1
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Surface functionalization of polyurethanes: A critical review. Adv Colloid Interface Sci 2024; 325:103100. [PMID: 38330882 DOI: 10.1016/j.cis.2024.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Synthetic polymers, particularly polyurethanes (PUs), have revolutionized bioengineering and biomedical devices due to their customizable mechanical properties and long-term stability. However, the inherent hydrophobic nature of PU surfaces arises common issues such as high friction, strong protein adsorption, and thrombosis, especially in the physiological environment of blood contact. To overcome these issues, researchers have explored various modification techniques to improve the surface biofunctionality of PUs. In this review, we have systematically summarized several typical surface modification methods including surface plasma modification, surface oxidation-induced grafting polymerization, isocyanate-based chemistry coupling, UV-induced surface grafting polymerization, adhesives-assisted attachment strategy, small molecules-bridge grafting, solvent evaporation technique, and hydrogen bonding interaction. Correspondingly, the advantages, limitations, and future prospects of these surface modification methods were discussed. This review provides an important guidance or tool for developing surface functionalized PUs in the fields of bioengineering and medical devices.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Singh S, Kumar Paswan K, Kumar A, Gupta V, Sonker M, Ashhar Khan M, Kumar A, Shreyash N. Recent Advancements in Polyurethane-based Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:327-348. [PMID: 36719800 DOI: 10.1021/acsabm.2c00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In tissue engineering, polyurethane-based implants have gained significant traction because of their high compatibility and inertness. The implants therefore show fewer side effects and lasts longer. Also, the mechanical properties can be tuned and morphed into a particular shape, owing to which polyurethanes show immense versatility. In the last 3 years, scientists have devised methods to enhance the strength of and induce dynamic properties in polyurethanes, and these developments offer an immense opportunity to use them in tissue engineering. The focus of this review is on applications of polyurethane implants for biomedical application with detailed analysis of hard tissue implants like bone tissues and soft tissues like cartilage, muscles, skeletal tissues, and blood vessels. The synthetic routes for the preparation of scaffolds have been discussed to gain a better understanding of the issues that arise regarding toxicity. The focus here is also on concerns regarding the biocompatibility of the implants, given that the precursors and byproducts are poisonous.
Collapse
Affiliation(s)
- Sukriti Singh
- Department of Chemical and Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Mubarakpur Mukhatiya, Uttar Pradesh 229304, India
| | - Karan Kumar Paswan
- Department of Chemical and Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Mubarakpur Mukhatiya, Uttar Pradesh 229304, India
| | - Alok Kumar
- Department of Chemical and Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Mubarakpur Mukhatiya, Uttar Pradesh 229304, India
| | - Vishwas Gupta
- Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Mubarakpur Mukhatiya, Uttar Pradesh 229304, India
| | - Muskan Sonker
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mohd Ashhar Khan
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Amrit Kumar
- Indian Oil Corporation Limited, Panipat Refinery, Panipat, Odisha 132140, India
| | - Nehil Shreyash
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
3
|
Soars SM, Bongiardina NJ, Fairbanks BD, Podgórski M, Bowman CN. Spatial and Temporal Control of Photomediated Disulfide–Ene and Thiol–Ene Chemistries for Two-Stage Polymerizations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shafer M. Soars
- Department of Chemistry, University of Colorado-Boulder, Boulder, Colorado 80303, United States
| | - Nicholas J. Bongiardina
- Materials Science and Engineering Program, University of Colorado-Boulder, Boulder, Colorado 80303, United States
| | - Benjamin D. Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, Colorado 80303, United States
| | - Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, Colorado 80303, United States
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 5, Lublin 20-031, Poland
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
4
|
|
5
|
Abstract
There is a tremendous clinical need for synthetic vascular grafts either for bypass procedure or vascular access during hemodialysis. However, currently, there is no small-diameter vascular graft commercially available to meet long-term patency requirement due to frequent thrombus formation and intimal hyperplasia. This chapter describes the fabrication of electrospun small-diameter polycarbonate-urethane (PCU) vascular graft with a biomimetic fibrous structure. Additionally, the surface of the vascular graft is aminated via plasma treatment for the subsequently end-point heparin immobilization to enhance antithrombosis property.
