1
|
Panghal A, Flora SJS. Nano-based approaches for the treatment of neuro-immunological disorders: a special emphasis on multiple sclerosis. DISCOVER NANO 2024; 19:171. [PMID: 39466516 PMCID: PMC11519283 DOI: 10.1186/s11671-024-04135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Multiple sclerosis (MS) is a neuroimmunological disorder which causes axonal damage, demyelination and paralysis. Although numerous therapeutics have been developed for the effective treatment of MS and a few have been approved in recent decades, complete remission and treatment of MS remain a matter of concern. Nanotechnology is a potential approach for manipulating the properties of materials at the molecular level to attain desired properties. This approach is effective in the treatment of several CNS disorders by enhancing drug delivery, bioavailability and efficacy. We have briefly discussed the neuroimmunological disorders with a particular emphasis on MS. We also explored nanoengineered drug delivery systems, describing several nano-formulations for the treatment of MS, challenges and future of nanotechnology.
Collapse
Affiliation(s)
- Archna Panghal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India
| | - S J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India.
- Era College of Pharmaceutical Sciences, Era Lucknow Medical University, Sarfarajgang, Lucknow, 226002, India.
| |
Collapse
|
2
|
Sztandera K, Rodríguez-García JL, Ceña V. In Vivo Applications of Dendrimers: A Step toward the Future of Nanoparticle-Mediated Therapeutics. Pharmaceutics 2024; 16:439. [PMID: 38675101 PMCID: PMC11053723 DOI: 10.3390/pharmaceutics16040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Over the last few years, the development of nanotechnology has allowed for the synthesis of many different nanostructures with controlled sizes, shapes, and chemical properties, with dendrimers being the best-characterized of them. In this review, we present a succinct view of the structure and the synthetic procedures used for dendrimer synthesis, as well as the cellular uptake mechanisms used by these nanoparticles to gain access to the cell. In addition, the manuscript reviews the reported in vivo applications of dendrimers as drug carriers for drugs used in the treatment of cancer, neurodegenerative diseases, infections, and ocular diseases. The dendrimer-based formulations that have reached different phases of clinical trials, including safety and pharmacokinetic studies, or as delivery agents for therapeutic compounds are also presented. The continuous development of nanotechnology which makes it possible to produce increasingly sophisticated and complex dendrimers indicates that this fascinating family of nanoparticles has a wide potential in the pharmaceutical industry, especially for applications in drug delivery systems, and that the number of dendrimer-based compounds entering clinical trials will markedly increase during the coming years.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Valentín Ceña
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Huang M, Tallon C, Zhu X, Huizar KDJ, Picciolini S, Thomas AG, Tenora L, Liyanage W, Rodà F, Gualerzi A, Kannan RM, Bedoni M, Rais R, Slusher BS. Microglial-Targeted nSMase2 Inhibitor Fails to Reduce Tau Propagation in PS19 Mice. Pharmaceutics 2023; 15:2364. [PMID: 37765332 PMCID: PMC10536502 DOI: 10.3390/pharmaceutics15092364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The progression of Alzheimer's disease (AD) correlates with the propagation of hyperphosphorylated tau (pTau) from the entorhinal cortex to the hippocampus and neocortex. Neutral sphingomyelinase2 (nSMase2) is critical in the biosynthesis of extracellular vesicles (EVs), which play a role in pTau propagation. We recently conjugated DPTIP, a potent nSMase2 inhibitor, to hydroxyl-PAMAM-dendrimer nanoparticles that can improve brain delivery. We showed that dendrimer-conjugated DPTIP (D-DPTIP) robustly inhibited the spread of pTau in an AAV-pTau propagation model. To further evaluate its efficacy, we tested D-DPTIP in the PS19 transgenic mouse model. Unexpectantly, D-DPTIP showed no beneficial effect. To understand this discrepancy, we assessed D-DPTIP's brain localization. Using immunofluorescence and fluorescence-activated cell-sorting, D-DPTIP was found to be primarily internalized by microglia, where it selectively inhibited microglial nSMase2 activity with no effect on other cell types. Furthermore, D-DPTIP inhibited microglia-derived EV release into plasma without affecting other brain-derived EVs. We hypothesize that microglial targeting allowed D-DPTIP to inhibit tau propagation in the AAV-hTau model, where microglial EVs play a central role in propagation. However, in PS19 mice, where tau propagation is independent of microglial EVs, it had a limited effect. Our findings confirm microglial targeting with hydroxyl-PAMAM dendrimers and highlight the importance of understanding cell-specific mechanisms when designing targeted AD therapies.
Collapse
Affiliation(s)
- Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaolei Zhu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kaitlyn D. J. Huizar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
| | - Silvia Picciolini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lukas Tenora
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (W.L.); (R.M.K.)
| | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 42100 Modena, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (W.L.); (R.M.K.)
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Dendrimers in Neurodegenerative Diseases. Processes (Basel) 2023. [DOI: 10.3390/pr11020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Parkinson’s Disease (PD), Alzheimer’s Disease (AD), Multiple Sclerosis (MS) and amyotrophic lateral sclerosis (ALS), are characterized by progressive loss of structure or function of neurons. Current therapies for NDs are only symptomatic and long-term ineffective. This challenge has promoted the development of new therapies against relevant targets in these pathologies. In this review, we will focus on the most promising therapeutic approaches based on dendrimers (DDs) specially designed for the treatment and diagnosis of NDs. DDs are well-defined polymeric structures that provide a multifunctional platform for developing different nanosystems for a myriad of applications. DDs have been proposed as interesting drug delivery systems with the ability to cross the blood–brain barrier (BBB) and increase the bioavailability of classical drugs in the brain, as well as genetic material, by reducing the synthesis of specific targets, as β-amyloid peptide. Moreover, DDs have been shown to be promising anti-amyloidogenic systems against amyloid-β peptide (Aβ) and Tau aggregation, powerful agents for blocking α-synuclein (α-syn) fibrillation, exhibit anti-inflammatory properties, promote cellular uptake to certain cell types, and are potential tools for ND diagnosis. In summary, DDs have emerged as promising alternatives to current ND therapies since they may limit the extent of damage and provide neuroprotection to the affected tissues.
