peptide on AR-M@HMSN@P was able to specifically target CD44 on ovarian cancer cells, and the electrostatic attraction between the R4 peptide and the cell membrane enhanced the firmness of this targeting. Benefiting from these multiple effects, AR-M@HMSN@P achieved ultra-precise tumor imaging with a signal-to-noise ratio (SNR) of 15.2, making it possible to surgical resection of tumors < 1 mm by imaging guidance. CONCLUSION We have successfully designed an engineered fluorescent imaging bioprobe (AR-M@HMSN@P), which can target CD44-overexpressing ovarian cancers for precise imaging and guide the resection of minor tumors. Notably, this work holds significant promise for developing biomimetic probes for clinical imaging-guided precision cancer surgery by exploiting their externally specified functional modifications.
Collapse
Affiliation(s)
- Zijuan Meng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hanzhi Ouyang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuxin Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Tingting Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Nan Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| |
Collapse
|
2
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
3
|
Medina JA, Ledezma DK, Ghofrani J, Chen J, Chin SJ, Balakrishnan PB, Lee NH, Sweeney EE, Fernandes R. Photothermal therapy co-localized with CD137 agonism improves survival in an SM1 melanoma model without hepatotoxicity. Nanomedicine (Lond) 2024; 19:2049-2064. [PMID: 39225150 PMCID: PMC11485692 DOI: 10.1080/17435889.2024.2389770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: We investigate combining Prussian Blue nanoparticles (PBNPs), as photothermal therapy (PTT) agents, with agonistic CD137 antibodies (αCD137) on a single nanoparticle platform to deliver non-toxic, anti-tumor efficacy in SM1 murine melanoma.Methods: We electrostatically coated PBNPs with αCD137 (αCD137-PBNPs) and quantified their physicochemical characteristics, photothermal and co-stimulatory capabilities. Next, we tested the efficacy and hepatotoxicity of PTT using αCD137-PBNPs (αCD137-PBNP-PTT) in SM1 tumor-bearing mice.Results: The αCD137-PBNPs retained both the photothermal and agonistic properties of the PBNPs and αCD137, respectively. In vivo, SM1 tumor-bearing mice treated with αCD137-PBNP-PTT exhibited a significantly higher survival rate (50%) without hepatotoxicity, compared with control treatments.Conclusion: These data suggest the potential utility of co-localizing PBNP-PTT with αCD137-based agonism as a novel combination nanomedicine.
Collapse
Affiliation(s)
- Jacob A Medina
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Debbie K Ledezma
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Joshua Ghofrani
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Jie Chen
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Samantha J Chin
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | | | - Norman H Lee
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| | - Rohan Fernandes
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| |
Collapse
|
4
|
Suwannin P, Jangpatarapongsa K, Polpanich D, Alhibshi A, Errachid A, Elaissari A. Enhancing leptospirosis control with nanosensing technology: A critical analysis. Comp Immunol Microbiol Infect Dis 2024; 104:102092. [PMID: 37992537 DOI: 10.1016/j.cimid.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Leptospirosis is a serious health problem in tropical areas; thus, animals shed leptospires in the environment. Humans are accidental hosts infected through exposure to contaminating bacteria in the environment. One health strategy can be applied to protect and eliminate leptospirosis because this cooperates and coordinates activities between doctors, veterinarians, and ecologists. However, conventional methods still have limitations. Therefore, the main challenges of leptospirosis control are the high sensing of detection methods to screen and control the pathogens. Interestingly, nano sensing combined with a leptospirosis detection approach can increase the sensitivity and eliminate some limitations. This article reviews nanomaterial development for an advanced leptospirosis detection method, e.g., latex beads-based agglutination test, magnetic nanoparticles enrichment, and gold-nanoparticles-based immunochromatographic assay. Thus, nanomaterials can be functionalized with biomolecules or sensing molecules utilized in various mechanisms such as biosensors. Over the last decade, many biosensors have been developed for Leptospira spp. pathogen and others. The evolution of biosensors for leptospirosis detection was designed for high efficiency and might be an alternative tool. In addition, the high-sensing fabrications are useful for leptospires screening in very low levels, for example, soil or water from the environment.
