1
|
Yoshikawa Y, Yamato K, Ishida A, Yoshida Y, Kumamoto Y, Isogai A. Amidation of carboxy groups in TEMPO-oxidized cellulose for improving surface hydrophobization and thermal stability of TEMPO-CNCs. Carbohydr Polym 2025; 347:122654. [PMID: 39486921 DOI: 10.1016/j.carbpol.2024.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
Surface-hydrophobized cellulose nanomaterials (CNs) with high thermal degradation points are required for preparing various materials, such as epoxy nanocomposites, which possess high mechanical strength, optical transparency, and thermal stability. Amidation of carboxy groups in CNs is one possible chemical modification for hydrophilic CNs that contain abundant carboxy groups. However, achieving efficient amidation of high ratios of carboxy groups in CNs is highly challenging for industrial applications. In this study, carboxy group-containing fibrous wood pulp was subjected to amidation in heterogeneous solid/liquid systems to prepare products with high amidation ratios and high yields, while implementing cost-effective isolation and purification processes. Consequently, a partially acid-hydrolyzed wood pulp with abundant carboxy groups was first prepared. Subsequently, 88 % and 91 % of the carboxy groups in the pulp were successfully amidated using polyalkylene glycols-NH2 and octylamine, respectively. This was achieved by utilizing 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride and N-methylmorpholine as the condensation reagent and activator, respectively, in N,N-dimethylformamide (DMF) at approximately 23 °C for 16 h. The thermal degradation point increased from 224 °C for the acid-hydrolyzed pulp to over 250 °C after amidation. The amidated pulps were then converted into transparent dispersions, consisting of amidated cellulose nanocrystals, by homogenization in an epoxy monomer/DMF mixture using high-pressure homogenization.
Collapse
Affiliation(s)
- Yuki Yoshikawa
- R&D Performance Chemicals Research, Kao Corporation, 1334 Minato, Wakayama 640-8580, Japan.
| | - Kyohei Yamato
- R&D Performance Chemicals Research, Kao Corporation, 1334 Minato, Wakayama 640-8580, Japan.
| | - Akiko Ishida
- R&D Analytical Science Research, Kao Corporation, 1334 Minato, Wakayama 640-8580, Japan.
| | - Yutaka Yoshida
- R&D Performance Chemicals Research, Kao Corporation, 1334 Minato, Wakayama 640-8580, Japan.
| | - Yoshiaki Kumamoto
- R&D Performance Chemicals Research, Kao Corporation, 2-1-3 Bunka, Sumida-ku 103-8501, Japan.
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan.
| |
Collapse
|
2
|
Zhen Y, Peng C, Gao H, Bai L, Song Y, Gao P, Zhao Y. Understanding the Role of Surface Chemistry in Nanocellulose Kink Formation: A Case Study of TEMPO-Mediated Oxidation. Biomacromolecules 2024; 25:7767-7776. [PMID: 39526987 DOI: 10.1021/acs.biomac.4c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study found that the sources of cellulose have a significant effect on the parameters related to the kinks present in nanocellulose. During nanocellulose preparation, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation induced partial depolymerization on whole cellulose and made the amorphous regions more susceptible to consequent mechanical treatment irrespective of cellulose sources. However, plant cellulose microfibrils were prone to break into shorter nanocellulose with fewer kinks, while bacterial and tunicate cellulose were more likely to bend rather than break, thus leading to the generation of more kinks. The kinks did not show significant effects on the size, crystallinity index, and thermal properties of nanocellulose for each cellulose source, though the kink numbers were positively related to the mechanical performance of nanocellulose. Collectively, this study elucidated the kink formation mechanisms and clarified the effects of kinks on nanocellulose performance, thus providing new insights into understanding the source and behaviors of microdefects present in nanocellulose.