Collapse
|
5
|
Specific Bifunctionalization on the Surface of Phosphorus Dendrimers Syntheses and Properties. ORGANICS 2022. [DOI: 10.3390/org3030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dendrimers are highly branched macromolecules possessing, in most cases, identical terminal functions. However, it is sometimes desirable to have two types of surface functions in order to fulfil specific properties. The stochastic functionalization is frequently used for such purposes, but the presence of an uncontrolled number of each type of terminal function, albeit acceptable for research purposes, has no practical use. Thus, it is highly desirable to find strategies suitable for the precise grafting of two different functional groups on the surface of dendrimers. The easiest way, and the most widely used, consists in using a bifunctional monomer to be grafted to all of the surface functions of the dendrimers. Two other strategies are known but are rarely used: the modification of an existing function, to generate two functions, and the sequential grafting of one function then of a second function. The three methods are illustrated in this review with polyphosphorhydrazone (PPH) dendrimers, together with their properties as catalysts, for materials, and as biological tools.
Collapse
|
6
|
Caminade AM, Turrin CO, Poupot R. Curing inflammatory diseases using phosphorous dendrimers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1783. [PMID: 35194953 DOI: 10.1002/wnan.1783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Different types of water-soluble phosphorous dendrimers have been synthesized and display many different biological properties. It has been shown in particular that phosphorous dendrimers of first generation functionalized with azabisphosphonate terminal functions are able to stimulate the human immune system ex vivo. These dendrimers are internalized by monocytes within a few seconds, and induce their anti-inflammatory activation. The presence of the dendrimers induces also the inhibition of the differentiation of monocytes into osteoclasts, the maturation of dendritic cells, and inhibits the proliferation of the proinflammatory CD4+ T lymphocytes. Finally, after 2-3 weeks of culture of peripheral blood mononuclear cells, amplifications by several tens of natural killer cells is observed. In view of all these properties, the influence of these azabisphosphonate-dendrimers has been tested in vivo with several animal models, against different chronic or acute inflammatory diseases, such as multiple sclerosis, rheumatoid arthritis, uveitis, and psoriasis, but also against myeloid leukemia, a hematological cancer. The hematological safety has been demonstrated in mice, as there is no platelet aggregation, no hemolysis, and no disturbance in the hematological formula. The safety of the azabisphosphonate-dendrimer has been assessed also with non-human primates (cynomolgus monkeys) which received repeated injections, as a de-risking pre-clinical test. Biochemical, hematological, and all immunological parameters in peripheral blood remained within a normal physiological range throughout the study, and all survived well. Other phosphorous dendrimers also display anti-inflammatory properties in vivo, in particular dendrimers functionalized with mannose derivatives, which prevent acute lung diseases when given orally (per os) to mice. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- Laboratoire de Chimie de Coordination (LCC), CNRS UPR8241, Toulouse Cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Cédric-Olivier Turrin
- Laboratoire de Chimie de Coordination (LCC), CNRS UPR8241, Toulouse Cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
- IMD-Pharma, Toulouse Cedex 4, France
| | - Rémy Poupot
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, CHU Purpan, Toulouse Cedex 3, France
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
| |
Collapse
|
7
|
Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, Lee J, Sullenger B, Leong KW. Design of therapeutic biomaterials to control inflammation. NATURE REVIEWS. MATERIALS 2022; 7:557-574. [PMID: 35251702 PMCID: PMC8884103 DOI: 10.1038/s41578-022-00426-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 05/03/2023]
Abstract
Inflammation plays an important role in the response to danger signals arising from damage to our body and in restoring homeostasis. Dysregulated inflammatory responses occur in many diseases, including cancer, sepsis and autoimmunity. The efficacy of anti-inflammatory drugs, developed for the treatment of dysregulated inflammation, can be potentiated using biomaterials, by improving the bioavailability of drugs and by reducing side effects. In this Review, we first outline key elements and stages of the inflammatory environment and then discuss the design of biomaterials for different anti-inflammatory therapeutic strategies. Biomaterials can be engineered to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, in the early stages of inflammation. Materials can also be designed to prevent adhesive interactions of leukocytes and endothelial cells that initiate inflammatory responses. Furthermore, nanoscale platforms can deliver anti-inflammatory agents to inflammation sites. We conclude by discussing the challenges and opportunities for biomaterial innovations in addressing inflammation.
Collapse
Affiliation(s)
- Zhaoxu Tu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yiling Zhong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- School of Chemistry, University of New South Wales, Sydney, New South Wales Australia
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Michael Schirner
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Jaewoo Lee
- School of Medicine, Duke University, Durham, NC USA
| | | | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Systems Biology, Columbia University, New York, NY USA
| |
Collapse
|
8
|
Rahiman N, Mohammadi M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J Control Release 2022; 343:620-644. [PMID: 35176392 DOI: 10.1016/j.jconrel.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with complicated immunopathology which necessitates considering multifactorial aspects for its management. Nano-sized pharmaceutical carriers named nanoparticles (NPs) can support impressive management of disease not only in early detection and prognosis level but also in a therapeutic manner. The most prominent initiator of MS is the domination of cellular immunity to humoral immunity and increment of inflammatory cytokines. The administration of several platforms of NPs for MS management holds great promise so far. The efforts for MS management through in vitro and in vivo (experimental animal models) evaluations, pave a new way to a highly efficient therapeutic means and aiding its translation to the clinic in the near future.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Degboé Y, Poupot R, Poupot M. Repolarization of Unbalanced Macrophages: Unmet Medical Need in Chronic Inflammation and Cancer. Int J Mol Sci 2022; 23:1496. [PMID: 35163420 PMCID: PMC8835955 DOI: 10.3390/ijms23031496] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Monocytes and their tissue counterpart macrophages (MP) constitute the front line of the immune system. Indeed, they are able to rapidly and efficiently detect both external and internal danger signals, thereby activating the immune system to eradicate the disturbing biological, chemical, or physical agents. They are also in charge of the control of the immune response and account for the repair of the damaged tissues, eventually restoring tissue homeostasis. The balance between these dual activities must be thoroughly controlled in space and time. Any sustained unbalanced response of MP leads to pathological disorders, such as chronic inflammation, or favors cancer development and progression. In this review, we take advantage of our expertise in chronic inflammation, especially in rheumatoid arthritis, and in cancer, to highlight the pivotal role of MP in the physiopathology of these disorders and to emphasize the repolarization of unbalanced MP as a promising therapeutic strategy to control these diseases.