Collapse
|
6
|
Liu X, Song X, Chen B, Liu J, Feng Z, Zhang W, Zeng J, Liang L. Self-healing and shape-memory epoxy thermosets based on dynamic diselenide bonds. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Liang W, Lu Q, Yu F, Zhang J, Xiao C, Dou X, Zhou Y, Mo X, Li J, Lang M. A multifunctional green antibacterial rapid hemostasis composite wound dressing for wound healing. Biomater Sci 2021; 9:7124-7133. [PMID: 34581318 DOI: 10.1039/d1bm01185e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid hemostasis and antibacterial properties are essential for novel wound dressings to promote wound healing. In particular, timely and rapid hemostasis could be of benefit to reduce the mortality caused by excessive bleeding loss. Herein, we present a novel strategy of combining electrospinning technology with post-modification technology to prepare a multifunctional wound dressing, cellulose diacetate-based composite wound dressing (CDCE), with rapid hemostasis and antibacterial activity. It is interesting that the CDCE wound dressing had superhydrophilicity, high water absorption, and strong absorbing capacity, which could eliminate the exudate around the wound in a timely manner and further promote rapid hemostasis. Additionally, its excellent antibacterial properties could inhibit severe infection in the wound and accelerate wound healing. Based on these advantages, the novel CDCE wound dressing could promote wound contraction and further accelerate wound healing compared with the common traditional wound dressing gauze. Taken together, the multifunctional CDCE wound dressing has high potential for clinical application in the future.
Collapse
Affiliation(s)
- Wencheng Liang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China. .,Center of Photonics & Bio-Medical Diagnosis, School of science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, School of biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Fan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Junyong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Chuang Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Xiaoming Dou
- Center of Photonics & Bio-Medical Diagnosis, School of science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Jun Li
- Department of Orthopedics, Shanghai Tenth People's Hospital Affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, PR China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
8
|
Monisha M, Sahu S, Lochab B. Self-Polymerization Promoting Monomers: In Situ Transformation of Disulfide-Linked Benzoxazines into the Thiazolidine Structure. Biomacromolecules 2021; 22:4408-4421. [PMID: 34582169 DOI: 10.1021/acs.biomac.1c00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polybenzoxazines obtained especially from green synthons are facing challenges of the requirement of high ring-opening polymerization (ROP) temperature of the monomer, thus affecting their exploration at the industrial front. This demands effective structural changes in the monomer itself, to mediate catalyst-free polymerization at a low energy via one-step synthesis protocol. In this regard, monomers based on disulfide-linked bisbenzoxazine were successfully synthesized using cystamine (biobased) and cardanol (agro-waste)/phenol. Reduction of the disulfide bridge in the monomer using dithiothreitol under mild conditions in situ transformed the oxazine ring in the monomer, via neighboring group participation of the -SH group in a transient intermediate monomer, into a thiazolidine structure, which is otherwise difficult to synthesize. Structural transformation of ring-opening followed by the ring-closing intramolecular reaction led to an interconversion of O-CH2-N containing a six-membered oxazine ring to S-CH2-N containing a five-membered thiazolidine ring and a phenolic-OH. The structure of the monomer with the oxazine ring and its congener with the thiazolidine ring was characterized by spectroscopic methods and X-ray analysis. Kinetics of structural transformation at a molecular level is studied in detail, and it was found that the reaction proceeded via a transient 2-aminoethanethiol-linked benzoxazine intermediate, as supported by nuclear magnetic resonance spectroscopy and density functional theory studies. The thiazolidine-ring-containing monomer promotes ROP at a substantially low temperature than the reported mono-/bisoxazine monomers due to the dual mode of facilitation of the ROP reaction, both by phenolic-OH and by ring strain. Surprisingly, both the monomer structures led to the formation of a similar polymer structure, as supported by thermogravimetric analysis and Fourier transform infrared study. The current work highlights the benefits of inherent functionalities in naturally sourced feedstocks as biosynthons for the new latest generation of benzoxazine monomers.
Collapse
Affiliation(s)
- Monisha Monisha
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Sangeeta Sahu
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
9
|
Rubio Hernández-Sampelayo A, Navarro R, Marcos-Fernández Á. Preparation of High Molecular Weight Poly(urethane-urea)s Bearing Deactivated Diamines. Polymers (Basel) 2021; 13:1914. [PMID: 34207525 PMCID: PMC8229936 DOI: 10.3390/polym13121914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
The synthesis of poly(urethane-urea) (PUUs) bearing deactivated diamines within the backbone polymer chain is presented. Several deactivated diamines present interesting properties for several applications in the biomaterial field due to their attractive biocompatibility. Through an activation with Chloro-(trimethyl)silane (Cl-TMS) during the polymerization reaction, the reactivity of these diamines against diisocyanates was triggered, leading to PUUs with high performance. Indeed, through this activation protocol, the obtained molecular weights and mechanical features increased considerably respect to PUUs prepared following the standard conditions. In addition, to demonstrate the feasibility and versatility of this synthetic approach, diisocyanate with different reactivity were also addressed. The experimental work is supported by calculations of the electronic parameters of diisocyanate and diamines, using quantum mechanical methods.