Collapse
Affiliation(s)
- Yixiang Zhen
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chengcheng Peng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Huimin Gao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Liang Bai
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yan Song
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Pingping Gao
- Faculty of Applied Sciences, Universiti Teknologi MARA, Kota Samarahan 94300, Sarawak, Malaysia
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
3
|
Hou G, Chitbanyong K, Shibata I, Takeuchi M, Isogai A. Structural analyses of supernatant fractions in TEMPO-oxidized pulp/water reaction mixtures separated by centrifugation and dialysis. Carbohydr Polym 2024; 336:122103. [PMID: 38670766 DOI: 10.1016/j.carbpol.2024.122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Side reactions occurring on cellulose during 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TMEPO)-catalyzed oxidation have not been considered to be significant. Then, TEMPO-oxidized hardwood and softwood bleached kraft pulps (HBKP and SBKP) were prepared with an excess NaOCl·5H2O. Supernatant fractions (SFs) were obtained in the aqueous reaction mixtures of TEMPO-oxidized pulps by centrifugation and dialysis. The SFs with carboxyl contents of 5.0 and 4.2 mmol/g were obtained in the yields of 19 % and 30 % from HBKP and SBKP, respectively. These carboxy contents are much higher than those (2.6-2.7 mmol/g) of the precipitate fractions in the TEMPO-oxidized pulps. Solid-state 13C NMR spectra and other analyses revealed that the water-soluble β-(1 → 4)-polyglucuronic acids were predominantly present in the SFs. In addition, water-insoluble TEMPO-oxidized cellulose nanocrystals were present in the SFs, but they constituted less than ~10 % of the SFs. The mass-average degrees of polymerization (DPw) of the SFs obtained from HBKP and SBKP were 166 and 155, respectively, whereas the original HBKP and SBKP had DPw values of 1990 and 2140, respectively. These substantial depolymerization and formation of the water-soluble β-(1 → 4)-polyglucuronic acids occur on cellulose and oxidized cellulose molecules as side reactions during TEMPO-catalyzed oxidation, which should be considered for structural analyses of TEMPO-oxidized products.
Collapse
Affiliation(s)
- Gaoyuan Hou
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Korawit Chitbanyong
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Izumi Shibata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Miyuki Takeuchi
- Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| |
Collapse
|
4
|
Li J, Lu C, Ye C, Xiong R. Structural, Optical, and Mechanical Insights into Cellulose Nanocrystal Chiral Nematic Film Engineering by Two Assembly Techniques. Biomacromolecules 2024; 25:3507-3518. [PMID: 38758685 DOI: 10.1021/acs.biomac.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Iridescent cellulose nanocrystal (CNC) films with chiral nematic nanostructures exhibit great potential in optical devices, sensors, painting, and anticounterfeiting applications. CNCs can assemble into a chiral nematic liquid crystal structure by evaporation-assisted self-assembly (EISA) and vacuum-assisted self-assembly (VASA) techniques. However, there is a lack of comprehensive examinations of their structure-property correlations, which are essential for fabricating materials with unique properties. In this work, we gained insights into the optical, mechanical, and structural differences of CNC films engineered using the two techniques. In contrast to the random self-assembly at the liquid-air interface in EISA, the continuous external pressure in the VASA process forces CNCs to assemble at the filter-liquid interface. This results in fewer defects in the interfaces between tactoids and highly ordered cholesteric phases. Owing to the distinct CNC assembly behaviors, the films prepared by these two methods show great differences in the nanostructure, microstructure, and macroscopic morphology. Consequently, the highly ordered cholesteric structure gives VASA-CNC films a more uniform structural color and enhanced mechanical performance. These fundamental understandings of the relationship of structure-property nanoengineering through various assembly techniques are essential for designing and constructing high-performance chiral iridescent CNC materials.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
5
|
Chitbanyong K, Hou G, Shibata I, Takeuchi M, Kimura S, Isogai A. Polyglucuronic acids prepared from α-(1 → 3)-glucan by TEMPO-catalytic oxidation. Carbohydr Polym 2024; 330:121813. [PMID: 38368084 DOI: 10.1016/j.carbpol.2024.121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
2,2,6,6-Tetramethylpiperidine-1-oxyl radical (TEMPO)-catalytic oxidation was applied to a water-insoluble α-(1 → 3)-glucan in water at pH 10 and room temperature (∼24 °C), with solid NaOCl·5H2O as the primary oxidant. Oxidation with NaOCl at 15 mmol/g gave a water-soluble TEMPO-oxidized product at a mass recovery ratio of 97 %. The carboxy content of the TEMPO-oxidized product was 5.3 mmol/g, which corresponds to a degree of C6-oxidation (DO) of 93 %. A new water-soluble α-(1 → 3)-polyglucuronic acid with a nearly homogeneous chemical structure was therefore quantitatively obtained. X-ray diffraction and solid-state 13C NMR spectroscopic analyses showed that the original α-(1 → 3)-glucan and its TEMPO-oxidized product with a carboxy content of 5.3 mmol/g had crystalline structures, whereas the oxidized products with DOs of 50 % and 66 % had almost disordered structures. The carboxy groups in the oxidized products were regioselectively methyl esterified with trimethylsilyl diazomethane, and analyzed by using size-exclusion chromatography with multi-angle laser-light scattering and refractive index detections. The results show that the original α-(1 → 3)-glucan and its oxidized products with DOs of 50 %, 66 %, and 93 % had weight-average degrees of polymerization of 671, 288, 54, and 45, respectively. Substantial depolymerization of the α-(1 → 3)-glucan molecules therefore occurred during catalytic oxidation, irrespective of the oxidation pH.
