1
|
Tsuchihashi S, Nakashima K, Watanabe H, Ono M. Synthesis and evaluation of novel trifunctional chelating agents for pretargeting approach using albumin binder to improve tumor accumulation. Nucl Med Biol 2024; 132-133:108911. [PMID: 38614036 DOI: 10.1016/j.nucmedbio.2024.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION The pretargeting approach consists of in vivo ligation between pre-injected antibodies and low-molecular-weight radiolabeled effectors. The advantage of the pretargeting approach is to improve a tumor-to-background ratio, but the disadvantage is to compromise tumor accumulation. In this study, we applied albumin binder (ALB) to the pretargeting approach to overcome low tumor accumulation. METHODS We synthesized two novel trifunctional effectors containing an ALB moiety, a chelator, and a different tetrazine and two corresponding effectors without an ALB moiety. Albumin-binding assays and stability assays were performed using 111In-labeled effectors. Measurements of reaction rate constant were conducted using 111In-labeled effectors and anti-HER2 antibody trastuzumab modified by trans-cyclooctene, which drives the click reaction with tetrazine. Biodistribution studies using HER2-expressing tumor-bearing mice were performed with or without the pretargeting approach. RESULTS In albumin-binding assays, ALB-containing effectors exhibited a marked binding to albumin. Two ALB-containing effectors showed the difference in the reactivity and the slight difference in the stability. In biodistribution studies without the pretargeting approach, two ALB-containing effectors showed different pharmacokinetics in blood retention. With the pretargeting approach, the tumor accumulation was improved by the introduction of ALB and the highest tumor accumulation was observed in using the ALB-containing effector with higher blood retention. CONCLUSION These results suggest that the application of ALB to the pretargeting approach is effective to improve tumor accumulation, and the structure of tetrazine influences the utility of ALB-containing effectors.
Collapse
Affiliation(s)
- Shohei Tsuchihashi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Roosen L, Maes D, Musetta L, Himmelreich U. Preclinical Models for Cryptococcosis of the CNS and Their Characterization Using In Vivo Imaging Techniques. J Fungi (Basel) 2024; 10:146. [PMID: 38392818 PMCID: PMC10890286 DOI: 10.3390/jof10020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by Cryptococcus neoformans and Cryptococcus gattii remain a challenge to our healthcare systems as they are still difficult to treat. In order to improve treatment success, in particular for infections that have disseminated to the central nervous system, a better understanding of the disease is needed, addressing questions like how it evolves from a pulmonary to a brain disease and how novel treatment approaches can be developed and validated. This requires not only clinical research and research on the microorganisms in a laboratory environment but also preclinical models in order to study cryptococci in the host. We provide an overview of available preclinical models, with particular emphasis on models of cryptococcosis in rodents. In order to further improve the characterization of rodent models, in particular the dynamic aspects of disease manifestation, development, and ultimate treatment, preclinical in vivo imaging methods are increasingly used, mainly in research for oncological, neurological, and cardiac diseases. In vivo imaging applications for fungal infections are rather sparse. A second aspect of this review is how research on models of cryptococcosis can benefit from in vivo imaging methods that not only provide information on morphology and tissue structure but also on function, metabolism, and cellular properties in a non-invasive way.
Collapse
Affiliation(s)
- Lara Roosen
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Dries Maes
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Luigi Musetta
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
4
|
Adhikari K, Dewulf J, Vangestel C, Van der Veken P, Stroobants S, Elvas F, Augustyns K. Characterization of Structurally Diverse 18F-Labeled d-TCO Derivatives as a PET Probe for Bioorthogonal Pretargeted Imaging. ACS OMEGA 2023; 8:38252-38262. [PMID: 37867688 PMCID: PMC10586181 DOI: 10.1021/acsomega.3c04597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Background: The pretargeted imaging strategy using inverse electron demand Diels-Alder (IEDDA) cycloaddition between a trans-cyclooctene (TCO) and tetrazine (Tz) has emerged and rapidly grown as a promising concept to improve radionuclide imaging and therapy in oncology. This strategy has mostly relied on the use of radiolabeled Tz together with TCO-modified targeting vectors leading to a rapid growth of the number of available radiolabeled tetrazines, while only a few radiolabeled TCOs are currently reported. Here, we aim to develop novel and structurally diverse 18F-labeled cis-dioxolane-fused TCO (d-TCO) derivatives to further expand the bioorthogonal toolbox for in vivo ligation and evaluate their potential for positron emission tomography (PET) pretargeted imaging. Results: A small series of d-TCO derivatives were synthesized and tested for their reactivity against tetrazines, with all compounds showing fast reaction kinetics with tetrazines. A fluorescence-based pretargeted blocking study was developed to investigate the in vivo ligation of these compounds without labor-intensive prior radiochemical development. Two compounds showed excellent in vivo ligation results with blocking efficiencies of 95 and 97%. Two novel 18F-labeled d-TCO radiotracers were developed, from which [18F]MICA-214 showed good in vitro stability, favorable pharmacokinetics, and moderate in vivo stability. Micro-PET pretargeted imaging with [18F]MICA-214 in mice bearing LS174T tumors treated with tetrazine-modified CC49 monoclonal antibody (mAb) (CC49-Tz) showed significantly higher uptake in tumor tissue in the pretargeted group (CC49-Tz 2.16 ± 0.08% ID/mL) when compared to the control group with nonmodified mAb (CC49 1.34 ± 0.07% ID/mL). Conclusions: A diverse series of fast-reacting fluorinated d-TCOs were synthesized. A pretargeted blocking approach in tumor-bearing mice allowed the choice of a lead compound with fast reaction kinetics with Tz. A novel 18F-labeled d-TCO tracer was developed and used in a pretargeted PET imaging approach, allowing specific tumor visualization in a mouse model of colorectal cancer. Although further optimization of the radiotracer is needed to enhance the tumor-to-background ratios for pretargeted imaging, we anticipate that the 18F-labeled d-TCO will find use in studies where increased hydrophilicity and fast bioconjugation are required.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp 2610, Belgium
| | - Jonatan Dewulf
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Christel Vangestel
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | | | - Sigrid Stroobants
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Filipe Elvas
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Koen Augustyns
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
5
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Radjani Bidesi NS, Battisti UM, Lopes van de Broek S, Shalgunov V, Dall AM, Bøggild Kristensen J, Sehlin D, Syvänen S, Moos Knudsen G, Herth MM. Development of the First Tritiated Tetrazine: Facilitating Tritiation of Proteins. Chembiochem 2022; 23:e202200539. [PMID: 36333105 PMCID: PMC10100488 DOI: 10.1002/cbic.202200539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Tetrazine (Tz)-trans-cyclooctene (TCO) ligation is an ultra-fast and highly selective reaction and it is particularly suited to label biomolecules under physiological conditions. As such, a 3 H-Tz based synthon would have wide applications for in vitro/ex vivo assays. In this study, we developed a 3 H-labeled Tz and characterized its potential for application to pretargeted autoradiography. Several strategies were explored to synthesize such a Tz. However, classical approaches such as reductive halogenation failed. For this reason, we designed a Tz containing an aldehyde and explored the possibility of reducing this group with NaBT4 . This approach was successful and resulted in [3 H]-(4-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)phenyl)methan-t-ol with a radiochemical yield of 22 %, a radiochemical purity of 96 % and a molar activity of 0.437 GBq/μmol (11.8 Ci/mmol). The compound was successfully applied to pretargeted autoradiography. Thus, we report the synthesis of the first 3 H-labeled Tz and its successful application as a labeling building block.
