1
|
Shi Y, Yu J, Song Y, Fan J, Wang X, Li S, Li H. Multifunctional near-infrared fluorescent probe for sensing of lysine and Cu 2+/Fe 3+ and relay detection of biothiols. Talanta 2025; 281:126944. [PMID: 39332045 DOI: 10.1016/j.talanta.2024.126944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Lysine (Lys), Cu2+ and Fe3+ ions and biothiols are essential to a myriad of biological and pathological pathways, and their dysregulation is implicated in a variety of diseases. Development of fluorescent probes capable of detecting multiple analytes may be of great significance for early and accurate diagnosis of diseases and remains a huge challenge. In this context, a novel coumarin-dicyanoisophorone-based probe, engineered for the concurrent sensing of Lys, Cu2+, Fe3+ and biothiols was developed. The probe exhibited turn-on response to Lys, colorimetric and turn-off response to Cu2+ by formation of the probe-Cu2+ complex, and ratiometric sensing of Fe3+. In addition, the probe-Cu2+ complex served colorimetric and fluorescence turn-on sensor for biothiols. The limit of detection (LOD) values for the analytes were in the range of 0.30-4.40 μM. Sensing mechanisms based on intramolecular charge transfer (ICT) and iron-mediated hydrolysis of Schiff base were proposed and substantiated through density functional theory (DFT) calculations. Application of the probe for living cell bioimaging was demonstrated.
Collapse
Affiliation(s)
- Yu Shi
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jirui Yu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ji Fan
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiwen Wang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Shiji Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Hongqi Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
2
|
You H, Song Y, Yang Y, Wang X, Pan S, Huang J, Shao Q, Shi D, Li B, Li J, Li X. Rational design of a high-affinity fluorescent probe for visualizing monitoring the amyloid β clearance effect of anti-Alzheimer's disease drug candidates. Eur J Med Chem 2024; 278:116800. [PMID: 39217860 DOI: 10.1016/j.ejmech.2024.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Beta-amyloid (Aβ), the most pivotal pathological hallmark for Alzheimer's disease (AD) diagnosis and drug evaluation, was recognized by TZ095, a high-affinity fluorescent probe developed by rational molecular design. With a TICT mechanism, TZ095 exhibited remarkable affinity with Aβ aggregates (Kd = 81.54 nM for oligomers; Kd = 66.70 nM for fibril) and substantial fluorescence enhancement (F/F0 = 44), enabling real-time monitoring of Aβ in live cells and nematodes. Significantly, this work used TZ095 to construct a new protocol that can quickly and conveniently monitor Aβ changes at the cellular and nematode levels to evaluate the anti-AD efficacy of candidate compounds, and four reported Aβ-lowering drug candidates were administrated for validation. Imaging data demonstrated that TZ095 can visually and quantitatively track the effect of Aβ elimination after drug treatment. Furthermore, TZ095 excelled in ex vivo histological staining of 12-month-old APP/PS1 mouse brains, accurately visualizing Aβ plaques. Integrating CUBIC technology, TZ095 facilitated whole-brain, 3D imaging of Aβ distribution in APP/PS1 mice, enabling high-resolution in situ analysis of Aβ plaques. Collectively, these innovative applications of TZ095 offer a promising strategy for rapid, convenient, and real-time monitoring of Aβ levels in preclinical therapeutic assessments.
Collapse
Affiliation(s)
- Haolan You
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yihe Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xicheng Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiqi Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Junyang Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiqi Shao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Donglei Shi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Baoli Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Abramchuk D, Voskresenskaya A, Kuzmichev I, Erofeev A, Gorelkin P, Abakumov M, Beloglazkina E, Krasnovskaya O. BODIPY in Alzheimer's disease diagnostics: A review. Eur J Med Chem 2024; 276:116682. [PMID: 39053190 DOI: 10.1016/j.ejmech.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Timely diagnosis and therapy of Alzheimer's disease remains one of the greatest questions in medicinal chemistry of neurodegenerative disease. The lack of low-cost sensors capable of reliable detection of structural changes in AD-related proteins is the driving factor for the development of novel molecules with affinity for AD hallmarks. The development of cheap, safe diagnostic methods is a highly sought-after area of research. Optical fluorescent probes are of great interest due to their non-radioactivity, low cost, and ability of the real-time visualization of AD hallmarks. Boron dipyrromethene (BODIPY)-based fluorophore is one promising fluorescent unit for in vivo labeling due to its high photostability, easy modification, low toxicity, and cell-permeability. In recent years, many fluorescent BODIPY-based probes capable of Aβ plaque, Aβ soluble oligomers, neurofibrillary tangles (NFT) optical detection, as well as probes with copper ion chelating units and viscosity sensors have been developed. In this review, we summarized BODIPY derivatives as fluorescent sensors capable of detecting pathological features of Alzheimer's disease, published from 2009 to 2023, as well as their design strategies, optical properties, and in vitro and in vivo activities.
Collapse
Affiliation(s)
- Daniil Abramchuk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Alevtina Voskresenskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia
| | - Ilia Kuzmichev
- V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinsky per. 23, 119034, Moscow, Russia
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Peter Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Maxim Abakumov
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia; Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, Ostrovityanova str., 1, 6, 117997, Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia.
| |
Collapse
|
4
|
Li L, Zhang W, Cao H, Fang L, Wang W, Li C, He Q, Jiao J, Zheng R. Nanozymes in Alzheimer's disease diagnostics and therapy. Biomater Sci 2024; 12:4519-4545. [PMID: 39083017 DOI: 10.1039/d4bm00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that has become an important public health problem of global concern, and the early diagnosis and etiological treatment of AD are currently the focus of research. In the course of clinical treatment, approved clinical drugs mainly serve to slow down the disease process by relieving patients' clinical symptoms. However, these drugs do not target the cause of the disease, and the lack of specificity of these drugs has led to undesirable side effects in treatment. Meanwhile, AD is mainly diagnosed by clinical symptoms and imaging, which does not have the advantage of early diagnosis. Nanozymes have been extensively investigated for the diagnosis and treatment of AD with high stability and specificity. Therefore, this review summarizes the recent advances in various nanozymes for AD diagnosis and therapy, including with peroxidase-like-activity gold nanozymes, iron nanozymes, superoxide dismutase-like- and catalase-like-activity selenium dioxide nanozymes, platinum nanozymes, and peroxidase-like palladium nanozymes, among others. A comprehensive analysis was conducted on the diagnostic and therapeutic characteristics of nanozyme therapy for AD, as well as the prospects and challenges of its clinical application. Our goal is to advance this emerging topic by building on our own work and the new insights we have learned from others. This review will assist researchers to quickly understand relevant nanozymes' therapeutic and diagnostic information and further advance the field of nanozymes in AD.
Collapse
Affiliation(s)
- Linquan Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenyu Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Hengyi Cao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Leming Fang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenjing Wang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Chengzhilin Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Qingbin He
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jianwei Jiao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
5
|
Zhou C, Zeng F, Yang H, Liang Z, Xu G, Li X, Liu X, Yang J. Near-infrared II theranostic agents for the diagnosis and treatment of Alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:2953-2969. [PMID: 38502215 DOI: 10.1007/s00259-024-06690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Near-infrared II theranostic agents have gained great momentum in the research field of AD owing to the appealing advantages. Recently, an array of activatable NIR-II fluorescence probes has been developed to specifically monitor pathological targets of AD. Furthermore, various NIR-II-mediated nanomaterials with desirable photothermal and photodynamic properties have demonstrated favorable outcomes in the management of AD. METHODS We summerized amounts of references and focused on small-molecule probes, nanomaterials, photothermal therapy, and photodynamic therapy based on NIR-II fluorescent imaging for the diagnosis and treatment in AD. In addition, design strategies for NIR-II-triggered theranostics targeting AD are presented, and some prospects are also addressed. RESULTS NIR-II theranostic agents including small molecular probes and nanoparticles have received the increasing attention for biomedical applications. Meanwhile, most of the theranostic agents exhibited the promising results in animal studies. To our surprise, the multifunctional nanoplatforms also show a great potential in the diagnosis and treatment of AD. CONCLUSIONS Although NIR-II theranostic agents showed the great potential in diagnosis and treatment of AD, there are still many challenges: 1) Faborable NIR-II fluorohpores are still lacking; 2) Biocompatibility, bioseurity and dosage of NIR-II theranostic agents should be further revealed; 3) New equipment and software associated with NIR-II imaging system should be explored.
