1
|
Hebner TS, Kirkpatrick BE, Fairbanks BD, Bowman CN, Anseth KS, Benoit DS. Radical-Mediated Degradation of Thiol-Maleimide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402191. [PMID: 38582514 PMCID: PMC11220706 DOI: 10.1002/advs.202402191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Michael addition between thiol- and maleimide-functionalized molecules is a long-standing approach used for bioconjugation, hydrogel crosslinking, and the functionalization of other advanced materials. While the simplicity of this chemistry enables facile synthesis of hydrogels, network degradation is also desirable in many instances. Here, the susceptibility of thiol-maleimide bonds to radical-mediated degradation is reported. Irreversible degradation in crosslinked materials is demonstrated using photoinitiated and chemically initiated radicals in hydrogels and linear polymers. The extent of degradation is shown to be dependent on initiator concentration. Using a model linear polymer system, the radical-mediated mechanism of degradation is elucidated, in which the thiosuccinimide crosslink is converted to a succinimide and a new thioether formed with an initiator fragment. Using laser stereolithography, high-fidelity spatiotemporal control over degradation in crosslinked gels is demonstrated. Ultimately, this work establishes a platform for controllable, radical-mediated degradation in thiol-maleimide hydrogels, further expanding their versatility as functional materials.
Collapse
Affiliation(s)
- Tayler S. Hebner
- Department of BioengineeringUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
- BioFrontiers InstituteUniversity of Colorado Boulder596 UCBBoulderCO80309USA
- BioFrontiers Institute Medical Scientist Training ProgramUniversity of Colorado Anschutz Medical Campus13001 East 17th PlaceAuroraCO80045USA
| | - Benjamin D. Fairbanks
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
| | - Christopher N. Bowman
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
- BioFrontiers InstituteUniversity of Colorado Boulder596 UCBBoulderCO80309USA
| | - Danielle S.W. Benoit
- Department of BioengineeringUniversity of Oregon6231 University of OregonEugeneOR97403USA
| |
Collapse
|
2
|
Degirmenci A, Sanyal R, Sanyal A. Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug Chem 2024; 35:433-452. [PMID: 38516745 PMCID: PMC11036366 DOI: 10.1021/acs.bioconjchem.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Increasing interest in the utilization of hydrogels in various areas of biomedical sciences ranging from biosensing and drug delivery to tissue engineering has necessitated the synthesis of these materials using efficient and benign chemical transformations. In this regard, the advent of "click" chemistry revolutionized the design of hydrogels and a range of efficient reactions was utilized to obtain hydrogels with increased control over their physicochemical properties. The ability to apply the "click" chemistry paradigm to both synthetic and natural polymers as hydrogel precursors further expanded the utility of this chemistry in network formation. In particular, the ability to integrate clickable handles at predetermined locations in polymeric components enables the formation of well-defined networks. Although, in the early years of "click" chemistry, the copper-catalyzed azide-alkyne cycloaddition was widely employed, recent years have focused on the use of metal-free "click" transformations, since residual metal impurities may interfere with or compromise the biological function of such materials. Furthermore, many of the non-metal-catalyzed "click" transformations enable the fabrication of injectable hydrogels, as well as the fabrication of microstructured gels using spatial and temporal control. This review article summarizes the recent advances in the fabrication of hydrogels using various metal-free "click" reactions and highlights the applications of thus obtained materials. One could envision that the use of these versatile metal-free "click" reactions would continue to revolutionize the design of functional hydrogels geared to address unmet needs in biomedical sciences.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
3
|
Bellotto O, Scarel E, Pierri G, Rozhin P, Kralj S, Polentarutti M, Bandiera A, Rossi B, Vargiu AV, Tedesco C, Marchesan S. Supramolecular Hydrogels and Water Channels of Differing Diameters from Dipeptide Isomers. Biomacromolecules 2024; 25:2476-2485. [PMID: 38551400 DOI: 10.1021/acs.biomac.3c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Dipeptides stereoisomers and regioisomers composed of norleucine (Nle) and phenylalanine (Phe) self-assemble into hydrogels under physiological conditions that are suitable for cell culture. The supramolecular behavior, however, differs as the packing modes comprise amphipathic layers or water channels, whose diameter is defined by either four or six dipeptide molecules. A variety of spectroscopy, microscopy, and synchrotron-radiation-based techniques unveil fine details of intermolecular interactions that pinpoint the relationship between the chemical structure and ability to form supramolecular architectures that define soft biomaterials.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Erica Scarel
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Giovanni Pierri
- Department Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Slavko Kralj
- Department Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | - Antonella Bandiera
- Department Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Attilio V Vargiu
- Department Physics, University of Cagliari, Cittadella Universitaria S.P. 8 km. 0.7, 09042 Monserrato, CA Italy
| | - Consiglia Tedesco
- Department Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
4
|
Zhu Y, Yang D, Liu J, Zheng C, Li N, Yang D, Zhang X, Jin C. Doping proanthocyanidins into gel/zirconium hybrid hydrogel to reshape the microenvironment of diabetic wounds for healing acceleration. Int J Biol Macromol 2024; 260:129353. [PMID: 38242386 DOI: 10.1016/j.ijbiomac.2024.129353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Infection and chronic inflammation caused by oxidative stress are major challenges in chronic wound healing. Preparing a simple, efficient hydrogel with reactive oxygen-scavenging properties for chronic wound repair is a promising strategy. Herein, we report an injectable, self-repairing hydrogel with antioxidant and antibacterial properties that can be used to regenerate diabetic wounds. Hydrogels are prepared by coordination crosslinking of gelatin (Gel), a natural biopolymer derived from collagen, with Zr4+. Because of the dynamic properties of metal ion coordination bonds and the bactericidal effect of Zr4+, the obtained coordination hydrogels exhibit self-healing, injectable, and antibacterial properties. The plant polyphenol "proanthocyanidins," which has reactive oxygen-scavenging and anti-inflammatory effects, was simultaneously loaded into the coordination hydrogel during cross-linking. We obtained a versatile hydrogel that is easy to prepare, resistant to mechanical irritation, and antioxidant, and antibacterial in vitro. We further demonstrated that the injectable self-healing hydrogels could effectively repair diabetic skin wounds and accelerate collagen deposition and wound healing. This study shows that the multifunctional antioxidant hydrogel has great potential in developing multifunctional biomaterials for chronic wound healing.
Collapse
Affiliation(s)
- Yaxin Zhu
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Dong Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jieyu Liu
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chenguo Zheng
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Dejun Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Xingxing Zhang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Chun Jin
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
5
|
Das RP, Singh BG, Aishwarya J, Kumbhare LB, Kunwar A. 3,3'-Diselenodipropionic acid immobilised gelatin gel: a biomimic catalytic nitric oxide generating material for topical wound healing application. Biomater Sci 2023; 11:1437-1450. [PMID: 36602012 DOI: 10.1039/d2bm01964g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) plays a pivotal role in the wound healing process and promotes the generation of healthy endothelium. In this work, a simple method has been developed for fabricating a diselenide grafted gelatin gel, which reduces NO donors such as S-nitroso-N-acetylpenicillamine (SNAP) by glutathione peroxidase-like mechanism to produce NO. Briefly, the process involved covalently conjugating 3,3'-diselenodipropionic acid (DSePA) with gelatin via carbodiimide coupling. The resulting gelatin-DSePA conjugate (G-Se-Se-G) demonstrated NO production upon incubation with SNAP and glutathione (GSH) with the flux of 4.8 ± 0.6 nmol cm-2 min-1 and 1.6 ± 0.1 nmol cm-2 min-1 at 10 min and 40 min, respectively. The G-Se-Se-G recovered even after 5 days of incubation with the reaction mixture retaining catalytic activity up to 74%. Subsequently, G-Se-Se-G was suspended (5% w/v) in water with lecithin (6% w/w of gelatin) and F127 (3% w/w of gelatin) to prepare gel through temperature dependant gelation method. The fabricated G-Se-Se-G gel exhibited desirable rheological characteristics and excellent mechanical stability under storage conditions and did not cause any significant toxicity in normal human keratinocytes (HaCaT) and fibroblast cells (WI38) up to 50 μg ml-1 of selenium equivalent. Finally, mice studies confirmed that topically applied G-Se-Se-G gel and SNAP promoted faster epithelization and collagen deposition at the wound site. In conclusion, the development of a biomimetic NO generating gel with sustained activity and biocompatibility was achieved.