Collapse
Affiliation(s)
- Natasha Shalina Radjani Bidesi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Sara Lopes van de Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Anne-Mette Dall
- Novo Nordisk A/S, Smørmosevej 17-19, Bagsvaerd, 2880, Copenhagen, Denmark
| | | | - Dag Sehlin
- Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Stina Syvänen
- Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
7
|
Cook BE, Archbold J, Nasr K, Girmay S, Goldstein SI, Li P, Dandapani S, Genung NE, Tang SP, McClusky S, Plisson C, Afetian ME, Dwyer CA, Fazio M, Drury WJ, Rigo F, Martarello L, Kaliszczak M. Non-invasive Imaging of Antisense Oligonucleotides in the Brain via In Vivo Click Chemistry. Mol Imaging Biol 2022; 24:940-949. [PMID: 35655109 DOI: 10.1007/s11307-022-01744-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The treatment of complex neurological diseases often requires the administration of large therapeutic drugs, such as antisense oligonucleotide (ASO), by lumbar puncture into the intrathecal space in order to bypass the blood-brain barrier. Despite the growing number of ASOs in clinical development, there are still uncertainties regarding their dosing, primarily around their distribution and kinetics in the brain following intrathecal injection. The challenge of taking measurements within the delicate structures of the central nervous system (CNS) necessitates the use of non-invasive nuclear imaging, such as positron emission tomography (PET). Herein, an emergent strategy known as "pretargeted imaging" is applied to image the distribution of an ASO in the brain by developing a novel PET tracer, [18F]F-537-Tz. This tracer is able to undergo an in vivo "click" reaction, covalently binding to a trans-cyclooctene conjugated ASO. PROCEDURES A novel small molecule tracer for pretargeted PET imaging of ASOs in the CNS is developed and tested in a series of in vitro and in vivo experiments, including biodistribution in rats and non-human primates. RESULTS In vitro data and extensive in vivo rat data demonstrated delivery of the tracer to the CNS, and its successful ligation to its ASO target in the brain. In an NHP study, the slow tracer kinetics did not allow for specific binding to be determined by PET. CONCLUSION A CNS-penetrant radioligand for pretargeted imaging was successfully demonstrated in a proof-of-concept study in rats, laying the groundwork for further optimization.
Collapse
Affiliation(s)
| | | | - Khaled Nasr
- Invicro, A Konica Minolta Company, Boston, MA, 02210, USA
| | | | | | - Pei Li
- , Biogen, Cambridge, MA, 02142, USA
| | | | | | - Sac-Pham Tang
- Invicro, A Konica Minolta Company, Boston, MA, 02210, USA
| | | | | | | | | | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | | | | |
Collapse
|
8
|
Antibody-Based In Vivo Imaging of Central Nervous System Targets-Evaluation of a Pretargeting Approach Utilizing a TCO-Conjugated Brain Shuttle Antibody and Radiolabeled Tetrazines. Pharmaceuticals (Basel) 2022; 15:ph15121445. [PMID: 36558900 PMCID: PMC9787164 DOI: 10.3390/ph15121445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Bioorthogonal pretargeted imaging using the inverse-electron-demand Diels-Alder (IEDDA) reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO) represents an attractive strategy for molecular imaging via antibodies. The advantages of using a pretargeted imaging approach are on the one hand the possibility to achieve a high signal-to-noise ratio and imaging contrast; on the other hand, the method allows the uncoupling of the biological half-life of antibodies from the physical half-life of short-lived radionuclides. A brain-penetrating antibody (mAb) specific for β-amyloid (Aβ) plaques was functionalized with TCO moieties for pretargeted labeling of Aβ plaques in vitro, ex vivo, and in vivo by a tritium-labeled Tz. The overall aim was to explore the applicability of mAbs for brain imaging, using a preclinical model system. In vitro clicked mAb-TCO-Tz was able to pass the blood-brain barrier of transgenic PS2APP mice and specifically visualize Aβ plaques ex vivo. Further experiments showed that click reactivity of the mAb-TCO construct in vivo persisted up to 3 days after injection by labeling Aβ plaques ex vivo after incubation of brain sections with the Tz in vitro. An attempted in vivo click reaction between injected mAb-TCO and Tz did not lead to significant labeling of Aβ plaques, most probably due to unfavorable in vivo properties of the used Tz and a long half-life of the mAb-TCO in the blood stream. This study clearly demonstrates that pretargeted imaging of CNS targets via antibody-based click chemistry is a viable approach. Further experiments are warranted to optimize the balance between stability and reactivity of all reactants, particularly the Tz.
Collapse
|
9
|
Sun H, Xue Q, Zhang C, Wu H, Feng P. Derivatization based on tetrazine scaffolds: synthesis of tetrazine derivatives and their biomedical applications. Org Chem Front 2022. [DOI: 10.1039/d1qo01324f] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recent advances in tetrazine scaffold-based derivatizations have been summarized. The advantages and limitations of derivatization methods and applications of the developed tetrazine derivatives in bioorthogonal chemistry have been highlighted.
Collapse
Affiliation(s)
- Hongbao Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinghe Xue
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Feng
- Clinical Trial Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
García-Vázquez R, Battisti UM, Jørgensen JT, Shalgunov V, Hvass L, Stares DL, Petersen IN, Crestey F, Löffler A, Svatunek D, Kristensen JL, Mikula H, Kjaer A, Herth MM. Direct Cu-mediated aromatic 18F-labeling of highly reactive tetrazines for pretargeted bioorthogonal PET imaging. Chem Sci 2021; 12:11668-11675. [PMID: 34659701 PMCID: PMC8442695 DOI: 10.1039/d1sc02789a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
Pretargeted imaging can be used to visualize and quantify slow-accumulating targeting vectors with short-lived radionuclides such as fluorine-18 - the most popular clinically applied Positron Emission Tomography (PET) radionuclide. Pretargeting results in higher target-to-background ratios compared to conventional imaging approaches using long-lived radionuclides. Currently, the tetrazine ligation is the most popular bioorthogonal reaction for pretargeted imaging, but a direct 18F-labeling strategy for highly reactive tetrazines, which would be highly beneficial if not essential for clinical translation, has thus far not been reported. In this work, a simple, scalable and reliable direct 18F-labeling procedure has been developed. We initially studied the applicability of different leaving groups and labeling methods to develop this procedure. The copper-mediated 18F-labeling exploiting stannane precursors showed the most promising results. This approach was then successfully applied to a set of tetrazines, including highly reactive H-tetrazines, suitable for pretargeted PET imaging. The labeling succeeded in radiochemical yields (RCYs) of up to approx. 25%. The new procedure was then applied to develop a pretargeting tetrazine-based imaging agent. The tracer was synthesized in a satisfactory RCY of ca. 10%, with a molar activity of 134 ± 22 GBq μmol-1 and a radiochemical purity of >99%. Further evaluation showed that the tracer displayed favorable characteristics (target-to-background ratios and clearance) that may qualify it for future clinical translation.