Collapse
Affiliation(s)
- Patcharapan Suwannin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France
| | - Kulachart Jangpatarapongsa
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France.
| |
Collapse
|
5
|
Huhtinen O, Salbo R, Lamminmäki U, Prince S. Selection of biophysically favorable antibody variants using a modified Flp-In CHO mammalian display platform. Front Bioeng Biotechnol 2023; 11:1170081. [PMID: 37229492 PMCID: PMC10203562 DOI: 10.3389/fbioe.2023.1170081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mammalian display enables the selection of biophysically favorable antibodies from a large IgG antibody library displayed on the plasma membrane of mammalian cells. We constructed and validated a novel mammalian display platform utilizing the commercially available Flp-In CHO cell line as a starting point. We introduced a single copy of a landing pad for Bxb1 integrase-driven recombinase-mediated cassette exchange into the FRT site of the Flp-In CHO line to facilitate the efficient single-copy integration of an antibody display cassette into the genome of the cell line. We then proceeded to demonstrate the ability of our platform to select biophysically favorable antibodies from a library of 1 × 106 displayed antibodies designed to improve the biophysical properties of bococizumab via randomization of problematic hydrophobic surface residues of the antibody. Enrichment of bococizumab variants via fluorescence-activated cell sorting selections was followed by next generation sequencing and thorough characterization of biophysical properties of 10 bococizumab variants that subsequently allowed attribution of the mutations to the biophysical properties of the antibody variants. The mammalian displayed variants exhibited reduced aggregation propensity and polyreactivity, while critically retaining its target binding thereby demonstrating the utility of this valuable tool.
Collapse
Affiliation(s)
- Olli Huhtinen
- Protein and Antibody Engineering, Orion Corporation, Turku, Finland
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Rune Salbo
- Protein and Antibody Engineering, Orion Corporation, Turku, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Stuart Prince
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Zhang Q, Liang J, Bongers A, Richardson JJ, Liang K, Gu Z. Site-Specific Antibody Assembly on Nanoparticles via a Versatile Coating Method for Improved Cell Targeting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206546. [PMID: 36698301 PMCID: PMC10037962 DOI: 10.1002/advs.202206546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Antibody-nanoparticle conjugates are promising candidates for precision medicine. However, developing a controllable method for conjugating antibodies to nanoparticles without compromising the antibody activity represents a critical challenge. Here, a facile and generalizable film-coating method is presented using zeolitic imidazole framework-8 (ZIF-8) to immobilize antibodies on various nanoparticles in a favorable orientation for enhanced cell targeting. Different model and therapeutic antibodies (e.g., Herceptin) are assembled on nanoparticles via a biomineralized film-coating method and exhibited high antibody loading and targeting efficiencies. Importantly, the antibodies selectively bind to ZIF-8 via their Fc regions, which favorably exposes the functional Fab regions to the biological target, thus improving the cell targeting ability of antibody-coated nanoparticles. In combination, molecular dynamics simulations and experimental studies on antibody immobilization, orientation efficiency, and biofunctionality collectively demonstrate that this versatile site-specific antibody conjugation method provides effective control over antibody orientation and leads to improved cell targeting for a variety of nanoparticles.
