1
|
Santra S, Molla MR. Small molecule-based core and shell cross-linked nanoassemblies: from self-assembly and programmed disassembly to biological applications. Chem Commun (Camb) 2024; 60:12101-12117. [PMID: 39301871 DOI: 10.1039/d4cc03515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Supramolecular assemblies of stimuli-responsive amphiphilic molecules have been of utmost interest in targeted drug delivery applications, owing to their capability of sequestering drug molecules in one set of conditions and releasing them in another. To minimize undesired disassembly and stabilize noncovalently encapsulated drug molecules, the strategy of core or shell cross-linking has become a fascinating approach to constructing cross-linked polymeric or small molecule-based nanoassemblies. In this article, we discuss the design and synthetic strategies for cross-linked nanoassemblies from small molecule-based amphiphiles, with robust stability and enhanced drug encapsulation capability. We highlight their potential biomedical applications, particularly in drug or gene delivery, and cell imaging. This feature article offers a comprehensive overview of the recent developments in the application of small molecule-based covalently cross-linked nanocarriers for materials and biomedical applications, which may inspire the use of these materials as a potential drug delivery system for future chemotherapeutic applications.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Cheng J, Jian L, Chen Z, Li Z, Yu Y, Wu Y. In Vivo Delivery Processes and Development Strategies of Lipid Nanoparticles. Chembiochem 2024:e202400481. [PMID: 39101874 DOI: 10.1002/cbic.202400481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
Lipid nanoparticles (LNPs) represent an advanced and highly efficient delivery system for RNA molecules, demonstrating exceptional biocompatibility and remarkable delivery efficiency. This is evidenced by the clinical authorization of three LNP formulations: Patisiran, BNT162b2, and mRNA-1273. To further maximize the efficacy of RNA-based therapy, it is imperative to develop more potent LNP delivery systems that can effectively protect inherently unstable and negatively charged RNA molecules from degradation by nucleases, while facilitating their cellular uptake into target cells. Therefore, this review presents feasible strategies commonly employed for the development of efficient LNP delivery systems. The strategies encompass combinatorial chemistry for large-scale synthesis of ionizable lipids, rational design strategy of ionizable lipids, functional molecules-derived lipid molecules, the optimization of LNP formulations, and the adjustment of particle size and charge property of LNPs. Prior to introducing these developing strategies, in vivo delivery processes of LNPs, a crucial determinant influencing the clinical translation of LNP formulations, is described to better understand how to develop LNP delivery systems.
Collapse
Affiliation(s)
- Jiashun Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lina Jian
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhaolin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuoyuan Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yaobang Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
3
|
Mammadova A, Gyarmati B, Sárdi K, Paudics A, Varga Z, Szilágyi A. Thiolated cationic poly(aspartamides) with side group dependent gelation properties for the delivery of anionic polyelectrolytes. J Mater Chem B 2022; 10:5946-5957. [DOI: 10.1039/d2tb00674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ gellable polymers have potential applications as injectable formulations in drug delivery and regenerative medicine. Herein, thiolated cationic polyaspartamides were synthesized with two different approaches to correlate side group...