Collapse
Affiliation(s)
- Yannick Degboé
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France;
- Département de Rhumatologie, CHU Toulouse, 31029 Toulouse, France
| | - Rémy Poupot
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France;
| | - Mary Poupot
- Centre de Recherche en Cancérologie de Toulouse, Université Toulouse, INSERM, UPS, 31037 Toulouse, France;
| |
Collapse
|
10
|
Hollinger KR, Sharma A, Tallon C, Lovell L, Thomas AG, Zhu X, Wiseman R, Wu Y, Kambhampati SP, Liaw K, Sharma R, Rojas C, Rais R, Kannan S, Kannan RM, Slusher BS. Dendrimer-2PMPA selectively blocks upregulated microglial GCPII activity and improves cognition in a mouse model of multiple sclerosis. Nanotheranostics 2022; 6:126-142. [PMID: 34976589 PMCID: PMC8671953 DOI: 10.7150/ntno.63158] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cognitive impairment is a common aspect of multiple sclerosis (MS) for which there are no treatments. Reduced brain N-acetylaspartylglutamate (NAAG) levels are linked to impaired cognition in various neurological diseases, including MS. NAAG levels are regulated by glutamate carboxypeptidase II (GCPII), which hydrolyzes the neuropeptide to N-acetyl-aspartate and glutamate. GCPII activity is upregulated multifold in microglia following neuroinflammation. Although several GCPII inhibitors, such as 2-PMPA, elevate brain NAAG levels and restore cognitive function in preclinical studies when given at high systemic doses or via direct brain injection, none are clinically available due to poor bioavailability and limited brain penetration. Hydroxyl-dendrimers have been successfully used to selectively deliver drugs to activated glia. Methods: We attached 2-PMPA to hydroxyl polyamidoamine (PAMAM) dendrimers (D-2PMPA) using a click chemistry approach. Cy5-labelled-D-2PMPA was used to visualize selective glial uptake in vitro and in vivo. D-2PMPA was evaluated for anti-inflammatory effects in LPS-treated glial cultures. In experimental autoimmune encephalomyelitis (EAE)-immunized mice, D-2PMPA was dosed biweekly starting at disease onset and cognition was assessed using the Barnes maze, and GCPII activity was measured in CD11b+ hippocampal cells. Results: D-2PMPA showed preferential uptake into microglia and robust anti-inflammatory activity, including elevations in NAAG, TGFβ, and mGluR3 in glial cultures. D-2PMPA significantly improved cognition in EAE mice, even though physical severity was unaffected. GCPII activity increased >20-fold in CD11b+ cells from EAE mice, which was significantly mitigated by D-2PMPA treatment. Conclusions: Hydroxyl dendrimers facilitate targeted drug delivery to activated microglia. These data support further development of D-2PMPA to attenuate elevated microglial GCPII activity and treat cognitive impairment in MS.
Collapse
Affiliation(s)
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Lyndah Lovell
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaolei Zhu
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Robyn Wiseman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| | - Siva P Kambhampati
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Camilo Rojas
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.,Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.,Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Zibarov A, Oukhrib A, Aujard Catot J, Turrin CO, Caminade AM. AB 5 Derivatives of Cyclotriphosphazene for the Synthesis of Dendrons and Their Applications. Molecules 2021; 26:4017. [PMID: 34209285 PMCID: PMC8271872 DOI: 10.3390/molecules26134017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
AB5 compounds issued from the reactivity of hexachlorocyclotriphosphazene are relatively easy to obtain using two ways: either first the reaction of one chloride with one reagent, followed by the reaction of the five remaining Cl with another reagent, or first the reaction of five chlorides with one reagent, followed by the reaction of the single remaining Cl with another reagent. This particular property led to the use of such compounds as core for the synthesis of dendrons (dendritic wedges), using the five functions for growing the dendritic branches. The single function can be used for the synthesis of diverse types of dendrimers (onion peel, dumbbell-shape, Janus), for covalent or non-covalent grafting to solid surfaces, providing nanomaterials, for grafting a fluorophore, especially for studying biological mechanisms, or for self-associations to get micelles. All these properties are reviewed in this paper.
Collapse
Affiliation(s)
- Artem Zibarov
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France; (A.Z.); (A.O.); (J.A.C.); (C.-O.T.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, CEDEX 4, France
| | - Abdelouahd Oukhrib
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France; (A.Z.); (A.O.); (J.A.C.); (C.-O.T.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, CEDEX 4, France
| | - Julien Aujard Catot
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France; (A.Z.); (A.O.); (J.A.C.); (C.-O.T.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, CEDEX 4, France
| | - Cédric-Olivier Turrin
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France; (A.Z.); (A.O.); (J.A.C.); (C.-O.T.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, CEDEX 4, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France; (A.Z.); (A.O.); (J.A.C.); (C.-O.T.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, CEDEX 4, France
| |
Collapse
|
12
|
Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, Qin DL, Fan QZ, Wu AG. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front Pharmacol 2021; 12:683935. [PMID: 34122112 PMCID: PMC8187807 DOI: 10.3389/fphar.2021.683935] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, an inflammatory response within the central nervous system (CNS), is a main hallmark of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), among others. The over-activated microglia release pro-inflammatory cytokines, which induces neuronal death and accelerates neurodegeneration. Therefore, inhibition of microglia over-activation and microglia-mediated neuroinflammation has been a promising strategy for the treatment of neurodegenerative diseases. Many drugs have shown promising therapeutic effects on microglia and inflammation. However, the blood–brain barrier (BBB)—a natural barrier preventing brain tissue from contact with harmful plasma components—seriously hinders drug delivery to the microglial cells in CNS. As an emerging useful therapeutic tool in CNS-related diseases, nanoparticles (NPs) have been widely applied in biomedical fields for use in diagnosis, biosensing and drug delivery. Recently, many NPs have been reported to be useful vehicles for anti-inflammatory drugs across the BBB to inhibit the over-activation of microglia and neuroinflammation. Therefore, NPs with good biodegradability and biocompatibility have the potential to be developed as an effective and minimally invasive carrier to help other drugs cross the BBB or as a therapeutic agent for the treatment of neuroinflammation-mediated neurodegenerative diseases. In this review, we summarized various nanoparticles applied in CNS, and their mechanisms and effects in the modulation of inflammation responses in neurodegenerative diseases, providing insights and suggestions for the use of NPs in the treatment of neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu-Jiao Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qing-Ze Fan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Jebbawi R, Fruchon S, Turrin CO, Blanzat M, Poupot R. Supramolecular and Macromolecular Matrix Nanocarriers for Drug Delivery in Inflammation-Associated Skin Diseases. Pharmaceutics 2020; 12:E1224. [PMID: 33348690 PMCID: PMC7766653 DOI: 10.3390/pharmaceutics12121224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/26/2022] Open
Abstract
Skin is our biggest organ. It interfaces our body with its environment. It is an efficient barrier to control the loss of water, the regulation of temperature, and infections by skin-resident and environmental pathogens. The barrier function of the skin is played by the stratum corneum (SC). It is a lipid barrier associating corneocytes (the terminally differentiated keratinocytes) and multilamellar lipid bilayers. This intricate association constitutes a very cohesive system, fully adapted to its role. One consequence of this efficient organization is the virtual impossibility for active pharmaceutical ingredients (API) to cross the SC to reach the inner layers of the skin after topical deposition. There are several ways to help a drug to cross the SC. Physical methods and chemical enhancers of permeation are a possibility. These are invasive and irritating methods. Vectorization of the drugs through nanocarriers is another way to circumvent the SC. This mini-review focuses on supramolecular and macromolecular matrices designed and implemented for skin permeation, excluding vesicular nanocarriers. Examples highlight the entrapment of anti-inflammatory API to treat inflammatory disorders of the skin.