Collapse
Affiliation(s)
- Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Jagtvej 160 2100 Copenhagen Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, Blegdamsvej 9 2100 Copenhagen Denmark
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Jagtvej 160 2100 Copenhagen Denmark
| | - Jesper T Jørgensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen Blegdamsvej 9 2100 Copenhagen Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, Blegdamsvej 9 2100 Copenhagen Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Jagtvej 160 2100 Copenhagen Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen Blegdamsvej 9 2100 Copenhagen Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, Blegdamsvej 9 2100 Copenhagen Denmark
| | - Lars Hvass
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen Blegdamsvej 9 2100 Copenhagen Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, Blegdamsvej 9 2100 Copenhagen Denmark
| | - Daniel L Stares
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Jagtvej 160 2100 Copenhagen Denmark
| | - Ida N Petersen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen Blegdamsvej 9 2100 Copenhagen Denmark
| | - François Crestey
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Jagtvej 160 2100 Copenhagen Denmark
| | - Andreas Löffler
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Jagtvej 160 2100 Copenhagen Denmark
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Andreas Kjaer
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen Blegdamsvej 9 2100 Copenhagen Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, Blegdamsvej 9 2100 Copenhagen Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Jagtvej 160 2100 Copenhagen Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, Blegdamsvej 9 2100 Copenhagen Denmark
| |
Collapse
|
11
|
Handula M, Chen KT, Seimbille Y. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules 2021; 26:molecules26154640. [PMID: 34361793 PMCID: PMC8347371 DOI: 10.3390/molecules26154640] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
The pretargeting strategy has recently emerged in order to overcome the limitations of direct targeting, mainly in the field of radioimmunotherapy (RIT). This strategy is directly dependent on chemical reactions, namely bioorthogonal reactions, which have been developed for their ability to occur under physiological conditions. The Staudinger ligation, the copper catalyzed azide-alkyne cycloaddition (CuAAC) and the strain-promoted [3 + 2] azide–alkyne cycloaddition (SPAAC) were the first bioorthogonal reactions introduced in the literature. However, due to their incomplete biocompatibility and slow kinetics, the inverse-electron demand Diels-Alder (IEDDA) reaction was advanced in 2008 by Blackman et al. as an optimal bioorthogonal reaction. The IEDDA is the fastest bioorthogonal reaction known so far. Its biocompatibility and ideal kinetics are very appealing for pretargeting applications. The use of a trans-cyclooctene (TCO) and a tetrazine (Tz) in the reaction encouraged researchers to study them deeply. It was found that both reagents are sensitive to acidic or basic conditions. Furthermore, TCO is photosensitive and can be isomerized to its cis-conformation via a radical catalyzed reaction. Unfortunately, the cis-conformer is significantly less reactive toward tetrazine than the trans-conformation. Therefore, extensive research has been carried out to optimize both click reagents and to employ the IEDDA bioorthogonal reaction in biomedical applications.
Collapse
Affiliation(s)
- Maryana Handula
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Kuo-Ting Chen
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan;
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Correspondence: ; Tel.: +31-10-703-8961
| |
Collapse
|
12
|
Sarrett SM, Keinänen O, Dayts EJ, Dewaele-Le Roi G, Rodriguez C, Carnazza KE, Zeglis BM. Inverse electron demand Diels-Alder click chemistry for pretargeted PET imaging and radioimmunotherapy. Nat Protoc 2021; 16:3348-3381. [PMID: 34127865 PMCID: PMC8917728 DOI: 10.1038/s41596-021-00540-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Radiolabeled antibodies have shown promise as tools for both the nuclear imaging and endoradiotherapy of cancer, but the protracted circulation time of radioimmunoconjugates can lead to high radiation doses to healthy tissues. To circumvent this issue, we have developed an approach to positron emission tomography (PET) imaging and radioimmunotherapy (RIT) predicated on radiolabeling the antibody after it has reached its target within the body. This in vivo pretargeting strategy is based on the rapid and bio-orthogonal inverse electron demand Diels-Alder reaction between tetrazine (Tz) and trans-cyclooctene (TCO). Pretargeted PET imaging and RIT using TCO-modified antibodies in conjunction with Tz-bearing radioligands produce high activity concentrations in target tissues as well as reduced radiation doses to healthy organs compared to directly labeled radioimmunoconjugates. Herein, we describe how to prepare a TCO-modified antibody (humanized A33-TCO) as well as how to synthesize two Tz-bearing radioligands: one labeled with the positron-emitting radiometal copper-64 ([64Cu]Cu-SarAr-Tz) and one labeled with the β-emitting radiolanthanide lutetium-177 ([177Lu]Lu-DOTA-PEG7-Tz). We also provide a detailed description of pretargeted PET and pretargeted RIT experiments in a murine model of human colorectal carcinoma. Proper training in both radiation safety and the handling of laboratory mice is required for the successful execution of this protocol.
Collapse
Affiliation(s)
- Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Outi Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Eric J Dayts
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
| | - Guillaume Dewaele-Le Roi
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Kathryn E Carnazza
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medical College, New York, NY, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
13
|
Allott L, Chen C, Braga M, Leung SFJ, Wang N, Barnes C, Brickute D, Carroll L, Aboagye EO. Detecting hypoxia in vitro using 18F-pretargeted IEDDA "click" chemistry in live cells. RSC Adv 2021; 11:20335-20341. [PMID: 34178309 PMCID: PMC8182949 DOI: 10.1039/d1ra02482e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have exemplified a pretargeted approach to interrogate hypoxia in live cells using radioactive bioorthogonal inverse electron demand Diels–Alder (IEDDA) “click” chemistry. Our novel 18F-tetrazine probe ([18F]FB-Tz) and 2-nitroimidazole-based TCO targeting molecule (8) showed statistically significant (P < 0.0001) uptake in hypoxic cells (ca. 90 %ID per mg) vs. normoxic cells (<10 %ID per mg) in a 60 min incubation of [18F]FB-Tz. This is the first time that an intracellularly targeted small-molecule for IEDDA “click” has been used in conjunction with a radioactive reporter molecule in live cells and may be a useful tool with far-reaching applicability for a variety of applications. Bioorthogonal IEDDA “click” can interrogate intracellular hypoxia using a radioactive reporter molecule.![]()
Collapse
Affiliation(s)
- Louis Allott
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK .,Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Cen Chen
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Marta Braga
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Sau Fung Jacob Leung
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Ning Wang
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Chris Barnes
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Laurence Carroll
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK .,Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions Baltimore Maryland USA
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| |
Collapse
|
14
|
Allott L, Amgheib A, Barnes C, Braga M, Brickute D, Wang N, Fu R, Ghaem-Maghami S, Aboagye EO. Radiolabelling an 18F biologic via facile IEDDA "click" chemistry on the GE FASTLab™ platform. REACT CHEM ENG 2021; 6:1070-1078. [PMID: 34123410 PMCID: PMC8167423 DOI: 10.1039/d1re00117e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
The use of biologics in positron emission tomography (PET) imaging is an important area of radiopharmaceutical development and new automated methods are required to facilitate their production. We report an automated radiosynthesis method to produce a radiolabelled biologic via facile inverse electron demand Diels-Alder (IEDDA) "click" chemistry on a single GE FASTLab™ cassette. We exemplified the method by producing a fluorine-18 radiolabelled interleukin-2 (IL2) radioconjugate from a trans-cyclooctene (TCO) modified IL2 precursor. The radioconjugate was produced using a fully automated radiosynthesis on a single FASTLab™ cassette in a decay-corrected radiochemical yield (RCY, d.c.) of 19.8 ± 2.6% in 110 min (from start of synthesis); the molar activity was 132.3 ± 14.6 GBq μmol-1. The in vitro uptake of [18F]TTCO-IL2 correlated with the differential receptor expression (CD25, CD122, CD132) in PC3, NK-92 and activated human PBMCs. The automated method may be adapted for the radiosynthesis of any TCO-modified protein via IEDDA chemistry.