Collapse
Affiliation(s)
- Korawit Chitbanyong
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Gaoyuan Hou
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Izumi Shibata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Miyuki Takeuchi
- Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| |
Collapse
|
6
|
Ren N, Ai Y, Yue N, Cui M, Huang R, Qi W, Su R. Shear-Induced Fabrication of Cellulose Nanofibril/Liquid Metal Nanocomposite Films for Flexible Electromagnetic Interference Shielding and Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17904-17917. [PMID: 38511485 DOI: 10.1021/acsami.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To address electromagnetic interference (EMI) pollution in modern society, the development of ultrathin, high-performance, and highly stable EMI shielding materials is highly desired. Liquid metal (LM) based conductive materials have received enormous amounts of attention. However, the processing approach of LM/polymer composites represents great challenges due to the high surface tension and cohesive energy of LMs. In this study, we develop a universal one-step fabrication strategy to directly process composites containing LMs and cellulose nanofibrils (CNFs) and successfully fabricate the ultrathin, flexible, and stable EMI shielding films with an average specific EMI shielding efficiency (EMI SE) value of 429 dB/mm and small thickness of only 70 μm in the wide frequency range of 8.2-18 GHz. In addition, the resulting films also exhibit excellent mechanical performance and flexibility, which endow the film with the ability to withstand repeated folding, bending, and folding into complex shapes without producing cracks or fractures. Besides, the resulting films display excellent thermal conductivity with a λ of 4.90 W/(m K) and an α of 3.17 mm2/s. Thus, the presented approach shows great potential in fabricating advanced materials for EMI shielding applications.
Collapse
Affiliation(s)
- Ning Ren
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yusen Ai
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ning Yue
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
7
|
Lim JH, Jing Y, Park S, Nishiyama Y, Veron M, Rauch E, Ogawa Y. Structural Anisotropy Governs the Kink Formation in Cellulose Nanocrystals. J Phys Chem Lett 2023; 14:3961-3969. [PMID: 37078694 DOI: 10.1021/acs.jpclett.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding the defect structure is fundamental to correlating the structure and properties of materials. However, little is known about the defects of soft matter at the nanoscale beyond their external morphology. We report here on the molecular-level structural details of kink defects of cellulose nanocrystals (CNCs) based on a combination of experimental and theoretical methods. Low-dose scanning nanobeam electron diffraction analysis allowed for correlation of the local crystallographic information and nanoscale morphology and revealed that the structural anisotropy governed the kink formation of CNCs. We identified two bending modes along different crystallographic directions with distinct disordered structures at kink points. The drying strongly affected the external morphology of the kinks, resulting in underestimating the kink population in the standard dry observation conditions. These detailed defect analyses improve our understanding of the structural heterogeneity of nanocelluloses and contribute to the future exploitation of soft matter defects.
Collapse
Affiliation(s)
- Jia Hui Lim
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Yun Jing
- Molecular Vista, Incorporated, 6840 Via Del Oro, Suite 110, San Jose, California 95119, United States
| | - Sung Park
- Molecular Vista, Incorporated, 6840 Via Del Oro, Suite 110, San Jose, California 95119, United States
| | | | - Muriel Veron
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
| | - Edgar Rauch
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| |
Collapse
|
8
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
9
|
Li L, Maddalena L, Nishiyama Y, Carosio F, Ogawa Y, Berglund LA. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix. Carbohydr Polym 2022; 279:119004. [PMID: 34980351 DOI: 10.1016/j.carbpol.2021.119004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 11/15/2022]
Abstract
Nanocomposites based on components from nature, which can be recycled are of great interest in new materials for sustainable development. The range of properties of nacre-inspired hybrids of 1D cellulose and 2D clay platelets are investigated in nanocomposites with improved nanoparticle dispersion in the starting hydrocolloid mixture. Films with a wide range of compositions are prepared by capillary force assisted physical assembly (vacuum-assisted filtration) of TEMPO-oxidized cellulose nanofibers (TOCN) reinforced by exfoliated nanoclays of three different aspect ratios: saponite, montmorillonite and mica. X-ray diffraction and transmission electron micrographs show almost monolayer dispersion of saponite and montmorillonite and high orientation parallel to the film surface. Films exhibit ultimate strength up to 573 MPa. Young's modulus exceeds 38 GPa even at high MTM contents (40-80 vol%). Optical transmittance, UV-shielding, thermal shielding and fire-retardant properties are measured, found to be very good and are sensitive to the 2D nanoplatelet dispersion.