Collapse
Affiliation(s)
- Ram P Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Advanced Centre for Treatment, Research and Education in Cancer, Mumbai-410210, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
6
|
Meng Y, Gantier M, Nguyen TH, Nicolai T, Nicol E. Poly(ethylene oxide)/Gelatin-Based Biphasic Photocrosslinkable Hydrogels of Tunable Morphology for Hepatic Progenitor Cell Encapsulation. Biomacromolecules 2023; 24:789-796. [PMID: 36655630 DOI: 10.1021/acs.biomac.2c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Macroporous hydrogels have great potential for biomedical applications. Liquid or gel-like pores were created in a photopolymerizable hydrogel by forming water-in-water emulsions upon mixing aqueous solutions of gelatin and a poly(ethylene oxide) (PEO)-based triblock copolymer. The copolymer constituted the continuous matrix, which dominated the mechanical properties of the hydrogel once photopolymerized. The gelatin constituted the dispersed phase, which created macropores in the hydrogel. The microstructures of the porous hydrogel were determined by the volume fraction of the gelatin phase. When volume fractions were close to 50 v%, free-standing hydrogels with interpenetrated morphology can be obtained thanks to the addition of a small amount of xanthan. The hydrogels displayed Young's moduli ranging from 5 to 30 kPa. They have been found to be non-swellable and non-degradable in physiological conditions. Preliminary viability tests with hepatic progenitor cells embedded in monophasic PEO-based hydrogels showed rapid mortality of the cells, whereas encouraging viability was observed in PEO-based triblock copolymer/gelatin macroporous hydrogels. The latter has the potential to be used in cell therapy.
Collapse
Affiliation(s)
- Yuwen Meng
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| | - Malika Gantier
- GoLiver Therapeutics, IRSUN, 8 quai Moncousu - BP 70721, Nantes Cedex 44007, France.,Center for Research in Transplantation and Translational Immunology, UMR 1064, INSERM, Nantes Université, NantesF-44000, France
| | - Tuan Huy Nguyen
- GoLiver Therapeutics, IRSUN, 8 quai Moncousu - BP 70721, Nantes Cedex 44007, France
| | - Taco Nicolai
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| | - Erwan Nicol
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| |
Collapse
|
7
|
Do PT, Poad BLJ, Frisch H. Programming Photodegradability into Vinylic Polymers via Radical Ring-Opening Polymerization. Angew Chem Int Ed Engl 2023; 62:e202213511. [PMID: 36535898 PMCID: PMC10108003 DOI: 10.1002/anie.202213511] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Incorporation of photolabile moieties into the polymer backbone holds promise to remotely-control polymer degradation. However, suitable synthetic avenues are limited, especially for radical polymerizations. Here we report a strategy to program photodegradability into vinylic polymers by exploiting the wavelength selectivity of photocycloadditions for radical ring-opening polymerization (rROP). Irradiation of coumarin terminated allylic sulfides with UVA light initiated intramolecular [2+2] photocycloaddition producing cyclic macromonomers. Subsequent RAFT-mediated rROP with methyl acrylate yielded copolymers that inherited the photoreactivity of the cyclic parent monomer. Irradiation with UVB initiated efficient photocycloreversion of the coumarin dimers, causing polymer degradation within minutes under UVB light or days under sunlight exposure. Our synthetic strategy may pave the way to insert photolabile linkages into vinylic polymers, tuning degradation for specific wavelengths.
Collapse
Affiliation(s)
- Phuong T Do
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia
| |
Collapse
|
8
|
Shan P, Lu Y, Lu W, Yin X, Liu H, Li D, Lian X, Wang W, Li Z, Li Z. Biodegradable and Light-Responsive Polymeric Nanoparticles for Environmentally Safe Herbicide Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43759-43770. [PMID: 36111970 DOI: 10.1021/acsami.2c12106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The low utilization efficiency of pesticides exerts an adverse impact on the environment and human health. Polymer-related controlled-release nanosized pesticide systems provide a promising and efficient way to overcome the problem. In this work, a biodegradable and light-responsive amphiphilic polymer was synthesized via 1,1,3,3-tetramethylguanidine-promoted polyesterification under mild conditions (low temperature, no vacuum, and no inert gas protection). We used this polymer to fabricate a light-triggered controlled-release nanosized pesticide system. The herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was selected as a model drug to show its potential as a controlled-release pesticide system. It was found that the 2,4-D-loaded polymeric nanoparticles were stable without the treatment of UV, while the release rate of 2,4-D from the nanoparticles gradually increased after treatment with UV light. Pot trial showed that the 2,4-D-loaded polymer nanoparticles showed a good herbicidal effect. Finally, toxicity studies suggested that the polymer can reduce toxicity to nontarget organisms.
Collapse
Affiliation(s)
- Pengfei Shan
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yingwen Lu
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Weilin Lu
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangping Yin
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Haiwei Liu
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Daai Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Xiaoyue Lian
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Dr. Li Dak-Sum Research Centre and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongyu Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Zhihui Li
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
9
|
Yan J, Gundsambuu B, Krasowska M, Platts K, Facal Marina P, Gerber C, Barry SC, Blencowe A. Injectable Diels-Alder cycloaddition hydrogels with tuneable gelation, stiffness and degradation for the sustained release of T-lymphocytes. J Mater Chem B 2022; 10:3329-3343. [PMID: 35380575 DOI: 10.1039/d2tb00274d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineered T-cell therapies have proven highly efficacious for the treatment of haematological cancers, but translation of this success to solid tumours has been limited, in part, due to difficulties in maintaining high doses at specific target sites. Hydrogel delivery systems that provide a sustained release of T-cells at the target site are emerging as a promising strategy. Therefore, in this study we aimed to develop an injectable hydrogel that gels in situ via efficient Diels-Alder cycloaddition (DAC) chemistry and provides a sustained release of T-cells through gradual hydrolysis of the hydrogel matrix. Hydrogels were prepared via the DAC between fulvene and maleimide functionalised poly(ethylene glycol) (PEG) derivatives. By adjusting the concentration and molecular weight of the functionalised PEGs in the hydrogel formulation the in vitro gelation time (Tgel), initial Young's modulus (E) and degradation time (Td) could be tailored from 15-150 min, 5-179 kPa and 7-114 h, respectively. Prior to gelation, the formulations could be readily injected through narrow gauge (26 G) needles with the working time correlating closely with the Tgel. A 5 wt% hydrogel formation with conjugated cyclic RGD motif was found to be optimal for the encapsulation and release of CD3+ T-cells with a near linear release profile and >70% cell viability over the first 4 d and release continuing out to 7 d. With their tuneable Tgel, Td and stiffness, the DAC hydrogels provide the opportunity to control the release period and profile of encapsulated cells.
Collapse
Affiliation(s)
- Jie Yan
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marta Krasowska
- Surface Interaction and Soft Matter (SISM) Group, Future Industries Institute (FII), UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kirsten Platts
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Paula Facal Marina
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Cobus Gerber
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia.,Department of Gastroenterology, Women's and Children's Hospital, SA Health, Adelaide, South Australia 5006, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
10
|
Battigelli A, Almeida B, Shukla A. Recent Advances in Bioorthogonal Click Chemistry for Biomedical Applications. Bioconjug Chem 2022; 33:263-271. [PMID: 35107252 DOI: 10.1021/acs.bioconjchem.1c00564] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bioorthogonal click chemistry, first introduced in the early 2000s, has become one of the most widely used approaches for designing advanced biomaterials for applications in tissue engineering and regenerative medicine, due to the selectivity and biocompatibility of the associated reactants and reaction conditions. In this review, we present recent advances in utilizing bioorthogonal click chemistry for the development of three-dimensional, biocompatible scaffolds and cell-encapsulated biomaterials. Additionally, we highlight recent examples using these approaches for biomedical applications including drug delivery, imaging, and cell therapy and discuss their potential as next generation biomaterials.