Collapse
Affiliation(s)
- Alejandra Rubio Hernández-Sampelayo
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.R.H.-S.); (Á.M.-F.)
- Escuela Internacional de Doctorado de la UNED, Universidad Nacional de Educación a Distancia (UNED), C/Bravo Murillo, 38, 28015 Madrid, Spain
| | - Rodrigo Navarro
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.R.H.-S.); (Á.M.-F.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC, Madrid, Spain
| | - Ángel Marcos-Fernández
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.R.H.-S.); (Á.M.-F.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC, Madrid, Spain
| |
Collapse
|
10
|
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021; 6:1083-1106. [PMID: 33102948 PMCID: PMC7569269 DOI: 10.1016/j.bioactmat.2020.10.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.
Collapse
Affiliation(s)
- Sophie Wendels
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
11
|
Calleros EL, Simonovsky FI, Garty S, Ratner BD. Crosslinked, biodegradable polyurethanes for precision‐porous biomaterials: Synthesis and properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.48943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Shai Garty
- Department of BioengineeringUniversity of Washington Seattle WA 98195 USA
| | - Buddy D. Ratner
- Department of BioengineeringUniversity of Washington Seattle WA 98195 USA
- Department of Chemical EngineeringUniversity of Washington Seattle WA 98195 USA
| |
Collapse
|
12
|
Sorroza-Martínez K, González-Méndez I, Martínez-Serrano RD, Solano JD, Ruiu A, Illescas J, Zhu XX, Rivera E. Efficient modification of PAMAM G1 dendrimer surface with β-cyclodextrin units by CuAAC: impact on the water solubility and cytotoxicity. RSC Adv 2020; 10:25557-25566. [PMID: 35518581 PMCID: PMC9055266 DOI: 10.1039/d0ra02574g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
The toxicity of the poly(amidoamine) dendrimers (PAMAM) caused by the peripheral amino groups has been a limitation for their use as drug carriers in clinical applications. In this work, we completely modified the periphery of PAMAM dendrimer generation 1 (PAMAM G1) with β-cyclodextrin (β-CD) units through the Cu(i)-catalyzed azide–alkyne cycloaddition (CuAAC) to obtain the PAMAM G1-β-CD dendrimer with high yield. The PAMAM G1-β-CD was characterized by 1H- and 13C-NMR and mass spectrometry studies. Moreover, the PAMAM G1-β-CD dendrimer showed remarkably higher water solubility than native β-CD. Finally, we studied the toxicity of PAMAM G1-β-CD dendrimer in four different cell lines, human breast cancer cells (MCF-7 and MDA-MB-231), human cervical adenocarcinoma cancer cells (HeLa) and pig kidney epithelial cells (LLC-PK1). The PAMAM G1-β-CD dendrimer did not present any cytotoxicity in cell lines tested which shows the potentiality of this new class of dendrimers. The toxicity of the poly(amidoamine) dendrimers (PAMAM) caused by the peripheral amino groups has been a limitation for their use as drug carriers in clinical applications.![]()
Collapse
Affiliation(s)
- Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Ricardo D Martínez-Serrano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - José D Solano
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Andrea Ruiu
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Javier Illescas
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca Av. Tecnológico S/N, Col. Agrícola Bellavista CP 52149 Metepec México
| | - Xiao Xia Zhu
- Département de Chimie, Université de Montréal C.P. 6128, Succursale Centre-ville Montreal QC H3C 3J7 Canada
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| |
Collapse
|
13
|
Tong C, Wondergem JAJ, Heinrich D, Kieltyka RE. Photopatternable, Branched Polymer Hydrogels Based on Linear Macromonomers for 3D Cell Culture Applications. ACS Macro Lett 2020; 9:882-888. [PMID: 35648521 DOI: 10.1021/acsmacrolett.0c00175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photochemical ligation strategies in hydrogel materials are crucial to model spatiotemporal phenomena that occur in the natural extracellular matrix. We here describe the use of cyclic 1,2-dithiolanes to cross-link with norbornene on linear poly(ethylene glycol) polymers through UV irradiation in a rapid and byproduct-free manner, resulting in branched macromolecular architectures and hydrogel materials from low-viscosity precursor solutions. Oscillatory rheology and NMR data indicate the one-pot formation of thioether and disulfide cross-links. Spatial and temporal control of the hydrogel mechanical properties and functionality was demonstrated by oscillatory rheology and confocal microscopy. A cytocompatible response of NIH 3T3 fibroblasts was observed within these materials, providing a foothold for further exploration of this photoactive cross-linking moiety in the biomedical field.