Collapse
Affiliation(s)
- Ranime Jebbawi
- INSERM, U1043, CNRS, U5282, UPS, Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, F-31300 Toulouse, France; (R.J.); (S.F.)
- CNRS, UMR 5623, UPS, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, IMRCP, 118 Route de Narbonne, Université de Toulouse, CEDEX 9, F-31062 Toulouse, France;
| | - Séverine Fruchon
- INSERM, U1043, CNRS, U5282, UPS, Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, F-31300 Toulouse, France; (R.J.); (S.F.)
| | - Cédric-Olivier Turrin
- CNRS, UPR 8241, Laboratoire de Chimie de Coordination, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France;
- LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Muriel Blanzat
- CNRS, UMR 5623, UPS, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, IMRCP, 118 Route de Narbonne, Université de Toulouse, CEDEX 9, F-31062 Toulouse, France;
| | - Rémy Poupot
- INSERM, U1043, CNRS, U5282, UPS, Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, F-31300 Toulouse, France; (R.J.); (S.F.)
| |
Collapse
|
14
|
Mignani S, Shi X, Ceña V, Shcharbin D, Bryszewska M, Majoral JP. In vivo therapeutic applications of phosphorus dendrimers: state of the art. Drug Discov Today 2020; 26:677-689. [PMID: 33285297 DOI: 10.1016/j.drudis.2020.11.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid, Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077, Toulouse Cedex 4, France.
| |
Collapse
|
15
|
Characterization and gamma dose-response of multicrystalline Li2B4O7: Mg phosphor prepared by the melting zone method. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Maysinger D, Zhang Q, Kakkar A. Dendrimers as Modulators of Brain Cells. Molecules 2020; 25:E4489. [PMID: 33007959 PMCID: PMC7582352 DOI: 10.3390/molecules25194489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Nanostructured hyperbranched macromolecules have been extensively studied at the chemical, physical and morphological levels. The cellular structural and functional complexity of neural cells and their cross-talk have made it rather difficult to evaluate dendrimer effects in a mixed population of glial cells and neurons. Thus, we are at a relatively early stage of bench-to-bedside translation, and this is due mainly to the lack of data valuable for clinical investigations. It is only recently that techniques have become available that allow for analyses of biological processes inside the living cells, at the nanoscale, in real time. This review summarizes the essential properties of neural cells and dendrimers, and provides a cross-section of biological, pre-clinical and early clinical studies, where dendrimers were used as nanocarriers. It also highlights some examples of biological studies employing dendritic polyglycerol sulfates and their effects on glia and neurons. It is the aim of this review to encourage young scientists to advance mechanistic and technological approaches in dendrimer research so that these extremely versatile and attractive nanostructures gain even greater recognition in translational medicine.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Qiaochu Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
17
|
Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6571-6597. [PMID: 35019387 DOI: 10.1021/acsabm.0c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Qiu J, Hameau A, Shi X, Mignani S, Majoral JP, Caminade AM. Fluorescent Phosphorus Dendrimers: Towards Material and Biological Applications. Chempluschem 2020; 84:1070-1080. [PMID: 31943953 DOI: 10.1002/cplu.201900337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Fluorescent derivatives of phosphorhydrazone dendrimers are reviewed. Diverse types of fluorophores have been used, such as pyrene, naphthol, anthracene, dansyl, diketone, phthalocyanine, maleimide, julolidine, rhodamine, fluorescein, or fluorene derivatives. The fluorescent groups can be located either as terminal groups on the surface, at the core, linked to the core (off-center), or to the branches of the dendritic structure. After fundamental research on their synthesis, these compounds have been used in the fields of catalysis, nanomaterials, OLEDs, sensors and biology/nanomedicine, in particular for monitoring transfection, or for their anti-inflammatory or anti-cancer properties.
Collapse
Affiliation(s)
- Jieru Qiu
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.,Key Laboratory of Science & Technology of Eco-Textile Ministry of Education College of Chemistry Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Aurélien Hameau
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Xiangyang Shi
- Key Laboratory of Science & Technology of Eco-Textile Ministry of Education College of Chemistry Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Serge Mignani
- CNRS-UMR 860 Laboratoire de Chimie et de Biochimie Pharmacologique et de Toxicologie Université Paris Descartes, PRES Sorbonne-Paris Cité, 45 rue des Saints Pères, 75006, Paris, France.,CQM Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus de Pentrada, 9020-105, Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
19
|
Phosphorus Dendrimers as Nanotools against Cancers. Molecules 2020; 25:molecules25153333. [PMID: 32708025 PMCID: PMC7435762 DOI: 10.3390/molecules25153333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022] Open
Abstract
This review concerns the use of dendrimers, especially of phosphorhydrazone dendrimers, against cancers. After the introduction, the review is organized in three main topics, depending on the role played by the phosphorus dendrimers against cancers: (i) as drugs by themselves; (ii) as carriers of drugs; and (iii) as indirect inducer of cancerous cell death. In the first part, two main types of phosphorus dendrimers are considered: those functionalized on the surface by diverse organic derivatives, including known drugs, and those functionalized by diverse metal complexes. The second part will display the role of dendrimers as carriers of anticancer “drugs”, which can be either small molecules or anticancer siRNAs, or the combination of both. In the third part are gathered a few examples of phosphorhydrazone dendrimers that are not cytotoxic by themselves, but which under certain circumstances induce a cytotoxic effect on cancerous cells. These examples include a positive influence on the human immune system and the combination of bioimaging with photodynamic therapy properties.