Collapse
Affiliation(s)
- Louis Allott
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull Cottingham Road Kingston upon Hull HU6 7RX UK
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Ala Amgheib
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Chris Barnes
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Marta Braga
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Ning Wang
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Ruisi Fu
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Sadaf Ghaem-Maghami
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| |
Collapse
|
15
|
Computational studies on the Carboni-Lindsey reaction. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Khare P, Sun W, Ramakrishnan S, Swiercz R, Hao G, Lo ST, Nham K, Sun X, Ober RJ, Ward ES. Selective depletion of radiolabeled HER2-specific antibody for contrast improvement during PET. MAbs 2021; 13:1976705. [PMID: 34592895 PMCID: PMC8489906 DOI: 10.1080/19420862.2021.1976705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
The prolonged in vivo persistence of antibodies results in high background and poor contrast during their use as molecular imaging agents for positron emission tomography (PET). We have recently described a class of engineered Fc fusion proteins that selectively deplete antigen-specific antibodies without affecting the levels of antibodies of other specificities. Here, we demonstrate that these Fc fusions (called Seldegs, for selective degradation) can be used to clear circulating, radiolabeled HER2-specific antibody during diagnostic imaging of HER2-positive tumors in mice. The analyses show that Seldegs have considerable promise for the reduction of whole-body exposure to radiolabel and improvement of contrast during PET.
Collapse
Affiliation(s)
- Priyanka Khare
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Wei Sun
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Sreevidhya Ramakrishnan
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Rafal Swiercz
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, USA
- Cancer Sciences Unit, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Guiyang Hao
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Su-Tang Lo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kien Nham
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Raimund J. Ober
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Cancer Sciences Unit, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - E. Sally Ward
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, USA
- Cancer Sciences Unit, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
17
|
Mukai H, Watanabe Y. Review: PET imaging with macro- and middle-sized molecular probes. Nucl Med Biol 2021; 92:156-170. [PMID: 32660789 DOI: 10.1016/j.nucmedbio.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in radiolabeling of macro- and middle-sized molecular probes has been extending possibilities to use PET molecular imaging for dynamic application to drug development and therapeutic evaluation. Theranostics concept also accelerated the use of macro- and middle-sized molecular probes for sharpening the contrast of proper target recognition even the cellular types/subtypes and proper selection of the patients who should be treated by the same molecules recognition. Here, brief summary of the present status of immuno-PET, and then further development of advanced technologies related to immuno-PET, peptidic PET probes, and nucleic acids PET probes are described.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
18
|
Shahbazali E, Billaud EMF, Fard AS, Meuldijk J, Bormans G, Noel T, Hessel V. Photo isomerization of cis-cyclooctene to trans-cyclooctene: Integration of a micro-flow reactor and separation by specific adsorption. AIChE J 2021; 67:e17067. [PMID: 33380744 PMCID: PMC7757390 DOI: 10.1002/aic.17067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/19/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Liquid-phase adsorption has hardly been established in micro-flow, although this constitutes an industrially vital method for product separation. A micro-flow UV-photo isomerization process converts cis-cyclooctene partly into trans-cyclooctene, leaving an isomeric mixture. Trans-cyclooctene adsorption and thus separation was achieved in a fixed-bed micro-flow reactor, packed with AgNO3/SiO2 powder, while the cis-isomer stays in the flow. The closed-loop recycling-flow has been presented as systemic approach to enrich the trans-cyclooctene from its cis-isomer. In-flow adsorption in recycling-mode has hardly been reported so that a full theoretical study has been conducted. This insight is used to evaluate three process design options to reach an optimum yield of trans-cyclooctene. These differ firstly in the variation of the individual residence times in the reactor and separator, the additional process option of refreshing the adsorption column under use, and the periodicity of the recycle flow.
Collapse
Affiliation(s)
- Elnaz Shahbazali
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| | - Emilie M. F. Billaud
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological SciencesKU LeuvenLeuvenBelgium
| | - Arash Sarhangi Fard
- Materials Technology InstituteEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jan Meuldijk
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological SciencesKU LeuvenLeuvenBelgium
| | - Timothy Noel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
19
|
Ferreira VFC, Oliveira BL, D'Onofrio A, Farinha CM, Gano L, Paulo A, Bernardes GJL, Mendes F. In Vivo Pretargeting Based on Cysteine-Selective Antibody Modification with IEDDA Bioorthogonal Handles for Click Chemistry. Bioconjug Chem 2020; 32:121-132. [PMID: 33295756 DOI: 10.1021/acs.bioconjchem.0c00551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pretargeted imaging has emerged as an effective multistep strategy aiming to improve imaging contrast and reduce patient radiation exposure through decoupling of the radioactivity from the targeting vector. The inverse electron-demand Diels-Alder (IEDDA) reaction between a trans-cyclooctene (TCO)-conjugated antibody and a labeled tetrazine holds great promise for pretargeted imaging applications due to its bioorthogonality, rapid kinetics under mild conditions, and formation of stable products. Herein, we describe the use of functionalized carbonylacrylic reagents for site-specific incorporation of TCO onto a human epidermal growth factor receptor 2 (HER2) antibody (THIOMAB) containing an engineered unpaired cysteine residue, generating homogeneous conjugates. Precise labeling of THIOMAB-TCO with a fluorescent or radiolabeled tetrazine revealed the potential of the TCO-functionalized antibody for imaging the HER2 after pretargeting in a cellular context in a HER2 positive breast cancer cell line. Control studies with MDA-MD-231 cells, which do not express HER2, further confirmed the target specificity of the modified antibody. THIOMAB-TCO was also evaluated in vivo after pretargeting and subsequent administration of an 111In-labeled tetrazine. Biodistribution studies in breast cancer tumor-bearing mice showed a significant activity accumulation on HER2+ tumors, which was 2.6-fold higher than in HER2- tumors. Additionally, biodistribution studies with THIOMAB without the TCO handle also resulted in a decreased uptake of 111In-DOTA-Tz on HER2+ tumors. Altogether, these results clearly indicate the occurrence of the click reaction at the tumor site, i.e., pretargeting of SK-BR-3 HER2-expressing cells with THIOMAB-TCO and reaction through the TCO moiety present in the antibody. The combined advantages of site-selectivity and stability of TCO tagged-antibodies could allow application of biorthogonal chemistry strategies for pretargeting imaging with minimal side-reactions and background.
