1
|
Qaseem MF, Zhang W, Dupree P, Wu AM. Xylan structural diversity, biosynthesis, and functional regulation in plants. Int J Biol Macromol 2024; 291:138866. [PMID: 39719228 DOI: 10.1016/j.ijbiomac.2024.138866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024]
Abstract
Xylan is a vital component of plant cell walls, contributing to their structural integrity and flexibility through interactions with other polymers. Its structure varies among plant species, influencing the mechanical properties of cell walls. Xylan also has significant industrial potential, including in biofuels, biomaterials, food, and pharmaceuticals, due to its ability to be converted into valuable bioproducts. However, key aspects of xylan biosynthesis, regulation, and structural impact on plant growth and structures remain unclear. This review highlights current researches on xylan biosynthesis, modification, and applications, identifying critical gaps in knowledge. Meanwhile the review proposes new approaches to regulate xylan synthesis and understand its role in cell wall assembly and interactions with other polymers. Addressing these gaps could unlock the full industrial potential of xylan, leading to more sustainable applications.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Coelho GO, Deleris I, Champion D, Wallecan J, Debon S, Roudaut G. Multiscale dynamics and molecular mobility in cellulose-rich materials. Carbohydr Polym 2024; 344:122490. [PMID: 39218537 DOI: 10.1016/j.carbpol.2024.122490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Cellulose, an abundant biopolymer in nature as a structural component of plant cell walls, has a native semi-crystalline structure in which the arrangement of amorphous-crystalline domains governs its key properties such as mechanical and physico-chemical properties. The performance of the material in different situations is shaped by molecular mobility, which affects attributes such as mechanical properties, chemical reactivity, and water absorption. Nevertheless, it is difficult to investigate experimentally the structural and dynamic properties of cellulose-rich materials. This is especially the case for the glass transition, which impacts its quality and properties. This experimental challenge is notably evidenced by the considerable variability in data across the literature. The purpose of this study is to offer a comprehensive multi-scale exploration of dynamics within cellulose-rich materials, emphasizing literature data on cellulose glass transition and molecular relaxations, and providing insights into methods for characterizing their physical state and underscoring the impact of water-cellulose interactions on molecular mobility in these systems. The promising results obtained using multiple approaches bring out the importance of combining methods to achieve a more accurate and detailed understanding of the complex thermal transition in cellulose materials, particularly when considering the influence of water on their thermal dynamics and properties.
Collapse
Affiliation(s)
- G O Coelho
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, PAM UMR A 02.102, F-21000 Dijon, France
| | - I Deleris
- Cargill R&D Centre Europe, Havenstraat 84, 1800 Vilvoorde, Belgium
| | - D Champion
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, PAM UMR A 02.102, F-21000 Dijon, France
| | - J Wallecan
- Cargill R&D Centre Europe, Havenstraat 84, 1800 Vilvoorde, Belgium
| | - S Debon
- Cargill R&D Centre Europe, Havenstraat 84, 1800 Vilvoorde, Belgium
| | - G Roudaut
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, PAM UMR A 02.102, F-21000 Dijon, France.
| |
Collapse
|
3
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
4
|
Lyczakowski JJ, Wightman R. Convergent and adaptive evolution drove change of secondary cell wall ultrastructure in extant lineages of seed plants. THE NEW PHYTOLOGIST 2024; 243:2061-2065. [PMID: 39079702 DOI: 10.1111/nph.19983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Jan J Lyczakowski
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory Cambridge University, 47 Bateman St., Cambridge, CB2 1LR, UK
| |
Collapse
|
5
|
Xue Y, Yu C, Kang X. Quantitative and Structural Characterization of Native Lignin in Hardwood and Softwood Bark via Solid-State NMR Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18056-18066. [PMID: 39087645 DOI: 10.1021/acs.jafc.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A major factor limiting bark's industrial use is its greater recalcitrance compared to wood. While lignin is widely recognized as a significant contributor, precise characterization of lignin in bark remains sparse, presenting a crucial gap that impedes understanding of its impact. In this study, we employed advanced solid-state nuclear magnetic resonance (NMR) spectroscopy to analyze bark samples from various species, including willow, poplar, and pine. We established and verified that lignin methoxy peak at 56 ppm serves as a reliable quantitative metric to assess lignin content, with which we calculated the lignin contents in bark are significantly reduced by more than 70% compared to those in wood. Furthermore, in situ characterization revealed significant reduction of β-ether linkage in bark lignin across species, revealing a more condensed and resistant structural configuration. Our results have substantially advanced our comprehension of the composition and structure of native lignin in tree bark.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Yu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
6
|
Chen J, Yu F, Xu F. Not just signals: RALFs as cell wall-structuring peptides. TRENDS IN PLANT SCIENCE 2024; 29:727-729. [PMID: 38458930 DOI: 10.1016/j.tplants.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
Rapid alkalinization factors (RALFs) have long been known to act as signaling molecules in plant cells, but whether they affect cell wall (CW) patterning and expansion remains unclear. Very recent advances in tip-growing cells showed that positively charged RALFs affect key attributes of the structural components of the nascent CW.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China.