Collapse
|
20
|
An Anti-Inflammatory Poly(PhosphorHydrazone) Dendrimer Capped with AzaBisPhosphonate Groups to Treat Psoriasis. Biomolecules 2020; 10:biom10060949. [PMID: 32586038 PMCID: PMC7356153 DOI: 10.3390/biom10060949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Dendrimers are nanosized, arborescent macromolecules synthesized in a stepwise fashion with attractive degrees of functionality and structure definition. This is one of the reasons why they are widely used for biomedical applications. Previously, we have shown that a poly(phosphorhydrazone) (PPH) dendrimer capped with anionic azabisphosphonate groups (so-called ABP dendrimer) has immuno-modulatory and anti-inflammatory properties towards human immune cells in vitro. Thereafter, we have shown that the ABP dendrimer has a promising therapeutic efficacy to treat models of acute and chronic inflammatory disorders in animal models. In these models, the active pharmaceutical ingredient was administered systematically (intravenous and oral administrations), but also loco-regionally in the vitreous tissue. Herein, we assessed the therapeutic efficacy of the ABP dendrimer in the preclinical mouse model of psoriasis induced by imiquimod. The ABP dendrimer was administered in phosphate-buffered saline solution via either systemic injection or topical application. We show that the topical application enabled the control of both the clinical and histopathological scores, and the control of the infiltration of macrophages in the skin of treated mice.
Collapse
|
21
|
Fruchon S, Bellard E, Beton N, Goursat C, Oukhrib A, Caminade AM, Blanzat M, Turrin CO, Golzio M, Poupot R. Biodistribution and Biosafety of a Poly(Phosphorhydrazone) Dendrimer, an Anti-Inflammatory Drug-Candidate. Biomolecules 2019; 9:biom9090475. [PMID: 31514434 PMCID: PMC6770054 DOI: 10.3390/biom9090475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 01/20/2023] Open
Abstract
Dendrimers are nanosized, arborescent polymers of which size and structure are perfectly controlled. This is one reason why they are widely used for biomedical purposes. Previously, we showed that a phosphorus-based dendrimer capped with anionic azabisphosphonate groups (so-called ABP dendrimer) has immuno-modulatory and anti-inflammatory properties towards human immune cells in vitro. Thereafter, we have shown that the ABP dendrimer has a promising therapeutic efficacy to treat models of chronic inflammatory disorders. On the way to clinical translation, the biodistribution and the safety of this drug-candidate has to be thoroughly assessed. In this article, we present preliminary non-clinical data regarding biodistribution, hematological safety, genotoxicity, maximal tolerated doses, and early cardiac safety of the ABP dendrimer. One of the genotoxicity assays reveals a potential mutagen effect of the item at a concentration above 200 µM, i.e., up to 100 times the active dose in vitro on human immune cells. However, as the results obtained for all the other assays show that the ABP dendrimer has promising biodistribution and safety profiles, there is no red flag raised to hamper the regulatory pre-clinical development of the ABP dendrimer.
Collapse
Affiliation(s)
- Séverine Fruchon
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Elisabeth Bellard
- CNRS, UMR 5089, Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, IPBS, 205 route de Narbonne, BP 64182, F-31077 Toulouse CEDEX 4, France.
| | - Nicolas Beton
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Cécile Goursat
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Abdelouahd Oukhrib
- CNRS, UPR 8241, Laboratoire de Chimie de Coordination, 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Anne-Marie Caminade
- CNRS, UPR 8241, Laboratoire de Chimie de Coordination, 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Muriel Blanzat
- CNRS, UMR 5623, Université de Toulouse, UPS, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, IMRCP, 118 route de Narbonne, F-31062 Toulouse CEDEX 9, France.
| | - Cédric-Olivier Turrin
- CNRS, UPR 8241, Laboratoire de Chimie de Coordination, 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Muriel Golzio
- CNRS, UMR 5089, Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, IPBS, 205 route de Narbonne, BP 64182, F-31077 Toulouse CEDEX 4, France.
| | - Rémy Poupot
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| |
Collapse
|
22
|
Wei Y, Chang H, Feng H, Li X, Zhang X, Yin L. Low Serum Interleukin-10 Is an Independent Predictive Factor for the Risk of Second Event in Clinically Isolated Syndromes. Front Neurol 2019; 10:604. [PMID: 31244763 PMCID: PMC6579832 DOI: 10.3389/fneur.2019.00604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: To evaluated the prognostic ability of several serum cytokines in clinically isolated syndrome (CIS) patients regarding second events and conversion to multiple sclerosis (MS) or neuromyelitis optica spectrum disorder (NMOSD). Methods: We enrolled 69 CIS patients whose serum samples were collected during the acute phase of the first onset before immunotherapy. Fifteen other non-inflammatory neurological disorder (OND) patients were also included. The serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-13, IL-17A, IL-21, IL-23, interferon-γ (IFN-γ), and transforming growth factor beta 1 (TGF-β1) were measured using the human cytokine multiplex assay or ELISA. Patients were seen every 3-6 months. Unscheduled visits occur in case of exacerbations. Clinical measures of disease progression were recorded. Results: Twenty CIS cases had second events during follow-up at a mean time of 15.3 ± 9.9 months. Serum IL-10 levels were significantly lower in CIS patients who relapsed compared to patients who did not. Low serum IL-10 levels were associated with higher risk and shorter times to second events. In clinical correlations, a significantly higher CSF white blood cells count, number of T2 lesions, and gadolinium-enhancing (Gd+) lesions in baseline MRI were found in the low serum IL-10 level group. Of the 20 relapsed cases, seven converted to MS, and eight converted to NMOSD. No significant differences were found in any cytokine levels between these patients at first onset. Conclusions: These findings support using serum IL-10 as a biomarker associated with the risk of relapse and the time to second events in patients with CIS. However, serum cytokine levels can not differentiate between the conversion from CIS to MS or NMOSD.