Collapse
Affiliation(s)
- Can Zhou
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fantian Zeng
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Haijun Yang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zeying Liang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guanyu Xu
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Xingdang Liu
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Jian Yang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
Li JY, Zhou CM, Jin RL, Song JH, Yang KC, Li SL, Tan BH, Li YC. The detection methods currently available for protein aggregation in neurological diseases. J Chem Neuroanat 2024; 138:102420. [PMID: 38626816 DOI: 10.1016/j.jchemneu.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Protein aggregation is a pathological feature in various neurodegenerative diseases and is thought to play a crucial role in the onset and progression of neurological disorders. This pathological phenomenon has attracted increasing attention from researchers, but the underlying mechanism has not been fully elucidated yet. Researchers are increasingly interested in identifying chemicals or methods that can effectively detect protein aggregation or maintain protein stability to prevent aggregation formation. To date, several methods are available for detecting protein aggregates, including fluorescence correlation spectroscopy, electron microscopy, and molecular detection methods. Unfortunately, there is still a lack of methods to observe protein aggregation in situ under a microscope. This article reviews the two main aspects of protein aggregation: the mechanisms and detection methods of protein aggregation. The aim is to provide clues for the development of new methods to study this pathological phenomenon.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Cheng-Mei Zhou
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Rui-Lin Jin
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Jia-Hui Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Ke-Chao Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
7
|
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, Kotova O, Scanlan EM, Lewis SE, Li P, Tang B, James TD, Gunnlaugsson T. Fluorescent Probes for Disease Diagnosis. Chem Rev 2024; 124:7106-7164. [PMID: 38760012 PMCID: PMC11177268 DOI: 10.1021/acs.chemrev.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | | | - Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Yuantao Mao
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Feida Che
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Oxana Kotova
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
| | - Eoin M. Scanlan
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
- Laoshan
Laboratory, 168 Wenhai
Middle Road, Aoshanwei Jimo, Qingdao 266237, Shandong, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, People’s
Republic of China
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| |
Collapse
|
8
|
Zhang J, Ren W, Liu X, Chen J, Zeng Y, Xiang H, Hu Y, Zhang H. A novel BODIPY-based theranostic agent for in vivo fluorescence imaging of cerebral Aβ and ameliorating Aβ-associated disorders in Alzheimer's disease transgenic mice. RSC Med Chem 2024; 15:1216-1224. [PMID: 38665839 PMCID: PMC11042169 DOI: 10.1039/d3md00744h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 04/28/2024] Open
Abstract
β-Amyloid (Aβ) aggregation is increasingly recognized as both a biomarker and an inducer of the progression of Alzheimer's disease (AD). Here, we describe a novel fluorescent probe P14, developed based on the BODIPY structure, capable of simultaneous visualization and inhibition of Aβ aggregation in vivo. P14 shows high binding affinity to Aβ aggregates and selectively labels Aβ plaques in the brain slices of APP/PS1 mice. Moreover, P14 is able to visualize overloaded Aβ in both APP/PS1 and 5 × FAD transgenic mice in vivo. From the aspect of potential therapeutic effects, P14 administration inhibits Aβ aggregation and alleviates Aβ-induced neuronal damage in vitro, as well as reduces central Aβ deposition and ameliorates cognitive impairment in APP/PS1 transgenic mice in vivo. Finally, P14 is applied to monitor the progression of Aβ aggregation in the brain of 5 × FAD transgenic mice and the intervention effect itself by fluorescence imaging. In summary, the discovery of this fluorescent agent might provide important clues for the future development of theranostic drug candidates targeting Aβ aggregation in AD.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wenming Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Xiaohui Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Jingjing Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS 1 Xiangshanzhi Road Hangzhou 310024 China
| | - Yuteng Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Life Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Huaijiang Xiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS 1 Xiangshanzhi Road Hangzhou 310024 China
| | - Haiyan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
9
|
Francisco T, Malafaia D, Melo L, Silva AMS, Albuquerque HMT. Recent Advances in Fluorescent Theranostics for Alzheimer's Disease: A Comprehensive Survey on Design, Synthesis, and Properties. ACS OMEGA 2024; 9:13556-13591. [PMID: 38559945 PMCID: PMC10975685 DOI: 10.1021/acsomega.3c10417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia that is rapidly becoming a major health problem, especially in developed countries because of their increasing life expectancy. Two main problems are often associated with the disease: (i) the absence of a widely accessible "gold-standard" for early diagnosis and (ii) lack of effective therapies with disease-modifying effects. The recent success of the monoclonal antibody lecanemab played an important role not only in clarifying a possible druggable pathway but also in spelling the revival of small molecule drug discovery. Unlike bulky biologics, small molecules are structurally less complex, generally cheaper, and compatible with at-home oral consumption, making it feasible for people to start their drug regimen early and stay on it longer. In this sense, small-molecule near-infrared fluorescent theranostics have been gaining more and more attention from the scientific community, as they have the potential to simultaneously provide diagnostic outputs and deliver therapeutic action, paving the way toward personalized medicine in AD patients. They also have the potential to shift the diagnostic "status-quo" from expensive and limited-access PET radiotracers toward inexpensive and handy imaging tools widely available for primary patient screening and preclinical animal studies. Herein, we review the most recent advances in the field of fluorescent theranostics for Alzheimer's disease, detailing their design strategies, synthetic approaches and imaging and therapeutic properties in vitro and in vivo. With this Review, we intend to provide a milestone in the acquired knowledge in the field of AD theranostics, encouraging the future development of properly designed theranostic compounds with improved chances to reach clinical applications.
Collapse
Affiliation(s)
- Telmo
N. Francisco
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Daniela Malafaia
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Lúcia Melo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Hélio M. T. Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Cao Y, Xu S, Liu J, Zhao S, Yan J. Rational construction and evaluation of a dual-functional near-infrared fluorescent probe for the imaging of Amyloid-β and mitochondrial viscosity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123564. [PMID: 37871543 DOI: 10.1016/j.saa.2023.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Alzheimer's disease is a fatal, incurable, chronic neurodegenerative disease. Diagnosis in its early and even preclinical stages will be beneficial for its prevention and treatment. In the accepted pathological theory, abnormal accumulation of Aβ protein and abnormal mitochondrial function, including changes in mitochondrial viscosity, is closely related to Alzheimer's disease. To date, rare fluorescent probes have been reported that can simultaneously image Aβ plaques and mitochondrial viscosity. Therefore, the development of a dual-functional fluorescent probe for real-time fluorescence imaging of Aβ plaques and mitochondrial viscosity is crucial to discover a novel approach and strategy for the treatment of Alzheimer's disease, and to understand the pathological process and crosstalk between different biomarkers of Alzheimer's disease. Herein, we rationally designed and synthesized a series of fluorescent probes QM-SF-1∼5 with dimethylamino-quinolinium as the skeleton and thiophene as the π bridge to connect the groups with different electron-push/pull capacities. Among them, QM-SF-2 exhibited excellent properties such as large Stokes shift (168 nm), near-infrared emission (689 nm), and high selectivity and sensitivity (limit of detection was 1.07 μM) to Aβ aggregate and mitochondrial viscosity changes, indicating its promising prospects as a dual-functional imaging tool in the pathological study of Alzheimer's disease.
Collapse
Affiliation(s)
- Yingmei Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shengmei Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Jinsheng Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuai Zhao
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
11
|
He YJ, Liu JS, Zhang L, Yan JW. A quinolinium-based dual-functional NIR fluorescent probe for the imaging of Aβ aggregation and mitochondrial pH. Talanta 2024; 268:125362. [PMID: 37918242 DOI: 10.1016/j.talanta.2023.125362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Mitochondria are the most important energy supply centers in the cell, the changes in function and structure are implicated in many diseases. Among them, Aβ peptide, one of the targets of Alzheimer's disease, is closely related to mitochondrial autophagy, during the process of mitochondrial autophagy, the mitochondrial matrix will undergo acidification and the pH will be obviously reduced. Herein, a quinolinium-based NIR fluorescent probe QM12 was rationally designed and synthesized for the simultaneous imaging of Aβ aggregates and mitochondrial pH with different emission readout. The probe QM12 exhibited excellent selective toward Aβ aggregates, and can also trace the real-time changes of mitochondrial pH, which could serve as a promising tool for the pathological study of Alzheimer's disease, especially the cross talk between different biomarkers of Alzheimer's disease.