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China.
| |
Collapse
|
7
|
Zheng B, Zhang L, Zhou Z, Chen S, Chen L, Li Y, Wu A, Li H. Understanding the dynamic evolution of hemicellulose during Pinus taeda L. growth. Int J Biol Macromol 2024; 273:132914. [PMID: 38844290 DOI: 10.1016/j.ijbiomac.2024.132914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Pinus taeda L. is a fast-growing softwood with significant commercial value. Understanding structural changes in hemicellulose during growth is essential to understanding the biosynthesis processes occurring in the cell walls of this tree. In this study, alkaline extraction is applied to isolate hemicellulose from Pinus taeda L. stem segments of different ages (1, 2, 3, and 4 years old). The results show that the extracted hemicellulose is mainly comprised of O-acetylgalactoglucomannan (GGM) and 4-O-methylglucuronoarabinoxylan (GAX), with the molecular weights and ratios (i.e., GGM:GAX) of GGM and GAX increasing alongside Pinus taeda L. age. Mature Pinus taeda L. hemicellulose is mainly composed of GGM, and the ratio of (mannose:glucose) in the GGM main chain gradually increases from 2.45 to 3.60 with growth, while the galactose substitution of GGM decreases gradually from 21.36% to 14.65%. The acetylation of GGM gradually increases from 0.33 to 0.45 with the acetyl groups mainly substituting into the O-3 position in the mannan. Furthermore, the contents of arabinose and glucuronic acid in GAX gradually decrease with growth. This study can provide useful information to the research in genetic breeding and high-value utilization of Pinus taeda L.
Collapse
Affiliation(s)
- Biao Zheng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Liuyang Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zibin Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Siyi Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Luoting Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Tryfona T, Pankratova Y, Petrik D, Rebaque Moran D, Wightman R, Yu X, Echevarría-Poza A, Deralia PK, Vilaplana F, Anderson CT, Hong M, Dupree P. Altering the substitution and cross-linking of glucuronoarabinoxylans affects cell wall architecture in Brachypodium distachyon. THE NEW PHYTOLOGIST 2024; 242:524-543. [PMID: 38413240 DOI: 10.1111/nph.19624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
The Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls. Recently, we reported structural variation in grass xylans, suggesting functional specialisation and distinct interactions with cellulose and lignin. Here, we investigated the functions of these xylans by perturbing the biosynthesis of specific xylan types. We generated CRISPR/Cas9 knockout mutants in Brachypodium distachyon XAX1 and GUX2 genes involved in xylan substitution. Using carbohydrate gel electrophoresis, we identified biochemical changes in different xylan types. Saccharification, cryo-SEM, subcritical water extraction and ssNMR were used to study wall architecture. BdXAX1A and BdGUX2 enzymes modify different types of grass xylan. Brachypodium mutant walls are likely more porous, suggesting the xylan substitutions directed by both BdXAX1A and GUX2 enzymes influence xylan-xylan and/or xylan-lignin interactions. Since xylan substitutions influence wall architecture and digestibility, our findings open new avenues to improve cereals for food and to use grass biomass for feed and the production of bioenergy and biomaterials.