Collapse
Affiliation(s)
| | - Bethany Almeida
- School of Engineering, Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
11
|
Wu HY, Yang L, Tu JS, Wang J, Li JG, Lv HY, Yang XN. Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2639-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Pelloth JL, Tran PA, Walther A, Goldmann AS, Frisch H, Truong VX, Barner-Kowollik C. Wavelength-Selective Softening of Hydrogel Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102184. [PMID: 34365684 DOI: 10.1002/adma.202102184] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Photoresponsive hydrogels hold key potential in advanced biomedical applications including tissue engineering, regenerative medicine, and drug delivery, as well as intricately engineered functions such as biosensing, soft robotics, and bioelectronics. Herein, the wavelength-dependent degradation of bio-orthogonal poly(ethylene glycol) hydrogels is reported, using three selective activation levels. Specifically, three chromophores are exploited, that is, ortho-nitrobenzene, dimethyl aminobenzene, and bimane, each absorbing light at different wavelengths. By examining their photochemical action plots, the wavelength-dependent reactivity of the photocleavable moieties is determined. The wavelength-selective addressability of individual photoreactive units is subsequently translated into hydrogel design, enabling wavelength-dependent cleavage of the hydrogel networks on-demand. Critically, this platform technology allows for the fabrication of various hydrogels, whose mechanical properties can be fine-tuned using different colors of light to reach a predefined value, according to the chromophore ratios used. The softening is shown to influence the spreading of pre-osteoblastic cells adhering to the gels as a demonstration of their potential utility. Furthermore, the materials and photodegradation processes are non-toxic to cells, making this platform attractive for biomaterials engineering.
Collapse
Affiliation(s)
- Jessica L Pelloth
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Phong A Tran
- Centre for Biomedical Technologies and Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Andreas Walther
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Department for Chemistry, Chemistry, Pharmacy, Geography and Geosciences, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Anja S Goldmann
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Vinh X Truong
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
13
|
Stubbe B, Mignon A, Van Damme L, Claes K, Hoeksema H, Monstrey S, Van Vlierberghe S, Dubruel P. Photo-Crosslinked Gelatin-Based Hydrogel Films to Support Wound Healing. Macromol Biosci 2021; 21:e2100246. [PMID: 34555246 DOI: 10.1002/mabi.202100246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Indexed: 11/11/2022]
Abstract
Gelatin is used widely in the biomedical field, among other for wound healing. Given its upper critical solution temperature, crosslinking is required. To this end, gelatin is chemically modified with different photo-crosslinkable moieties with low (32-34%) and high (63-65%) degree of substitution (DS): gelatin-methacrylamide (gel-MA) and gelatin-acrylamide (gel-AA) and gelatin-pentenamide (gel-PE). Next to the more researched gel-MA, it is especially interesting and novel to compare with other gelatin-derived compounds for the application of wound healing. An additional comparison is made with commercial dressings. The DS is directly proportional to the mechanical characteristics and inversely proportional to the swelling capacity. Gel-PE shows weaker mechanical properties (G' < 15 kPa) than gel-AA and gel-MA (G' < 39 and 45 kPa, respectively). All derivatives are predominantly elastic (recovery indices of 89-94%). Gel-AA and gel-MA show excellent biocompatibility, whereas gel-PE shows a significantly lower initial biocompatibility, evolving positively toward day 7. Overall, gel-MA shows to have the most potential to be applied as wound dressing. Future blending with gel-AA to improve the curing kinetics can lead to dressings able to compete with current commercial dressings.
Collapse
Affiliation(s)
- Birgit Stubbe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Arn Mignon
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium.,Smart Polymeric Biomaterials, Surface and Interface Engineered Materials, Biomaterials and Tissue Engineering, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Lana Van Damme
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium.,Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Karel Claes
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Ghent Burn Center, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Henk Hoeksema
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Ghent Burn Center, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Stan Monstrey
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Ghent Burn Center, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| |
Collapse
|
14
|
Hui E, Sumey JL, Caliari SR. Click-functionalized hydrogel design for mechanobiology investigations. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:670-707. [PMID: 36338897 PMCID: PMC9631920 DOI: 10.1039/d1me00049g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The advancement of click-functionalized hydrogels in recent years has coincided with rapid growth in the fields of mechanobiology, tissue engineering, and regenerative medicine. Click chemistries represent a group of reactions that possess high reactivity and specificity, are cytocompatible, and generally proceed under physiologic conditions. Most notably, the high level of tunability afforded by these reactions enables the design of user-controlled and tissue-mimicking hydrogels in which the influence of important physical and biochemical cues on normal and aberrant cellular behaviors can be independently assessed. Several critical tissue properties, including stiffness, viscoelasticity, and biomolecule presentation, are known to regulate cell mechanobiology in the context of development, wound repair, and disease. However, many questions still remain about how the individual and combined effects of these instructive properties regulate the cellular and molecular mechanisms governing physiologic and pathologic processes. In this review, we discuss several click chemistries that have been adopted to design dynamic and instructive hydrogels for mechanobiology investigations. We also chart a path forward for how click hydrogels can help reveal important insights about complex tissue microenvironments.
Collapse
Affiliation(s)
- Erica Hui
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
15
|
Rosenfeld A, Göckler T, Kuzina M, Reischl M, Schepers U, Levkin PA. Designing Inherently Photodegradable Cell-Adhesive Hydrogels for 3D Cell Culture. Adv Healthc Mater 2021; 10:e2100632. [PMID: 34111332 PMCID: PMC11469075 DOI: 10.1002/adhm.202100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Indexed: 11/07/2022]
Abstract
Light-based microfabrication techniques constitute an indispensable approach to fabricate tissue assemblies, benefiting from noncontact spatially and temporarily controlled manipulation of soft matter. Light-triggered degradation of soft materials, such as hydrogels, is important in tissue engineering, bioprinting, and related fields. The photoresponsiveness of hydrogels is generally not intrinsic and requires complex synthetic procedures wherein photoresponsive crosslinking groups are incorporated into the hydrogel. This paper demonstrates a novel biocompatible and inherently photodegradable poly(ethylene glycol) methacrylate (PEGMA)-based gelatin-methacryloyl (GelMA)-containing hydrogel that can be used to culture cells in 3D for at least 14 d. These gels are conveniently and quickly degraded via UV irradiation for 10 min to produce structured hydrogels of various geometries, sizes, and free-standing cell-laden hydrogel particles. These structures can be flexibly produced on demand. In particular, photodegradation can be temporarily delayed from photopolymerization, offering an alternative to hydrogel array production via photopolymerization with a photomask. The paper investigates the influences of hydrogel composition and swelling liquid on both its photodegradability and biocompatibility.
Collapse
Affiliation(s)
- Alisa Rosenfeld
- Institute of Biological and Chemical Systems ‐ Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Tobias Göckler
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Mariia Kuzina
- Institute of Biological and Chemical Systems ‐ Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics (IAI)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Karlsruhe76131Germany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems ‐ Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Karlsruhe76131Germany
| |
Collapse
|
16
|
Yamaguchi S, Ohashi N, Minamihata K, Nagamune T. Photodegradable avidin-biotinylated polymer conjugate hydrogels for cell manipulation. Biomater Sci 2021; 9:6416-6424. [PMID: 34195701 DOI: 10.1039/d1bm00585e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein-synthetic polymer hybrid hydrogels crosslinked via protein-ligand binding are promising materials for the three-dimensional culture of various cells, while photo-responsive hydrogels have been widely used for the spatio-temporal control of cell functions and patterning. Photo-responsive protein-polymer hybrid hydrogels are therefore attractive candidates for use in cell and artificial tissue fabrication; however, no examples combining these properties have been reported to date. Herein, a photodegradable hydrogel consisting of avidin and biotinylated polyethylene glycol (PEG) was developed as a multi-functional matrix for cell culture and sorting. A four-branched PEG with a biotinylated photocleavable group at the end of each chain was crosslinked with avidin to produce a photodegradable hydrogel. A cytokine-dependent immunocyte was successfully cultured in the hydrogel by supplying cytokine from a medium layered on the hydrogel. Additionally, the adhesion and survival of fibroblasts could be controlled by decorating the hydrogel with a biotinylated cell-adhesive peptide. Cells embedded in the hydrogels could be recovered without cell damage as a result of light-induced hydrogel degradation. Moreover, model target cells expressing red fluorescent protein were selectively liberated from a hydrogel containing cells of different colors by irradiating with a targeted light. Owing to both the selective biotin-binding ability of avidin and the photocleavable properties of the synthetic polymer, the hydrogels were easy to prepare and decorate with functional molecules; they provided an internal structure suitable for cell culture, and allowed light-guided cell manipulation. The hydrogels are therefore expected to contribute to various cell fabrication processes as useful cell engineering and sorting tools.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 351-0198, Japan
| | - Noriyuki Ohashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Deng Y, Shavandi A, Okoro OV, Nie L. Alginate modification via click chemistry for biomedical applications. Carbohydr Polym 2021; 270:118360. [PMID: 34364605 DOI: 10.1016/j.carbpol.2021.118360] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Alginate biopolymers are characterized by favorable properties, of biocompatibility, degradability, and non-toxicity. However, the poor stability properties of alginate have limited its suitability for diverse applications. Recently, click chemistry has generated significant research interest due to its high reaction efficiency, high selectivity for a single product, harmless byproducts, and processing simplicity. Alginate modified using click chemistry enables the production of alginate derivatives with enhanced physical and chemical properties. Herein, we review the employment of click chemistry in the development of alginate-based materials or systems. Various click chemistries were highlighted, including azide and alkyne cycloaddition (e.g. Copper-(I)-catalyzed azide-alkyne cycloaddition (CuAAC), Strain-promoted alkyne-azide cycloaddition (SPAAC)), Diels-Alder reaction (Inverse electron demand Diels-Alder (IEDDA) cycloaddition, Tetrazine-norbornene Diels-Alder reactions), Thiol-ene/yne addition (Free-radical thiol-ene addition click reactions, Thiol-Michael addition click reactions, Thiol-yne addition click reaction), Oxime based click reactions, and other click reactions. Alginate functionalized with click chemistry and its properties were also discussed. The present study shows that click chemistry may be employed in modifying the mechanical strength, biochemical/biological properties of alginate-based materials. Finally, the applications of alginate-based materials in wound dressing, drug delivery, protein delivery, tissue regeneration, and 3D bioprinting were described and the future perspectives of alginates modified with click chemistry, are subsequently presented. This review provides new insights for readers to design structures and expand applications of alginate using click chemistry reactions in a detailed and more rational manner.