Collapse
Affiliation(s)
- Qianyi Zhang
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| | - Jieying Liang
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| | - Andre Bongers
- Biological Resources Imaging LaboratoryMark wainwright Analytical CentreThe University of New South WalesSydneyNSW2052Australia
| | | | - Kang Liang
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Zi Gu
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
- UNSW RNA InstituteUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
7
|
Dippel A, Gallegos A, Aleti V, Barnes A, Chen X, Christian E, Delmar J, Du Q, Esfandiary R, Farmer E, Garcia A, Li Q, Lin J, Liu W, Machiesky L, Mody N, Parupudi A, Prophet M, Rickert K, Rosenthal K, Ren S, Shandilya H, Varkey R, Wons K, Wu Y, Loo YM, Esser MT, Kallewaard NL, Rajan S, Damschroder M, Xu W, Kaplan G. Developability profiling of a panel of Fc engineered SARS-CoV-2 neutralizing antibodies. MAbs 2023; 15:2152526. [PMID: 36476037 PMCID: PMC9733695 DOI: 10.1080/19420862.2022.2152526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat the COVID-19 pandemic, potential therapies have been developed and moved into clinical trials at an unprecedented pace. Some of the most promising therapies are neutralizing antibodies against SARS-CoV-2. In order to maximize the therapeutic effectiveness of such neutralizing antibodies, Fc engineering to modulate effector functions and to extend half-life is desirable. However, it is critical that Fc engineering does not negatively impact the developability properties of the antibodies, as these properties play a key role in ensuring rapid development, successful manufacturing, and improved overall chances of clinical success. In this study, we describe the biophysical characterization of a panel of Fc engineered ("TM-YTE") SARS-CoV-2 neutralizing antibodies, the same Fc modifications as those found in AstraZeneca's Evusheld (AZD7442; tixagevimab and cilgavimab), in which the TM modification (L234F/L235E/P331S) reduce binding to FcγR and C1q and the YTE modification (M252Y/S254T/T256E) extends serum half-life. We have previously shown that combining both the TM and YTE Fc modifications can reduce the thermal stability of the CH2 domain and possibly lead to developability challenges. Here we show, using a diverse panel of TM-YTE SARS-CoV-2 neutralizing antibodies, that despite lowering the thermal stability of the Fc CH2 domain, the TM-YTE platform does not have any inherent developability liabilities and shows an in vivo pharmacokinetic profile in human FcRn transgenic mice similar to the well-characterized YTE platform. The TM-YTE is therefore a developable, effector function reduced, half-life extended antibody platform.
Collapse
Affiliation(s)
- Andrew Dippel
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Austin Gallegos
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Vineela Aleti
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Arnita Barnes
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Xiaoru Chen
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Jared Delmar
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Qun Du
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Reza Esfandiary
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Erika Farmer
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew Garcia
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Qing Li
- Hansoh Bio, Rockville, MD, USA,Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jia Lin
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Weiyi Liu
- Pfizer, La Jolla, CA, USA,Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - LeeAnn Machiesky
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Neil Mody
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Arun Parupudi
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Meagan Prophet
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Keith Rickert
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Kim Rosenthal
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Song Ren
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Reena Varkey
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Kevin Wons
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yuling Wu
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yueh-Ming Loo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark T. Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Nicole L. Kallewaard
- Eli Lilly, Indianapolis, IN, USA,Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sarav Rajan
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Weichen Xu
- Biopharmaceutical Development, MacroGenics, Rockville, MD, USA,Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Gilad Kaplan
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA,CONTACT Gilad Kaplan AstraZeneca, Gaithersburg, MD20878
| |
Collapse
|
8
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
9
|
Gupta P, Makowski EK, Kumar S, Zhang Y, Scheer JM, Tessier PM. Antibodies with Weakly Basic Isoelectric Points Minimize Trade-offs between Formulation and Physiological Colloidal Properties. Mol Pharm 2022; 19:775-787. [PMID: 35108018 PMCID: PMC9350878 DOI: 10.1021/acs.molpharmaceut.1c00373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The widespread interest in antibody therapeutics has led to much focus on identifying antibody candidates with favorable developability properties. In particular, there is broad interest in identifying antibody candidates with highly repulsive self-interactions in standard formulations (e.g., low ionic strength buffers at pH 5-6) for high solubility and low viscosity. Likewise, there is also broad interest in identifying antibody candidates with low levels of non-specific interactions in physiological solution conditions (PBS, pH 7.4) to promote favorable pharmacokinetic properties. To what extent antibodies that possess both highly repulsive self-interactions in standard formulations and weak non-specific interactions in physiological solution conditions can be systematically identified remains unclear and is a potential impediment to successful therapeutic drug development. Here, we evaluate these two properties for 42 IgG1 variants based on the variable fragments (Fvs) from four clinical-stage antibodies and complementarity-determining regions from 10 clinical-stage antibodies. Interestingly, we find that antibodies with the strongest repulsive self-interactions in a standard formulation (pH 6 and 10 mM histidine) display the strongest non-specific interactions in physiological solution conditions. Conversely, antibodies with the weakest non-specific interactions under physiological conditions display the least repulsive self-interactions in standard formulations. This behavior can be largely explained by the antibody isoelectric point, as highly basic antibodies that are highly positively charged under standard formulation conditions (pH 5-6) promote repulsive self-interactions that mediate high colloidal stability but also mediate strong non-specific interactions with negatively charged biomolecules at physiological pH and vice versa for antibodies with negatively charged Fv regions. Therefore, IgG1s with weakly basic isoelectric points between 8 and 8.5 and Fv isoelectric points between 7.5 and 9 typically display the best combinations of strong repulsive self-interactions and weak non-specific interactions. We expect that these findings will improve the identification and engineering of antibody candidates with drug-like biophysical properties.