Collapse
Affiliation(s)
- Yi-Jiao He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Jin-Sheng Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| | - Jin-Wu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
12
|
Sun A, Sun H, Anwar G, Lu X, Yan J. A conformationally-locked p-hydroxybenzylidene imidazolinone derivative for detecting Aβ 42 aggregation. Bioorg Med Chem Lett 2024; 98:129576. [PMID: 38061401 DOI: 10.1016/j.bmcl.2023.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) is a common type of neurodegenerative disease, which can only be symptomatically relieved but does not yet have a cure. Among the different Aβ species, amyloid-β 42 (Aβ42) aggregates are proposed to be more neurotoxic than that of Aβ40, and oligomeric Aβ42 is thought to play a harmful role in the pathophysiology of AD. Therefore, the detection of Aβ42 aggregation is very meaningful in the AD field. We herein report a conformationally-locked p- hydroxybenzylidene imidazolinone derivative, BDI, which exhibits selectivity and specificity towards Aβ42 aggregation and remarkable fluorescent enhancement with a large Stokes shift (more than 100 nm). In the fluorescent co-localization study, BDI can sensitively detect a large population of Aβ42 aggregation over that of Aβ40 in the brain tissues of AD transgenic mouse models. Therefore, this new probe could provide a useful tool for the rapid detection of important Aβ species in AD.
Collapse
Affiliation(s)
- Anyang Sun
- Laboratory of Neurogenerative Diseases & Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Han Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Gulziba Anwar
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiuhong Lu
- Laboratory of Neurogenerative Diseases & Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
13
|
Li M, Lei P, Shuang S, Dong C, Zhang L. Recent advances in fluorescent probes for dual-detecting ONOO - and analytes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123179. [PMID: 37542874 DOI: 10.1016/j.saa.2023.123179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Although peroxynitrite (ONOO-) plays an essential role in cellular redox homeostasis, its excess ONOO- will affect the normal physiological function of cells. Therefore, real-time monitoring of changes in local ONOO- will contribute to further revealing the biological functions. Reliable and accurate detection of biogenic ONOO- will definitely benefit for disentangling its complex functions in living systems. In the past few years, more fluorescent probes have been developed to help understand and reveal cellular ONOO- changes. However, there has been no comprehensive and critical review of multifunctional fluorescent probes for cellular ONOO- and other analytes. To highlight the recent advances, this review first summarized the recent progress of multifunctional fluorescent probes since 2018, focusing on molecular structures, response mechanisms, optical properties, and biological imaging in the detection and imaging of cellular ONOO- and analytes. We classified and discussed in detail the limitations of existing multifunctional probes, and proposed new ideas to overcome these limitations. Finally, the challenges and future development trends of ONOO- fluorescence probes were discussed. We hoped this review will provide new research directions for developing of multifunctional fluorescent probes and contribute to the early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Minglu Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Peng Lei
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China.
| |
Collapse
|
14
|
Lee H, Kim Y, Aziz H, Kang DM, Lee J, Lee S, Jung S, Hyeon S, Choo H, Nam G, Kim YK, Lim S, Min SJ. Synthesis and biological evaluation of indane-based fluorescent probes for detection of amyloid-β aggregates in Alzheimer's disease. Bioorg Med Chem 2023; 95:117513. [PMID: 37931520 DOI: 10.1016/j.bmc.2023.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
In this article, the development of fluorescent imaging probes for the detection of Alzheimer's disease (AD)-associated protein aggregates is described. Indane derivatives with a donor-π-acceptor (D-π-A) structure were designed and synthesized. The probes were evaluated for their ability to bind to β-amyloid (Aβ) protein aggregates, which are a key pathological hallmark of AD. The results showed that several probes exhibited significant changes in fluorescence intensity at wavelengths greater than 600 nm when they were bound to Aβ aggregates compared to the Aβ monomeric form. Among the tested probes, four D-π-A type indane derivatives showed promising binding selectivity to Aβ aggregates over non-specific proteins such as bovine serum albumin (BSA). The molecular docking study showed that our compounds were appropriately located along the Aβ fibril axis through the hydrophobic tunnel structure. Further analysis revealed that the most active compound having dimethylaminopyridyl group as an election donor and dicyano group as an electron acceptor could effectively stain Aβ plaques in brain tissue samples from AD transgenic mice. These findings suggest that our indane-based compounds have the potential to serve as fluorescent probes for the detection and monitoring of Aβ aggregation in AD.
Collapse
Affiliation(s)
- Hyunseung Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yihoon Kim
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hira Aziz
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Dong-Min Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jaewoon Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea; Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sujin Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea; Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sunhwa Jung
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea; Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Suyeon Hyeon
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyunah Choo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Ghilsoo Nam
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea; Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea; Department of Chemical & Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
15
|
Bajad NG, Kumar A, Singh SK. Recent Advances in the Development of Near-Infrared Fluorescent Probes for the in Vivo Brain Imaging of Amyloid-β Species in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2955-2967. [PMID: 37574911 DOI: 10.1021/acschemneuro.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical regions of the brain of Alzheimer's disease (AD) patients is considered the foremost pathological hallmark of the disease. The early diagnosis of AD is paramount in order to effective management and treatment of the disease. Developing near-infrared fluorescence (NIRF) probes targeting Aβ species is a potential and attractive approach suitable for the early and timely diagnosis of AD. The advantages of the NIRF probes over other tools include real-time detection, higher sensitivity, resolution, comparatively inexpensive experimental setup, and noninvasive nature. Currently, enormous progress is being observed in the development of NIRF probes for the in vivo imaging of Aβ species. Several strategies, i.e., the classical push-pull approach, "turn-on" effect, aggregation-induced emission (AIE), and resonance energy transfer (RET), have been exploited for development. We have outlined and discussed the recently emerged NIRF probes with different design strategies targeting Aβ species for ex vivo and in vivo imaging. We believe that understanding the recent development enables the prospect of the rational design of probes and will pave the way for developing future novel probes for early diagnosis of AD.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
16
|
Ji Y, Liu S, Zhang J, Qu L, Wu J, Liu H, Cheng Z. Construction of HPQ-based activatable fluorescent probe for peroxynitrite and its application in ferroptosis and mice model of LPS-induced inflammation. Bioorg Chem 2023; 138:106650. [PMID: 37302314 DOI: 10.1016/j.bioorg.2023.106650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
As one of the important members of reactive oxygen species, ONOO- plays a crucial role in signal transduction, immune response, and other physiological activities. Aberrant changes in ONOO- levels in the living organism are usually associated with many diseases. Therefore, it is important to establish a highly selective and sensitive method for the determination of ONOO- in vivo. Herein, we designed a novel ratio near-infrared fluorescent probe for ONOO- by directly conjugating dicyanoisophorone (DCI) to hydroxyphenyl-quinazolinone (HPQ). Surprisingly, HPQD was unaffected by environmental viscosity and responded rapidly to ONOO- within 40 s. The linear range of ONOO- detection was from 0 μM to 35 μM. Impressively, HPQD did not react with reactive oxygen species and was sensitive to exogenous/endogenous ONOO- in live cells. We also investigated the relationship between ONOO- and ferroptosis and achieved in vivo diagnosis and efficacy evaluation of mice model of LPS-induced inflammation, which showed promising prospects of HPQD in ONOO--related studies.
