1
|
Li Y, Feng Q, Wang L, Gao X, Xi Y, Ye L, Ji J, Yang X, Zhai G. Current targeting strategies and advanced nanoplatforms for atherosclerosis therapy. J Drug Target 2024; 32:128-147. [PMID: 38217526 DOI: 10.1080/1061186x.2023.2300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024]
Abstract
Atherosclerosis is one of the major causes of death worldwide, and it is closely related to many cardiovascular diseases, such as stroke, myocardial infraction and angina. Although traditional surgical and pharmacological interventions can effectively retard or slow down the progression of atherosclerosis, it is very difficult to prevent or even reverse this disease. In recent years, with the rapid development of nanotechnology, various nanoagents have been designed and applied to different diseases including atherosclerosis. The unique atherosclerotic microenvironment with signature biological components allows nanoplatforms to distinguish atherosclerotic lesions from normal tissue and to approach plaques specifically. Based on the process of atherosclerotic plaque formation, this review summarises the nanodrug delivery strategies for atherosclerotic therapy, trying to provide help for researchers to understand the existing atherosclerosis management approaches as well as challenges and to reasonably design anti-atherosclerotic nanoplatforms.
Collapse
Affiliation(s)
- Yingchao Li
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Qixiang Feng
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Luyue Wang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Xi Gao
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Yanwei Xi
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Lei Ye
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Jianbo Ji
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaoye Yang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Guangxi Zhai
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
2
|
Tao Y, Lan X, Zhang Y, Fu C, Liu L, Cao F, Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm Sin B 2023; 13:4442-4460. [PMID: 37969739 PMCID: PMC10638499 DOI: 10.1016/j.apsb.2022.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a leading cause of the life-threatening cardiovascular disease (CVD), creating an urgent need for efficient, biocompatible therapeutics for diagnosis and treatment. Biomimetic nanomedicines (bNMs) are moving closer to fulfilling this need, pushing back the frontier of nano-based drug delivery systems design. This review seeks to outline how these nanomedicines (NMs) might work to diagnose and treat atherosclerosis, to trace the trajectory of their development to date and in the coming years, and to provide a foundation for further discussion about atherosclerotic theranostics.
Collapse
Affiliation(s)
- Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chenxing Fu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
3
|
Li Y, Wang J, Xie J. Biomimetic nanoparticles targeting atherosclerosis for diagnosis and therapy. SMART MEDICINE 2023; 2:e20230015. [PMID: 39188346 PMCID: PMC11236035 DOI: 10.1002/smmd.20230015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/28/2023] [Indexed: 08/28/2024]
Abstract
Atherosclerosis is a typical chronic inflammatory vascular disease that seriously endangers human health. At present, oral lipid-lowering or anti-inflammatory drugs are clinically used to inhibit the development of atherosclerosis. However, traditional oral drug treatments have problems such as low utilization, slow response, and serious side effects. Traditional nanodrug delivery systems are difficult to interactively recognize by normal biological organisms, and it is difficult to target the delivery of drugs to target lesions. Therefore, building a biomimetic nanodrug delivery system with targeted drug delivery based on the pathological characteristics of atherosclerosis is the key to achieving efficient and safe treatment of atherosclerosis. In this review, various nanodrug delivery systems that can target atherosclerosis are summarized and discussed. In addition, the future prospects and challenges of its clinical translation are also discussed.