Collapse
Affiliation(s)
- Theodora Tryfona
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Yanina Pankratova
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, NW14-3212, USA
| | - Deborah Petrik
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Diego Rebaque Moran
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, SE-106, Sweden
- Centro de Biotecnologia y Genomica de Plants (UPM-INIA/CSIC), Universidad Politecnica de Madrid, Pozuelo de Alarcon (Madrid), 28223, Spain
| | | | - Xiaolan Yu
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Alberto Echevarría-Poza
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Parveen Kumar Deralia
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, SE-106, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Stockholm, SE-11, Sweden
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, NW14-3212, USA
| | - Paul Dupree
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
9
|
Poulhazan A, Arnold AA, Mentink-Vigier F, Muszyński A, Azadi P, Halim A, Vakhrushev SY, Joshi HJ, Wang T, Warschawski DE, Marcotte I. Molecular-level architecture of Chlamydomonas reinhardtii's glycoprotein-rich cell wall. Nat Commun 2024; 15:986. [PMID: 38307857 PMCID: PMC10837150 DOI: 10.1038/s41467-024-45246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Microalgae are a renewable and promising biomass for large-scale biofuel, food and nutrient production. However, their efficient exploitation depends on our knowledge of the cell wall composition and organization as it can limit access to high-value molecules. Here we provide an atomic-level model of the non-crystalline and water-insoluble glycoprotein-rich cell wall of Chlamydomonas reinhardtii. Using in situ solid-state and sensitivity-enhanced nuclear magnetic resonance, we reveal unprecedented details on the protein and carbohydrate composition and their nanoscale heterogeneity, as well as the presence of spatially segregated protein- and glycan-rich regions with different dynamics and hydration levels. We show that mannose-rich lower-molecular-weight proteins likely contribute to the cell wall cohesion by binding to high-molecular weight protein components, and that water provides plasticity to the cell-wall architecture. The structural insight exemplifies strategies used by nature to form cell walls devoid of cellulose or other glycan polymers.
Collapse
Affiliation(s)
- Alexandre Poulhazan
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, H2X 2J6, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, H2X 2J6, Canada
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Adnan Halim
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| | - Dror E Warschawski
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, 75005, Paris, France.
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, H2X 2J6, Canada.
| |
Collapse
|
10
|
Darenova E, Knott R, Vichta T. Does lower water availability limit stem CO 2 efflux of oak and hornbeam coppices? AOB PLANTS 2024; 16:plae023. [PMID: 38638333 PMCID: PMC11025467 DOI: 10.1093/aobpla/plae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Recent changes in water availability can be crucial for the development, growth and carbon budget of forests. Therefore, our aim was to determine the effect of reduced throughfall and severe summer drought on stem CO2 efflux as a function of temperature and stem increment. Stem CO2 efflux was measured using the chamber method on oak and hornbeam under four treatments: coppice, thinned coppice, and both coppice and thinned coppice with 30 %-reduced throughfall. The first year of the experiment had favourable soil water availability and the second year was characterized by a dry summer. While reduced throughfall had no effect on stem CO2 efflux, the summer drought decreased efflux by 43-81 % during July and August. The stem CO2 efflux was reduced less severely (by 13-40 %) in September when the drought persisted but the stem increment was already negligible. The stem increment was also strongly affected by the drought, which was reflected in its paired relationship with stem CO2 efflux over the two experimental years. The study showed that summer dry periods significantly and rapidly reduce stem CO2 efflux, whereas a constant 30 % rainfall reduction needs probably a longer time to affect stem properties, and indirectly stem CO2 efflux.
Collapse
Affiliation(s)
- Eva Darenova
- Global Change Research Institute of the Czech Academy of Sciences, Belidla 986/4a, 60300 Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1665/1, Brno 613 00, Czech Republic
| | - Robert Knott
- Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1665/1, Brno 613 00, Czech Republic
| | - Tomáš Vichta
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1665/1, Brno 613 00, Czech Republic
| |
Collapse
|
11
|
Addison B, Bu L, Bharadwaj V, Crowley MF, Harman-Ware AE, Crowley MF, Bomble YJ, Ciesielski PN. Atomistic, macromolecular model of the Populus secondary cell wall informed by solid-state NMR. SCIENCE ADVANCES 2024; 10:eadi7965. [PMID: 38170770 PMCID: PMC10776008 DOI: 10.1126/sciadv.adi7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Plant secondary cell walls (SCWs) are composed of a heterogeneous interplay of three major biopolymers: cellulose, hemicelluloses, and lignin. Details regarding specific intermolecular interactions and higher-order architecture of the SCW superstructure remain ambiguous. Here, we use solid-state nuclear magnetic resonance (ssNMR) measurements to infer refined details about the structural configuration, intermolecular interactions, and relative proximity of all three major biopolymers within air-dried Populus wood. To enhance the utility of these findings and enable evaluation of hypotheses in a physics-based environment in silico, the NMR observables are articulated into an atomistic, macromolecular model for biopolymer assemblies within the plant SCW. Through molecular dynamics simulation, we quantitatively evaluate several variations of atomistic models to determine structural details that are corroborated by ssNMR measurements.