Collapse
|
4
|
Huang L, Carter MJ, Pelet JM, Putnam D. An amphiphilic polymer for the synthesis of diverse polymer libraries exemplified using conjugates with lower critical solution temperatures that span water's liquid state. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lihong Huang
- Meinig School of Biomedical Engineering Cornell University Ithaca New York USA
| | - Madeline J. Carter
- Meinig School of Biomedical Engineering Cornell University Ithaca New York USA
| | - Jeisa M. Pelet
- Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York USA
| | - David Putnam
- Meinig School of Biomedical Engineering Cornell University Ithaca New York USA
- Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York USA
| |
Collapse
|
5
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Tomé I, Francisco V, Fernandes H, Ferreira L. High-throughput screening of nanoparticles in drug delivery. APL Bioeng 2021; 5:031511. [PMID: 34476328 PMCID: PMC8397474 DOI: 10.1063/5.0057204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
The use of pharmacologically active compounds to manage and treat diseases is of utmost relevance in clinical practice. It is well recognized that spatial-temporal control over the delivery of these biomolecules will greatly impact their pharmacokinetic profile and ultimately their therapeutic effect. Nanoparticles (NPs) prepared from different materials have been tested successfully in the clinic for the delivery of several biomolecules including non-coding RNAs (siRNA and miRNA) and mRNAs. Indeed, the recent success of mRNA vaccines is in part due to progress in the delivery systems (NP based) that have been developed for many years. In most cases, the identification of the best formulation was done by testing a small number of novel formulations or by modification of pre-existing ones. Unfortunately, this is a low throughput and time-consuming process that hinders the identification of formulations with the highest potential. Alternatively, high-throughput combinatorial design of NP libraries may allow the rapid identification of formulations with the required release and cell/tissue targeting profile for a given application. Combinatorial approaches offer several advantages over conventional methods since they allow the incorporation of multiple components with varied chemical properties into materials, such as polymers or lipid-like materials, that will subsequently form NPs by self-assembly or chemical conjugation processes. The current review highlights the impact of high-throughput in the development of more efficient drug delivery systems with enhanced targeting and release kinetics. It also describes the current challenges in this research area as well as future directions.
Collapse
Affiliation(s)
| | - Vitor Francisco
- Biomaterials and Stem-Cell Based Therapeutics Group, Centre of Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal
| | | | - Lino Ferreira
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
7
|
Nardo D, Akers CM, Cheung NE, Isom CM, Spaude JT, Pack DW, Venditto VJ. Cyanuric chloride as the basis for compositionally diverse lipids. RSC Adv 2021; 11:24752-24761. [PMID: 34354826 PMCID: PMC8280964 DOI: 10.1039/d1ra02425f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanuric chloride has been utilized in the development of new synthetic lipid compounds using two differing schemes. The resulting lipids, presented in this manuscript, were characterized and evaluated for their ability to form nanoparticles and subsequently tested for their utility in various biological applications, including gene delivery and immunization. Of the 12 lipids synthesized, 8 formed nanoparticles that remained stable, based on dynamic light scattering, for at least one month. The compounds were then assessed for their toxicity, and subsequently tested for their ability to encapsulate drugs, genes and peptides. While the compounds did not seem to encapsulate carboxyfluorescein, we demonstrate that these lipids are capable of plasmid delivery in vitro, and inducing antibody profiles similar to other hydrophobic anchors in liposomal peptide vaccines. This strategy for accessing diverse lipid compounds offers a way to easily optimize lipid-based therapeutics for research in an expedited manner.
Collapse
Affiliation(s)
- David Nardo
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| | - Caleb M Akers
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| | - Nicholas E Cheung
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| | - Cierra M Isom
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| | - Jason T Spaude
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| | - Daniel W Pack
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
- Department of Chemical and Materials Engineering, University of Kentucky College of Engineering Lexington KY 40536 USA
| | - Vincent J Venditto
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| |
Collapse
|
8
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Benz M, Asperger A, Hamester M, Welle A, Heissler S, Levkin PA. A combined high-throughput and high-content platform for unified on-chip synthesis, characterization and biological screening. Nat Commun 2020; 11:5391. [PMID: 33106489 PMCID: PMC7589500 DOI: 10.1038/s41467-020-19040-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/27/2020] [Indexed: 11/09/2022] Open
Abstract
Acceleration and unification of drug discovery is important to reduce the effort and cost of new drug development. Diverse chemical and biological conditions, specialized infrastructure and incompatibility between existing analytical methods with high-throughput, nanoliter scale chemistry make the whole drug discovery process lengthy and expensive. Here, we demonstrate a chemBIOS platform combining on-chip chemical synthesis, characterization and biological screening. We developed a dendrimer-based surface patterning that enables the generation of high-density nanodroplet arrays for both organic and aqueous liquids. Each droplet (among > 50,000 droplets per plate) functions as an individual, spatially separated nanovessel, that can be used for solution-based synthesis or analytical assays. An additional indium-tin oxide coating enables ultra-fast on-chip detection down to the attomole per droplet by matrix-assisted laser desorption/ionization mass spectrometry. The excellent optical properties of the chemBIOS platform allow for on-chip characterization and in-situ reaction monitoring in the ultraviolet, visible (on-chip UV-Vis spectroscopy and optical microscopy) and infrared (on-chip IR spectroscopy) regions. The platform is compatible with various cell-biological screenings, which opens new avenues in the fields of high-throughput synthesis and drug discovery.