Collapse
Affiliation(s)
- Vera F C Ferreira
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Bruno L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Alice D'Onofrio
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Carlos M Farinha
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Lurdes Gano
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.,Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Filipa Mendes
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
20
|
Abstract
Over the past decade, theranostic imaging has emerged as a powerful clinical tool in oncology for identifying patients likely to respond to targeted therapies and for monitoring the response of patients to treatment. Herein, we report a theranostic approach to pretargeted radioimmunotherapy (PRIT) based on a pair of radioisotopes of copper: positron-emitting copper-64 (64Cu, t 1/2 = 12.7 h) and beta particle-emitting copper-67 (67Cu, t 1/2 = 61.8 h). This strategy is predicated on the in vivo ligation between a trans-cyclooctene (TCO)-bearing antibody and a tetrazine (Tz)-based radioligand via the rapid and bioorthogonal inverse electron-demand Diels-Alder reaction. Longitudinal therapy studies were conducted in a murine model of human colorectal carcinoma using an immunoconjugate of the huA33 antibody modified with TCO (huA33-TCO) and a 67Cu-labeled Tz radioligand ([67Cu]Cu-MeCOSar-Tz). The injection of huA33-TCO followed 72 h later by the administration of 18.5, 37.0, or 55.5 MBq of [67Cu]Cu-MeCOSar-Tz produced a dose-dependent therapeutic response, with the median survival time increasing from 68 d for the lowest dose to >200 d for the highest. Furthermore, we observed that mice that received the highest dose of [67Cu]Cu-MeCOSar-Tz in a fractionated manner exhibited improved hematological values without sacrificing therapeutic efficacy. Dual radionuclide experiments in which a single administration of huA33-TCO was followed by separate injections of [64Cu]Cu-MeCOSar-Tz and [67Cu]Cu-MeCOSar-Tz revealed that the positron emission tomography images produced by the former accurately predicted the efficacy of the latter. In these experiments, a correlation was observed between the tumoral uptake of [64Cu]Cu-MeCOSar-Tz and the subsequent therapeutic response to [67Cu]Cu-MeCOSar-Tz.
Collapse
|
21
|
Yang B, Kwon K, Jana S, Kim S, Avila-Crump S, Tae G, Mehl RA, Kwon I. Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand Diels–Alder Reaction. Bioconjug Chem 2020; 31:2456-2464. [DOI: 10.1021/acs.bioconjchem.0c00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Byungseop Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kiyoon Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Seoungkyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Savanna Avila-Crump
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
22
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
23
|
Dewulf J, Adhikari K, Vangestel C, Wyngaert TVD, Elvas F. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders-An Update. Cancers (Basel) 2020; 12:E1868. [PMID: 32664521 PMCID: PMC7408676 DOI: 10.3390/cancers12071868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are molecular imaging strategies that typically use radioactively labeled ligands to selectively visualize molecular targets. The nanomolar sensitivity of PET and SPECT combined with the high specificity and affinity of monoclonal antibodies have shown great potential in oncology imaging. Over the past decades a wide range of radio-isotopes have been developed into immuno-SPECT/PET imaging agents, made possible by novel conjugation strategies (e.g., site-specific labeling, click chemistry) and optimization and development of novel radiochemistry procedures. In addition, new strategies such as pretargeting and the use of antibody fragments have entered the field of immuno-PET/SPECT expanding the range of imaging applications. Non-invasive imaging techniques revealing tumor antigen biodistribution, expression and heterogeneity have the potential to contribute to disease diagnosis, therapy selection, patient stratification and therapy response prediction achieving personalized treatments for each patient and therefore assisting in clinical decision making.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Karuna Adhikari
- Faculty of Pharmaceutical Biomedical and Veterinary Sciences, Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Tim Van Den Wyngaert
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| |
Collapse
|
24
|
Parker MFL, Flavell RR, Luu JM, Rosenberg OS, Ohliger MA, Wilson DM. Small Molecule Sensors Targeting the Bacterial Cell Wall. ACS Infect Dis 2020; 6:1587-1598. [PMID: 32433879 DOI: 10.1021/acsinfecdis.9b00515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review highlights recent efforts to detect bacteria using engineered small molecules that are processed and incorporated similarly to their natural counterparts. There are both scientific and clinical justifications for these endeavors. The use of detectable, cell-wall targeted chemical probes has elucidated microbial behavior, with several fluorescent labeling methods in widespread laboratory use. Furthermore, many existing efforts including ours, focus on developing new imaging tools to study infection in clinical practice. The bacterial cell wall, a remarkably rich and complex structure, is an outstanding target for bacteria-specific detection. Several cell wall components are found in bacteria but not mammals, especially peptidoglycan, lipopolysaccharide, and teichoic acids. As this review highlights, the development of laboratory tools for fluorescence microscopy has vastly outstripped related positron emission tomography (PET) or single photon emission computed tomography (SPECT) radiotracer development. However, there is great synergy between these chemical strategies, which both employ mimicry of endogenous substrates to incorporate detectable structures. As the field of bacteria-specific imaging grows, it will be important to understand the mechanisms involved in microbial incorporation of radionuclides. Additionally, we will highlight the clinical challenges motivating this imaging effort.
Collapse
Affiliation(s)
- Matthew F. L. Parker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Justin M. Luu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Oren S. Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, California 94110, United States
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
25
|
Belderbos S, González-Gómez MA, Cleeren F, Wouters J, Piñeiro Y, Deroose CM, Coosemans A, Gsell W, Bormans G, Rivas J, Himmelreich U. Simultaneous in vivo PET/MRI using fluorine-18 labeled Fe 3O 4@Al(OH) 3 nanoparticles: comparison of nanoparticle and nanoparticle-labeled stem cell distribution. EJNMMI Res 2020; 10:73. [PMID: 32607918 PMCID: PMC7326875 DOI: 10.1186/s13550-020-00655-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown potential for treatment of different diseases. However, their working mechanism is still unknown. To elucidate this, the non-invasive and longitudinal tracking of MSCs would be beneficial. Both iron oxide-based nanoparticles (Fe3O4 NPs) for magnetic resonance imaging (MRI) and radiotracers for positron emission tomography (PET) have shown potential as in vivo cell imaging agents. However, they are limited by their negative contrast and lack of spatial information as well as short half-life, respectively. In this proof-of-principle study, we evaluated the potential of Fe3O4@Al(OH)3 NPs as dual PET/MRI contrast agents, as they allow stable binding of [18F]F- ions to the NPs and thus, NP visualization and quantification with both imaging modalities. RESULTS 18F-labeled Fe3O4@Al(OH)3 NPs (radiolabeled NPs) or mouse MSCs (mMSCs) labeled with these radiolabeled NPs were intravenously injected in healthy C57Bl/6 mice, and their biodistribution was studied using simultaneous PET/MRI acquisition. While liver uptake of radiolabeled NPs was seen with both PET and MRI, mMSCs uptake in the lungs could only be observed with PET. Even some initial loss of fluoride label did not impair NPs/mMSCs visualization. Furthermore, no negative effects on blood cell populations were seen after injection of either the NPs or mMSCs, indicating good biocompatibility. CONCLUSION We present the application of novel 18F-labeled Fe3O4@Al(OH)3 NPs as safe cell tracking agents for simultaneous PET/MRI. Combining both modalities allows fast and easy NP and mMSC localization and quantification using PET at early time points, while MRI provides high-resolution, anatomic background information and long-term NP follow-up, hereby overcoming limitations of the individual imaging modalities.