Collapse
Affiliation(s)
- Bennett Addison
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Lintao Bu
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Vivek Bharadwaj
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Meagan F. Crowley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Chemistry Department, Colorado School of Mines, Golden, CO, USA
| | - Anne E. Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Michael F. Crowley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Peter N. Ciesielski
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| |
Collapse
|
12
|
Fernando LD, Zhao W, Gautam I, Ankur A, Wang T. Polysaccharide assemblies in fungal and plant cell walls explored by solid-state NMR. Structure 2023; 31:1375-1385. [PMID: 37597511 PMCID: PMC10843855 DOI: 10.1016/j.str.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Structural analysis of macromolecular complexes within their natural cellular environment presents a significant challenge. Recent applications of solid-state NMR (ssNMR) techniques on living fungal cells and intact plant tissues have greatly enhanced our understanding of the structure of extracellular matrices. Here, we selectively highlight the most recent progress in this field. Specifically, we discuss how ssNMR can provide detailed insights into the chemical composition and conformational structure of pectin, and the consequential impact on polysaccharide interactions and cell wall organization. We elaborate on the use of ssNMR data to uncover the arrangement of the lignin-polysaccharide interface and the macrofibrillar structure in native plant stems or during degradation processes. We also comprehend the dynamic structure of fungal cell walls under various morphotypes and stress conditions. Finally, we assess how the combination of NMR with other techniques can enhance our capacity to address unresolved structural questions concerning these complex macromolecular assemblies.
Collapse
Affiliation(s)
- Liyanage D Fernando
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wancheng Zhao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ankur Ankur
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
13
|
Virkkala T, Kosourov S, Rissanen V, Siitonen V, Arola S, Allahverdiyeva Y, Tammelin T. Bioinspired mechanically stable all-polysaccharide based scaffold for photosynthetic production. J Mater Chem B 2023; 11:8788-8803. [PMID: 37668222 DOI: 10.1039/d3tb00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We demonstrate the construction of water-stable, biocompatible and self-standing hydrogels as scaffolds for the photosynthetic production of ethylene using a bioinspired all-polysaccharidic design combining TEMPO-oxidised cellulose nanofibers (TCNF) and a cereal plant hemicellulose called mixed-linkage glucan (MLG). We compared three different molecular weight MLGs from barley to increase the wet strength of TCNF hydrogels, and to reveal the mechanisms defining the favourable interactions between the scaffold components. The interactions between MLGs and TCNF were revealed via adsorption studies and interfacial rheology investigations using quartz crystal microbalance with dissipation monitoring (QCM-D). Our results show that both the MLG solution stability and adsorption behaviour did not exactly follow the well-known polymer adsorption and solubility theories especially in the presence of co-solute ions, in this case nitrates. We prepared hydrogel scaffolds for microalgal immobilisation, and high wet strength hydrogels were achieved with very low dosages of MLG (0.05 wt%) to the TCNF matrix. The all-polysaccharic biocatalytic architectures remained stable and produced ethylene for 120 h with yields comparable to the state-of-the-art scaffolds. Due to its natural origin and biodegradability, MLG offers a clear advantage in comparison to synthetic scaffold components, allowing the mechanical properties and water interactions to be tailored.