Collapse
Affiliation(s)
- Yuzhen Wei
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Haoxiao Chang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xindi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
23
|
Majoral J, Caminade A. Phosphorhydrazones as Useful Building Blocks for Special Architectures: Macrocycles and Dendrimers. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jean‐Pierre Majoral
- Laboratoire de Chimie de Coordination CNRS 205, route de Narbonne 31077 Toulouse Cedex 04 France
- LCC‐CNRS Université de Toulouse CNRS Toulouse France
| | - Anne‐Marie Caminade
- Laboratoire de Chimie de Coordination CNRS 205, route de Narbonne 31077 Toulouse Cedex 04 France
- LCC‐CNRS Université de Toulouse CNRS Toulouse France
| |
Collapse
|
24
|
Poupot R, Goursat C, Fruchon S. Multivalent nanosystems: targeting monocytes/macrophages. Int J Nanomedicine 2018; 13:5511-5521. [PMID: 30271144 PMCID: PMC6154704 DOI: 10.2147/ijn.s146192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Among all the cellular partners involved in inflammatory processes, monocytes and macrophages are the master regulators of inflammation. They are found in almost all the tissues and are nearly the only cells capable of performing each step of inflammation. Consequently, they stand as major relevant therapeutic targets to treat inflammatory disorders and diseases. The physiological phagocytic activity of macrophages prompts them to detect, to recognize, and eventually to engulf any nanosystem cruising in their neighborhood. Interestingly, nanosystems can be rationally engineered to afford multivalent, and multifunctional if needed, entities with multiplexed and/or reinforced biological activities. Indeed, engineered nanosystems bearing moieties specifically targeting macrophages, and loaded with or bound to drugs are promising candidates to modulate, or even eradicate, deleterious macrophages in vivo. In this review we highlight recent articles and concepts of multivalent nanosystems targeting monocytes and macrophages to treat inflammatory disorders.
Collapse
Affiliation(s)
- Rémy Poupot
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS; Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France,
| | - Cécile Goursat
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS; Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France,
| | - Séverine Fruchon
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS; Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France,
| |
Collapse
|
25
|
Fruchon S, Poupot R. The ABP Dendrimer, a Drug-Candidate against Inflammatory Diseases That Triggers the Activation of Interleukin-10 Producing Immune Cells. Molecules 2018; 23:E1272. [PMID: 29799517 PMCID: PMC6100262 DOI: 10.3390/molecules23061272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
The ABP dendrimer, which is built on a phosphorus-based scaffold and bears twelve azabisphosphonate groups at its surface, is one of the dendrimers that has been shown to display immuno-modulatory and anti-inflammatory effects towards the human immune system. Its anti-inflammatory properties have been successfully challenged in animal models of inflammatory disorders. In this review, we trace the discovery and the evaluation of the therapeutic effects of the ABP dendrimer in three different animal models of both acute and chronic inflammatory diseases. We emphasize that its therapeutic effects rely on the enhancement of the production of Interleukin-10, the paradigm of anti-inflammatory cytokines, by different subsets of immune cells, such as monocytes/macrophages and CD4+ T lymphocytes.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/chemical synthesis
- Anti-Inflammatory Agents/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Dendrimers/chemical synthesis
- Dendrimers/pharmacology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression
- Humans
- Interleukin-10/genetics
- Interleukin-10/immunology
- Lymphocyte Activation/drug effects
- Mice
- Monocytes/drug effects
- Monocytes/immunology
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Séverine Fruchon
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Rémy Poupot
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| |
Collapse
|
26
|
Abstract
From biomaterials to imaging, and from drug delivery to drugs by themselves, phosphorus-containing dendrimers offer a large palette of biological properties, depending essentially on their types of terminal functions. The most salient examples of phosphorus dendrimers used for the elaboration of bio-chips and of supports for cell cultures, for imaging biological events, and for carrying and delivering drugs or biomacromolecules are presented in this feature article. Several phosphorus dendrimers can be considered also as drugs per se (by themselves) in particular to fight against cancers, neurodegenerative diseases, and inflammation, both in vitro and in vivo. Toxicity assays are also reported.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse, France.
| |
Collapse
|
27
|
Abstract
Among the six Critical Nanoscale Design Parameters (CNDPs) proposed by Prof. Donald A. Tomalia, this review illustrates the influence of the sixth one, which concerns the elemental composition, on the properties of dendrimers. After a large introduction that summarizes different types of dendrimers that have been compared with PolyAMidoAMine (PAMAM) dendrimers, this review will focus on the properties of positively and negatively charged phosphorhydrazone (PPH) dendrimers, especially in the field of biology, compared with other types of dendrimers, in particular PAMAM dendrimers, as well as polypropyleneimine (PPI), carbosilane, and p-Lysine dendrimers.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse CEDEX 4, France.
| | - Jean-Pierre Majoral
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse CEDEX 4, France.
| |
Collapse
|
28
|
Hayder M, Garzoni M, Bochicchio D, Caminade AM, Couderc F, Ong-Meang V, Davignon JL, Turrin CO, Pavan GM, Poupot R. Three-Dimensional Directionality Is a Pivotal Structural Feature for the Bioactivity of Azabisphosphonate-Capped Poly(PhosphorHydrazone) Nanodrug Dendrimers. Biomacromolecules 2018; 19:712-720. [PMID: 29443507 DOI: 10.1021/acs.biomac.7b01398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendrimers are nanosized, nonlinear, hyperbranched polymers whose overall 3D shape is key for their biological activity. Poly(PhosphorHydrazone) (PPH) dendrimers capped with aza-bisphosphonate (ABP) end groups are known to have anti-inflammatory properties enabling the control of inflammatory diseases in different mouse models. Here we screen the anti-inflammatory activity of a series of PPH dendrimers bearing between 2 and 16 ABP end groups in a mouse model of arthritis and confront the biological results with atomistic simulations of the dendrimers. We show that only the PPH dendrimers capped with 10 and 12 ABP end groups can control the flare of the inflammatory disease. All-atom accelerated molecular dynamics simulations show that dendrimers with a low number of ABP end groups are directional but highly flexible/dynamic and have thereby limited efficiency in establishing multivalent interactions. The largest dendrimer appears as nondirectional, having 16 ABP end groups forming patches all over the dendrimer surface. Conversely, intermediate dendrimers having 10 or 12 ABP end groups reach the best compromise between the number of surface groups and their stable directional gathering, a real maximization of multivalency.