Collapse
Affiliation(s)
- Sarah Belderbos
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Manuel Antonio González-Gómez
- NANOMAG Group, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Jens Wouters
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, 3000, Leuven, Belgium
| | - Yolanda Piñeiro
- NANOMAG Group, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven/UZ Leuven, 3000, Leuven, Belgium
| | - An Coosemans
- Laboratory for Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000, Leuven, Belgium.,Department of Gynaecology and Obstetrics, UZ Leuven, 3000, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Jose Rivas
- NANOMAG Group, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
26
|
Feng H, Zhang H, Wang M, Vannam R, Wang H, Yan X, Ouyang W, Jia X, Fox JM, Li Z. Improving Tumor-to-Background Contrast through Hydrophilic Tetrazines: The Construction of 18 F-Labeled PET Agents Targeting Nonsmall Cell Lung Carcinoma. Chemistry 2020; 26:4690-4694. [PMID: 32030822 DOI: 10.1002/chem.202000028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/04/2020] [Indexed: 02/04/2023]
Abstract
Bioorthogonal reactions have been widely used in the biomedical field. 18 F-TCO/Tetrazine ligation is the most reactive radiolabelled inverse electron demand Diels-Alder reaction, but its application had been limited due to modest contrast ratios of the resulting conjugates. Herein, we describe the use of hydrophilic tetrazines to improve tumor-to-background contrast of neurotensin receptor targeted PET agents. PET agents were constructed using a rapid Diels-Alder reaction of the radiolabeled trans-cyclooctene (18 F-sTCO) with neurotensin (NT) conjugates of a 3,6-diaryltetrazine, 3-methyl-6-aryltetrazine, and a derivative of 3,6-di(2-hydroxyethyl)tetrazine. Although cell binding assays demonstrated all agents have comparable binding affinity, the conjugate derived from 3,6-di(2-hydroxyethyl)tetrazine demonstrated the highest tumor to muscle contrast, followed by conjugates of the 3-methyl-6-aryltetrazine and 3,6-diaryltetrazine.
Collapse
Affiliation(s)
- Huijuan Feng
- Department of Nuclear Medicine, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China.,Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - He Zhang
- Department of Material Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Raghu Vannam
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, USA
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Xuefeng Yan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Wei Ouyang
- Department of Nuclear Medicine, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Xinqiao Jia
- Department of Material Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Joseph M Fox
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, USA
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
27
|
Ruivo E, Elvas F, Adhikari K, Vangestel C, Van Haesendonck G, Lemière F, Staelens S, Stroobants S, Van der Veken P, wyffels L, Augustyns K. Preclinical Evaluation of a Novel 18F-Labeled dTCO-Amide Derivative for Bioorthogonal Pretargeted Positron Emission Tomography Imaging. ACS OMEGA 2020; 5:4449-4456. [PMID: 32175492 PMCID: PMC7066555 DOI: 10.1021/acsomega.9b03584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/31/2019] [Indexed: 06/07/2023]
Abstract
Pretargeted positron emission tomography (PET) imaging based on the bioorthogonal inverse-electron-demand Diels-Alder reaction between tetrazines (Tz) and trans-cyclooctenes (TCO) has emerged as a promising tool for solid tumor imaging, allowing the use of short-lived radionuclides in immune-PET applications. With this strategy, it became possible to achieve desirable target-to-background ratios and at the same time to decrease the radiation burden to nontargeted tissues because of the fast clearance of small PET probes. Here, we show the synthesis of novel 18F-labeled dTCO-amide probes for pretargeted immuno-PET imaging. The PET probes were evaluated regarding their stability, reactivity toward tetrazine, and pharmacokinetic profile. [ 18 F]MICA-213 showed an extremely fast kinetic rate (10,553 M-1 s-1 in 50:50 MeOH/water), good stability in saline and plasma up to 4 h at 37 °C with no isomerization observed, and the biodistribution in healthy mice revealed a mixed hepatobiliary and renal clearance with no defluorination and low background in other tissues. [ 18 F]MICA-213 was further used for in vivo pretargeted immune-PET imaging carried out in nude mice bearing LS174T colorectal tumors that were previously treated with a tetrazine-modified anti-TAG-72 monoclonal antibody (CC49). Pretargeted μPET imaging results showed clear visualization of the tumor tissue with a significantly higher uptake when compared to the control.
Collapse
Affiliation(s)
- Eduardo Ruivo
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Filipe Elvas
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
- Department
of Nuclear Medicine, University Hospital
Antwerp, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Karuna Adhikari
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Christel Vangestel
- Department
of Nuclear Medicine, University Hospital
Antwerp, Edegem 2650, Belgium
| | - Glenn Van Haesendonck
- Biomolecular
and Analytical Mass Spectrometry, University
of Antwerp, Antwerp 2020, Belgium
| | - Filip Lemière
- Biomolecular
and Analytical Mass Spectrometry, University
of Antwerp, Antwerp 2020, Belgium
| | - Steven Staelens
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Sigrid Stroobants
- Department
of Nuclear Medicine, University Hospital
Antwerp, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Pieter Van der Veken
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Leonie wyffels
- Department
of Nuclear Medicine, University Hospital
Antwerp, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Koen Augustyns
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| |
Collapse
|
28
|
Rondon A, Degoul F. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjug Chem 2020; 31:159-173. [PMID: 31855602 DOI: 10.1021/acs.bioconjchem.9b00761] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal click chemistry-employing antibody-conjugated trans-cyclooctenes (TCO) and tetrazine (Tz)-based radioligands able to covalently bind in vivo-appeared recently as a potential alternative to circumvent the hematotoxicity induced by radioimmunotherapy of solid tumors. This Review focuses on the recent advances concerning TCO/Tz pretargeting in both cancer imaging and targeted-radionuclide therapy for prospective clinical transfer. We exhaustively identified 25 PubMed publications reporting preclinical imaging and 5 therapy studies with full mAbs as targeting vectors, since its first application in 2010. The fast, safe, modulable, and specific TCO/Tz pretargeting showed high potential as a theranostic tool to get more personalized and precise cancer care. The recent optimizations reported here highlighted a possible first clinical evaluation of IEDDA pretargeting in the coming years.
Collapse
Affiliation(s)
- Aurélie Rondon
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| | - Françoise Degoul
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| |
Collapse
|
29
|
Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals. Molecules 2019; 24:molecules24193567. [PMID: 31581645 PMCID: PMC6803924 DOI: 10.3390/molecules24193567] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
In recent years, several catalyst-free site-specific reactions have been investigated for the efficient conjugation of biomolecules, nanomaterials, and living cells. Representative functional group pairs for these reactions include the following: (1) azide and cyclooctyne for strain-promoted cycloaddition reaction, (2) tetrazine and trans-alkene for inverse-electron-demand-Diels–Alder reaction, and (3) electrophilic heterocycles and cysteine for rapid condensation/addition reaction. Due to their excellent specificities and high reaction rates, these conjugation methods have been utilized for the labeling of radioisotopes (e.g., radiohalogens, radiometals) to various target molecules. The radiolabeled products prepared by these methods have been applied to preclinical research, such as in vivo molecular imaging, pharmacokinetic studies, and radiation therapy of cancer cells. In this review, we explain the basics of these chemical reactions and introduce their recent applications in the field of radiopharmacy and chemical biology. In addition, we discuss the significance, current challenges, and prospects of using bioorthogonal conjugation reactions.