Collapse
Affiliation(s)
- Tuuli Virkkala
- VTT Technical Research Centre of Finland Ltd, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| | - Sergey Kosourov
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| | - Ville Rissanen
- VTT Technical Research Centre of Finland Ltd, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| | - Vilja Siitonen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| | - Suvi Arola
- VTT Technical Research Centre of Finland Ltd, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| |
Collapse
|
14
|
Bourdon M, Lyczakowski JJ, Cresswell R, Amsbury S, Vilaplana F, Le Guen MJ, Follain N, Wightman R, Su C, Alatorre-Cobos F, Ritter M, Liszka A, Terrett OM, Yadav SR, Vatén A, Nieminen K, Eswaran G, Alonso-Serra J, Müller KH, Iuga D, Miskolczi PC, Kalmbach L, Otero S, Mähönen AP, Bhalerao R, Bulone V, Mansfield SD, Hill S, Burgert I, Beaugrand J, Benitez-Alfonso Y, Dupree R, Dupree P, Helariutta Y. Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. NATURE PLANTS 2023; 9:1530-1546. [PMID: 37666966 PMCID: PMC10505557 DOI: 10.1038/s41477-023-01459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/14/2023] [Indexed: 09/06/2023]
Abstract
Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.
Collapse
Affiliation(s)
- Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
| | - Jan J Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Sam Amsbury
- Centre for Plant Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Nadège Follain
- Normandie Université, UNIROUEN Normandie, INSA Rouen, CNRS, PBS, Rouen, France
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Chang Su
- Wood Development Group, University of Helsinki, Helsinki, Finland
| | - Fulgencio Alatorre-Cobos
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Conacyt-Unidad de Bioquimica y Biologia Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Maximilian Ritter
- Wood Materials Science, Institute for Building Materials, ETH Zürich, Zürich, Switzerland
- Empa Wood Tec, Cellulose and Wood Materials Laboratory, Dübendorf, Switzerland
| | - Aleksandra Liszka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Shri Ram Yadav
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Anne Vatén
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Stomatal Development and Plasticity group, University of Helsinki, Helsinki, Finland
| | - Kaisa Nieminen
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Production systems / Tree Breeding Department, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Gugan Eswaran
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Juan Alonso-Serra
- Wood Development Group, University of Helsinki, Helsinki, Finland
- UMR 5667 Reproduction et Développement Des Plantes, ENS de Lyon, France
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, Cambridge, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | - Pal Csaba Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Lothar Kalmbach
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Molecular Plant Physiology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Sofia Otero
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Science and Technology Office of the Congress of Deputies, Madrid, Spain
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Rishikesh Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan Hill
- Scion, Te Papa Tipu Innovation Park, Rotorua, New Zealand
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, Zürich, Switzerland
- Empa Wood Tec, Cellulose and Wood Materials Laboratory, Dübendorf, Switzerland
| | - Johnny Beaugrand
- Biopolymères Interactions Assemblages (BIA), INRA, Nantes, France
| | - Yoselin Benitez-Alfonso
- The Centre for Plant Science, The Bragg Centre, The Astbury Centre, University of Leeds, Leeds, UK
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Wood Development Group, University of Helsinki, Helsinki, Finland.
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Tatman BP, Franks WT, Brown SP, Lewandowski JR. Nuclear spin diffusion under fast magic-angle spinning in solid-state NMR. J Chem Phys 2023; 158:2890210. [PMID: 37171196 DOI: 10.1063/5.0142201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Solid-state nuclear spin diffusion is the coherent and reversible process through which spin order is transferred via dipolar couplings. With the recent increases in magic-angle spinning (MAS) frequencies and magnetic fields becoming routinely applied in solid-state nuclear magnetic resonance, understanding how the increased 1H resolution obtained affects spin diffusion is necessary for interpretation of several common experiments. To investigate the coherent contributions to spin diffusion with fast MAS, we have developed a low-order correlation in Liouville space model based on the work of Dumez et al. (J. Chem. Phys. 33, 224501, 2010). Specifically, we introduce a new method for basis set selection, which accounts for the resonance-offset dependence at fast MAS. Furthermore, we consider the necessity of including chemical shift, both isotropic and anisotropic, in the modeling of spin diffusion. Using this model, we explore how different experimental factors change the nature of spin diffusion. Then, we show case studies to exemplify the issues that arise in using spin diffusion techniques at fast spinning. We show that the efficiency of polarization transfer via spin diffusion occurring within a deuterated and 100% back-exchanged protein sample at 60 kHz MAS is almost entirely dependent on resonance offset. We additionally identify temperature-dependent magnetization transfer in beta-aspartyl L-alanine, which could be explained by the influence of an incoherent relaxation-based nuclear Overhauser effect.