Collapse
Affiliation(s)
- Priyanka Gupta
- Biochemistry and Biophysics Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Biotherapeutics Molecule Discovery Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Emily K Makowski
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sandeep Kumar
- Biotherapeutics Molecule Discovery Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Yulei Zhang
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Justin M Scheer
- Biotherapeutics Molecule Discovery Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States.,Janssen R&D, South San Francisco, California 94080, United States
| | - Peter M Tessier
- Biochemistry and Biophysics Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Li L, Zhang Q, Chen B, Guo M, Yang Q, Zhang Y, Zhang M. Nano-Bio Interface-Guided Nanoparticle Protein Corona Antigen for Immunoassays and Immunoimaging in a Complex Matrix. ACS APPLIED BIO MATERIALS 2022; 5:841-852. [PMID: 35113530 DOI: 10.1021/acsabm.1c01231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineered nanoparticles are widely used in biological imaging and drug delivery because of their excellent physical and chemical properties, but almost all the original functions of engineered nanoparticles suffer from a complex matrix. Herein, we proposed a strategy of preparing nanoparticle protein corona antigens (NPCAgs) through exposing a magnetic core silicon shell (Fe3O4@SiO2) fluorescent probe to an antigen protein solution, which could reduce the adsorption of nanoparticles (NPs) with other proteins in serum. In the presence of target anti-BSA IgG, a competitive-type displacement reaction was implemented between NPs@BSA and other proteins by target anti-BSA IgG through the specific antigen-antibody reaction. In addition, secondary structure analysis showed that almost all of the NPCAgs retained their natural conformation, which ensured the function of the NPCAgs, specifically capturing an antibody. Therefore, the NPCAgs showed good performance in immunoassays and immunoimaging, which should shed light on the application in imaging and identification of other nanomaterials.
Collapse
Affiliation(s)
- Lei Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qi Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Biru Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ming Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qianqian Yang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yuzhong Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Mingcui Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
11
|
Phan S, Walmer A, Shaw EW, Chai Q. High-throughput profiling of antibody self-association in multiple formulation conditions by PEG stabilized self-interaction nanoparticle spectroscopy. MAbs 2022; 14:2094750. [PMID: 35830420 PMCID: PMC9291693 DOI: 10.1080/19420862.2022.2094750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS) is an assay developed to monitor the propensity of antibody self-association, hence assessing its colloidal stability. It has been widely used by pharmaceutical companies to screen antibodies at the early discovery stages, aiming to flag potential issues with high concentration formulation. However, the original assay format is not suitable for certain formulation conditions, in particular histidine buffer. In addition, the previous data extrapolation method is suboptimal and cumbersome for processing large amounts of data (100s of molecules) in a high-throughput fashion. To address these limitations, we developed an assay workflow with two major improvements: 1) use of a stabilizing reagent to enable screening of a broader range of formulation conditions beyond phosphate-buffered saline, pH 7.4; and 2) inclusion of a novel algorithm and robust data processing schema that empowers streamlined data analysis. The optimized assay format expands the screening applicability to a wider range of formulation conditions critical for downstream development. Such capability is enhanced by a custom data management workflow for optimal data extraction, analysis, and automation. Our protocol and the R/Shiny application for analysis are publicly available and open-source to benefit the broader scientific community.