Collapse
Affiliation(s)
- Myriam Hayder
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS , Toulouse , France
| | - Matteo Garzoni
- Department of Innovative Technologies , University for Applied Sciences and Arts of Southern Switzerland (SUPSI) , Galleria 2, Via Cantonale 2c , CH-6928 Manno , Switzerland
| | - Davide Bochicchio
- Department of Innovative Technologies , University for Applied Sciences and Arts of Southern Switzerland (SUPSI) , Galleria 2, Via Cantonale 2c , CH-6928 Manno , Switzerland
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS , 205 Route de Narbonne, BP 44099 , 31077 Toulouse Cedex 4 , France.,LCC-CNRS, Université de Toulouse, CNRS , Toulouse , France
| | - François Couderc
- Laboratoire des Interactions Moléculaires et Réactivité, Chimique et Photochimique (IMRCP), Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Varravaddheay Ong-Meang
- Laboratoire des Interactions Moléculaires et Réactivité, Chimique et Photochimique (IMRCP), Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Jean-Luc Davignon
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS , Toulouse , France
| | - Cédric-Olivier Turrin
- Laboratoire de Chimie de Coordination du CNRS , 205 Route de Narbonne, BP 44099 , 31077 Toulouse Cedex 4 , France.,LCC-CNRS, Université de Toulouse, CNRS , Toulouse , France
| | - Giovanni M Pavan
- Department of Innovative Technologies , University for Applied Sciences and Arts of Southern Switzerland (SUPSI) , Galleria 2, Via Cantonale 2c , CH-6928 Manno , Switzerland
| | - Rémy Poupot
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS , Toulouse , France
| |
Collapse
|
29
|
Ielasi F, Ledall J, Anes AP, Fruchon S, Caminade AM, Poupot R, Turrin CO, Blanzat M. Influence of PPH dendrimers' surface functions on the activation of human monocytes: a study of their interactions with pure lipid model systems. Phys Chem Chem Phys 2018; 18:21871-80. [PMID: 27435630 DOI: 10.1039/c6cp03536a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of surface functions on the interactions between Poly(PhosphorHydrazone) PPH dendrimers and human monocytes is discussed on the basis of complementary biological and physicochemical studies on membrane models (monolayers and multi-lamellar vesicles). The studies were performed on both an active and non-toxic phosphonic acid capped dendrimer and a non-active but toxic carboxylic acid capped one. On the one hand, comparative studies of the behaviour of DPPC monolayers in the presence or absence of PPH dendrimers in the subphase showed differences in the phase transitions, highlighting interactions between both dendrimers and phospholipid monolayers, with a larger incidence for the carboxylic acid capped dendrimer (negative control), validating its cellular toxicity. On the other hand, comparative biological studies (activation of human monocytes and binding of fluorescent dendrimers on human monocytes) show the pre-eminence of phosphonic acid capped dendrimers towards specific binding and subsequent activation of human monocytes.
Collapse
Affiliation(s)
- F Ielasi
- Laboratoire IMRCP, UMR 5623 CNRS, Université Toulouse 3, 118 route de Narbonne, F-31062 Toulouse, France.
| | - J Ledall
- Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, BP 44099, F-31077 Toulouse cedex 04, France. and Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France and Centre de Physiopathologie de Toulouse-Purpan, INSERM 1043, CNRS 5282, Université de Toulouse, F-31300 Toulouse, France.
| | - A Perez Anes
- Laboratoire IMRCP, UMR 5623 CNRS, Université Toulouse 3, 118 route de Narbonne, F-31062 Toulouse, France. and Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, BP 44099, F-31077 Toulouse cedex 04, France. and Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France
| | - S Fruchon
- Centre de Physiopathologie de Toulouse-Purpan, INSERM 1043, CNRS 5282, Université de Toulouse, F-31300 Toulouse, France.
| | - A-M Caminade
- Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, BP 44099, F-31077 Toulouse cedex 04, France. and Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France
| | - R Poupot
- Centre de Physiopathologie de Toulouse-Purpan, INSERM 1043, CNRS 5282, Université de Toulouse, F-31300 Toulouse, France.
| | - C-O Turrin
- Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, BP 44099, F-31077 Toulouse cedex 04, France. and Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France
| | - M Blanzat
- Laboratoire IMRCP, UMR 5623 CNRS, Université Toulouse 3, 118 route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
30
|
Rodrigues DB, Oliveira JM, Santos TC, Reis RL. Dendrimers: Breaking the paradigm of current musculoskeletal autoimmune therapies. J Tissue Eng Regen Med 2018; 12:e1796-e1812. [DOI: 10.1002/term.2597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel B. Rodrigues
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Avepark 4805‐017 Barco Guimarães Portugal
| | - Tírcia C. Santos
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Avepark 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
31
|
Pro-Inflammatory Versus Anti-Inflammatory Effects of Dendrimers: The Two Faces of Immuno-Modulatory Nanoparticles. NANOMATERIALS 2017; 7:nano7090251. [PMID: 28862693 PMCID: PMC5618362 DOI: 10.3390/nano7090251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/14/2023]
Abstract
Dendrimers are soft matter, hyperbranched, and multivalent nanoparticles whose synthesis theoretically affords monodisperse compounds. They are built from a core on which one or several successive series of branches are engrafted in an arborescent way. At the end of the synthesis, the tunable addition of surface groups gives birth to multivalent nano-objects which are generally intended for a specific use. For these reasons, dendrimers have received a lot of attention from biomedical researchers. In particular, some of us have demonstrated that dendrimers can be intrinsically drug-candidate for the treatment of inflammatory disorders, amongst others, using relevant preclinical animal models. These anti-inflammatory dendrimers are innovative in the pharmaceutical field. More recently, it has appeared that some dendrimers (even among those which have been described as anti-inflammatory) can promote inflammatory responses in non-diseased animals. The main corpus of this concise review is focused on the reports which describe anti-inflammatory properties of dendrimers in vivo, following which we review the few recent articles that show pro-inflammatory effects of our favorite molecules, to finally discuss this duality in immuno-modulation which has to be taken into account for the preclinical and clinical developments of dendrimers.
Collapse
|
32
|
Cyclotriphosphazene, an old compound applied to the synthesis of smart dendrimers with tailored properties. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2016-0711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe versatile reactivity of hexachlorocyclotriphosphazene (N3P3Cl6) has been developed for the synthesis of specifically engineered dendrimers. Dendrimers are hyperbranched macromolecules built by concentric layers constituted of associated monomeric units. Many of the properties of dendrimers depend on the type of their surface (terminal) functions, which are generally all identical. For some specific purposes, it is desirable to have one function that is different at the level of the core. Hexachlorocyclotriphosphazene offers the possibility to differentiate the reactivity of one (or more) Cl from the others, for producing specifically engineered dendritic tools. These specific reactions on N3P3Cl6 have produced highly dense dendrimers, Janus dendrimers (two faces), tools for functionalizing materials, with uses as catalysts, as chemical sensors, for trapping CO2, for the culture of cells, or for imaging biological events. These properties will be emphasized in this review.