Collapse
Affiliation(s)
- Yuxiang Ji
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Sha Liu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Linruikang Qu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Jinsheng Wu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Heng Liu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Ziyi Cheng
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
17
|
Chen Y. Two-Photon Fluorescent Probes for Amyloid-β Plaques Imaging In Vivo. Molecules 2023; 28:6184. [PMID: 37687013 PMCID: PMC10488448 DOI: 10.3390/molecules28176184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Amyloid-β (Aβ) peptide deposition, hyperphosphorylated tau proteins, reactive astrocytes, high levels of metal ions, and upregulated monoamine oxidases are considered to be the primary pathological markers of Alzheimer's disease (AD). Among them, Aβ peptide deposition or Aβ plaques, is regarded as the initial factor in the pathogenesis of AD and a critical pathological hallmark in AD. This review highlights recently Aβ-specific fluorescent probes for two-photon imaging of Aβ plaques in vivo. It includes the synthesis and detection mechanism of probes, as well as their application to two-photon imaging of Aβ plaques in vivo.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
19
|
Dang C, Wang Y, Li Q, Lu Y. Neuroimaging modalities in the detection of Alzheimer's disease-associated biomarkers. PSYCHORADIOLOGY 2023; 3:kkad009. [PMID: 38666112 PMCID: PMC11003434 DOI: 10.1093/psyrad/kkad009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 04/28/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Neuropathological changes in AD patients occur up to 10-20 years before the emergence of clinical symptoms. Specific diagnosis and appropriate intervention strategies are crucial during the phase of mild cognitive impairment (MCI) and AD. The detection of biomarkers has emerged as a promising tool for tracking the efficacy of potential therapies, making an early disease diagnosis, and prejudging treatment prognosis. Specifically, multiple neuroimaging modalities, including magnetic resonance imaging (MRI), positron emission tomography, optical imaging, and single photon emission-computed tomography, have provided a few potential biomarkers for clinical application. The MRI modalities described in this review include structural MRI, functional MRI, diffusion tensor imaging, magnetic resonance spectroscopy, and arterial spin labelling. These techniques allow the detection of presymptomatic diagnostic biomarkers in the brains of cognitively normal elderly people and might also be used to monitor AD disease progression after the onset of clinical symptoms. This review highlights potential biomarkers, merits, and demerits of different neuroimaging modalities and their clinical value in MCI and AD patients. Further studies are necessary to explore more biomarkers and overcome the limitations of multiple neuroimaging modalities for inclusion in diagnostic criteria for AD.
Collapse
Affiliation(s)
- Chun Dang
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yanchao Wang
- Department of Neurology, Chifeng University of Affiliated Hospital, Chifeng 024000, China
| | - Qian Li
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu 610000, China
| |
Collapse
|
20
|
Liu X, Liu Y, Liu Q. Fluorescent Sensing Platforms for Detecting and Imaging the Biomarkers of Alzheimer's Disease. BIOSENSORS 2023; 13:bios13050515. [PMID: 37232876 DOI: 10.3390/bios13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease with clinical symptoms of memory loss and cognitive impairment. Currently, no effective drug or therapeutic method is available for curing this disease. The major strategy used is to identify and block AD at its initial stage. Thus, early diagnosis is very important for intervention of the disease and assessment of drug efficacy. The gold standards of clinical diagnosis include the measurement of AD biomarkers in cerebrospinal fluid and positron emission tomography imaging of the brain for amyloid-β (Aβ) deposits. However, these methods are difficult to apply to the general screening of a large aging population because of their high cost, radioactivity and inaccessibility. Comparatively, blood sample detection is less invasive and more accessible for the diagnosis of AD. Hence, a variety of assays based on fluorescence analysis, surface-enhanced Raman scattering, electrochemistry, etc., were developed for the detection of AD biomarkers in blood. These methods play significant roles in recognizing asymptomatic AD and predicting the course of the disease. In a clinical setting, the combination of blood biomarker detection with brain imaging may enhance the accuracy of early diagnosis. Fluorescence-sensing techniques can be used not only to detect the levels of biomarkers in blood but also to image biomarkers in the brain in real time due to their low toxicity, high sensitivity and good biocompatibility. In this review, we summarize the newly developed fluorescent sensing platforms and their application in detecting and imaging biomarkers of AD, such as Aβ and tau in the last five years, and discuss their prospects for clinical applications.
Collapse
Affiliation(s)
- Xingyun Liu
- Department of Chemistry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yibiao Liu
- Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Qiong Liu
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
21
|
Sarabia-Vallejo Á, López-Alvarado P, Menéndez JC. Small-molecule theranostics in Alzheimer's disease. Eur J Med Chem 2023; 255:115382. [PMID: 37141706 DOI: 10.1016/j.ejmech.2023.115382] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Alzheimer's Disease (AD) remains one of the most challenging health-related issues for our society. It is becoming increasingly prevalent, especially in developed countries, due to the rising life expectancy and, moreover, represents a considerable economic burden worldwide. All efforts at the discovery of new diagnostic and therapeutic tools in the last decades have invariably met with failure, making AD an incurable illness and underscoring the need for new approaches. In recent years, theranostic agents have emerged as an interesting strategy. They are molecules able to simultaneously provide diagnostic information and deliver therapeutic activity, allowing for the assessment of the molecule activity, the organism response and the pharmacokinetics. This makes these compounds promising for streamlining research on AD drugs and for their application in personalized medicine. We review here the field of small-molecule theranostic agents as promising tools for the development of novel diagnostic and therapeutic resources against AD, highlighting the positive and significant impact that theranostics can be expected to have in the near future in clinical practice.
Collapse
Affiliation(s)
- Álvaro Sarabia-Vallejo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Mirkin S, Albensi BC. Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of Alzheimer's disease? Front Aging Neurosci 2023; 15:1094233. [PMID: 37187577 PMCID: PMC10177660 DOI: 10.3389/fnagi.2023.1094233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that affects memory, thinking, behavior, and other cognitive functions. Although there is no cure, detecting AD early is important for the development of a therapeutic plan and a care plan that may preserve cognitive function and prevent irreversible damage. Neuroimaging, such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET), has served as a critical tool in establishing diagnostic indicators of AD during the preclinical stage. However, as neuroimaging technology quickly advances, there is a challenge in analyzing and interpreting vast amounts of brain imaging data. Given these limitations, there is great interest in using artificial Intelligence (AI) to assist in this process. AI introduces limitless possibilities in the future diagnosis of AD, yet there is still resistance from the healthcare community to incorporate AI in the clinical setting. The goal of this review is to answer the question of whether AI should be used in conjunction with neuroimaging in the diagnosis of AD. To answer the question, the possible benefits and disadvantages of AI are discussed. The main advantages of AI are its potential to improve diagnostic accuracy, improve the efficiency in analyzing radiographic data, reduce physician burnout, and advance precision medicine. The disadvantages include generalization and data shortage, lack of in vivo gold standard, skepticism in the medical community, potential for physician bias, and concerns over patient information, privacy, and safety. Although the challenges present fundamental concerns and must be addressed when the time comes, it would be unethical not to use AI if it can improve patient health and outcome.
Collapse
Affiliation(s)
- Sophia Mirkin
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Benedict C. Albensi
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- St. Boniface Hospital Research, Winnipeg, MB, Canada
- University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
23
|
Liang Y, Chen Z, Liu Q, Huang H, Meng Z, Gong S, Wang Z, Wang S. A NIR BODIPY-based ratiometric fluorescent probe for HClO detection with high selectivity and sensitivity in real water samples and living zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122268. [PMID: 36580754 DOI: 10.1016/j.saa.2022.122268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Hypochlorous acid (HClO) plays an important role in many physiological and pathological activities. In this work, a novel BODIPY-based Near-infrared (NIR) ratiometric fluorescent probe BODIPY-Hyp was designed for the rapid detection of HClO. The probe BODIPY-Hyp was highly selective and sensitive for HClO with a low detection limit of 16.74 nM and short response time of less than 60 s. The probe BODIPY-Hyp in response to HClO exhibited a significant blue-shifted fluorescence emission from 700 nm to 530 nm, and its fluorescence intensity ratio (I530 nm/I700 nm) increased about 1200 times before and after adding HClO. Moreover, the reaction mechanism of BODIPY-Hyp with HClO was verified by HRMS analysis, 1H NMR titration and DFT calculations. Furthermore, BODIPY-Hyp was successfully processed into a portable test strip-based device for the detection of HClO. In addition, the probe BODIPY-Hyp could be used in real time to monitor the levels of HClO in living zebrafish larvae. In conclusion, BODIPY-Hyp has great application potential in the life and environmental sciences.