Collapse
Affiliation(s)
- Yaling Deng
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Amin Shavandi
- BioMatter unit - 3BIO - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Oseweuba Valentine Okoro
- BioMatter unit - 3BIO - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
18
|
Rodin M, Li J, Kuckling D. Dually cross-linked single networks: structures and applications. Chem Soc Rev 2021; 50:8147-8177. [PMID: 34059857 DOI: 10.1039/d0cs01585g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross-linked polymers have attracted an immense attention over the years, however, there are many flaws of these systems, e.g. softness and brittleness; such materials possess non-adjustable properties and cannot recover from damage and thus are limited in their practical applications. Supramolecular chemistry offers a variety of dynamic interactions that when integrated into polymeric gels endow the systems with reversibility and responsiveness to external stimuli. A combination of different cross-links in a single gel could be the key to tackle these drawbacks, since covalent or chemical cross-linking serve to maintain the permanent shape of the material and to improve overall mechanical performance, whereas non-covalent cross-links impart dynamicity, reversibility, stimuli-responsiveness and often toughness to the material. In the present review we sought to give a comprehensive overview of the progress in design strategies of different types of dually cross-linked single gels made by researchers over the past decade as well as the successful implementations of these advances in many demanding fields where versatile multifunctional materials are required, such as tissue engineering, drug delivery, self-healing and adhesive systems, sensors as well as shape memory materials and actuators.
Collapse
Affiliation(s)
- Maksim Rodin
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | | | | |
Collapse
|
19
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater 2021; 16:022003. [PMID: 33049725 DOI: 10.1088/1748-605x/abc0b3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry is not a single specific reaction, but describes ways of generating products which emulate examples in nature. Click reactions occur in one pot, are not disturbed by water, generate minimal and inoffensive byproducts, and are characterized by a high thermodynamic driving force, driving the reaction quickly and irreversibly towards a high yield of a single reaction product. As a result, over the past 15 years it has become a very useful bio-orthogonal method for the preparation of chemical cross-linked biopolymer-based hydrogel, in the presence of e.g. growth factors and live cells, or in-vivo. Biopolymers are renewable and non-toxic, providing a myriad of potential backbone toolboxes for hydrogel design. The goal of this review is to summarize recent advances in the development of click chemistry-based biopolymeric hydrogels, and their applications in regenerative medicine. In particular, various click chemistry approaches, including copper-catalyzed azide-alkyne cycloaddition reactions, copper-free click reactions (e.g. the Diels-Alder reactions, the strain-promoted azide-alkyne cycloaddition reactions, the radical mediated thiol-ene reactions, and the oxime-forming reactions), and pseudo-click reactions (e.g. the thiol-Michael addition reactions and the Schiff base reactions) are highlighted in the first section. In addition, numerous biopolymers, including proteins (e.g. collagen, gelatin, silk, and mucin), polysaccharides (e.g. hyaluronic acid, alginate, dextran, and chitosan) and polynucleotides (e.g. deoxyribonucleic acid), are discussed. Finally, we discuss biopolymeric hydrogels, cross-linked by click chemistry, intended for the regeneration of skin, bone, spinal cord, cartilage, and cornea. This article provides new insights for readers in terms of the design of regenerative medicine, and the use of biopolymeric hydrogels based on click chemistry reactions.
Collapse
Affiliation(s)
- Ya Li
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Norris SCP, Soto J, Kasko AM, Li S. Photodegradable Polyacrylamide Gels for Dynamic Control of Cell Functions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5929-5944. [PMID: 33502154 DOI: 10.1021/acsami.0c19627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cross-linked polyacrylamide hydrogels are commonly used in biotechnology and cell culture applications due to advantageous properties, such as the precise control of material stiffness and the attachment of cell adhesive ligands. However, the chemical and physical properties of polyacrylamide gels cannot be altered once fabricated. Here, we develop a photodegradable polyacrylamide gel system that allows for a dynamic control of polyacrylamide gel stiffness with exposure to light. Photodegradable polyacrylamide hydrogel networks are produced by copolymerizing acrylamide and a photocleavable ortho-nitrobenzyl (o-NB) bis-acrylate cross-linker. When the hydrogels are exposed to light, the o-NB cross-links cleave and the stiffness of the photodegradable polyacrylamide gels decreases. Further examination of the effect of dynamic stiffness changes on cell behavior reveals that in situ softening of the culture substrate leads to changes in cell behavior that are not observed when cells are cultured on presoftened gels, indicating that both dynamic and static mechanical environments influence cell fate. Notably, we observe significant changes in nuclear localization of YAP and cytoskeletal organization after in situ softening; these changes further depend on the type and concentration of cell adhesive proteins attached to the gel surface. By incorporating the simplicity and well-established protocols of standard polyacrylamide gel fabrication with the dynamic control of photodegradable systems, we can enhance the capability of polyacrylamide gels, thereby enabling cell biologists and engineers to study more complex cellular behaviors that were previously inaccessible using regular polyacrylamide gels.
Collapse
Affiliation(s)
- Sam C P Norris
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Andrea M Kasko
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Choi J, Hasturk O, Mu X, Sahoo JK, Kaplan DL. Silk Hydrogels with Controllable Formation of Dityrosine, 3,4-Dihydroxyphenylalanine, and 3,4-Dihydroxyphenylalanine-Fe 3+ Complexes through Chitosan Particle-Assisted Fenton Reactions. Biomacromolecules 2021; 22:773-787. [PMID: 33405916 DOI: 10.1021/acs.biomac.0c01539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidation of tyrosine residues of silk fibroin involves the generation of dityrosine and 3,4-dihydroxyphenylalanine (DOPA). However, it remains a challenge to selectively control the reaction pathway to produce dityrosine or DOPA in a selective fashion. Here, silk hydrogels with controllable formation of not only dityrosine and DOPA but also DOPA-Fe3+ complexes within the cross-linked networks were developed. The use of chitosan particles in the Fenton reaction allowed the interaction of Fe3+ ions with silk fibroin to be limited through the adsorption of Fe3+ ions onto chitosan particles by manipulating contact time between the reaction medium and chitosan particles. This led to significant suppression of the premature formation of β-sheet structures that cause steric hindrance to the collisions between tyrosyl radicals and thus enabled higher selectivity toward the formation of dityrosine than DOPA. Remarkably, the addition of ethylenediaminetetraacetic acid (EDTA) to the chitosan particle-assisted Fenton reactions resulted in hydrogels that significantly favored the formation of DOPA over dityrosine due to the increase in the hydroxylation of phenol in the presence of EDTA. Despite the existence of Fe3+-EDTA complexes, Raman spectra indicated the DOPA-Fe3+ complexation in the hydrogels. Mechanistically, the hydrogel networks with small-sized and uniformly distributed β-sheet structures as well as the abundance of DOPA appear to make non-EDTA-chelated Fe3+ ions more accessible to complexation with DOPA. These findings have important implications for understanding the oxidation of tyrosine residues of silk fibroin by metal-catalyzed oxidation systems with potential benefits for future studies on silk protein-based hydrogels capable of generating intrinsic adhesive features as well as for exploring dual-cross-linked silk hydrogels constructed by chemical cross-linking and metal-coordinate complexation.