Collapse
Affiliation(s)
- Yuyu Li
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
- Beijing Institute of Heart, Lung, and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Jifang Wang
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of CardiologyDrum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jun Xie
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
4
|
Zhou J, Yang R, Sun Y, Luo F, Zhang J, Ma H, Guan M. HClO-triggered interventional probe enabled early detection and intervention of atherosclerosis. Analyst 2022; 148:163-174. [PMID: 36464987 DOI: 10.1039/d2an01374f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of early atherosclerosis (AS). Targeting foam cell formation can be a promising approach for the early detection and prevention of AS. However, only a few studies have actually examined foam cells in vivo, and most methods combined nanotechnology with angiography, which is complex and could cause further damage to the endothelium. Herein, based on methylene blue, a biosafe NIR dye approved by the FDA, an interventional probe (HMB-NA@Mp) triggered by hypochlorous acid (HClO) was designed for imaging foam cells easily, safely, and effectively in the early stage of AS. Here, encapsulation of the probe by foam cells targeted platelet membrane (Mp) increased probe targeting and reduced toxicity. Cell and animal experimental results showed that the probe could accumulate at the lesion site and significantly enhance fluorescence in the early AS model group. Remarkably, at the same time, it could also release the metabolite niacin, which played a role in inhibiting atherosclerosis. Thus, HMB-NA@Mp is expected to be a powerful means for the early detection and timely intervention of early AS in the absence of clinical symptoms.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ruhe Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yiwen Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Fusui Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Huili Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Min Guan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Huang X, Zhang Y, Zhang W, Qin C, Zhu Y, Fang Y, Wang Y, Tang C, Cao F. Osteopontin-Targeted and PPARδ-Agonist-Loaded Nanoparticles Efficiently Reduce Atherosclerosis in Apolipoprotein E -/- Mice. ACS OMEGA 2022; 7:28767-28778. [PMID: 36033674 PMCID: PMC9404512 DOI: 10.1021/acsomega.2c00575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Atherosclerosis is the leading cause of vascular pathologies and acute cardiovascular events worldwide. Early theranostics of atherosclerotic plaque formation is critical for the prevention of associated cardiovascular complications. Osteopontin (OPN) expression in vascular smooth muscle cells (VSMCs) has been reported as a promising molecular target for the diagnosis and treatment of atherosclerotic plaques. The PPARδ agonist GW1516 has been shown to inhibit VSMC migration and apoptosis. However, GW1516 has low aqueous solubility and poor oral bioavailability, which are major obstacles to its broad development and application. In this study, GW1516@NP-OPN, which is anti-OPN-targeted and loaded with the PPARδ agonist GW1516, was synthesized using a nanoprecipitation method. The uptake of GW1516@NP-OPN was examined using fluorescence microscopy and flow cytometry assay in VSMC in vitro models. Using the Transwell assay and acridine orange/ethidium bromide staining methods, we observed that the inhibition of VSMCS migration and apoptosis was significantly higher in cells treated with GW1516@NP-OPN than those treated with free GW1516. The western blot assay further confirmed that GW1516@NP-OPN can increase FAK phosphorylation and TGF-βprotein expression. The effect of NPs was further tested in vivo. The atherosclerotic lesion areas were greatly decreased by GW1516@NP-OPN compared with the free drug treatment in apolipoprotein E-/- mice models. Consequently, our results showed that GW1516@NP-OPN stabilizes the PPARδ agonist aqueous formulation, improves its anti-plaque formation activities in vivo and in vitro, and can therefore be recommended for further development as a potential anti-atherosclerotic nanotherapy.
Collapse
Affiliation(s)
- Xu Huang
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
- Department
of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yang Zhang
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
| | - Weiwei Zhang
- Nankai
University School of Medicine, Nankai University, Tianjin 300073, China
| | - Cheng Qin
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
| | - Yan Zhu
- Nankai
University School of Medicine, Nankai University, Tianjin 300073, China
| | - Yan Fang
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
| | - Yabin Wang
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
| | - Chengchun Tang
- Department
of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng Cao
- Department
of Geriatric Cardiology, National Clinical Research Center for Geriatric
Diseases, 2nd Medical Center, Chinese PLA
General Hospital, Beijing 100853, China
| |
Collapse
|
6
|
Martino ML, Crooke SN, Manchester M, Finn MG. Single-Point Mutations in Qβ Virus-like Particles Change Binding to Cells. Biomacromolecules 2021; 22:3332-3341. [PMID: 34251176 DOI: 10.1021/acs.biomac.1c00443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Virus-like particles (VLPs) constitute large, polyvalent platforms onto which a wide variety of functional units can be grafted. Their use in biological settings often depends on their specific binding to cells or receptors of interest; this can be compromised by excessive nonspecific association with other cells. We found that lysine residues mediate such nonspecific interactions, presumably by virtue of protonation and interaction with anionic membrane lipid headgroups and/or complementary residues of cell surface proteins and polysaccharides. Chemical acylation of surface-exposed amines of the Qβ VLP led to a significant reduction in the association of particles with mammalian cells. Single-point mutations of particular lysine residues to either glutamine, glutamic acid, tryptophan, or phenylalanine were mostly well-tolerated and formed intact capsids, but the introduction of double and triple mutants was far less forgiving. Introduction of glutamic acid at position 13 (K13E) led to a dramatic increase in cellular binding, whereas removal of the lysine at position 46 (K46Q) led to an equally striking reduction. Several plasma membrane components were found to specifically interact with the Qβ capsid irrespective of surface charge. These results suggest that specific cellular interactions are engaged or obviated by such mutations and provide us with more "benign" particles to which can be added binding functionality for targeted delivery applications.