Collapse
Affiliation(s)
- Samantha Phan
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA
| | - Auralee Walmer
- Research Information & Digital Solutions, Lilly Biotechnology Center, San Diego, CA, USA
| | - Eudean W Shaw
- Research Information & Digital Solutions, Lilly Biotechnology Center, San Diego, CA, USA
| | - Qing Chai
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA
| |
Collapse
|
12
|
Starr CG, Makowski EK, Wu L, Berg B, Kingsbury JS, Gokarn YR, Tessier PM. Ultradilute Measurements of Self-Association for the Identification of Antibodies with Favorable High-Concentration Solution Properties. Mol Pharm 2021; 18:2744-2753. [PMID: 34105965 DOI: 10.1021/acs.molpharmaceut.1c00280] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is significant interest in formulating antibody therapeutics as concentrated liquid solutions, but early identification of developable antibodies with optimal manufacturability, stability, and delivery attributes remains challenging. Traditional methods of identifying developable mAbs with low self-association in common antibody formulations require relatively concentrated protein solutions (>1 mg/mL), and this single challenge has frustrated early-stage and large-scale identification of antibody candidates with drug-like colloidal properties. Here, we describe charge-stabilized self-interaction nanoparticle spectroscopy (CS-SINS), an affinity-capture nanoparticle assay that measures colloidal self-interactions at ultradilute antibody concentrations (0.01 mg/mL), and is predictive of antibody developability issues of high viscosity and opalescence that manifest at four orders of magnitude higher concentrations (>100 mg/mL). CS-SINS enables large-scale, high-throughput selection of developable antibodies during early discovery.
Collapse
Affiliation(s)
- Charles G Starr
- Biologics Development, Sanofi, Framingham, Massachusetts 01701, United States
| | | | | | | | | | - Yatin R Gokarn
- Biologics Development, Sanofi, Framingham, Massachusetts 01701, United States
| | | |
Collapse
|
13
|
Pushkarev AV, Orlov AV, Znoyko SL, Bragina VA, Nikitin PI. Rapid and Easy-to-Use Method for Accurate Characterization of Target Binding and Kinetics of Magnetic Particle Bioconjugates for Biosensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:2802. [PMID: 33921145 PMCID: PMC8071512 DOI: 10.3390/s21082802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
The ever-increasing use of magnetic particle bioconjugates (MPB) in biosensors calls for methods of comprehensive characterization of their interaction with targets. Label-free optical sensors commonly used for studying inter-molecular interactions have limited potential for MPB because of their large size and multi-component non-transparent structure. We present an easy-to-use method that requires only three 20-min express measurements to determine the key parameters for selection of optimal MPB for a biosensor: kinetic and equilibrium characteristics, and a fraction of biomolecules on the MPB surface that are capable of active targeting. The method also provides a prognostic dependence of MPB targeting efficiency upon interaction duration and sample volume. These features are possible due to joining a magnetic lateral flow assay, a highly sensitive sensor for MPB detection by the magnetic particle quantification technique, and a novel mathematical model that explicitly describes the MPB-target interactions and does not comprise parameters to be fitted additionally. The method was demonstrated by experiments on MPB targeting of cardiac troponin I and staphylococcal enterotoxin B. The validation by an independent label-free technique of spectral-correlation interferometry showed good correlation between the results obtained by both methods. The presented method can be applied to other targets for faster development and selection of MPB for affinity sensors, analytical technologies, and realization of novel concepts of MPB-based biosensing in vivo.
Collapse
Affiliation(s)
- Averyan V. Pushkarev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
- Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, 141700 Moscow Region, Russia
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Vera A. Bragina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| |
Collapse
|
14
|
Zhang L, Mazouzi Y, Salmain M, Liedberg B, Boujday S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens Bioelectron 2020; 165:112370. [DOI: 10.1016/j.bios.2020.112370] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
|
15
|
Abstract
In medicine, gold nanoparticles are widely used because of its unique properties. They are usually attached to a monoclonal antibody in treatment and diagnosis. Computational and laboratory work has demonstrated that the structure of the protein can change after interaction with gold nanoparticle and the effect of nanoparticle on the protein is dependent on the type of bond between them. Thus, finding out how nanoparticles affect the protein structure can help us to design the optimal complex of gold nanoparticle-antibody. In the present study, docking and molecular dynamic simulation were performed to obtain an insight at the molecular level in the binding of immunoglobulin G to the Gold nanoparticles, the structure change in immunoglobulin G, and binding energies of Fab and Fc domains of Immunoglobulin G to the GNP. We found the Fab region was more stable than the Fc region when bound to the GNP surface and it also had less structural changes. In neutral pH, Van der Waals interactions contribute more to the Fab-GNP interaction compared to electrostatic interactions; However, in Fc-GNP interaction, the main contributor is the electrostatic energy.