Collapse
Affiliation(s)
- Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
23
|
Gul K, Gan RY, Sun CX, Jiao G, Wu DT, Li HB, Kenaan A, Corke H, Fang YP. Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Crit Rev Food Sci Nutr 2021; 62:3817-3832. [PMID: 33406881 DOI: 10.1080/10408398.2020.1870034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels, polymeric network materials, are capable of swelling and holding the bulk of water in their three-dimensional structures upon swelling. In recent years, hydrogels have witnessed increased attention in food and biomedical applications. In this paper, the available literature related to the design concepts, types, functionalities, and applications of hydrogels with special emphasis on food applications was reviewed. Hydrogels from natural polymers are preferred over synthetic hydrogels. They are predominantly used in diverse food applications for example in encapsulation, drug delivery, packaging, and more recently for the fabrication of structured foods. Natural polymeric hydrogels offer immense benefits due to their extraordinary biocompatible nature. Hydrogels based on natural/edible polymers, for example, those from polysaccharides and proteins, can serve as prospective alternatives to synthetic polymer-based hydrogels. The utilization of hydrogels has so far been limited, despite their prospects to address various issues in the food industries. More research is needed to develop biomimetic hydrogels, which can imitate the biological characteristics in addition to the physicochemical properties of natural materials for different food applications.
Collapse
Affiliation(s)
- Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cui-Xia Sun
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ge Jiao
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, China Sichuan
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ya-Peng Fang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials 2021; 267:120497. [PMID: 33129187 PMCID: PMC7719094 DOI: 10.1016/j.biomaterials.2020.120497] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Active biomaterials offer novel approaches to study mechanotransduction in mammalian cells. These material systems probe cellular responses by dynamically modulating their resistance to endogenous forces or applying exogenous forces on cells in a temporally controlled manner. Stimuli-responsive molecules, polymers, and nanoparticles embedded inside cytocompatible biopolymer networks transduce external signals such as light, heat, chemicals, and magnetic fields into changes in matrix elasticity (few kPa to tens of kPa) or forces (few pN to several μN) at the cell-material interface. The implementation of active biomaterials in mechanobiology has generated scientific knowledge and therapeutic potential relevant to a variety of conditions including but not limited to cancer metastasis, fibrosis, and tissue regeneration. We discuss the repertoire of cellular responses that can be studied using these platforms including receptor signaling as well as downstream events namely, cytoskeletal organization, nuclear shuttling of mechanosensitive transcriptional regulators, cell migration, and differentiation. We highlight recent advances in active biomaterials and comment on their future impact.
Collapse
Affiliation(s)
- Berna Özkale
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA.
| |
Collapse
|
25
|
Shrestha S, Li F, Truong VX, Forsythe JS, Frith JE. Interplay of Hydrogel Composition and Geometry on Human Mesenchymal Stem Cell Osteogenesis. Biomacromolecules 2020; 21:5323-5335. [PMID: 33237736 DOI: 10.1021/acs.biomac.0c01408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microgels are emerging as an outstanding platform for tissue regeneration because they overcome issues associated with conventional bulk/macroscopic hydrogels such as limited cell-cell contact and cell communication and low diffusion rates. Owing to the enhanced mass transfer and injectability via a minimally invasive procedure, these microgels are becoming a promising approach for bone regeneration applications. Nevertheless, there still remains a huge gap between the understanding of how the hydrogel matrix composition can influence cell response and overall tissue formation when switching from bulk formats to microgel format, which is often neglected or rarely studied. Here, we fabricated polyethylene glycol-based microgels and bulk hydrogels incorporating gelatin and hyaluronic acid (HA), either individually or together, and assessed the impact of both hydrogel composition and format upon the osteogenic differentiation of encapsulated human bone marrow-derived mesenchymal stem cells (hBMSCs). Osteogenesis was significantly greater in microgels than bulk hydrogels for both gelatin alone (Gel) and gelatin HA composite (Gel:HA) hydrogels, as determined by the expression of Runt-related transcription factor (Runx2) and alkaline phosphatase (ALP) genes and mineral deposition. Interestingly, Gel and Gel:HA hydrogels behaved differently between bulk and microgel format. In bulk format, overall osteogenic outcomes were better in Gel:HA hydrogels, but in microgel format, while the level of osteogenic gene expression was equivalent between both compositions, the degree of mineralization was reduced in Gel:HA microgels. Investigation into the affinity of hydroxyapatite for the different matrix compositions indicated that the decreased mineralization of Gel:HA microgels was likely due to a low affinity of hydroxyapatite to bind to HA and support mineral deposition, which has a greater impact on microgels than bulk hydrogels. Together, these findings suggest that both hydrogel composition and format can determine the success of tissue formation and that there is a complex interplay of these two factors on both cell behavior and matrix deposition. This has important implications for tissue engineering, showing that hydrogel composition and geometry must be evaluated together when optimizing conditions for cell differentiation and tissue formation.
Collapse
Affiliation(s)
- Surakshya Shrestha
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Vinh X Truong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
26
|
Bisht B, Lohani UC, Kumar V, Gururani P, Sinhmar R. Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Crit Rev Food Sci Nutr 2020; 62:693-725. [DOI: 10.1080/10408398.2020.1827219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bhawna Bisht
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Post-Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - U. C. Lohani
- Department of Post-Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Prateek Gururani
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rajat Sinhmar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
27
|
Shen W, Zheng J, Zhou Z, Zhang D. Approaches for the synthesis of o-nitrobenzyl and coumarin linkers for use in photocleavable biomaterials and bioconjugates and their biomedical applications. Acta Biomater 2020; 115:75-91. [PMID: 32853806 DOI: 10.1016/j.actbio.2020.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022]
Abstract
Photocleavable biomaterials and bioconjugates are particularly interesting because light sources are easy to obtain and the responsiveness of materials is convenient to control. In recent years, various photocleavable biomaterials and bioconjugates have been synthesized for the control of payload release, regulation of biomolecule activity, 3D cell culture, and investigation of molecular mechanisms. Photocleavable linkers are crucial components of photocleavable biomaterials, which significantly influence the photoresponsive capabilities of materials. Photosensitive molecules, such as o-nitrobenzyls and coumarins, have been extensively developed as photocleavable linkers. In the present review, we provide comprehensive knowledge regarding the synthetic strategies of o-nitrobenzyl and coumarin derived linkers with various functional groups and their applications for the construction of photocleavable biomaterials and bioconjugates. Finally, the biomedical applications of o-nitrobenzyl and coumarin-based photocleavable biomaterials and bioconjugates will be summarized and discussed.
Collapse
|
28
|
Arkenberg MR, Nguyen HD, Lin CC. Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. J Mater Chem B 2020; 8:7835-7855. [PMID: 32692329 PMCID: PMC7574327 DOI: 10.1039/d0tb01429j] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, dynamic, 'click' hydrogels have been applied in numerous biomedical applications. Owing to the mild, cytocompatible, and highly specific reaction kinetics, a multitude of orthogonal handles have been developed for fabricating dynamic hydrogels to facilitate '4D' cell culture. The high degree of tunability in crosslinking reactions of orthogonal 'click' chemistry has enabled a bottom-up approach to install specific biomimicry in an artificial extracellular matrix. In addition to click chemistry, highly specific enzymatic reactions are also increasingly used for network crosslinking and for spatiotemporal control of hydrogel properties. On the other hand, covalent adaptable chemistry has been used to recapitulate the viscoelastic component of biological tissues and for formulating self-healing and shear-thinning hydrogels. The common feature of these three classes of chemistry (i.e., orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry) is that they can be carried out under ambient and aqueous conditions, a prerequisite for maintaining cell viability for in situ cell encapsulation and post-gelation modification of network properties. Due to their orthogonality, different chemistries can also be applied sequentially to provide additional biochemical and mechanical control to guide cell behavior. Herein, we review recent advances in the use of orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry for the development of dynamically tunable and biomimetic hydrogels.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
29
|
Villiou M, Paez JI, Del Campo A. Photodegradable Hydrogels for Cell Encapsulation and Tissue Adhesion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37862-37872. [PMID: 32805969 DOI: 10.1021/acsami.0c08568] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogels for wound management and tissue gluing applications have to adhere to tissues for a given time scale and then disappear, either by removal from the skin or by slow degradation for applications inside the body. Advanced wound management materials also envision the encapsulation of therapeutic drugs or cells to support the natural healing process. The design of hydrogels that can fulfill all of these properties with minimal chemical complexity, a stringent condition to favor transfer into a real medical device, is challenging. Herein, we present a hydrogel design with a moderate structural complexity that fulfills a number of relevant properties for wound dressing: it can form in situ and encapsulate cells, it can adhere to tissues, and it can be degraded on demand by light exposure under cytocompatible conditions. The hydrogels are based on starPEG macromers terminated with catechol groups as cross-linking units and contain intercalated photocleavable nitrobenzyl triazole groups. Hydrogels are formed under mild conditions (N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) buffer with 9-18 mM sodium periodate as the oxidant) and are compatible with encapsulated cells. Upon light irradiation, the cleavage of the nitrobenzyl group mediates depolymerization, which enables the on-demand release of cells and debonding from tissues. The molecular design and obtained properties reported here are interesting for the development of advanced wound dressings and cell therapies and expand the range of functionality of current alternatives.