Collapse
Affiliation(s)
- Ben P Tatman
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
16
|
Raval P, Thomas N, Hamdouna L, Delevoye L, Lafon O, Manjunatha Reddy GN. Boron Adsorption Kinetics of Microcrystalline Cellulose and Polymer Resin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5384-5395. [PMID: 37022335 DOI: 10.1021/acs.langmuir.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tailoring boron-polysaccharide interactions is an important strategy for developing functional soft materials such as hydrogels, fire retardants, and sorbents for environmental remediation, for example, using lignocellulosic biomass. For such applications to be realized, it is paramount to understand the adsorption kinetics of borate anions on cellulose and their local structures. Here, the kinetic aspects of boron adsorption by microcrystalline cellulose, lignin, and polymeric resin are investigated and compared. Borate anions interact with the vicinal diols in the glucopyranoside moieties of cellulose to yield chemisorbed boron chelate complexes. In contrast to cellulose, technical lignin contains fewer cis-vicinal diols, and it does not have a tendency to form such chelate complexes upon treatment with the aqueous boric acid solution. The formation kinetics and stability of these chelate complexes strongly depend on nanoscale structures, as well as reaction conditions such as pH and concentration of the sorbate and sorbent. Specifically, insights into the distinct boron adsorption sites were obtained by solid-state one-dimensional (1D) 11B magic-angle spinning NMR and the local structures and intermolecular interactions in the vicinities of boron chelate complexes are elucidated by analyzing two-dimensional (2D) 1H-13C and 11B-1H heteronuclear correlation NMR spectra. The total boron adsorption capacity of cellulose is estimated to be in the 1.3-3.0 mg range per gram of sorbent, which is lower than the boron adsorption capacity of a polystyrene-based resin, ∼17.2 mg of boron per gram of Amberlite IRA 743. Our study demonstrates that the local backbone and side chain flexibility as well as the structures of polyol groups play a significant role in determining the kinetic and thermodynamic stability of chelate complexes, yielding to different boron adsorption capabilities of lignocellulosic polymers.
Collapse
Affiliation(s)
- Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Neethu Thomas
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Lama Hamdouna
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Laurent Delevoye
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Olivier Lafon
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| |
Collapse
|
17
|
Zeng S, Ying R, Gao X, Huang M. Characteristics of the composite film of arabinoxylan and starch granules in simulated wheat endosperm. Int J Biol Macromol 2023; 233:123416. [PMID: 36709817 DOI: 10.1016/j.ijbiomac.2023.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
We found that cell wall components of wheat grains differed significantly across different grain-filling stages; specifically, we observed significant differences in water content and water migration rate (p < 0.05). A composite film of arabinoxylan and starch granules was prepared to simulate wheat endosperm structure. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), and thermogravimetric analysis (TGA) showed that the crystallinity and structural stability of the film increased with increasing starch content. Water diffusion experiments of the films revealed that the water diffusion rate gradually decreased with increasing starch content. Therefore, the water mobility of the starch endosperm was lower than that of the aleurone layer. These findings provide a basis for further studies in the context of wheat grain water regulation.
Collapse
Affiliation(s)
- Shiqi Zeng
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoquan Gao
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Etale A, Onyianta AJ, Turner SR, Eichhorn SJ. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chem Rev 2023; 123:2016-2048. [PMID: 36622272 PMCID: PMC9999429 DOI: 10.1021/acs.chemrev.2c00477] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellulose is known to interact well with water, but is insoluble in it. Many polysaccharides such as cellulose are known to have significant hydrogen bond networks joining the molecular chains, and yet they are recalcitrant to aqueous solvents. This review charts the interaction of cellulose with water but with emphasis on the formation of both natural and synthetic fiber composites. Covering studies concerning the interaction of water with wood, the biosynthesis of cellulose in the cell wall, to its dispersion in aqueous suspensions and ultimately in water filtration and fiber-based composite materials this review explores water-cellulose interactions and how they can be exploited for synthetic and natural composites. The suggestion that cellulose is amphiphilic is critically reviewed, with relevance to its processing. Building on this, progress made in using various charged and modified forms of nanocellulose to stabilize oil-water emulsions is addressed. The role of water in the aqueous formation of chiral nematic liquid crystals, and subsequently when dried into composite films is covered. The review will also address the use of cellulose as an aid to water filtration as one area where interactions can be used effectively to prosper human life.