Collapse
Affiliation(s)
- Maximilian Benz
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Arndt Asperger
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Meike Hamester
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Alexander Welle
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Heissler
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. .,Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Kaiserstraße 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
10
|
Wu Y, Wang L, Xiong Y, Zhou Q, Li L, Chen G, Ping Y, Davidson G, Levkin PA, Gao L, Deng W. Cell-based high-throughput screening of cationic polymers for efficient DNA and siRNA delivery. Acta Biomater 2020; 115:410-417. [PMID: 32853811 DOI: 10.1016/j.actbio.2020.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Development of non-viral gene vectors which can efficiently and safely transfect plasmid DNA and siRNA into cells is of great importance for gene therapy. Despite lots of efforts spent, it is still imperative to develop suitable gene vectors with better transfection efficiency and low cytotoxicity. To this end, we successfully designed, synthesized and screened a library of 120 polymers (via nucleophilic substitution reaction between dihalides and amines). With cell-based transfection screening assays, 120 polymers were tested to evaluate their transfection efficiency of transporting DNA and siRNA into cells. Our results indicated that hydrophobic modification could greatly enhance cationic polymers' transfection efficiency, and polymers with long linkers usually showed better transfection performance, especially for polymers with the linker of 1, 12-dibromododecane (L3 linker). Besides, polyalkylamines exhibited better transfection efficiency with the polymer particle size around 200 nm and the zeta potential in the range of + 40 mV to +50 mV. Interestingly, polymer particles made from N15HL3 not only exhibited better DNA transfection efficiency in HEK 293T cells but also showed higher siRNA transfection efficiency in U87 Luc-GFP cells together with low cell toxicity than Lipofectamine 2000 (one of commercial transfection reagents). Therefore, it is hoped that our study here not only provides promising gene vector candidates for further evaluation in gene therapy, but also provides valuable insights for better understanding of the relationship between the chemical structures and gene transfection efficiency to rationally design better non-viral gene vectors for gene therapy in the future.
Collapse
Affiliation(s)
- Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China; Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Ling Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Yue Xiong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Quanming Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Linxian Li
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Yulei Ping
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Gary Davidson
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China.
| |
Collapse
|
11
|
Ribovski L, Zhou Q, Chen J, Feringa BL, van Rijn P, Zuhorn IS. Light-induced molecular rotation triggers on-demand release from liposomes. Chem Commun (Camb) 2020; 56:8774-8777. [PMID: 32618300 DOI: 10.1039/d0cc02499f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controllable molecular release from delivery vehicles is essential to successfully reduce drug toxicity and improve therapeutic efficacy. Light-powered hydrophobic molecular motors were therefore incorporated in liposomes to use molecular rotation to facilitate on-demand release. The extent of the release was precisely controlled by irradiation times, providing a simple yet sophisticated responsive molecular nanocarrier.
Collapse
Affiliation(s)
- Laís Ribovski
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Molla MR, Chakraborty S, Munoz Sagredo L, Drechsler M, Orian Rousseau V, Levkin PA. Combinatorial Synthesis of a Lipidoid Library by Thiolactone Chemistry: In Vitro Screening and In Vivo Validation for siRNA Delivery. Bioconjug Chem 2020; 31:852-860. [PMID: 32068393 DOI: 10.1021/acs.bioconjchem.0c00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptional inhibition by small interfering RNA (siRNA) delivery using synthetic transfection agents eliminates the subsequent risk of introducing mutations in relevant genes, as opposed to viral vectors. However, synthetic vectors with comparable transfection efficiency to that of viral vectors are yet to be developed. Hence, synthesizing new transfection vehicles with low toxicity is important. In this study, a library of lipid-like molecules (lipidoids) was synthesized by thiolactone chemistry. This library facilitated nonviral delivery of siRNA to mammalian cells, inducing sequence-specific knockdown of a target gene. The liposomal nanoparticles complexed with anti-green fluorescent protein (GFP) siRNA were successfully screened for transfection efficiency using a HeLa-GFP cell line. The five best-performing lipidoids identified in the screening were found to exhibit superior GFP-knockdown efficiency compared with commercially available transfection reagents. The efficiency of siRNA delivery by one of these lipidoids with minimal toxicity was further successfully evaluated in vivo using Kdrl:EGFP zebrafish embryos as a model system. Our study would be important as a facile synthetic route of efficient nonviral nucleic acid delivery to live cells and organisms.