Collapse
Affiliation(s)
- Ciqing Tong
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O.
Box 9502, 2300 RA, Leiden, The Netherlands
| | - Joeri A. J. Wondergem
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | - Doris Heinrich
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Roxanne E. Kieltyka
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O.
Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
14
|
Putti M, de Jong SMJ, Stassen OMJA, Sahlgren CM, Dankers PYW. A Supramolecular Platform for the Introduction of Fc-Fusion Bioactive Proteins on Biomaterial Surfaces. ACS APPLIED POLYMER MATERIALS 2019; 1:2044-2054. [PMID: 31423488 PMCID: PMC6691680 DOI: 10.1021/acsapm.9b00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Bioorthogonal chemistry is an excellent method for functionalization of biomaterials with bioactive molecules, as it allows for decoupling of material processing and bioactivation. Here, we report on a modular system created by means of tetrazine/trans-cyclooctene (Tz/TCO) click chemistry undergoing an inverse electron demand Diels-Alder cycloaddition. A reactive supramolecular surface based on ureido-pyrimidinones (UPy) is generated via a UPy-Tz additive, in order to introduce a versatile TCO-protein G conjugate for immobilization of Fc-fusion proteins. As a model bioactive protein, we introduced Fc-Jagged1, a Notch ligand, to induce Notch signaling activity on the material. Interestingly, HEK293 FLN1 cells expressing the Notch1 receptor were repelled by films modified with TCO-protein G but adhered and spread on functionalized electrospun meshes. This indicates that the material processing method influences the biocompatibility of the postmodification. Notch signaling activity was upregulated 5.6-fold with respect to inactive controls on electrospun materials modified with TCO-protein G/Fc-Jagged1. Furthermore, downstream effects of Notch signaling were detected on the gene level in vascular smooth muscle cells expressing the Notch3 receptor. Taken together, our results demonstrate the successful use of a modular supramolecular system for the postprocessing modification of solid materials with functional proteins.
Collapse
Affiliation(s)
- Matilde Putti
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Simone M. J. de Jong
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Oscar M. J. A. Stassen
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cecilia M. Sahlgren
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty
for Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku
Centre for Biotechnology, University of
Turku and Åbo Akademi University, Turku, Finland
| | - Patricia Y. W. Dankers
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
15
|
Song EH, Seong YJ, Park C, Kang IG, Kim HE, Jeong SH. Use of thioglycerol on porous polyurethane as an effective theranostic capping agent for bone tissue engineering. J Biomater Appl 2018; 33:955-966. [DOI: 10.1177/0885328218817173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thiolated biodegradable polyurethane (TG-DPU) was synthesized using a one-pot reaction with thioglycerol adopted as a functionalized chain extender. After characterization of the chemical structure of TG-DPU using proton nuclear magnetic resonance spectroscopy, bone morphogenetic protein (BMP-2) was loaded in the TG-DPU under oxidative conditions to form disulfides between the free thiol of TG-DPU and BMP-2. The interaction between TG-DPU and BMP-2, so-called bioconjugates, was investigated using X-ray photoelectron spectroscopy analysis; the appearance of disulfide (S–S) linkage indicated the formation of a polymer/growth factor conjugate system. The covalently linked bioconjugates provided stability with minimal loss during the drug delivery with prolonged release performance in in vitro release tests. The effects of the drugs delivered by TG-DPU were also confirmed by in vitro alkaline phosphatase tests using pre-osteoblasts and in vivo bone regeneration tests. The drugs effectively induced cell differentiation and promoted mature bone recovery.