Collapse
|
16
|
Direct quantification of surface coverage of antibody in IgG-Gold nanoparticles conjugates. Talanta 2019; 204:875-881. [DOI: 10.1016/j.talanta.2019.05.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
|
17
|
Butcher RE, Martin-Roussety G, Bradford RA, Tester A, Owczarek C, Hardy MP, Chen CG, Sansome G, Fabri LJ, Schmidt PM. Optimizing high throughput antibody purification by using continuous chromatography media. Protein Expr Purif 2019; 159:75-82. [DOI: 10.1016/j.pep.2019.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022]
|
18
|
Rabia LA, Zhang Y, Ludwig SD, Julian MC, Tessier PM. Net charge of antibody complementarity-determining regions is a key predictor of specificity. Protein Eng Des Sel 2019; 31:409-418. [PMID: 30770934 DOI: 10.1093/protein/gzz002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/23/2018] [Accepted: 01/18/2019] [Indexed: 11/14/2022] Open
Abstract
Specificity is one of the most important and complex properties that is central to both natural antibody function and therapeutic antibody efficacy. However, it has proven extremely challenging to define robust guidelines for predicting antibody specificity. Here we evaluated the physicochemical determinants of antibody specificity for multiple panels of antibodies, including >100 clinical-stage antibodies. Surprisingly, we find that the theoretical net charge of the complementarity-determining regions (CDRs) is a strong predictor of antibody specificity. Antibodies with positively charged CDRs have a much higher risk of low specificity than antibodies with negatively charged CDRs. Moreover, the charge of the entire set of six CDRs is a much better predictor of antibody specificity than the charge of individual CDRs, variable domains (VH or VL) or the entire variable fragment (Fv). The best indicators of antibody specificity in terms of CDR amino acid composition are reduced levels of arginine and lysine and increased levels of aspartic and glutamic acid. Interestingly, clinical-stage antibodies with negatively charged CDRs also have a lower risk for poor biophysical properties in general, including a reduced risk for high levels of self-association. These findings provide powerful guidelines for predicting antibody specificity and for identifying safe and potent antibody therapeutics.
Collapse
Affiliation(s)
- Lilia A Rabia
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Pharmaceutical Sciences.,Department of Chemical Engineering
| | | | - Seth D Ludwig
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mark C Julian
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Peter M Tessier
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Pharmaceutical Sciences.,Department of Chemical Engineering.,Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Tao J, Xu J, Chen F, Xu B, Gao J, Hu Y. Folate acid-Cyclodextrin/Docetaxel induces apoptosis in KB cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Eur J Pharm Sci 2018; 111:540-548. [DOI: 10.1016/j.ejps.2017.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
|
20
|
Sivaram AJ, Wardiana A, Howard CB, Mahler SM, Thurecht KJ. Recent Advances in the Generation of Antibody-Nanomaterial Conjugates. Adv Healthc Mater 2018; 7. [PMID: 28961378 DOI: 10.1002/adhm.201700607] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/31/2017] [Indexed: 01/11/2023]
Abstract
Targeted nanomedicines have significantly changed the way new therapeutics are designed to treat disease. Central to successful therapeutics is the ability to control the dynamics of protein-nanomaterial interactions to enhance the therapeutic effect of the nanomedicine. The aim of this review is to illustrate the diversity and versatility of the conjugation approaches involved in the synthesis of antibody-nanoparticle conjugates, and highlight significant new advances in the field of bioconjugation. Such nanomedicines have found utility as both advanced therapeutic agents, as well as more complex imaging contrast agents that can provide both anatomical and functional information of diseased tissue. While such conjugates show significant promise as next generation targeted nanomedicines, it is recognized that there are in fact no clinically approved targeted therapeutics on the market. This fact is reflected upon within this review, and attempts are made to draw some reasoning from the complexities associated with the bioconjugation chemistry approaches that are typically utilized. Present trends, as well as future directions of next generation targeted nanomedicines are also discussed.