Collapse
Affiliation(s)
- Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhen Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qianting Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haiting Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
24
|
Krasnovskaya O, Kononova A, Erofeev A, Gorelkin P, Majouga A, Beloglazkina E. Aβ-Targeting Bifunctional Chelators (BFCs) for Potential Therapeutic and PET Imaging Applications. Int J Mol Sci 2022; 24:ijms24010236. [PMID: 36613679 PMCID: PMC9820683 DOI: 10.3390/ijms24010236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Currently, more than 55 million people live with dementia worldwide, and there are nearly 10 million new cases every year. Alzheimer's disease (AD) is the most common neurodegenerative disease resulting in personality changes, cognitive impairment, memory loss, and physical disability. Diagnosis of AD is often missed or delayed in clinical practice due to the fact that cognitive deterioration occurs already in the later stages of the disease. Thus, methods to improve early detection would provide opportunities for early treatment of disease. All FDA-approved PET imaging agents for Aβ plaques use short-lived radioisotopes such as 11C (t1/2 = 20.4 min) and 18F (t1/2 = 109.8 min), which limit their widespread use. Thus, a novel metal-based imaging agent for visualization of Aβ plaques is of interest, due to the simplicity of its synthesis and the longer lifetimes of its constituent isotopes. We have previously summarized a metal-containing drug for positron emission tomography (PET), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) imaging of Alzheimer's disease. In this review, we have summarized a recent advance in design of Aβ-targeting bifunctional chelators for potential therapeutic and PET imaging applications, reported after our previous review.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
- Correspondence:
| | - Aina Kononova
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
25
|
Zeng Q, Chen Y, Yan Y, Wan R, Li Y, Fu H, Liu Y, Liu S, Yan XX, Cui M. D-π-A-Based Trisubstituted Alkenes as Environmentally Sensitive Fluorescent Probes to Detect Lewy Pathologies. Anal Chem 2022; 94:15261-15269. [DOI: 10.1021/acs.analchem.2c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Zeng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Yimin Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Yingying Yan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Rong Wan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Yanjing Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Sen Liu
- Beijing Seven Dimension Neuroscience Research Center, Beijing Seven Dimension Biotechnology Inc., Beijing101500, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Hunan410013, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai519087, China
| |
Collapse
|
26
|
Shi WJ, Wan QH, Yang F, Wang X, Wei YF, Lin XR, Zhang JY, Deng RH, Chen JY, Zheng L, Liu F, Gao L. A novel TCF-aza-BODIPY-based near-infrared fluorescent probe for highly selective detection of hypochlorous acid in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121490. [PMID: 35691168 DOI: 10.1016/j.saa.2022.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Hypochlorous acid/hypochlorite (HOCl/ClO-) plays important roles in killing bacterial and causing damage to living tissues, and its abnormal levels could lead to many diseases. Although great efforts have been devoted, fluorescent probes for HOCl/ClO- with near-infrared fluorescence, good selectivity/sensitivity, and low background are still important and urgent. In this work, a novel double-bond-linked TCF-aza-BODIPY-based near-infrared fluorescent probe (3) was rationally designed, successfully prepared, and applied for sensing HOCl/ClO- in both solutions and living RAW264.7 cells, showing good selectivity and fluorescence "turn-on" phenomenon at 670 nm with low background. The limit of detection towards ClO- was determined to be 0.36 μM through the linear fluorescence changes at 670 nm in a broad ClO--concentration range of 0-150 μM. Furthermore, the sensing mechanism was investigated by mass spectrometry and compared with 1, suggesting that the remarkable spectroscopic changes could be ascribed to the oxidization of the double bond to the aldehyde group, accompanied with the leaving of the TCF group. Confocal imaging experiments also confirmed the remarkable intracellular fluorescence enhancements through incubation of ClO- and phorbol ester 12-myristate 13-acetate (PMA) in RAW264.7 cells. Therefore, for the first time, we reported a near-infrared TCF-aza-BODIPY-based fluorescent probe for highly sensitive and fluorescence "turn-on" detection of both exogenous and endogenous HOCl in living RAW264.7 cells through the quick oxidation of a conjugated double bond.
Collapse
Affiliation(s)
- Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Qing-Hui Wan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yong-Feng Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xin-Ru Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jian-Ying Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ri-Hui Deng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jie-Yan Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Fenggang Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|
27
|
Recent advance on pleiotropic cholinesterase inhibitors bearing amyloid modulation efficacy. Eur J Med Chem 2022; 242:114695. [PMID: 36044812 DOI: 10.1016/j.ejmech.2022.114695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Due to the hugely important roles of neurotransmitter acetylcholine (ACh) and amyloid-β (Aβ) in the pathogenesis of Alzheimer's disease (AD), the development of multi-target directed ligands (MTDLs) focused on cholinesterase (ChE) and Aβ becomes one of the most attractive strategies for combating AD. To date, numerous preclinical studies toward multifunctional conjugates bearing ChE inhibition and anti-Aβ aggregation have been reported. Noteworthily, most of the reported multifunctional cholinesterase inhibitors are carbamate-based compounds due to the initial properties of carbamate moiety. However, because their easy hydrolysis in vivo and the instability of the compound-enzyme conjugate, the mechanism of action of these compounds is rare. Thus, non-carbamate compounds are of great need for developing novel cholinesterase inhibitors. Besides, given that Aβ accumulation begins to occur 10-15 years before AD onset, modulating Aβ is ineffective only in inhibiting its aggregation but not eliminate the already accumulated Aβ if treatment is started when the patient has been diagnosed as AD. Considering the limitation of current Aβ accumulation modulators in ameliorating cognitive deficits and ineffectiveness of ChE inhibitors in blocking disease progression, the development of a practically valuable strategy with multiple pharmaceutical properties including ChE inhibition and Aβ modulation for treating AD is indispensable. In this review, we focus on summarizing the scaffold characteristics of reported non-carbamate cholinesterase inhibitors with Aβ modulation since 2020, and understanding the ingenious multifunctional drug design ideas to accelerate the pace of obtaining more efficient anti-AD drugs in the future.
Collapse
|
28
|
Zhang M, Fu H, Hu W, Leng J, Zhang Y. Versatile Dicyanomethylene-Based Fluorescent Probes for the Detection of β-Amyloid in Alzheimer's Disease: A Theoretical Perspective. Int J Mol Sci 2022; 23:8619. [PMID: 35955758 PMCID: PMC9369443 DOI: 10.3390/ijms23158619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Motivated by the growing demand for target chemosensors designed with diagnostic or therapeutic capability for fibrils related to amyloidosis diseases, we investigated in the present work the response mechanism of dicyanomethylene-based fluorescent probes for amyloid fibril using a combined approach, including molecular docking, quantum mechanics/molecular mechanics (QM/MM), and the quantum chemical method. Various binding modes for the probes in β-amyloid (Aβ) are discussed, and the fibril environment-induced molecular optical changes at the most stable site are compared to the fibril-free situation in aqueous environments. The results reveal that the fluorescence enhancement for the probes in Aβ observed experimentally is an average consequence over multiple binding sites. In particular, the conformational difference, including conjugation length and donor effect, significantly contributes to the optical property of the studied probes both in water and fibril. To further estimate the transition nature of the molecular photoabsorption and photoemission processes, the hole-electron distribution and the structural variation on the first excited state of the probes are investigated in detail. On the basis of the calculations, structure-property relationships for the studied chemosensors are established. Our computational approach with the ability to elucidate the available experimental results can be used for designing novel molecular probes with applications to Aβ imaging and the early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Jiancai Leng
- International School for Optoelectronic Engineering, School of Electrical Engineering and Automation, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.Z.); (H.F.); (W.H.)
| | - Yujin Zhang
- International School for Optoelectronic Engineering, School of Electrical Engineering and Automation, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.Z.); (H.F.); (W.H.)
| |
Collapse
|
29
|
Rai H, Gupta S, Kumar S, Yang J, Singh SK, Ran C, Modi G. Near-Infrared Fluorescent Probes as Imaging and Theranostic Modalities for Amyloid-Beta and Tau Aggregates in Alzheimer's Disease. J Med Chem 2022; 65:8550-8595. [PMID: 35759679 DOI: 10.1021/acs.jmedchem.1c01619] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A person suspected of having Alzheimer's disease (AD) is clinically diagnosed for the presence of principal biomarkers, especially misfolded amyloid-beta (Aβ) and tau proteins in the brain regions. Existing radiotracer diagnostic tools, such as PET imaging, are expensive and have limited availability for primary patient screening and pre-clinical animal studies. To change the status quo, small-molecular near-infrared (NIR) probes have been rapidly developed, which may serve as an inexpensive, handy imaging tool to comprehend the dynamics of pathogenic progression in AD and assess therapeutic efficacy in vivo. This Perspective summarizes the biochemistry of Aβ and tau proteins and then focuses on structurally diverse NIR probes with coverages of their spectroscopic properties, binding affinity toward Aβ and tau species, and theranostic effectiveness. With the summarized information and perspective discussions, we hope that this paper may serve as a guiding tool for designing novel in vivo imaging fluoroprobes with theranostic capabilities in the future.