Collapse
Affiliation(s)
- Eun-Ho Song
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jeong Seong
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Cheonil Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - In-Gu Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seol-Ha Jeong
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Chen M, Ou B, Guo Y, Guo Y, Kang Y, Liu H, Yan J, Tian L. Preparation of an environmentally friendly antifouling degradable polyurethane coating material based on medium-length fluorinated diols. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2018. [DOI: 10.1080/10601325.2018.1470466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Meilong Chen
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Baoli Ou
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
- State Key Laboratory of Tribology, Tsinghua University, Tsinghua University, Beijing, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Yuanjun Guo
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Yan Guo
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Yonghai Kang
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Huiyang Liu
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Jianhui Yan
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Li Tian
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| |
Collapse
|
17
|
Patil SS, Misra RDK. The significance of macromolecular architecture in governing structure-property relationship for biomaterial applications: an overview. MATERIALS TECHNOLOGY 2018; 33:364-386. [DOI: 10.1080/10667857.2018.1447266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- S. S. Patil
- Department of Metallurgy, Materials and Biomedical Engineering, The University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - R. D. K. Misra
- Department of Metallurgy, Materials and Biomedical Engineering, The University of Texas at El Paso (UTEP), El Paso, TX, USA
| |
Collapse
|
18
|
Cengiz N, Gevrek TN, Sanyal R, Sanyal A. Orthogonal thiol-ene 'click' reactions: a powerful combination for fabrication and functionalization of patterned hydrogels. Chem Commun (Camb) 2018; 53:8894-8897. [PMID: 28740993 DOI: 10.1039/c7cc02298k] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A combination of 'orthogonal' thiol-ene 'click' reactions is utilized for fabrication and functionalization of micro-patterned hydrogels. A furan-protected maleimide-containing parent copolymer is partially activated via the retro Diels-Alder reaction to obtain an 'orthogonally' functionalizable copolymer, where the different functional groups can be exploited for multi-functionalization or fabrication of functional hydrogels using combination of the nucleophilic and radical thiol-ene reactions.
Collapse
Affiliation(s)
- N Cengiz
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey.
| | | | | | | |
Collapse
|
19
|
Meng F, Qiao Z, Yao Y, Luo J. Synthesis of polyurethanes with pendant azide groups attached on the soft segments and the surface modification with mPEG by click chemistry for antifouling applications. RSC Adv 2018; 8:19642-19650. [PMID: 35540978 PMCID: PMC9080695 DOI: 10.1039/c8ra02912a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 01/06/2023] Open
Abstract
Polyurethane with pendant azide groups on the soft segment (PU-GAP) was prepared in this study to further increase the content of reactive azide groups and improve their surfaces enrichment for further functionalization. Polymer diols with pendant azide groups (GAP) were prepared by transforming the pendant chlorine groups at polyepichlorohydrin (PECH) into azide groups with sodium azide. The prepared PECH, GAP and PU-GAP was characterized by GPC, 1H NMR and FTIR. Propargylic mPEG (mPEG-alkyne) was used as model surface modification reagents which was grafted on the prepared azido containing polyurethane films via click chemistry. The surface morphology, chemical composition and wettabilities were studied by SEM, XPS and water contact angle (WCA) analysis, respectively. SEM results demonstrated different surface topologies between mPEG modified PU surface and original PU surface. XPS and WCA analysis proved the successful grafting of mPEG on the pendant azide groups of PUs. The mPEG modified PU surfaces demonstrated good antifouling activities against model bacteria and mPEG with larger molecular weights modified surfaces showed better resistance efficiency to attachment of bacteria. Therefore, the surface reactive polyurethane we prepared can be a universal platform for further functionalization according actual applications. Polyurethane with pendant azide groups on the soft segment which can be an universal platform for further functionalization according actual applications.![]()
Collapse
Affiliation(s)
- Fancui Meng
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- 610041 Chengdu
- China
| | - Zhuangzhuang Qiao
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- 610041 Chengdu
- China
| | - Yan Yao
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- 610041 Chengdu
- China
| | - Jianbin Luo
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- 610041 Chengdu
- China
| |
Collapse