Collapse
Affiliation(s)
- Maria Villiou
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Julieta I Paez
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
30
|
Zhu H, Yang H, Ma Y, Lu TJ, Xu F, Genin GM, Lin M. Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000639. [PMID: 32802013 PMCID: PMC7418561 DOI: 10.1002/adfm.202000639] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/16/2020] [Indexed: 05/16/2023]
Abstract
Photoresponsive hydrogels (PRHs) are soft materials whose mechanical and chemical properties can be tuned spatially and temporally with relative ease. Both photo-crosslinkable and photodegradable hydrogels find utility in a range of biomedical applications that require tissue-like properties or programmable responses. Progress in engineering with PRHs is facilitated by the development of theoretical tools that enable optimization of their photochemistry, polymer matrices, nanofillers, and architecture. This review brings together models and design principles that enable key applications of PRHs in tissue engineering, drug delivery, and soft robotics, and highlights ongoing challenges in both modeling and application.
Collapse
Affiliation(s)
- Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haiqian Yang
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
- MOE Key Laboratory for Multifunctional Materials and StructuresXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Guy M. Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
- Department of Mechanical Engineering & Materials ScienceWashington University in St. LouisSt. LouisMO63130USA
- NSF Science and Technology Center for Engineering MechanobiologyWashington University in St. LouisSt. LouisMO63130USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
31
|
Redox-responsive functionalized hydrogel marble for the generation of cellular spheroids. J Biosci Bioeng 2020; 130:416-423. [PMID: 32636145 DOI: 10.1016/j.jbiosc.2020.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Liquid marbles (LMs) have recently shown a great promise as microbioreactors to construct self-supported aqueous compartments for chemical and biological reactions. However, the evaporation of the inner aqueous liquid core has limited their application, especially in studying cellular functions. Hydrogels are promising scaffolds that provide a spatial environment suitable for three-dimensional cell culture. Here, we describe the fabrication of redox-responsive hydrogel marbles (HMs) as a three-dimensional cell culture platform. The HMs are prepared by introducing an aqueous mixture of a tetra-thiolated polyethylene glycol (PEG) derivative, thiolated gelatin (Gela-SH), horseradish peroxidase, a small phenolic compound, and human hepatocellular carcinoma cells (HepG2) to the inner aqueous phase of LMs. Eventually, HepG2 cells are encapsulated in the HMs then immersed in culture media, where they proliferate and form cellular spheroids. Experimental results show that the Gela-SH concentration strongly influences the physicochemical and microstructure properties of the HMs. After 6 days in culture, the spheroids were recovered from the HMs by degrading the scaffold, and examination showed that they had reached up to about 180 μm in diameter depending on the Gela-SH concentration, compared with 60 μm in conventional HMs without Gela-SH. After long-term culture (over 12 days), the liver-specific functions (secretion of albumin and urea) and DNA contents of the spheroids cultured in the HMs were elevated compared with those cultured in LMs. These results suggest that the developed HMs can be useful in designing a variety of microbioreactors for tissue engineering applications.
Collapse
|
32
|
Truong VX. Break Up to Make Up: Utilization of Photocleavable Groups in Biolabeling of Hydrogel Scaffolds. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vinh X. Truong
- School of Chemistry and PhysicsQueensland University of Technology 2 George St. QLD 4000 Brisbane Australia
- Centre for Materials ScienceQueensland University of Technology 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
33
|
Keller S, Bakker T, Kimmel B, Rebers L, Götz T, Tovar GEM, Kluger PJ, Southan A. Azido-functionalized gelatin via direct conversion of lysine amino groups by diazo transfer as a building block for biofunctional hydrogels. J Biomed Mater Res A 2020; 109:77-91. [PMID: 32421917 DOI: 10.1002/jbm.a.37008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 12/25/2022]
Abstract
Gelatin is one of the most prominent biopolymers in biomedical material research and development. It is frequently used in hybrid hydrogels, which combine the advantageous properties of bio-based and synthetic polymers. To prevent the biological component from leaching out of the hydrogel, the biomolecules can be equipped with azides. Those groups can be used to immobilize gelatin covalently in hydrogels by the highly selective and specific azide-alkyne cycloaddition. In this contribution, we functionalized gelatin with azides at its lysine residues by diazo transfer, which offers the great advantage of only minimal side-chain extension. Approximately 84-90% of the amino groups are modified as shown by 1 H-NMR spectroscopy, 2,4,6-trinitrobenzenesulfonic acid assay as well as Fourier-transform infrared spectroscopy, rheology, and the determination of the isoelectric point. Furthermore, the azido-functional gelatin is incorporated into hydrogels based on poly(ethylene glycol) diacrylate (PEG-DA) at different concentrations (0.6, 3.0, and 5.5%). All hydrogels were classified as noncyctotoxic with significantly enhanced cell adhesion of human fibroblasts on their surfaces compared to pure PEG-DA hydrogels. Thus, the new gelatin derivative is found to be a very promising building block for tailoring the bioactivity of materials.
Collapse
Affiliation(s)
- Silke Keller
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Tomke Bakker
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Benjamin Kimmel
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Lisa Rebers
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Tobias Götz
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Petra J Kluger
- School of Applied Chemistry, Reutlingen University, Reutlingen, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
34
|
Oldenhof S, Mytnyk S, Arranja A, de Puit M, van Esch JH. Imaging-assisted hydrogel formation for single cell isolation. Sci Rep 2020; 10:6595. [PMID: 32313146 PMCID: PMC7171092 DOI: 10.1038/s41598-020-62623-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 03/17/2020] [Indexed: 12/23/2022] Open
Abstract
We report a flexible single-cell isolation method by imaging-assisted hydrogel formation. Our approach consists of imaging-aided selective capture of cells of interest by encasing them into a polymeric hydrogel, followed by removal of unwanted cells and subsequent release of isolated cells by enzymatic hydrogel degradation, thus offering an opportunity for further analysis or cultivation of selected cells. We achieved high sorting efficiency and observed excellent viability rates (>98%) for NIH/3T3 fibroblasts and A549 carcinoma cells isolated using this procedure. The method presented here offers a mask-free, cost-efficient and easy-to-use alternative to many currently existing surface-based cell-sorting techniques, and has the potential to impact the field of cell culturing and isolation, e.g. single cell genomics and proteomics, investigation of cellular heterogeneity and isolation of best performing mutants for developing new cell lines.
Collapse
Affiliation(s)
- Sander Oldenhof
- The Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, Den Haag, the Netherlands
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg, 2629, HZ Delft, the Netherlands
| | - Serhii Mytnyk
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg, 2629, HZ Delft, the Netherlands
| | - Alexandra Arranja
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg, 2629, HZ Delft, the Netherlands
| | - Marcel de Puit
- The Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, Den Haag, the Netherlands.