Collapse
Affiliation(s)
- Anita Etale
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| | - Amaka J Onyianta
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| | - Simon R Turner
- School of Biological Science, University of Manchester, Oxford Road, ManchesterM13 9PT, U.K
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| |
Collapse
|
19
|
Falourd X, Lahaye M, Rondeau-Mouro C. Assessment of cellulose interactions with water by ssNMR: 1H->13C transfer kinetics revisited. Carbohydr Polym 2022; 298:120104. [DOI: 10.1016/j.carbpol.2022.120104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
|
20
|
Yu L, Yoshimi Y, Cresswell R, Wightman R, Lyczakowski JJ, Wilson LFL, Ishida K, Stott K, Yu X, Charalambous S, Wurman-Rodrich J, Terrett OM, Brown SP, Dupree R, Temple H, Krogh KBRM, Dupree P. Eudicot primary cell wall glucomannan is related in synthesis, structure, and function to xyloglucan. THE PLANT CELL 2022; 34:4600-4622. [PMID: 35929080 PMCID: PMC9614514 DOI: 10.1093/plcell/koac238] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned β-galactoglucomannan (β-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of β-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that β-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis β-GGM synthesis mutants show no obvious growth defects, genetic crosses between β-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of β-GGM and XyG in PCWs.
Collapse
Affiliation(s)
- Li Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Yoshihisa Yoshimi
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | | | | | - Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Stephan Charalambous
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Henry Temple
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|
21
|
Zhao W, Deligey F, Chandra Shekar S, Mentink-Vigier F, Wang T. Current limitations of solid-state NMR in carbohydrate and cell wall research. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107263. [PMID: 35809516 DOI: 10.1016/j.jmr.2022.107263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
High-resolution investigation of cell wall materials has emerged as an important application of biomolecular solid-state NMR (ssNMR). Multidimensional correlation experiments have become a standard method for obtaining sufficient spectral resolution to determine the polymorphic structure of carbohydrates and address biochemical questions regarding the supramolecular organization of cell walls. Using plant cellulose and matrix polysaccharides as examples, we will review how the multifaceted complexity of polysaccharide structure is impeding the resonance assignment process and assess the available biochemical and spectroscopic approaches that could circumvent this barrier. We will emphasize the ineffectiveness of the current methods in reconciling the ever-growing dataset and deriving structural information. We will evaluate the protocols for achieving efficient and homogeneous hyperpolarization across the cell wall material using magic-angle spinning dynamic nuclear polarization (MAS-DNP). Critical questions regarding the line-broadening effects of cell wall molecules at cryogenic temperature and by paramagnetic biradicals will be considered. Finally, the MAS-DNP method will be placed into a broader context with other structural characterization techniques, such as cryo-electron microscopy, to advance ssNMR research in carbohydrate and cell wall biomaterials.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - S Chandra Shekar
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
22
|
Paajanen A, Zitting A, Rautkari L, Ketoja JA, Penttilä PA. Nanoscale Mechanism of Moisture-Induced Swelling in Wood Microfibril Bundles. NANO LETTERS 2022; 22:5143-5150. [PMID: 35767745 PMCID: PMC9284609 DOI: 10.1021/acs.nanolett.2c00822] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding nanoscale moisture interactions is fundamental to most applications of wood, including cellulosic nanomaterials with tailored properties. By combining X-ray scattering experiments with molecular simulations and taking advantage of computed scattering, we studied the moisture-induced changes in cellulose microfibril bundles of softwood secondary cell walls. Our models reproduced the most important experimentally observed changes in diffraction peak locations and widths and gave new insights into their interpretation. We found that changes in the packing of microfibrils dominate at moisture contents above 10-15%, whereas deformations in cellulose crystallites take place closer to the dry state. Fibrillar aggregation is a significant source of drying-related changes in the interior of the microfibrils. Our results corroborate the fundamental role of nanoscale phenomena in the swelling behavior and properties of wood-based materials and promote their utilization in nanomaterials development. Simulation-assisted scattering analysis proved an efficient tool for advancing the nanoscale characterization of cellulosic materials.