|
20
|
Wang Y, Zhu T, Kuang H, Sun X, Zhu J, Shi Y, Wang C, Mo X, Lu S, Hong T. Preparation and evaluation of poly(ester-urethane) urea/gelatin nanofibers based on different crosslinking strategies for potential applications in vascular tissue engineering. RSC Adv 2018; 8:35917-35927. [PMID: 35558443 PMCID: PMC9088401 DOI: 10.1039/c8ra07123c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/16/2018] [Indexed: 01/18/2023] Open
Abstract
Due to the brittleness of gelatin, the resulting absence of mechanical performance restricts its applications in vascular tissue engineering. In this research, the fabrication of poly(ester-urethane) urea/gelatin (PU75) nanofibers via an electrospinning technique, followed by different crosslinking methods, resulted in the improvement of its mechanical properties. Poly(ester urethane) urea (PEUU) nanofibrous scaffolds and PU75-based nanofibrous scaffolds were characterized using scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, wide-angle X-ray diffraction (WAXRD), a mechanical properties test, a cytocompatibility assay, a hemolysis assay, and a histological analysis. Water contact angle (WCA) tests confirmed that the PU75-GA (PU75 nanofibers crosslinked with glutaraldehyde vapor) nanofibrous scaffold surfaces became more hydrophilic compared with other crosslinked nanofibrous scaffolds. The results show that the PU75-GA nanofibrous scaffold exhibited a combination of excellent mechanical properties, suitable pore diameters, hydrophilic properties, good cytocompatibility, and reliable hemocompatibility. Overall, PU75-GA nanofibers may be a potential scaffold for artificial blood vessel construction. SEM micrographs of the PEUU nanofibrous membrane, PU75 nanofibrous membrane, PU75-DT nanofibrous membrane, PU75-GA nanofibrous membrane, and PU75-E/N nanofibrous membrane and magnified 1000, 5000, and 10 000 times, respectively.![]()
Collapse
|
21
|
Mi HY, Jing X, Napiwocki BN, Hagerty BS, Chen G, Turng LS. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J Mater Chem B 2017; 5:4137-4151. [PMID: 29170715 PMCID: PMC5695921 DOI: 10.1039/c7tb00419b] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biodegradable synthetic polymers have been widely used as tissue engineering scaffold materials. Even though they have shown excellent biocompatibility, they have failed to resemble the low stiffness and high elasticity of soft tissues because of the presence of massive rigid ester bonds. Herein, we synthesized a new thermoplastic polyurethane elastomer (CTC-PU(BET)) using poly ester ether triblock copolymer (polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone triblock copolymer, PCTC) as the soft segment, aliphatic diisocyanate (hexamethylene diisocyanate, HDI) as the hard segment, and degradable diol (bis(2-hydroxyethyl) terephthalate, BET) as the chain extender. PCTC inhibited crystallization and reduced the melting temperature of CTC-PU(BET), and BET dramatically enhanced the thermal decomposition and hydrolytic degradation rate when compared with conventional polyester-based biodegradable TPUs. The CTC-PU(BET) synthesized in this study possessed a low tensile modulus and tensile strength of 2.2 MPa and 1.3 MPa, respectively, and an elongation-at-break over 700%. Meanwhile, it maintained a 95.3% recovery rate and 90% resilience over ten cycles of loading and unloading. In addition, the TPU could be electrospun into both random and aligned fibrous scaffolds consisting of major microfibers and nanobranches. 3T3 fibroblast cell culture confirmed that these scaffolds outperformed the conventional biodegradable TPU scaffolds in terms of substrate-cellular interactions and cell proliferation. Considering the advantages of this TPU, such as ease of synthesis, low cost, low stiffness, high elasticity, controllable degradation rate, ease of processability, and excellent biocompatibility, it has great prospects to be used as a tissue engineering scaffold material for soft tissue regeneration.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Department of Mechanical Engineering, University of
Wisconsin–Madison, Madison, WI, 53706, USA
- Department of Industrial Equipment and Control Engineering, South
China University of Technology, Guangzhou, 510640, China
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Xin Jing
- Department of Industrial Equipment and Control Engineering, South
China University of Technology, Guangzhou, 510640, China
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Brett N. Napiwocki
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
- Department of Biomedical Engineering, University of
Wisconsin–Madison, Madison, WI, 53706, USA
| | - Breanna S. Hagerty
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Guojun Chen
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of
Wisconsin–Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| |
Collapse
|
22
|