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg, 2629, HZ Delft, the Netherlands.
| | - Jan H van Esch
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg, 2629, HZ Delft, the Netherlands.
| |
Collapse
|
35
|
Cao Y, Lee BH, Irvine SA, Wong YS, Bianco Peled H, Venkatraman S. Inclusion of Cross-Linked Elastin in Gelatin/PEG Hydrogels Favourably Influences Fibroblast Phenotype. Polymers (Basel) 2020; 12:polym12030670. [PMID: 32192137 PMCID: PMC7183321 DOI: 10.3390/polym12030670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
The capacity of a biomaterial to innately modulate cell behavior while meeting the mechanical property requirements of the implant is a much sought-after goal within bioengineering. Here we covalently incorporate soluble elastin into a gelatin–poly (ethylene glycol) (PEG) hydrogel for three-dimensional (3D) cell encapsulation to achieve these properties. The inclusion of elastin into a previously optimized gelatin–PEG hydrogel was then evaluated for effects on entrapped fibroblasts, with the aim to assess the hydrogel as an extracellular matrix (ECM)-mimicking 3D microenvironment for cellular guidance. Soluble elastin was incorporated both physically and covalently into novel gelatin/elastin hybrid PEG hydrogels with the aim to harness the cellular interactivity and mechanical tunability of both elastin and gelatin. This design allowed us to assess the benefits of elastin-containing hydrogels in guiding fibroblast activity for evaluation as a potential dermal replacement. It was found that a gelatin–PEG hydrogel with covalently conjugated elastin, supported neonatal fibroblast viability, promoted their proliferation from 7.3% to 13.5% and guided their behavior. The expression of collagen alpha-1(COL1A1) and elastin in gelatin/elastin hybrid gels increased 16-fold and 6-fold compared to control sample at day 9, respectively. Moreover, cells can be loaded into the hydrogel precursor solution, deposited, and the matrix cross-linked without affecting the incorporated cells adversely, thus enabling a potential injectable system for dermal wound healing.
Collapse
Affiliation(s)
- Ye Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
- The Inter-Departmental Program for Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Bae Hoon Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Scott Alexander Irvine
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Yee Shan Wong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Havazelet Bianco Peled
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: (H.B.P.); (S.V.)
| | - Subramanian Venkatraman
- Subramanian Venkatraman, Materials Science and Engineering, National University of Singapore, Singapore 119077, Singapore
- Correspondence: (H.B.P.); (S.V.)
| |
Collapse
|
36
|
Jo YK, Lee D. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903736. [PMID: 31559690 DOI: 10.1002/smll.201903736] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Biopolymers are macromolecules that are derived from natural sources and have attractive properties for a plethora of biomedical applications due to their biocompatibility, biodegradability, low antigenicity, and high bioactivity. Microfluidics has emerged as a powerful approach for fabricating polymeric microparticles (MPs) with designed structures and compositions through precise manipulation of multiphasic flows at the microscale. The synergistic combination of materials chemistry afforded by biopolymers and precision provided by microfluidic capabilities make it possible to design engineered biopolymer-based MPs with well-defined physicochemical properties that are capable of enabling an efficient delivery of therapeutics, 3D culture of cells, and sensing of biomolecules. Here, an overview of microfluidic approaches is provided for the design and fabrication of functional MPs from three classes of biopolymers including polysaccharides, proteins, and microbial polymers, and their advances for biomedical applications are highlighted. An outlook into the future research on microfluidically-produced biopolymer MPs for biomedical applications is also provided.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
37
|
Wei H, Liu Z, Zhu H, He J, Li J. Preparation and Characterization of Thermal and pH Dual Sensitive Hydrogel Based on 1,3‐Dipole Cycloaddition Reaction. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hongliang Wei
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Zijun Liu
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Hongzheng Zhu
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Juan He
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| | - Jingjing Li
- Province Key Laboratory of Cereal Resource Transformation and UtilizationHenan University of Technology Zhengzhou 450001 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan University of Technology Zhengzhou 450001 People's Republic of China
| |
Collapse
|
38
|
Kobayashi M, Honda R, Ando T, Tanihara M. Optical control of cell differentiation on synthetic collagen-like scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1161-1171. [PMID: 31200621 DOI: 10.1080/09205063.2019.1622845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have developed biocompatible scaffolds that enable cell fate control with visible light. The scaffolds are based on synthetic collagen-like polypeptide, poly(prolyl-hydroxyprolyl-glycyl) {poly(Pro-Hyp-Gly)} which has been used for cosmetics and other healthcare applications. Bioactive peptides were conjugated to the scaffolds via photoactivation reaction utilizing 488 nm visible light. In addition, the use of a photocleavable crosslinker enables dissociation of chemical moieties by 405 nm laser irradiation. The synthesis scheme enables optical control to attach and detach functional peptides in pre-patterned shapes. Using bone forming peptide (BFP), we demonstrate that calcium deposition by rat bone stromal cells can be directed on the scaffold. Using other signaling molecules and three-dimensional scaffolds, controlled differentiation of stem cells can be achieved by spatio-temporally specific irradiation of confocal microscope laser.
Collapse
Affiliation(s)
- Mime Kobayashi
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Japan.,b Graduate School of Biological Sciences , Nara Institute of Science and Technology , Ikoma , Japan
| | - Ryosuke Honda
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Japan
| | - Tsuyoshi Ando
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Japan
| | - Masao Tanihara
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Japan
| |
Collapse
|
39
|
Buwalda SJ, Bethry A, Hunger S, Kandoussi S, Coudane J, Nottelet B. Ultrafast in situ forming poly(ethylene glycol)-poly(amido amine) hydrogels with tunable drug release properties via controllable degradation rates. Eur J Pharm Biopharm 2019; 139:232-239. [PMID: 30954658 DOI: 10.1016/j.ejpb.2019.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/25/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Fast in situ forming, chemically crosslinked hydrogels were prepared by the amidation reaction between N-succinimidyl ester end groups of multi-armed poly(ethylene glycol) (PEG) and amino surface groups of poly(amido amine) (PAMAM) dendrimer generation 2.0. To control the properties of the PEG/PAMAM hydrogels, PEGs were used with different arm numbers (4 or 8) as well as different linkers (amide or ester) between the PEG arms and their terminal N-succinimidyl ester groups. Oscillatory rheology measurements showed that the hydrogels form within seconds after mixing the PEG and PAMAM precursor solutions. The storage moduli increased with crosslink density and reached values up to 2.3 kPa for hydrogels based on 4-armed PEG. Gravimetrical degradation experiments demonstrated that hydrogels with ester linkages between PEG and PAMAM degrade within 2 days, whereas amide-linked hydrogels were stable for several months. The release of two different model drugs (fluorescein isothiocyanate-dextran with molecular weights of 4·103 and 2·106 g/mol, FITC-DEX4K and FITC-DEX2000K, respectively) from amide-linked hydrogels was characterized by an initial burst followed by diffusion-controlled release, of which the rate depended on the size of the drug. In contrast, the release of FITC-DEX2000K from ester-containing hydrogels was governed mainly by degradation of the hydrogels and could be modulated via the ratio between ester and amide linkages. In vitro cytotoxicity experiments indicated that the PEG/PAMAM hydrogels are non-toxic to mouse fibroblasts. These in situ forming PEG/PAMAM hydrogels can be tuned with a broad range of mechanical, degradation and release properties and therefore hold promise as a platform for the delivery of therapeutic agents.
Collapse
Affiliation(s)
- Sytze J Buwalda
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France.
| | - Audrey Bethry
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Sylvie Hunger
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Sofian Kandoussi
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Jean Coudane
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Benjamin Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| |
Collapse
|
40
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805473] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| |
Collapse
|
41
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019; 58:5170-5189. [PMID: 30066456 DOI: 10.1002/anie.201805473] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/20/2022]
Abstract
The application of photochemistry to polymer and material science has led to the development of complex yet efficient systems for polymerization, polymer post-functionalization, and advanced materials production. Using light to activate chemical reaction pathways in these systems not only leads to exquisite control over reaction dynamics, but also allows complex synthetic protocols to be easily achieved. Compared to polymerization systems mediated by thermal, chemical, or electrochemical means, photoinduced polymerization systems can potentially offer more versatile methods for macromolecular synthesis. We highlight the utility of light as an energy source for mediating photopolymerization, and present some promising examples of systems which are advancing materials production through their exploitation of photochemistry.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| |
Collapse
|
42
|
Nath J, Chowdhury A, Ali I, Dolui SK. Development of a gelatin‐
g
‐poly(acrylic acid‐
co
‐acrylamide)–montmorillonite superabsorbent hydrogels for
in vitro
controlled release of vitamin B
12. J Appl Polym Sci 2019. [DOI: 10.1002/app.47596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Lu D, Zhu M, Wang W, Wu S, Saunders BR, Adlam DJ, Hoyland JA, Hofzumahaus C, Schneider S, Landfester K. Do the properties of gels constructed by interlinking triply-responsive microgels follow from those of the building blocks? SOFT MATTER 2019; 15:527-536. [PMID: 30444236 DOI: 10.1039/c8sm01510d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microgels (MGs) are swellable crosslinked polymer colloids. They can also be used as the only building block to construct nanostructured hydrogels which are denoted as doubly crosslinked microgels (DX MGs). Here, new triply responsive DX MGs comprised of interlinked MGs of oligo(ethylene glycol)methacrylate (OEGMA), 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA), methacrylic acid (MAA) and a o-nitrobenzyl-based UV photocleavable crosslinker are investigated. The MGs swelled or collapsed in response to temperature and pH changes. These behaviours were rationalised with a generic model using Monte Carlo simulations. The MGs also degraded when UV irradiated due to photocleavage of nPh. DX MGs were assembled from the MGs to give injectable gels that were not cytotoxic to nucleus pulposus cells. Comparison of the responsive properties of the DX MGs and MGs showed that the temperature and pH responses of the former were mostly governed by the latter. However, two key differences were found. Firstly, whilst increasing the crosslinker mol% in the MG building blocks (x) did not change MG particle swelling, the compression modulus (E) and swelling of the DX MG gels were strongly affected by x. The E value for the gels was tuneable using x which is a potentially useful new observation for DX MGs. Secondly, UV irradiation of the DX MGs enhanced gel mechanical photostability in contrast to the behaviour of the MGs. We find that the properties of the DX MGs do not simply follow those of the parent MGs and propose mechanisms to account for the differences. The new family of multi-responsive DX MGs presented in this study have potential application for soft tissue repair as injectable gels or as gel implants which report sterilisation.