Collapse
Affiliation(s)
- Marisa L Martino
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Stephen N Crooke
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, United States
| | - M G Finn
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States.,School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021; 170:142-199. [PMID: 33428994 PMCID: PMC7981266 DOI: 10.1016/j.addr.2021.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Sean Martin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Brigitta C Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
8
|
Ojha SK, Pattnaik R, Singh PK, Dixit S, Mishra S, Pal S, Kumar S. Virus as nanocarrier for drug delivery redefining medical therapeutics - A status report. Comb Chem High Throughput Screen 2020; 25:1619-1629. [PMID: 33342404 DOI: 10.2174/1386207323666201218115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022]
Abstract
Over the last two decades, drug delivery systems have evolved at a tremendous rate. Synthetic nanoparticles have played an important role in the design of vaccine and their delivery as many of them have shown improved safety and efficacy over conventional formulations. Nanocarriers formulated by natural, biological building blocks have become an important tool in the field biomedicine. A successful nanocarrier must have certain properties like evading the host immune system, target specificity, cellular entry, escape from endosomes, and ability to release material into the cytoplasm. Some or all of these functions can be performed by viruses making them a suitable candidate for naturally occurring nanocarriers. Moreover, viruses can be made non-infectious and non-replicative without compromising their ability to penetrate cells thus making them useful for a vast spectrum of applications. Currently, various carrier molecules are under different stages of development to become bio-nano capsules. This review covers the advances made in the field of viruses as potential nanocarriers and discusses the related technologies and strategies to target specific cells by using virus inspired nanocarriers. In future, these virus-based nano-formulations will be able to provide solutions towards pressing and emerging infectious diseases.
Collapse
Affiliation(s)
- Sanjay Kumar Ojha
- Pandorum Technologies Pvt. Ltd., Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City Phase 1, Bengaluru - 560 100. India
| | - Ritesh Pattnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| | - Puneet Kumar Singh
- Bioenergy Lab and BDTC, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar 751 024. India
| | - Shubha Dixit
- School of Pharmacy, Lloyd Institute of Management and Technology, PlotNo.11, Knowledge Park II Greater Noida- 201310. India
| | - Snehasish Mishra
- Bioenergy Lab and BDTC, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar 751 024. India
| | - Sreyasi Pal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| | - Subrat Kumar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| |
Collapse
|
9
|
VCAM-1 Target in Non-Invasive Imaging for the Detection of Atherosclerotic Plaques. BIOLOGY 2020; 9:biology9110368. [PMID: 33138124 PMCID: PMC7692297 DOI: 10.3390/biology9110368] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Cardiovascular diseases are the first cause of morbimortality worldwide. They are mainly caused by atherosclerosis, with progressive plaque formation in the arterial wall. In this context, several imaging techniques have been developed to screen, detect and quantify atherosclerosis. Early screening improves primary prevention and promotes the prescription of adequate medication before adverse clinical events. In this review, we focus on the imaging of vascular cell adhesion molecule-1, an adhesion molecule involved in the first stages of the development of atherosclerosis. This molecule could therefore be a promising target to detect early atherosclerosis non-invasively. Potential clinical applications are critically discussed. Abstract Atherosclerosis is a progressive chronic arterial disease characterised by atheromatous plaque formation in the intima of the arterial wall. Several invasive and non-invasive imaging techniques have been developed to detect and characterise atherosclerosis in the vessel wall: anatomic/structural imaging, functional imaging and molecular imaging. In molecular imaging, vascular cell adhesion molecule-1 (VCAM-1) is a promising target for the non-invasive detection of atherosclerosis and for the assessment of novel antiatherogenic treatments. VCAM-1 is an adhesion molecule expressed on the activated endothelial surface that binds leucocyte ligands and therefore promotes leucocyte adhesion and transendothelial migration. Hence, for several years, there has been an increase in molecular imaging methods for detecting VCAM-1 in MRI, PET, SPECT, optical imaging and ultrasound. The use of microparticles of iron oxide (MPIO), ultrasmall superparamagnetic iron oxide (USPIO), microbubbles, echogenic immunoliposomes, peptides, nanobodies and other nanoparticles has been described. However, these approaches have been tested in animal models, and the remaining challenge is bench-to-bedside development and clinical applicability.