Collapse
Affiliation(s)
- Mijanur R Molla
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Department of Chemistry, University of Calcutta (Rashbehari Siksha Prangan), 92 A. P. C. Road, Kolkata 700009, India
| | - Shraddha Chakraborty
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Leonel Munoz Sagredo
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Faculty of Medicine, University of Valparaiso, Hontaneda 2653, 2341369 Valparaiso, Chile
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth, Germany
| | - Véronique Orian Rousseau
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Marrying chemistry with biology by combining on-chip solution-based combinatorial synthesis and cellular screening. Nat Commun 2019; 10:2879. [PMID: 31253767 PMCID: PMC6599004 DOI: 10.1038/s41467-019-10685-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Drug development often relies on high-throughput cell-based screening of large compound libraries. However, the lack of miniaturized and parallelized methodologies in chemistry as well as strict separation and incompatibility of the synthesis of bioactive compounds from their biological screenings makes this process expensive and inefficient. Here, we demonstrate an on-chip platform that combines solution-based synthesis of compound libraries with high-throughput biological screenings (chemBIOS). The chemBIOS platform is compatible with both organic solvents required for the synthesis and aqueous solutions necessary for biological screenings. We use the chemBIOS platform to perform 75 parallel, three-component reactions to synthesize a library of lipidoids, followed by characterization via MALDI-MS, on-chip formation of lipoplexes, and on-chip cell screening. The entire process from the library synthesis to cell screening takes only 3 days and about 1 mL of total solutions, demonstrating the potential of the chemBIOS technology to increase efficiency and accelerate screenings and drug development. High-throughput cell-based screening of compound libraries is utilised in drug development; however, a lack of compatible methods limits direct synthesis and testing. Here, the authors present a diverse chip based synthesis system which can be combined with cell screening and demonstrate the application.
Collapse
|
14
|
Mondal S, Saha M, Ghosh M, Santra S, Khan MA, Das Saha K, Molla MR. Programmed supramolecular nanoassemblies: enhanced serum stability and cell specific triggered release of anti-cancer drugs. NANOSCALE ADVANCES 2019; 1:1571-1580. [PMID: 36132617 PMCID: PMC9418062 DOI: 10.1039/c9na00052f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 05/30/2023]
Abstract
A bolaamphiphilic cross-linked nanoassembly endowed with pH responsive degradation features has been designed and fabricated for stable noncovalent guest encapsulation and controlled release. The self-assembled bolaamphiphile is utilized to prepare cross-linked nanoassemblies to further stabilize the noncovalent guest encapsulation at a concentration below its critical aggregation concentration (CAC) in a large volume of water or serum for drug delivery applications. Thus, this system can simultaneously address premature drug release and safety issues. The nanoassemblies integrated with a β-thioester linker, which can be hydrolyzed selectively under mildly acidic conditions (pH ∼ 5.3) at a slow rate, thus enable controlled release of guest molecules. Biological evaluation revealed that doxorubicin loaded cross-linked nanoassemblies (CNs-DOX) are nontoxic to normal cells such as HEK-293 or PBMC, but in contrast, showed a robust apoptotic effect on colon cancer cells, HCT-116, indicating excellent specificity. Thus, the fabrication reproducibility, robust stability, triggered drug release and cell selective toxicity behavior make this small molecular system very promising in the field of chemotherapeutic applications.
Collapse
Affiliation(s)
- Sanchaita Mondal
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Moumita Saha
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology 4, Raja S C Mullick Road Kolkata-700032 India
| | - Mousumi Ghosh
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Subrata Santra
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Mijan A Khan
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology 4, Raja S C Mullick Road Kolkata-700032 India
| | - Mijanur R Molla
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| |
Collapse
|