Collapse
|
33
|
Poupot M, Turrin CO, Caminade AM, Fournié JJ, Attal M, Poupot R, Fruchon S. Poly(phosphorhydrazone) dendrimers: yin and yang of monocyte activation for human NK cell amplification applied to immunotherapy against multiple myeloma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2321-2330. [PMID: 27498187 DOI: 10.1016/j.nano.2016.07.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 12/28/2022]
Abstract
Human natural killer (NK) cells play a key role in anti-cancer and anti-viral immunity, but their selective amplification in vitro is extremely tedious to achieve and remains one of the most challenging problems to solve for efficient NK cell-based immuno-therapeutic treatments against malignant diseases. Here we report that, when added to ex vivo culture of peripheral blood mononuclear cells from healthy volunteers or from cancer patients with multiple myeloma, poly (phosphorhydrazone) dendrimers capped with amino-bis(methylene phosphonate) end groups enable the efficient proliferation of NK cells with anti-cancer cytotoxicity in vivo. We also show that the amplification of the NK population relies on the preliminary activation of monocytes in the framework of a multistep cross-talk between monocytes and NK cells before the proliferation thereof. Thus poly(phosphorhydrazone) dendrimers represent a novel class of extremely promising drugs to develop NK-cell based anti-cancer therapies.
Collapse
Affiliation(s)
- Mary Poupot
- Centre de Recherche en Cancérologie de Toulouse, Université de Toulouse, CNRS, INSERM, UPS, France
| | | | | | - Jean-Jacques Fournié
- Centre de Recherche en Cancérologie de Toulouse, Université de Toulouse, CNRS, INSERM, UPS, France
| | - Michel Attal
- Institut Universitaire du Cancer de Toulouse-Oncopôle, Université de Toulouse, CNRS, INSERM, UPS, France
| | - Rémy Poupot
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, UPS, France
| | - Séverine Fruchon
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, UPS, France.
| |
Collapse
|
34
|
Bifunctional Phosphorus Dendrimers and Their Properties. Molecules 2016; 21:538. [PMID: 27120586 PMCID: PMC6273332 DOI: 10.3390/molecules21040538] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022] Open
Abstract
Dendrimers are hyperbranched and monodisperse macromolecules, generally considered as a special class of polymers, but synthesized step-by-step. Most dendrimers have a uniform structure, with a single type of terminal function. However, it is often desirable to have at least two different functional groups. This review will discuss the case of bifunctional phosphorus-containing dendrimers, and the consequences for their properties. Besides the terminal functions, dendritic structures may have also a function at the core, or linked off-center to the core, or at the core of dendrons (dendritic wedges). Association of two dendrons having different terminal functions leads to Janus dendrimers (two faces). The internal structure can also possess functional groups on one layer, or linked to one layer, or on several layers. Finally, there are several ways to have two types of terminal functions, besides the case of Janus dendrimers: either each terminal function bears two functions sequentially, or two different functions are linked to each terminal branching point. Examples of each type of structure will be given in this review, as well as practical uses of such sophisticated structures in the fields of fluorescence, catalysis, nanomaterials and biology.
Collapse
|
35
|
Zhang F, Nance E, Alnasser Y, Kannan R, Kannan S. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. J Neuroinflammation 2016; 13:65. [PMID: 27004516 PMCID: PMC4802843 DOI: 10.1186/s12974-016-0529-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background Microglial cells have been implicated in neuroinflammation-mediated injury in the brain, including neurodevelopmental disorders such as cerebral palsy (CP) and autism. Pro-inflammatory activation of microglial cells results in the impairment of their neuroprotective functions, leading to an exaggerated, ongoing immune dysregulation that can persist long after the initial insult. We have previously shown that dendrimer-mediated delivery of an anti-inflammatory agent can attenuate inflammation in a rabbit model of maternal inflammation-induced CP and significantly improve the motor phenotype, due to the ability of the dendrimer to selectively localize in activated microglia. Methods To elucidate the interactions between dendrimers and microglia, we created an organotypic whole-hemisphere brain slice culture model from newborn rabbits with and without exposure to inflammation in utero. We then used this model to analyze the dynamics of microglial migration and their interactions with dendrimers in the presence of neuroinflammation. Results Microglial cells in animals with CP had an amoeboid morphology and impaired cell migration, demonstrated by decreased migration distance and velocity when compared to cells in healthy, age-matched controls. However, this decreased migration was associated with a greater, more rapid dendrimer uptake compared to microglial cells from healthy controls. Conclusions This study demonstrates that maternal intrauterine inflammation is associated with impaired microglial function and movement in the newborn brain. This microglial impairment may play a role in the development of ongoing brain injury and CP in the offspring. Increased uptake of dendrimers by the “impaired” microglia can be exploited to deliver drugs specifically to these cells and modulate their functions. Host tissue and target cell characteristics are important aspects to be considered in the design and evaluation of targeted dendrimer-based nanotherapeutics for improved and sustained efficacy. This ex vivo model also provides a rapid screening tool for evaluation of the effects of various therapies on microglial function. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0529-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Elizabeth Nance
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Present address: Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yossef Alnasser
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rangaramanujam Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Hugo Moser Research Center, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA. .,Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Hugo Moser Research Center, Kennedy Krieger Institute, Baltimore, MD, 21205, USA. .,Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
36
|
Caminade AM. Inorganic dendrimers: recent advances for catalysis, nanomaterials, and nanomedicine. Chem Soc Rev 2016; 45:5174-86. [PMID: 26936375 DOI: 10.1039/c6cs00074f] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dendrimers are hyperbranched polymers having a perfectly defined structure because they are synthesized step-by-step in an iterative fashion, and not by polymerization reactions. Some dendrimers are considered as inorganic, as they possess inorganic atoms at each branching point. Among numerous examples, two families of inorganic dendrimers have emerged as particularly promising: silicon-containing dendrimers, particularly carbosilanes, and phosphorus-containing dendrimers, particularly phosphorhydrazones. This tutorial review will display the main properties of both families of dendrimers in the fields of catalysis, materials and biology/nanomedicine. Emphasis will be put on the most recent and promising examples.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France.
| |
Collapse
|