Collapse
|
10
|
Robinson SA, Hartman EC, Ikwuagwu BC, Francis MB, Tullman-Ercek D. Engineering a Virus-like Particle to Display Peptide Insertions Using an Apparent Fitness Landscape. Biomacromolecules 2020; 21:4194-4204. [PMID: 32880435 DOI: 10.1021/acs.biomac.0c00987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peptide insertions in the primary sequence of proteins expand functionality by introducing new binding sequences, chemical handles, or membrane disrupting motifs. With these properties, proteins can be engineered as scaffolds for vaccines or targeted drug delivery vehicles. Virus-like particles (VLPs) are promising platforms for these applications since they are genetically simple, mimic viral structure for cell uptake, and can deliver multiple copies of a therapeutic agent to a given cell. Peptide insertions in the coat protein of VLPs can increase VLP uptake in cells by increasing cell binding, but it is difficult to predict how an insertion affects monomer folding and higher order assembly. To this end, we have engineered the MS2 VLP using a high-throughput technique, called Systematic Mutagenesis and Assembled Particle Selection (SyMAPS). In this work, we applied SyMAPS to investigate a highly mutable loop in the MS2 coat protein to display 9,261 non-native tripeptide insertions. This library generates a discrete map of three amino acid insertions permitted at this location, validates the FG loop as a valuable position for peptide insertion, and illuminates how properties such as charge, flexibility, and hydrogen bonding can interact to preserve or disrupt capsid assembly. Taken together, the results highlight the potential to engineer VLPs in a systematic manner, paving the way to exploring the applications of peptide insertions in biomedically relevant settings.
Collapse
Affiliation(s)
- Stephanie A Robinson
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
| | - Emily C Hartman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Bon C Ikwuagwu
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
| |
Collapse
|
11
|
Shukla S, Hu H, Cai H, Chan SK, Boone CE, Beiss V, Chariou PL, Steinmetz NF. Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annu Rev Virol 2020; 7:559-587. [PMID: 32991265 PMCID: PMC8018517 DOI: 10.1146/annurev-virology-010720-052252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral nanotechnology exploits the prefabricated nanostructures of viruses, which are already abundant in nature. With well-defined molecular architectures, viral nanocarriers offer unprecedented opportunities for precise structural and functional manipulation using genetic engineering and/or bio-orthogonal chemistries. In this manner, they can be loaded with diverse molecular payloads for targeted delivery. Mammalian viruses are already established in the clinic for gene therapy and immunotherapy, and inactivated viruses or virus-like particles have long been used as vaccines. More recently, plant viruses and bacteriophages have been developed as nanocarriers for diagnostic imaging, vaccine and drug delivery, and combined diagnosis/therapy (theranostics). The first wave of these novel virus-based tools has completed clinical development and is poised to make an impact on clinical practice.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - He Hu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Hui Cai
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Soo-Khim Chan
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Christine E Boone
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Paul L Chariou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center and Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
12
|
Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 2020; 156:214-235. [PMID: 32603813 PMCID: PMC7320870 DOI: 10.1016/j.addr.2020.06.024] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Viral nanoparticles (VNPs) encompass a diverse array of naturally occurring nanomaterials derived from plant viruses, bacteriophages, and mammalian viruses. The application and development of VNPs and their genome-free versions, the virus-like particles (VLPs), for nanomedicine is a rapidly growing. VLPs can encapsulate a wide range of active ingredients as well as be genetically or chemically conjugated to targeting ligands to achieve tissue specificity. VLPs are manufactured through scalable fermentation or molecular farming, and the materials are biocompatible and biodegradable. These properties have led to a wide range of applications, including cancer therapies, immunotherapies, vaccines, antimicrobial therapies, cardiovascular therapies, gene therapies, as well as imaging and theranostics. The use of VLPs as drug delivery agents is evolving, and sufficient research must continuously be undertaken to translate these therapies to the clinic. This review highlights some of the novel research efforts currently underway in the VNP drug delivery field in achieving this greater goal.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California-San Diego, La Jolla, CA 92093, United States; Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, United States; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
13
|
Park J, Chariou PL, Steinmetz NF. Site-Specific Antibody Conjugation Strategy to Functionalize Virus-Based Nanoparticles. Bioconjug Chem 2020; 31:1408-1416. [PMID: 32281790 PMCID: PMC8085887 DOI: 10.1021/acs.bioconjchem.0c00118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amine/thiol-reactive chemistries are commonly used to conjugate antibodies to pharmaceuticals or nanoparticles. Yet, these conjugation strategies often result in unfavorable outcomes such as heterogeneous antibody display with hindered biological activity or aggregation due to multivalent interactions of the antibody and nanoparticles. Here, we report the application of a site-specific and enzymatically driven antibody conjugation strategy to functionalize virus-based nanoparticles (VNPs). Specifically, an azide-handle was introduced into the Fc region of a set of immunoglobulins using a two-step enzymatic reaction: (1) cleavage of N-linked glycan in the Fc region by a glycosidase and (2) conjugation of a chemically reactive linker (containing an azide functional handle) using a microbial transglutaminase. Conjugation of the azide-functional antibodies to several VNPs was achieved by making use of strain-promoted azide-alkyne cycloaddition. We report the conjugation of three immunoglobulin (IgG) isotypes (human IgG from sera, anti-CD47 Rat IgG2a, κ, and Trastuzumab recombinant humanized IgG1, κ) to the plant virus cowpea mosaic virus (CPMV) and the lysine mutant of tobacco mosaic virus (TMVlys) as well as bacteriophage Qβ. Site-specific conjugation resulted in stable and functional antibody-VNP conjugates. In stark contrast, the use of heterobifunctional linkers targeting thiols and amines on the antibodies and VNPs, respectively, led to aggregation due to nonspecific and multivalent coupling between the antibodies and VNPs. We demonstrate that antibody-VNP conjugates were functional, and Trastuzumab-displaying VNPs targeted HER2-positive SKOV-3 human ovarian cancer cells. This bioconjugation strategy adds to the portfolio of methods that can be used for designing functional antibody-VNP conjugates.
Collapse
|
14
|
Wu J, Wu H, Nakagawa S, Gao J. Virus-derived materials: bury the hatchet with old foes. Biomater Sci 2020; 8:1058-1072. [DOI: 10.1039/c9bm01383k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viruses, with special architecture and unique biological nature, can be utilized for various biomedical applications.
Collapse
Affiliation(s)
- Jiahe Wu
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Honghui Wu
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Shinsaku Nakagawa
- Department of Pharmaceutics
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Jianqing Gao
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
15
|
Abstract
ssRNA phages belonging to the family Leviviridae are among the tiniest viruses, infecting various Gram-negative bacteria by adsorption to their pilus structures. Due to their simplicity, they have been intensively studied as models for understanding various problems in molecular biology and virology. Several of the studied ssRNA characteristics, such as coat protein–RNA interactions and the ability to readily form virus-like particles in recombinant expression systems, have fueled many practical applications such as RNA labeling and tracking systems and vaccine development. In this chapter, we review the life cycle, structure and applications of these small yet fascinating viruses.