Collapse
Affiliation(s)
- Antti Paajanen
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Aleksi Zitting
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Lauri Rautkari
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Jukka A. Ketoja
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Paavo A. Penttilä
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| |
Collapse
|
23
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
24
|
Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion. Nat Commun 2022; 13:1449. [PMID: 35304453 PMCID: PMC8933493 DOI: 10.1038/s41467-022-28938-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Glucuronoyl esterases (GEs) are α/β serine hydrolases and a relatively new addition in the toolbox to reduce the recalcitrance of lignocellulose, the biggest obstacle in cost-effective utilization of this important renewable resource. While biochemical and structural characterization of GEs have progressed greatly recently, there have yet been no mechanistic studies shedding light onto the rate-limiting steps relevant for biomass conversion. The bacterial GE OtCE15A possesses a classical yet distinctive catalytic machinery, with easily identifiable catalytic Ser/His completed by two acidic residues (Glu and Asp) rather than one as in the classical triad, and an Arg side chain participating in the oxyanion hole. By QM/MM calculations, we identified deacylation as the decisive step in catalysis, and quantified the role of Asp, Glu and Arg, showing the latter to be particularly important. The results agree well with experimental and structural data. We further calculated the free-energy barrier of post-catalysis dissociation from a complex natural substrate, suggesting that in industrial settings non-catalytic processes may constitute the rate-limiting step, and pointing to future directions for enzyme engineering in biomass utilization. Zong and coworkers combine computational and experimental methods to decipher in detail the mechanism of action of glucuronoyl esterases, enzymes with significant biotechnological potential for decoupling lignin from polysaccharides in biomass.
Collapse
|
25
|
Shekar SC, Zhao W, Fernando LD, Hung I, Wang T. A 13C three-dimensional DQ-SQ-SQ correlation experiment for high-resolution analysis of complex carbohydrates using solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107148. [PMID: 35121490 DOI: 10.1016/j.jmr.2022.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Complex carbohydrates are the key components of the protective cell walls of microbial pathogens and the bioenergy reservoir in plants and algae. Structural characterization of these polymorphic molecules requires assistance from multidimensional 13C correlation approaches. To facilitate the analysis of carbohydrate structure using solid-state NMR, we present a three-dimensional (3D) 13C-13C-13C experiment that includes a double-quantum (DQ) dimension and is thus free of the cube's body diagonal. The enhanced resolution supports the unambiguous resonance assignment of many polysaccharides in plant and fungal cell walls using uniformly 13C-labeled cells of spruce and Aspergillus fumigatus. Long-range structural restraints were effectively obtained to revisit our understanding of the spatial organization of plant cellulose microfibrils. The method is widely applicable to the investigations of cellular carbohydrates and carbon-based biomaterials.
Collapse
Affiliation(s)
- S Chandra Shekar
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Liyanage D Fernando
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ivan Hung
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
26
|
Heinonen E, Henriksson G, Lindström ME, Vilaplana F, Wohlert J. Xylan adsorption on cellulose: Preferred alignment and local surface immobilizing effect. Carbohydr Polym 2022; 285:119221. [DOI: 10.1016/j.carbpol.2022.119221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
27
|
Carbohydrate-aromatic interface and molecular architecture of lignocellulose. Nat Commun 2022; 13:538. [PMID: 35087039 PMCID: PMC8795156 DOI: 10.1038/s41467-022-28165-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Plant cell walls constitute the majority of lignocellulosic biomass and serve as a renewable resource of biomaterials and biofuel. Extensive interactions between polysaccharides and the aromatic polymer lignin make lignocellulose recalcitrant to enzymatic hydrolysis, but this polymer network remains poorly understood. Here we interrogate the nanoscale assembly of lignocellulosic components in plant stems using solid-state nuclear magnetic resonance and dynamic nuclear polarization approaches. We show that the extent of glycan-aromatic association increases sequentially across grasses, hardwoods, and softwoods. Lignin principally packs with the xylan in a non-flat conformation via non-covalent interactions and partially binds the junction of flat-ribbon xylan and cellulose surface as a secondary site. All molecules are homogeneously mixed in softwoods; this unique feature enables water retention even around the hydrophobic aromatics. These findings unveil the principles of polymer interactions underlying the heterogeneous architecture of lignocellulose, which may guide the rational design of more digestible plants and more efficient biomass-conversion pathways. The plant biomass is a composite formed by a variety of polysaccharides and an aromatic polymer named lignin. Here, the authors use solid-state NMR spectroscopy to unveil the carbohydrate-aromatic interface that leads to the variable architecture of lignocellulose biomaterials.
Collapse
|