Collapse
Affiliation(s)
- Amal J. Sivaram
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology Queensland Node University of Queensland St Lucia 4072 Australia
| | - Andri Wardiana
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
| | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Training Centre for Biopharmaceutical Innovation Brisbane University of Queensland QLD 4072 Australia
| | - Stephen M. Mahler
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- ARC Training Centre for Biopharmaceutical Innovation Brisbane University of Queensland QLD 4072 Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology Queensland Node University of Queensland St Lucia 4072 Australia
| |
Collapse
|
21
|
Liu AT, Berlin JM. Impact of Cross-Linker Valency on Gold Nanoparticle Aggregate Formation and Cellular Uptake. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14358-14365. [PMID: 29166557 PMCID: PMC8995163 DOI: 10.1021/acs.langmuir.7b03524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthesis of spherical, biocompatible nanoparticle aggregates using a small molecular cross-linker is a simple and flexible approach for the controlled assembly of gold nanoparticles. This strategy can be extended to a variety of cross-linkers, making it possible to the test the effect of cross-linker properties on aggregate formation and physicochemical properties. Here, we synthesized aggregates using a series of structurally homologous cross-linkers with differing valencies. These aggregates have the same size, morphology, surface charge, surface coating, and stability in salt, media, and low pH conditions, but they differ in their stability to cyanide etching and uptake by cells. This highlights the fine-tuning of nanoparticle aggregate properties that can be achieved by using small-molecule cross-linkers.
Collapse
Affiliation(s)
- Alice T Liu
- Department of Molecular Medicine, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Medical Center , Duarte, California 91010, United States
| | - Jacob M Berlin
- Department of Molecular Medicine, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Medical Center , Duarte, California 91010, United States
| |
Collapse
|
22
|
Alam ME, Geng SB, Bender C, Ludwig SD, Linden L, Hoet R, Tessier PM. Biophysical and Sequence-Based Methods for Identifying Monovalent and Bivalent Antibodies with High Colloidal Stability. Mol Pharm 2017; 15:150-163. [PMID: 29154550 DOI: 10.1021/acs.molpharmaceut.7b00779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro antibody discovery and/or affinity maturation are often performed using antibody fragments (Fabs), but most monovalent Fabs are reformatted as bivalent IgGs (monoclonal antibodies, mAbs) for therapeutic applications. One problem related to reformatting antibodies is that the bivalency of mAbs can lead to increased antibody self-association and poor biophysical properties (e.g., reduced antibody solubility and increased viscosity). Therefore, it is important to identify monovalent Fabs early in the discovery and/or optimization process that will display favorable biophysical properties when reformatted as bivalent mAbs. Here we demonstrate a facile approach for evaluating Fab self-association in a multivalent assay format that is capable of identifying antibodies with low self-association and favorable colloidal properties when reformatted as bivalent mAbs. Our approach (self-interaction nanoparticle spectroscopy, SINS) involves immobilizing Fabs on gold nanoparticles in a multivalent format (multiple Fabs per nanoparticle) and evaluating their self-association behavior via shifts in the plasmon wavelength or changes in the absorbance values. Importantly, we find that SINS measurements of Fab self-association are correlated with self-interaction measurements of bivalent mAbs and are useful for identifying antibodies with favorable biophysical properties. Moreover, the significant differences in the levels of self-association detected for Fabs and mAbs with similar frameworks can be largely explained by the physicochemical properties of the complementarity-determining regions (CDRs). Comparison of the properties of the CDRs in this study relative to those of approved therapeutic antibodies reveals several key factors (net charge, fraction of charged residues, and presence of self-interaction motifs) that strongly influence antibody self-association behavior. Increased positive charge in the CDRs was observed to correlate with increased risk of high self-association for the mAbs in this study and clinical-stage antibodies. We expect that these findings will be useful for improving the development of therapeutic antibodies that are well suited for high concentration applications.
Collapse
Affiliation(s)
- Magfur E Alam
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Steven B Geng
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Christian Bender
- Pharmaceuticals, Bayer AG , Nattermannallee 1, Cologne 50829, Germany
| | - Seth D Ludwig
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Lars Linden
- Pharmaceuticals, Bayer AG , Aprather Weg 18A, Wuppertal 42117, Germany
| | - Rene Hoet
- Pharmaceuticals, Bayer AG , Nattermannallee 1, Cologne 50829, Germany
| | - Peter M Tessier
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Departments of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, Biointerfaces Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|