Collapse
Affiliation(s)
- Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jian Yang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sushil K Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| |
Collapse
|
30
|
Yang H, Zeng F, Luo Y, Zheng C, Ran C, Yang J. Curcumin Scaffold as a Multifunctional Tool for Alzheimer's Disease Research. Molecules 2022; 27:3879. [PMID: 35745002 PMCID: PMC9227459 DOI: 10.3390/molecules27123879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which is caused by multi-factors and characterized by two histopathological hallmarks: amyloid-β (Aβ) plaques and neurofibrillary tangles of Tau proteins. Thus, researchers have been devoting tremendous efforts to developing and designing new molecules for the early diagnosis of AD and curative purposes. Curcumin and its scaffold have fluorescent and photochemical properties. Mounting evidence showed that curcumin scaffold had neuroprotective effects on AD such as anti-amyloidogenic, anti-inflammatory, anti-oxidative and metal chelating. In this review, we summarized different curcumin derivatives and analyzed the in vitro and in vivo results in order to exhibit the applications in AD diagnosis, therapeutic monitoring and therapy. The analysis results showed that, although curcumin and its analogues have some disadvantages such as short wavelength and low bioavailability, these shortcomings can be conquered by modifying the structures. Curcumin scaffold still has the potential to be a multifunctional tool for AD research, including AD diagnosis and therapy.
Collapse
Affiliation(s)
- Haijun Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| | - Fantian Zeng
- School of Public Health, Xiamen University, Xiamen 361000, China;
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| | - Chao Zheng
- PET Center, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jian Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| |
Collapse
|
31
|
Antman-Passig M, Wong E, Frost GR, Cupo C, Shah J, Agustinus A, Chen Z, Mancinelli C, Kamel M, Li T, Jonas LA, Li YM, Heller DA. Optical Nanosensor for Intracellular and Intracranial Detection of Amyloid-Beta. ACS NANO 2022; 16:7269-7283. [PMID: 35420796 PMCID: PMC9710299 DOI: 10.1021/acsnano.2c00054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid-beta (Aβ) deposition occurs in the early stages of Alzheimer's disease (AD), but the early detection of Aβ is a persistent challenge. Herein, we engineered a near-infrared optical nanosensor capable of detecting Aβ intracellularly in live cells and intracranially in vivo. The sensor is composed of single-walled carbon nanotubes functionalized with Aβ wherein Aβ-Aβ interactions drive the response. We found that the Aβ nanosensors selectively responded to Aβ via solvatochromic modulation of the near-infrared emission of the nanotube. The sensor tracked Aβ accumulation in live cells and, upon intracranial administration in a genetic model of AD, signaled distinct responses in aged mice. This technology enables the interrogation of molecular mechanisms underlying Aβ neurotoxicity in the development of AD in living systems.
Collapse
Affiliation(s)
- Merav Antman-Passig
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Janki Shah
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Albert Agustinus
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Ziyu Chen
- Program of Physiology, Biophysics, & Systems Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Chiara Mancinelli
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Maikel Kamel
- Sophie Davis School of Biomedical Education, CUNY School of Medicine, New York, New York 10031, United States
| | - Thomas Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Lauren A Jonas
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
- Program of Physiology, Biophysics, & Systems Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| |
Collapse
|
32
|
Torra J, Viela F, Megías D, Sot B, Flors C. Versatile Near‐Infrared Super‐Resolution Imaging of Amyloid Fibrils with the Fluorogenic Probe CRANAD‐2. Chemistry 2022; 28:e202200026. [DOI: 10.1002/chem.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Joaquim Torra
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
| | - Felipe Viela
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
| | - Diego Megías
- Confocal Microscopy Unit; Biotechnology Programme Spanish National Cancer Research Centre (CNIO) Madrid 28029 Spain
| | - Begoña Sot
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| |
Collapse
|
33
|
Su D, Diao W, Li J, Pan L, Zhang X, Wu X, Mao W. Strategic Design of Amyloid-β Species Fluorescent Probes for Alzheimer's Disease. ACS Chem Neurosci 2022; 13:540-551. [PMID: 35132849 DOI: 10.1021/acschemneuro.1c00810] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a high mortality and high disability rates neurodegenerative disease characterized by irreversible progression and poses a significant social and economic burden throughout the world. However, currently approved AD therapeutic agents only alleviate symptoms and there is still a lack of practical therapeutic regimens to stop or slow the progression of this disease. Thus, there is urgently needed novel diagnosis tools and drugs for early diagnosis and treatment of AD. Among several AD pathological hallmarks, amyloid-β (Aβ) peptide deposition is considered a critical initiating factor in AD. In recent years, with the advantages of excellent sensitivity and high resolution, near-infrared fluorescence (NIRF) imaging has attracted the attention of many researchers to develop Aβ plaque probes. This review mainly focused on different NIRF probe design strategies for imaging Aβ species to pave the way for the future design of novel NIRF probes for early diagnosis AD.
Collapse
Affiliation(s)
- Dunyan Su
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Diao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610093, P. R. China
| |
Collapse
|
34
|
Hamd-Ghadareh S, Salimi A, Parsa S, Mowla SJ. Development of three-dimensional semi-solid hydrogel matrices for ratiometric fluorescence sensing of Amyloid β peptide and imaging in SH-SY5 cells: Improvement of point of care diagnosis of Alzheimer's disease biomarker. Biosens Bioelectron 2021; 199:113895. [PMID: 34968953 DOI: 10.1016/j.bios.2021.113895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's is a neurodegenerative disease with high morbidity and mortality in the elderly, so, detection of its biomarker for definite diagnosis of Alzheimer's in the early stage of disease is a challenge. Amyloid beta peptide (Aβ) chosen as an Alzheimer's biomarker. Here, we developed novel, semi-solid, three-dimensional hydrogel matrices for ratiometric fluorescence detection of Aβ. This assay's great performance stems from the employment of a hybrid conjugate composed of Rhodamine B (RB), Carbon dots (CDs), and an Aβ probe entrapped in Polyvinyl alcohol (PVA), and then detection of fluorescence resonance energy transfer (FRET) that occurs in the presence of AuNP/target-Aβ, as a result of hybridization. The RB-CDs' fluorescence (at 582 nm and 675 nm under 430 nm excitation) is quenched in the presence of AuNPs, while the ratio of fluorescence (I582/I675) is increased by the addition of Aβ target, and shows a linear relationship in the range of 75 pM-250 nM, with a detection limit of 0.5 pM. Furthermore, the assay possesses strong selectivity for Aβ compared to other proteins, and different quantities of a human serum sample successfully analyzed with excellent sensitivity, satisfactory precision, and reliability. Due to distribution of Aβ in SH-SY5 human neuroblastoma cells, extending this UV-Vis-NIR full-range responsive CDs bio-probe to imaging of Aβ in cells. In both fixed and living SH-SY5 cells, the nanoprobe delivers a clear signal to the Aβ target. Because of its high sensitivity, selectivity, biocompatibility and affordability, this nanoprobe is a good option for early Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Sara Parsa
- Faculty of Biological Sciences, Tarbiat Modarres University, P.O. Box: 14115-154, Tehran, Iran
| | - Seyed Javad Mowla
- Faculty of Biological Sciences, Tarbiat Modarres University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
35
|
Zhang P, Fu C, Liu H, Guo X, Zhang Q, Gao J, Chen W, Yuan W, Ding C. AND-Logic Strategy for Accurate Analysis of Alzheimer's Disease via Fluorescent Probe Lighted Up by Two Specific Biomarkers. Anal Chem 2021; 93:11337-11345. [PMID: 34353021 DOI: 10.1021/acs.analchem.1c02943] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) has become a global threat to the elderly health with a short survival time after diagnosis. Due to the asymptomatic stage during the early development, patients are usually diagnosed at the middle or late stage. Therefore, an efficient tool for AD early diagnosis deserves considerable attention, which could make a significant contribution to the treatment intervention. A fluorescent probe has been widely applied for detecting and visualizing species of interest in vitro and in vivo, and the proper reaction between the probe and analytes is responsible for the fluorescence change to provide a lighting-on or ratiometric responsive pattern with satisfactory sensing behavior. In this work, we report the first attempt to build up an AND-logic probe P2 for AD accuracy diagnosis taking butyrylcholinesterase (BChE) and reactive oxygen species (ROSs) as dual targets. Upon the co-stimulation by these two factors through enzymatic hydrolysis and redox reaction, the NIR emission could be readily turned on. This AND sensing pattern avoided the false-positive response effectively, and other diseases sharing one biomarker could hardly induce a NIR fluorescence response. The sensing assay has also been confirmed to be feasible in vitro and in vivo with good sensibility and selectivity. It is worth mentioning that the probe structure has been optimized in terms of the linkage length. This study shows that probe P2 with a connecting arm of medium length (one methylene, n = 1) has superior sensing performance, promising to provide a reference for the relative structure design.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Caixia Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haihong Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wenjuan Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wei Yuan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
36
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
37
|
Park YD, Kinger M, Min C, Lee SY, Byun Y, Park JW, Jeon J. Synthesis and evaluation of curcumin-based near-infrared fluorescent probes for the in vivo optical imaging of amyloid-β plaques. Bioorg Chem 2021; 115:105167. [PMID: 34358800 DOI: 10.1016/j.bioorg.2021.105167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023]
Abstract
The abnormal self-assembly of amyloid-beta (Aβ) peptides into oligomers, as well as insoluble fibrils, has been identified as a key factor for monitoring the progression of Alzheimer's disease (AD). The noninvasive imaging of Aβ aggregates utilizing chemical probes can be a powerful and practical technique for accurately diagnosing and monitoring the progress of AD, as well as evaluating the effectiveness of therapeutic drug candidates in treating or managing it. Particularly, the near-infrared (NIR) fluorescence imaging of Aβ plaques is a potentially promising approach toward the efficient detection of the biomarker. In this study, we describe a new NIR fluorophore, which was based on curcumin derivatives. The fluorophore is equipped with desirable optical properties for in vivo brain imaging. The emission wavelength of the probe, 8b, is 667 nm, and its fluorescent intensity is significantly increased through binding with the Aβ aggregates. The probe allows the clear visualization of the Aβ plaques 10 min post administration, and the intensity of the fluorescent signal in the brain of a 5XFAD transgenic mouse model is more than three times higher than that of the normal control group. These results demonstrate that the designed probe can be an effective tool for visualizing Aβ plaques, as well as investigating the pathological progress of AD.