Collapse
Affiliation(s)
- Lengwan Li
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Lorenza Maddalena
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | | | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Lars A Berglund
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| |
Collapse
|
10
|
Redlinger-Pohn JD, Petkovšek M, Gordeyeva K, Zupanc M, Gordeeva A, Zhang Q, Dular M, Söderberg LD. Cavitation Fibrillation of Cellulose Fiber. Biomacromolecules 2022; 23:847-862. [PMID: 35099936 PMCID: PMC8924874 DOI: 10.1021/acs.biomac.1c01309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellulose fibrils are the structural backbone of plants and, if carefully liberated from biomass, a promising building block for a bio-based society. The mechanism of the mechanical release─fibrillation─is not yet understood, which hinders efficient production with the required reliable quality. One promising process for fine fibrillation and total fibrillation of cellulose is cavitation. In this study, we investigate the cavitation treatment of dissolving, enzymatically pretreated, and derivatized (TEMPO oxidized and carboxymethylated) cellulose fiber pulp by hydrodynamic and acoustic (i.e., sonication) cavitation. The derivatized fibers exhibited significant damage from the cavitation treatment, and sonication efficiently fibrillated the fibers into nanocellulose with an elementary fibril thickness. The breakage of cellulose fibers and fibrils depends on the number of cavitation treatment events. In assessing the damage to the fiber, we presume that microstreaming in the vicinity of imploding cavities breaks the fiber into fibrils, most likely by bending. A simple model showed the correlation between the fibrillation of the carboxymethylated cellulose (CMCe) fibers, the sonication power and time, and the relative size of the active zone below the sonication horn.
Collapse
Affiliation(s)
- Jakob D Redlinger-Pohn
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 114 28 Stockholm, Sweden.,Treesearch, Teknikringen 38a, 114 28 Stockholm, Sweden
| | - Martin Petkovšek
- Laboratory for Water and Turbine Machines, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Korneliya Gordeyeva
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 114 28 Stockholm, Sweden
| | - Mojca Zupanc
- Laboratory for Water and Turbine Machines, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Alisa Gordeeva
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 114 18 Stockholm, Sweden
| | - Qilun Zhang
- Laboratory of Organic Electronics, Linköping University, Campus Calla, Olaus Magnus väg 37, 583 30 Linköping, Sweden
| | - Matevž Dular
- Laboratory for Water and Turbine Machines, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - L Daniel Söderberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 114 28 Stockholm, Sweden.,Treesearch, Teknikringen 38a, 114 28 Stockholm, Sweden
| |
Collapse
|
11
|
|
12
|
Analysis of celluloses, plant holocelluloses, and wood pulps by size-exclusion chromatography/multi-angle laser-light scattering. Carbohydr Polym 2021; 251:117045. [PMID: 33142603 DOI: 10.1016/j.carbpol.2020.117045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022]
Abstract
Size-exclusion chromatography with multi-angle laser-light scattering and refractive index detection (SEC/MALLS/RI) provides the number- and weight-average molar masses, molar mass distributions, conformations, and linear/branched structures of polymers. In the case of pure celluloses including highly crystalline tunicate and alga celluloses, and hemicellulose-rich plant holocelluloses, soaking in ethylene diamine (EDA) and subsequent solvent exchange to N,N-dimethylacetamide (DMAc) though methanol is effective for complete dissolution in ∼8% (w/w) LiCl/DMAc. SEC/MALLS/RI analysis can, therefore, be applied to pure celluloses, chemical wood pulps, and plant holocelluloses after dissolution in ∼8% (w/w) LiCl/DMAc, dilution to 1% (w/v) LiCl/DMAc and membrane filtration. All pure celluloses and the high-molar-mass cellulose fractions of hardwood and grass holocelluloses have linear and random-coil conformations and various average molar masses and molar mass distributions depending on the cellulose and holocellulose resources. In contrast, Japanese cedar (i.e., softwood) holocellulose and softwood bleached kraft pulp have alkali-stable cellulose/glucomannan branched structures in the high-molar-mass fractions.
Collapse
|