Hao W, Wang T, Liu D, Shang Y, Zhang J, Xu S, Liu H. Folate-conjugated pH-controllable fluorescent nanomicelles acting as tumor targetable drug carriers. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2255-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Xu C, Huang Y, Tang L, Hong Y. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2169-2180. [PMID: 28036169 PMCID: PMC7479969 DOI: 10.1021/acsami.6b15009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The mechanical match between synthetic scaffold and host tissue remains challenging in tissue regeneration. The elastic soft tissues exhibit low initial moduli with a J-shaped tensile curve. Suitable synthetic polymer scaffolds require low initial modulus and elasticity. To achieve these requirements, random copolymers poly(δ-valerolactone-co-ε-caprolactone) (PVCL) and hydrophilic poly(ethylene glycol) (PEG) were combined into a triblock copolymer, PVCL-PEG-PVCL, which was used as a soft segment to synthesize a family of biodegradable elastomeric polyurethanes (PU) with low initial moduli. The triblock copolymers were varied in chemical components, molecular weights, and hydrophilicities. The mechanical properties of polyurethanes in dry and wet states can be tuned by altering the molecular weights and hydrophilicities of the soft segments. Increasing the length of either PVCL or PEG in the soft segments reduced initial moduli of the polyurethane films and scaffolds in dry and wet states. The polymer films are found to have good cell compatibility and to support fibroblast growth in vitro. Selected polyurethanes were processed into porous scaffolds by a thermally induced phase-separation technique. The scaffold from PU-PEG1K-PVCL6K had an initial modulus of 0.60 ± 0.14 MPa, which is comparable with the initial modulus of human myocardium (0.02-0.50 MPa). In vivo mouse subcutaneous implantation of the porous scaffolds showed minimal chronic inflammatory response and intensive cell infiltration, which indicated good tissue compatibility of the scaffolds. Biodegradable polyurethane elastomers with low initial modulus and good biocompatibility and processability would be an attractive alternative scaffold material for soft tissue regeneration, especially for heart muscle.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Yihui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
- Corresponding author: Yi Hong, , Tel: +1-817-272-0562; Fax: +1-817-272-2251
| |
Collapse
|
24
|
Fang J, Zhang J, Du J, Pan Y, Shi J, Peng Y, Chen W, Yuan L, Ye SH, Wagner WR, Yin M, Mo X. Orthogonally Functionalizable Polyurethane with Subsequent Modification with Heparin and Endothelium-Inducing Peptide Aiming for Vascular Reconstruction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14442-14452. [PMID: 27224957 DOI: 10.1021/acsami.6b04289] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface coimmobilization modifications of blood-contacting devices with both antithrombogenic moieties and endothelium-inducing biomolecules may create a synergistic effect to improve their performance. However, it is difficult to perform covalent dual-functionalization with both biomolecules on the surface of normally used synthetic polymeric substrates. Herein, we developed and characterized an orthogonally functionalizable polymer, biodegradable elastic poly(ester urethane)urea with disulfide and amino groups (PUSN), which was further fabricated into electropun fibrous scaffolds and surface modified with heparin and endothelial progenitor cells (EPC) recruiting peptide (TPS). The modification effects were assessed through platelet adhesion, EPC, and HUVEC proliferation. Results showed the dual modified PUSN scaffolds demonstrated a synergistic effect of reduced platelet deposition and improved EPC proliferation in vitro study, and demonstrated their potential application in small diameter vascular regeneration.
Collapse
Affiliation(s)
- Jun Fang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Jialing Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai 200127, China
| | - Jun Du
- Imaging Diagnosis Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai 200127, China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai 200127, China
| | - Jing Shi
- Imaging Diagnosis Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai 200127, China
| | - Yongxuan Peng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai 200127, China
| | - Weiming Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Liu Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai 200127, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| |
Collapse
|
25
|
Anseth KS, Klok HA. Click Chemistry in Biomaterials, Nanomedicine, and Drug Delivery. Biomacromolecules 2016; 17:1-3. [DOI: 10.1021/acs.biomac.5b01660] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Toth K, Kekec NC, Nugay N, Kennedy JP. Polyisobutylene-based polyurethanes. VIII. Polyurethanes with -O-S-PIB-S-O- soft segments. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kalman Toth
- Department of Polymer Science; the University of Akron; Akron Ohio 44325-3909
| | - Nur Cicek Kekec
- Chemistry Department; Bogazici University; Bebek 34342 Istanbul Turkey
| | - Nihan Nugay
- Chemistry Department; Bogazici University; Bebek 34342 Istanbul Turkey
| | - Joseph. P. Kennedy
- Department of Polymer Science; the University of Akron; Akron Ohio 44325-3909
| |
Collapse
|