Collapse
|
30
|
Garcia Ribeiro RS, Belderbos S, Danhier P, Gallo J, Manshian BB, Gallez B, Bañobre M, de Cuyper M, Soenen SJ, Gsell W, Himmelreich U. Targeting tumor cells and neovascularization using RGD-functionalized magnetoliposomes. Int J Nanomedicine 2019; 14:5911-5924. [PMID: 31534330 PMCID: PMC6681073 DOI: 10.2147/ijn.s214041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/29/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Magnetoliposomes (MLs) have shown great potential as magnetic resonance imaging contrast agents and as delivery vehicles for cancer therapy. Targeting the MLs towards the tumor cells or neovascularization could ensure delivery of drugs at the tumor site. In this study, we evaluated the potential of MLs targeting the αvβ3 integrin overexpressed on tumor neovascularization and different tumor cell types, including glioma and ovarian cancer. Methods MLs functionalized with a Texas Red fluorophore (anionic MLs), and with the fluorophore and the cyclic Arginine-Glycine-Aspartate (cRGD; cRGD-MLs) targeting the αvβ3 integrin, were produced in-house. Swiss nude mice were subcutaneously injected with 107 human ovarian cancer SKOV-3 cells. Tumors were allowed to grow for 3 weeks before injection of anionic or cRGD-MLs. Biodistribution of MLs was followed up with a 7T preclinical magnetic resonance imaging (MRI) scanner and fluorescence imaging (FLI) right after injection, 2h, 4h, 24h and 48h post injection. Ex vivo intratumoral ML uptake was confirmed using FLI, electron paramagnetic resonance spectroscopy (EPR) and histology at different time points post injection. Results In vivo, we visualized a higher uptake of cRGD-MLs in SKOV-3 xenografts compared to control, anionic MLs with both MRI and FLI. Highest ML uptake was seen after 4h using MRI, but only after 24h using FLI indicating the lower sensitivity of this technique. Furthermore, ex vivo EPR and FLI confirmed the highest tumoral ML uptake at 4 h. Last, a Perl’s stain supported the presence of our iron-based particles in SKOV-3 xenografts. Conclusion Uptake of cRGD-MLs can be visualized using both MRI and FLI, even though the latter was less sensitive due to lower depth penetration. Furthermore, our results indicate that cRGD-MLs can be used to target SKOV-3 xenograft in Swiss nude mice. Therefore, the further development of this particles into theranostics would be of interest.
Collapse
Affiliation(s)
- Rita Sofia Garcia Ribeiro
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Sarah Belderbos
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Juan Gallo
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Bella B Manshian
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Manuel Bañobre
- Diagnostic Tools and Methods/Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), PT-Braga 4715-330, Portugal
| | - Marcel de Cuyper
- Laboratory of Bionanocolloids, Interdisciplinary Research Centre, KULAK/KU Leuven, Kortrijk B-8500, Belgium
| | - Stefaan J Soenen
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Willy Gsell
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| |
Collapse
|
31
|
Dong P, Wang X, Zheng J, Zhang X, Li Y, Wu H, Li L. Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry. Curr Med Chem 2019; 27:3924-3943. [PMID: 31267851 DOI: 10.2174/1386207322666190702105829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
Molecular imaging techniques apply sophisticated technologies to monitor, directly or indirectly, the spatiotemporal distribution of molecular or cellular processes for biomedical, diagnostic, or therapeutic purposes. For example, Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) imaging, the most representative modalities of molecular imaging, enable earlier and more accurate diagnosis of cancer and cardiovascular diseases. New possibilities for noninvasive molecular imaging in vivo have emerged with advances in bioorthogonal chemistry. For example, tetrazine-related Inverse Electron Demand Diels-Alder (IEDDA) reactions can rapidly generate short-lived radioisotope probes in vivo that provide strong contrast for SPECT and PET. Here, we review pretargeting strategies for molecular imaging and novel radiotracers synthesized via tetrazine bioorthogonal chemistry. We systematically describe advances in direct radiolabeling and pretargeting approaches in SPECT and PET using metal and nonmetal radioisotopes based on tetrazine bioorthogonal reactions, and we discuss prospects for the future of such contrast agents.
Collapse
Affiliation(s)
- Ping Dong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyi Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junwei Zheng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
32
|
Fay R, Holland JP. The Impact of Emerging Bioconjugation Chemistries on Radiopharmaceuticals. J Nucl Med 2019; 60:587-591. [DOI: 10.2967/jnumed.118.220806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
|
33
|
Wang M, Vannam R, Lambert WD, Xie Y, Wang H, Giglio B, Ma X, Wu Z, Fox J, Li Z. Hydrophilic 18F-labeled trans-5-oxocene (oxoTCO) for efficient construction of PET agents with improved tumor-to-background ratios in neurotensin receptor (NTR) imaging. Chem Commun (Camb) 2019; 55:2485-2488. [PMID: 30735213 DOI: 10.1039/c8cc09747j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An 18F-labeled trans-5-oxocene (oxoTCO) that is used to construct a PET probe for neurotensin receptor (NTR) imaging through tetrazine ligation is described here. PET probe construction proceeds with 70% RCY based on 18F-oxoTCO and is completed within seconds. The in vivo behaviour of the oxoTCO based PET probe was compared with those of analogous probes that were prepared from 18F-labeled s-TCO and d-TCO tracers. The hydrophilic 18F-oxoTCO probe showed a significantly higher tumor-to-background ratio while displaying comparable tumor uptake relative to the 18F-dTCO and 18F-sTCO derived probes.
Collapse
Affiliation(s)
- Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Richard M, Truillet C, Tran VL, Liu H, Porte K, Audisio D, Roche M, Jego B, Cholet S, Fenaille F, Kuhnast B, Taran F, Specklin S. New fluorine-18 pretargeting PET imaging by bioorthogonal chlorosydnone–cycloalkyne click reaction. Chem Commun (Camb) 2019; 55:10400-10403. [DOI: 10.1039/c9cc05486c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PET pretargeting approach using strain-promoted sydnone–alkyne cycloaddition.