Collapse
Affiliation(s)
- Yong Dae Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Mayank Kinger
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea; Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India
| | - Changho Min
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang Yeob Lee
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngjoo Byun
- Department of Pharmacy, College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Jin Woo Park
- BioActs Co., Ltd., Cheongneung-daero, Incheon 21666, Republic of Korea
| | - Jongho Jeon
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
38
|
Sun L, Cho HJ, Sen S, Arango AS, Huynh TT, Huang Y, Bandara N, Rogers BE, Tajkhorshid E, Mirica LM. Amphiphilic Distyrylbenzene Derivatives as Potential Therapeutic and Imaging Agents for Soluble and Insoluble Amyloid β Aggregates in Alzheimer's Disease. J Am Chem Soc 2021; 143:10462-10476. [PMID: 34213901 PMCID: PMC8762579 DOI: 10.1021/jacs.1c05470] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease, and efficient therapeutic and early diagnostic agents for AD are still lacking. Herein, we report the development of a novel amphiphilic compound, LS-4, generated by linking a hydrophobic amyloid-binding distyrylbenzene fragment with a hydrophilic triazamacrocycle, which dramatically increases the binding affinity toward various amyloid β (Aβ) peptide aggregates, especially for soluble Aβ oligomers. Moreover, upon the administration of LS-4 to 5xFAD mice, fluorescence imaging of LS-4-treated brain sections reveals that LS-4 can penetrate the blood-brain barrier and bind to the Aβ oligomers in vivo. In addition, the treatment of 5xFAD mice with LS-4 reduces the amount of both amyloid plaques and associated phosphorylated tau aggregates vs the vehicle-treated 5xFAD mice, while microglia activation is also reduced. Molecular dynamics simulations corroborate the observation that introducing a hydrophilic moiety into the molecular structure of LS-4 can enhance the electrostatic interactions with the polar residues of the Aβ species. Finally, exploiting the Cu2+-chelating property of the triazamacrocycle, we performed a series of imaging and biodistribution studies that show the 64Cu-LS-4 complex binds to the amyloid plaques and can accumulate to a significantly larger extent in the 5xFAD mouse brains vs the wild-type controls. Overall, these results illustrate that the novel strategy, to employ an amphiphilic molecule containing a hydrophilic moiety attached to a hydrophobic amyloid-binding fragment, can increase the binding affinity for both soluble and insoluble Aβ aggregates and can thus be used to detect and regulate various Aβ species in AD.
Collapse
Affiliation(s)
- Liang Sun
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong-Jun Cho
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Soumyo Sen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Andres S Arango
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Truc T Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Yiran Huang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Liviu M Mirica
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
39
|
Shi WJ, Feng LX, Wang X, Huang Y, Wei YF, Huang YY, Ma HJ, Wang W, Xiang M, Gao L. A near-infrared-emission aza-BODIPY-based fluorescent probe for fast, selective, and "turn-on" detection of HClO/ClO . Talanta 2021; 233:122581. [PMID: 34215073 DOI: 10.1016/j.talanta.2021.122581] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022]
Abstract
A novel near-infrared-emitting aza-BODIPY-based fluorescent probe with two tellurium atoms at two upper benzyl rings has been prepared and explored for its fluorescent sensing properties towards hypochlorous acid/hypochorite (HClO/ClO-), which showed high selectivity and absolutely fluorescent "turn-on" phenomenon at 738 nm. The fluorescence of this probe was sufficiently quenched due to photoindued electron transfer by two tellurium atoms. Upon exposure to HClO/ClO-, a strong near-infrared emission at 738 nm appeared with fluorescence quantum yields changing from 0 to 0.11. This remarkable fluorescence change was ascribed to the oxidation of both electron-rich tellurium atoms. The detection limit of this probe towards HClO/ClO- was calculated to 0.09 μM in acetonitrile aqueous solution by the linear fluorescence change at 738 nm in the HClO/ClO--concentration range of 0-30 μM. Interestingly, this probe was found to be applicable in a broad pH range (2-10). Meanwhile, the oxidized probe could be further responsive to biothiols with substantial fluorescence disappearance. The bioimaging experiments in RAW264.7 cells showed the appearance of intracellular near-infrared fluorescence after addition of HClO/ClO- and PMA, and the fluorescence could also be reversed to be silenced by further introduction of GSH, confirming its potential application for exogenous and endogenous detection of HClO/ClO- in living cells.
Collapse
Affiliation(s)
- Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China; The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, China.
| | - Liu-Xia Feng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yan Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yong-Feng Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yan-Yu Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Huai-Jin Ma
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
40
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
41
|
Zhang Y, Ding C, Li C, Wang X. Advances in fluorescent probes for detection and imaging of amyloid-β peptides in Alzheimer's disease. Adv Clin Chem 2021; 103:135-190. [PMID: 34229849 DOI: 10.1016/bs.acc.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid plaques generated from the accumulation of amyloid-β peptides (Aβ) fibrils in the brain is one of the main hallmarks of Alzheimer's disease (AD), a most common neurodegenerative disorder. Aβ aggregation can produce neurotoxic oligomers and fibrils, which has been widely accepted as the causative factor in AD pathogenesis. Accordingly, both soluble oligomers and insoluble fibrils have been considered as diagnostic biomarkers for AD. Among the existing analytical methods, fluorometry using fluorescent probes has exhibited promising potential in quantitative detection and imaging of both soluble and insoluble Aβ species, providing a valuable approach for the diagnosis and drug development of AD. In this review, the most recent advances in the fluorescent probes for soluble or insoluble Aβ aggregates are discussed in terms of design strategy, probing mechanism, and potential applications. In the end, future research directions of fluorescent probes for Aβ species are also proposed.
Collapse
Affiliation(s)
- Yunhua Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Cen Ding
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Changhong Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, PR China.
| |
Collapse
|
42
|
Liu J, Xiong Y, Huang Y, Zhu X, Liu Y, Zhang L, Yan J. A quinoline–benzothiazole hybrid as the first near-infrared fluorescent probe for transthyretin. NEW J CHEM 2021. [DOI: 10.1039/d1nj02472h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A quinoline-benzothiazole hybrid was rationally developed as the first NIR fluorescent probe for detecting transthyretin.