Collapse
|
16
|
Liu R, Tang J, Xu Y, Dai Z. Bioluminescence Imaging of Inflammation in Vivo Based on Bioluminescence and Fluorescence Resonance Energy Transfer Using Nanobubble Ultrasound Contrast Agent. ACS NANO 2019; 13:5124-5132. [PMID: 31059237 DOI: 10.1021/acsnano.8b08359] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Inflammation is an immunological response involved in various inflammatory disorders ranging from neurodegenerative diseases to cancers. Luminol has been reported to detect myeloperoxidase (MPO) activity in an inflamed area through a light-emitting reaction. However, this method is limited by low tissue penetration and poor spatial resolution. Here, we fabricated a nanobubble (NB) doped with two tandem lipophilic dyes, red-shifting luminol-emitted blue light to near-infrared region through a process integrating bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET). This BRET-FRET process caused a 24-fold increase in detectable luminescence emission over luminol alone in an inflammation model induced by lipopolysaccharide. In addition, the echogenicity of the BRET-FRET NBs also enables perfused tissue microvasculature to be delineated by contrast-enhanced ultrasound imaging with high spatial resolution. Compared with commercially available ultrasound contrast agent, the BRET-FRET NBs exhibited comparable contrast-enhancing capability but much smaller size and higher concentration. This bioluminescence/ultrasound dual-modal contrast agent was then successfully applied for imaging of an animal model of breast cancer. Furthermore, biosafety experiments revealed that multi-injection of luminol and NBs did not induce any observable abnormality. By integrating the advantages of bioluminescence imaging and ultrasound imaging, this BRET-FRET system may have the potential to address a critical need of inflammation imaging.
Collapse
Affiliation(s)
- Renfa Liu
- Department of Biomedical Engineering College of Engineering , Peking University , Beijing 100871 , China
| | - Jie Tang
- Department of Biomedical Engineering College of Engineering , Peking University , Beijing 100871 , China
| | - Yunxue Xu
- Department of Biomedical Engineering College of Engineering , Peking University , Beijing 100871 , China
| | - Zhifei Dai
- Department of Biomedical Engineering College of Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
17
|
Sokullu E, Soleymani Abyaneh H, Gauthier MA. Plant/Bacterial Virus-Based Drug Discovery, Drug Delivery, and Therapeutics. Pharmaceutics 2019; 11:E211. [PMID: 31058814 PMCID: PMC6572107 DOI: 10.3390/pharmaceutics11050211] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Viruses have recently emerged as promising nanomaterials for biotechnological applications. One of the most important applications of viruses is phage display, which has already been employed to identify a broad range of potential therapeutic peptides and antibodies, as well as other biotechnologically relevant polypeptides (including protease inhibitors, minimizing proteins, and cell/organ targeting peptides). Additionally, their high stability, easily modifiable surface, and enormous diversity in shape and size, distinguish viruses from synthetic nanocarriers used for drug delivery. Indeed, several plant and bacterial viruses (e.g., phages) have been investigated and applied as drug carriers. The ability to remove the genetic material within the capsids of some plant viruses and phages produces empty viral-like particles that are replication-deficient and can be loaded with therapeutic agents. This review summarizes the current applications of plant viruses and phages in drug discovery and as drug delivery systems and includes a discussion of the present status of virus-based materials in clinical research, alongside the observed challenges and opportunities.
Collapse
Affiliation(s)
- Esen Sokullu
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| | - Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| |
Collapse
|
18
|
Brauer DD, Hartman EC, Bader DLV, Merz ZN, Tullman-Ercek D, Francis MB. Systematic Engineering of a Protein Nanocage for High-Yield, Site-Specific Modification. J Am Chem Soc 2019; 141:3875-3884. [DOI: 10.1021/jacs.8b10734] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daniel D. Brauer
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Emily C. Hartman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Daniel L. V. Bader
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Zoe N. Merz
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|