Collapse
Affiliation(s)
- Mylène Richard
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Charles Truillet
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Vu Long Tran
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Hui Liu
- Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM
- CEA, Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Karine Porte
- Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM
- CEA, Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Davide Audisio
- Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM
- CEA, Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Mélanie Roche
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Benoit Jego
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Sophie Cholet
- Service de Pharmacologie et d’Immunoanalyse (SPI)
- CEA/DRF/JOLIOT
- Université Paris Saclay
- F-91191 Gif-sur-Yvette
- France
| | - François Fenaille
- Service de Pharmacologie et d’Immunoanalyse (SPI)
- CEA/DRF/JOLIOT
- Université Paris Saclay
- F-91191 Gif-sur-Yvette
- France
| | - Bertrand Kuhnast
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Frédéric Taran
- Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM
- CEA, Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Simon Specklin
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| |
Collapse
|
35
|
Zhou Z, Devoogdt N, Zalutsky MR, Vaidyanathan G. An Efficient Method for Labeling Single Domain Antibody Fragments with 18F Using Tetrazine- Trans-Cyclooctene Ligation and a Renal Brush Border Enzyme-Cleavable Linker. Bioconjug Chem 2018; 29:4090-4103. [PMID: 30384599 DOI: 10.1021/acs.bioconjchem.8b00699] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Single domain antibody fragments (sdAbs) labeled with 18F have shown promise for assessing the status of oncological targets such as the human epidermal growth factor receptor 2 (HER2) by positron emission tomography (PET). Earlier, we evaluated two residualizing prosthetic agents for 18F-labeling of anti-HER2 sdAbs; however, these methods resulted in poor labeling yields and high uptake of 18F activity in the kidneys. To potentially mitigate these limitations, we have now developed an 18F labeling method that utilizes the trans-cyclooctene (TCO)-tetrazine (Tz)-based inverse-electron demand Diels-Alder reaction (IEDDAR) in tandem with a renal brush border enzyme-cleavable glycine-lysine (GK) linker in the prosthetic moiety. The HER2-targeted sdAb 2Rs15d was derivatized with TCO-GK-PEG4-NHS or TCO-PEG4-NHS, which lacks the cleavable linker. As an additional control, the non HER2-specific sdAb R3B23 was derivatized with TCO-GK-PEG4-NHS. The resultant sdAb conjugates were labeled with 18F by IEDDAR using [18F]AlF-NOTA-PEG4-methyltetrazine. As a positive control, the 2Rs15d sdAb was radioiodinated using the well-characterized residualizing prosthetic agent, N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB). Synthesis of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d was achieved with an overall radiochemical yield (RCY) of 17.8 ± 1.5% ( n = 5) in 90 min, a significant improvement over prior methods (3-4% in 2-3 h). In vitro assays indicated that [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d bound with high affinity and immunoreactivity to HER2. In normal mice, when normalized to coinjected [125I]SGMIB-2Rs15d, the kidney uptake of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d was 15- and 28-fold lower ( P < 0.001) than that seen for the noncleavable control ([18F]AlF-NOTA-Tz-TCO-2Rs15d) at 1 and 3 h, respectively. Uptake of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d in HER2-expressing SKOV-3 ovarian carcinoma xenografts implanted in athymic mice was about 80% of that seen for coinjected [125I]SGMIB-2Rs15d. On the other hand, kidney uptake was 5-6-fold lower, and as a result, tumor-to-kidney ratios were 4-fold higher for [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d than those for [125I]SGMIB-2Rs15d. SKOV-3 xenografts were clearly delineated even at 1 h after administration of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d by Micro-PET/CT imaging with even higher contrast observed thereafter. In conclusion, this strategy warrants further evaluation for labeling small proteins such as sdAbs because it offers the benefits of good radiochemical yields and enhanced tumor-to-normal tissue ratios, particularly in the kidney.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging laboratory , Vrije Universiteit Brussel , 1090 , Brussels , Belgium
| | - Michael R Zalutsky
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Ganesan Vaidyanathan
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| |
Collapse
|
36
|
Pretargeted Imaging with Gallium-68-Improving the Binding Capability by Increasing the Number of Tetrazine Motifs. Pharmaceuticals (Basel) 2018; 11:ph11040102. [PMID: 30314332 PMCID: PMC6316846 DOI: 10.3390/ph11040102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
The inverse electron-demand Diels-Alder reaction between 1,2,4,5-tetrazine (Tz) and trans-cyclooct-2-ene (TCO) has gained increasing attraction among extensive studies on click chemistry due to its exceptionally fast reaction kinetics and high selectivity for in vivo pretargeting applications including PET imaging. The facile two-step approach utilizing TCO-modified antibodies as targeting structures has not made it into clinics yet. An increase in the blood volume of humans in comparison to mice seems to be the major limitation. This study aims to show if the design of multimeric Tz-ligands by chelator scaffolding can improve the binding capacity and may lead to enhanced PET imaging with gallium-68. We utilized for this purpose the macrocyclic siderophore Fusarinine C (FSC) which allows conjugation of up to three Tz-residues due to three primary amines available for site specific modification. The resulting mono- di- and trimeric conjugates were radiolabelled with gallium-68 and characterized in vitro (logD, protein binding, stability, binding towards TCO modified rituximab (RTX)) and in vivo (biodistribution- and imaging studies in normal BALB/c mice using a simplified RTX-TCO tumour surrogate). The 68Ga-labelled FSC-based Tz-ligands showed suitable hydrophilicity, high stability and high targeting specificity. The binding capacity to RTX-TCO was increased according to the grade of multimerization. Corresponding in vivo studies showed a multimerization typical profile but generally suitable pharmacokinetics with low accumulation in non-targeted tissue. Imaging studies in RTX-TCO tumour surrogate bearing BALB/c mice confirmed this trend and revealed improved targeting by multimerization as increased accumulation in RTX-TCO positive tissue was observed.
Collapse
|
37
|
Mandikian D, Rafidi H, Adhikari P, Venkatraman P, Nazarova L, Fung G, Figueroa I, Ferl GZ, Ulufatu S, Ho J, McCaughey C, Lau J, Yu SF, Prabhu S, Sadowsky J, Boswell CA. Site-specific conjugation allows modulation of click reaction stoichiometry for pretargeted SPECT imaging. MAbs 2018; 10:1269-1280. [PMID: 30199303 PMCID: PMC6284555 DOI: 10.1080/19420862.2018.1521132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibody pretargeting is a promising strategy for improving molecular imaging, wherein the separation in time of antibody targeting and radiolabeling can lead to rapid attainment of high contrast, potentially increased sensitivity, and reduced patient radiation exposure. The inverse electron demand Diels-Alder ‘click’ reaction between trans-cyclooctene (TCO) conjugated antibodies and radiolabeled tetrazines presents an ideal platform for pretargeted imaging due to rapid reaction kinetics, bioorthogonality, and potential for optimization of both slow and fast clearing components. Herein, we evaluated a series of anti-human epidermal growth factor receptor 2 (HER2) pretargeting antibodies containing distinct molar ratios of site-specifically incorporated TCO. The effect of stoichiometry on tissue distribution was assessed for pretargeting TCO-modified antibodies (monitored by 125I) and subsequent accumulation of an 111In-labeled tetrazine in a therapeutically relevant HER2+tumor-bearing mouse model. Single photon emission computed tomography (SPECT) imaging was also employed to assess tumor imaging at various TCO-to-monoclonal antibody (mAb) ratios. Increasing TCO-to-mAb molar ratios correlated with increased in vivo click reaction efficiency evident by increased tumor distribution and systemic exposure of 111In-labeled tetrazines. The pharmacokinetics of TCO-modified antibodies did not vary with stoichiometry. Pretargeted SPECT imaging of HER2-expressing tumors using 111In-labeled tetrazine demonstrated robust click reaction with circulating antibody at ~2 hours and good tumor delineation for both the 2 and 6 TCO-to-mAb ratio variants at 24 hours, consistent with a limited cell-surface pool of pretargeted antibody and benefit from further distribution and internalization. To our knowledge, this represents the first reported systematic analysis of how pretargeted imaging is affected solely by variation in click reaction stoichiometry through site-specific conjugation chemistry.
Collapse
Affiliation(s)
- Danielle Mandikian
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Hanine Rafidi
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Pragya Adhikari
- b Protein Chemistry , Genentech Inc ., South San Francisco , CA , USA
| | - Priya Venkatraman
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Lidia Nazarova
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Gabriel Fung
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Isabel Figueroa
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Gregory Z Ferl
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Sheila Ulufatu
- c In Vivo Studies , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Jason Ho
- c In Vivo Studies , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Cynthia McCaughey
- c In Vivo Studies , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Jeffrey Lau
- d Translational Oncology , Genentech Inc ., South San Francisco , CA , USA
| | - Shang-Fan Yu
- d Translational Oncology , Genentech Inc ., South San Francisco , CA , USA
| | - Saileta Prabhu
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Jack Sadowsky
- b Protein Chemistry , Genentech Inc ., South San Francisco , CA , USA
| | - C Andrew Boswell
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| |
Collapse
|