Collapse
Affiliation(s)
- Jinsheng Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yinghong Xiong
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xinyin Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
43
|
Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent Diagnostic Probes in Neurodegenerative Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001945. [PMID: 32902000 DOI: 10.1002/adma.202001945] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Indexed: 05/22/2023]
Abstract
Neurodegenerative diseases are debilitating disorders that feature progressive and selective loss of function or structure of anatomically or physiologically associated neuronal systems. Both chronic and acute neurodegenerative diseases are associated with high morbidity and mortality along with the death of neurons in different areas of the brain; moreover, there are few or no effective curative therapy options for treating these disorders. There is an urgent need to diagnose neurodegenerative disease as early as possible, and to distinguish between different disorders with overlapping symptoms that will help to decide the best clinical treatment. Recently, in neurodegenerative disease research, fluorescent-probe-mediated biomarker visualization techniques have been gaining increasing attention for the early diagnosis of neurodegenerative diseases. A survey of fluorescent probes for sensing and imaging biomarkers of neurodegenerative diseases is provided. These imaging probes are categorized based on the different potential biomarkers of various neurodegenerative diseases, and their advantages and disadvantages are discussed. Guides to develop new sensing strategies, recognition mechanisms, as well as the ideal features to further improve neurodegenerative disease fluorescence imaging are also explored.
Collapse
Affiliation(s)
- Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
44
|
Jiao S, Yang S, Meng X, Wang C. One step synthesis of red-emitting fluorescence turn-on probe for nitroreductase and its application to bacterial detection and oral cancer cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118637. [PMID: 32615372 DOI: 10.1016/j.saa.2020.118637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Nitroreductase (NTR) belongs to a class of flavin mononucleotide-dependent and flavin adenine dinucleotide-dependent cytoplasmic enzymes; its contents in tumor cells increase during hypoxia. The development of fluorescent probes for detection of NTR activity is of great significance for the study of the state of hypoxia in living organisms. In this paper, a red-emitting fluorescence turn-on probe EBI-NO2 was synthesized using a one-step method. The fluorescence of the probe was enhanced by 60 folds in the presence of NTR. The probe also had high selectivity towards NTR, and its detection limit was as low as 1 ng/mL. The reaction mechanism was verified using MS, molecular docking and theoretical calculations. In addition, it was successfully applied in real-time monitoring of NTR produced during growth of Escherichia coli (BL21) and in visualization of NTR in oral cancer cells (Cal-27) under hypoxia. This work provides a new imaging tool that can be applied to investigate the physiological and pathological changes in hypoxia oral cells.
Collapse
Affiliation(s)
- Shan Jiao
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Si Yang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Xinmin Street 71, Changchun 130021, China
| | - Xiuping Meng
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Chengkun Wang
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China.
| |
Collapse
|
45
|
Torra J, Bondia P, Gutierrez-Erlandsson S, Sot B, Flors C. Long-term STED imaging of amyloid fibers with exchangeable Thioflavin T. NANOSCALE 2020; 12:15050-15053. [PMID: 32666991 DOI: 10.1039/d0nr02961k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the use of the amyloid probe Thioflavin T (ThT) as a specific and exchangeable fluorophore for stimulated emission depletion (STED) super-resolution imaging of amyloid fibers. This method achieves a spatial resolution in the range of 60-70 nm, low image background and increased photostability that enables long-term STED imaging. These results expand the widespread uses of ThT and can be potentially extended to other common amyloid fluorescent probes, providing new tools for the study of amyloid diseases.
Collapse
Affiliation(s)
- Joaquim Torra
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Madrid, Spain.
| | - Patricia Bondia
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Madrid, Spain.
| | | | - Begoña Sot
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Madrid, Spain. and Unidad Asociada en Nanobiotecnología (CNB-CSIC-IMDEA Nanociencia), Madrid, Spain
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Madrid, Spain. and Unidad Asociada en Nanobiotecnología (CNB-CSIC-IMDEA Nanociencia), Madrid, Spain
| |
Collapse
|
46
|
Wang W, Liu W, Xu S, Dong X, Sun Y. Design of Multifunctional Agent Based on Basified Serum Albumin for Efficient In Vivo β-Amyloid Inhibition and Imaging. ACS APPLIED BIO MATERIALS 2020; 3:3365-3377. [DOI: 10.1021/acsabm.0c00295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wenjuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Wei Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Shaoying Xu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
47
|
Cai C, Huang C, Yang C, Zhang X, Peng Y, Zhao W, Hong X, Ren F, Hong D, Xiao Y, Yan J. Altered Patterns of Phase Position Connectivity in Default Mode Subnetwork of Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment. Front Neurosci 2020; 14:185. [PMID: 32265623 PMCID: PMC7099636 DOI: 10.3389/fnins.2020.00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/19/2020] [Indexed: 01/19/2023] Open
Abstract
Alzheimer’s disease (AD), which most commonly occurs in the elder, is a chronic neurodegenerative disease with no agreed drugs or treatment protocols at present. Amnestic mild cognitive impairment (aMCI), earlier than AD onset and later than subjective cognitive decline (SCD) onset, has a serious probability of converting into AD. The SCD, which can last for decades, subjectively complains of decline impairment in memory. Distinct altered patterns of default mode network (DMN) subnetworks connected to the whole brain are perceived as prominent hallmarks of the early stages of AD. Nevertheless, the aberrant phase position connectivity (PPC) connected to the whole brain in DMN subnetworks remains unknown. Here, we hypothesized that there exist distinct variations of PPC in DMN subnetworks connected to the whole brain for patients with SCD and aMCI, which might be acted as discriminatory neuroimaging biomarkers. We recruited 27 healthy controls (HC), 20 SCD and 28 aMCI subjects, respectively, to explore aberrant patterns of PPC in DMN subnetworks connected to the whole brain. In anterior DMN (aDMN), SCD group exhibited aberrant PPC in the regions of right superior cerebellum lobule (SCL), right superior frontal gyrus of medial part (SFGMP), and left fusiform gyrus (FG) in comparison of HC group, by contrast, no prominent difference was found in aMCI group. It is important to note that aMCI group showed increased PPC in the right SFGMP in comparison with SCD group. For posterior DMN (pDMN), SCD group showed decreased PPC in the left superior parietal lobule (SPL) and right superior frontal gyrus (SFG) compared to HC group. It is noteworthy that aMCI group showed decreased PPC in the left middle frontal gyrus of orbital part (MFGOP) and right SFG compared to HC group, yet increased PPC was found in the left superior temporal gyrus of temporal pole (STGTP). Additionally, aMCI group exhibited decreased PPC in the left MFGOP compared to SCD group. Collectively, our results have shown that the aberrant regions of PPC observed in DMN are related to cognitive function, and it might also be served as impressible neuroimaging biomarkers for timely intervention before AD occurs.
Collapse
Affiliation(s)
- Chunting Cai
- School of Informatics, Xiamen University, Xiamen, China
| | - Chenxi Huang
- School of Informatics, Xiamen University, Xiamen, China
| | - Chenhui Yang
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiaodong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yonghong Peng
- Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, United Kingdom
| | - Wenbing Zhao
- Department of Electrical Engineering and Computer Science, Cleveland State University, Cleveland, OH, United States
| | - Xin Hong
- School of Informatics, Xiamen University, Xiamen, China
| | - Fujia Ren
- School of Informatics, Xiamen University, Xiamen, China
| | - Dan Hong
- School of Informatics, Xiamen University, Xiamen, China
| | - Yutian Xiao
- School of Informatics, Xiamen University, Xiamen, China
| | - Jiqiang Yan
- School of Informatics, Xiamen University, Xiamen, China
| |
Collapse
|
48
|
Wang MQ, Gao JJ, Yu QQ, Liu HB. An amphiphilic BODIPY-based selective probe for parallel G4 DNA targeting via disaggregation-induced emission. NEW J CHEM 2020. [DOI: 10.1039/d0nj02887h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An amphiphilic BODIPY-based probe, AB-1, was established for parallel G4 DNA targeting based on the concept of triggered disaggregation-induced emission.
Collapse
Affiliation(s)
- Ming-Qi Wang
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Juan-Juan Gao
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Quan-Qi Yu
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Hong-Bei Liu
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| |
Collapse
|