Collapse
Affiliation(s)
- Dongdong Lu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Mingning Zhu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Wenkai Wang
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Shanglin Wu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Brian R Saunders
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Daman J Adlam
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK and NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Cornelius Hofzumahaus
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
44
|
Norris SCP, Delgado SM, Kasko AM. Mechanically robust photodegradable gelatin hydrogels for 3D cell culture and in situ mechanical modification. Polym Chem 2019. [DOI: 10.1039/c9py00308h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly conjugated, hydrophobically modified gelatin hydrogels were synthesized, polymerized and degraded with orthogonal wavelengths of light.
Collapse
Affiliation(s)
- Sam C. P. Norris
- Department of Bioengineering
- University of California Los Angeles
- Los Angeles
- USA
| | | | - Andrea M. Kasko
- Department of Bioengineering
- University of California Los Angeles
- Los Angeles
- USA
| |
Collapse
|
45
|
Dadhwal S, Fairhall JM, Goswami SK, Hook S, Gamble AB. Alkene-Azide 1,3-Dipolar Cycloaddition as a Trigger for Ultrashort Peptide Hydrogel Dissolution. Chem Asian J 2018; 14:1143-1150. [PMID: 30324726 DOI: 10.1002/asia.201801184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/09/2018] [Indexed: 01/07/2023]
Abstract
An alkene-azide 1,3-dipolar cycloaddition between trans-cyclooctene (TCO) and an azide-capped hydrogel that promotes rapid gel dissolution is reported. Using an ultrashort aryl azide-capped peptide hydrogel (PhePhe), we have demonstrated proof-of-concept where upon reaction with TCO, the hydrogel undergoes a gel-sol transition via 1,2,3-triazoline degradation and 1,6-self-immolation of the generated aniline. The potential application of this as a general trigger in sustained drug delivery is demonstrated through release of encapsulated cargo (doxorubicin). Administration of TCO resulted in 87 % of the cargo being released in 10 h, compared to 13-14 % in the control gels. This is the first example of a potential bioorthogonal-triggered hydrogel dissolution using a traditional click-type reaction. This type of stimulus could be extended to other aryl azide-capped hydrogels.
Collapse
Affiliation(s)
- Sumit Dadhwal
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Jessica M Fairhall
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Shailesh K Goswami
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
46
|
Lunzer M, Shi L, Andriotis OG, Gruber P, Markovic M, Thurner PJ, Ossipov D, Liska R, Ovsianikov A. A Modular Approach to Sensitized Two-Photon Patterning of Photodegradable Hydrogels. Angew Chem Int Ed Engl 2018; 57:15122-15127. [PMID: 30191643 PMCID: PMC6391948 DOI: 10.1002/anie.201808908] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 11/09/2022]
Abstract
Photodegradable hydrogels have emerged as useful platforms for research on cell function, tissue engineering, and cell delivery as their physical and chemical properties can be dynamically controlled by the use of light. The photo-induced degradation of such hydrogel systems is commonly based on the integration of photolabile o-nitrobenzyl derivatives to the hydrogel backbone, because such linkers can be cleaved by means of one- and two-photon absorption. Herein we describe a cytocompatible click-based hydrogel containing o-nitrobenzyl ester linkages between a hyaluronic acid backbone, which is photodegradable in the presence of cells. It is demonstrated for the first time that by using a cyclic benzylidene ketone-based small molecule as photosensitizer the efficiency of the two-photon degradation process can be improved significantly. Biocompatibility of both the improved two-photon micropatterning process as well as the hydrogel itself is confirmed by cell culture studies.
Collapse
Affiliation(s)
- Markus Lunzer
- Institute of Materials Science and TechnologyTU WienGetreidemarkt 9/3081060ViennaAustria
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-MC1060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Liyang Shi
- Department of Chemistry-Ångström LaboratoryUppsala UniversityLägerhyddsvägen 1751 21UppsalaSweden
| | - Orestis G. Andriotis
- Institute of Lightweight Design and Structural BiomechanicsTU WienGetreidemarkt 9/3171060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Peter Gruber
- Institute of Materials Science and TechnologyTU WienGetreidemarkt 9/3081060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Marica Markovic
- Institute of Materials Science and TechnologyTU WienGetreidemarkt 9/3081060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Philipp J. Thurner
- Institute of Lightweight Design and Structural BiomechanicsTU WienGetreidemarkt 9/3171060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Dmitri Ossipov
- Department of Chemistry-Ångström LaboratoryUppsala UniversityLägerhyddsvägen 1751 21UppsalaSweden
- Department of Biosciences and NutritionKarolinska InstitutetNovum, 141 83 HuddingeStockholmSweden
| | - Robert Liska
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-MC1060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and TechnologyTU WienGetreidemarkt 9/3081060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| |
Collapse
|
47
|
Truong VX, Donderwinkel I, Frith JE. Bioorthogonal hydrogels by thiol–halide click crosslinking with fast gelation time and tunable stability in aqueous media. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vinh X. Truong
- Department of Materials Science and EngineeringMonash Institute of Medical Engineering, Monash University Clayton 3800 Victoria Australia
| | - Ilze Donderwinkel
- Department of Materials Science and EngineeringMonash Institute of Medical Engineering, Monash University Clayton 3800 Victoria Australia
| | - Jessica E. Frith
- Department of Materials Science and EngineeringMonash Institute of Medical Engineering, Monash University Clayton 3800 Victoria Australia
| |
Collapse
|
48
|
Lunzer M, Shi L, Andriotis OG, Gruber P, Markovic M, Thurner PJ, Ossipov D, Liska R, Ovsianikov A. A Modular Approach to Sensitized Two‐Photon Patterning of Photodegradable Hydrogels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Markus Lunzer
- Institute of Materials Science and TechnologyTU Wien Getreidemarkt 9/308 1060 Vienna Austria
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/163-MC 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Liyang Shi
- Department of Chemistry-Ångström LaboratoryUppsala University Lägerhyddsvägen 1 751 21 Uppsala Sweden
| | - Orestis G. Andriotis
- Institute of Lightweight Design and Structural BiomechanicsTU Wien Getreidemarkt 9/317 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Peter Gruber
- Institute of Materials Science and TechnologyTU Wien Getreidemarkt 9/308 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Marica Markovic
- Institute of Materials Science and TechnologyTU Wien Getreidemarkt 9/308 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Philipp J. Thurner
- Institute of Lightweight Design and Structural BiomechanicsTU Wien Getreidemarkt 9/317 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Dmitri Ossipov
- Department of Chemistry-Ångström LaboratoryUppsala University Lägerhyddsvägen 1 751 21 Uppsala Sweden
- Department of Biosciences and NutritionKarolinska Institutet Novum, 141 83 Huddinge Stockholm Sweden
| | - Robert Liska
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/163-MC 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and TechnologyTU Wien Getreidemarkt 9/308 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| |
Collapse
|
49
|
Jivan F, Fabela N, Davis Z, Alge DL. Orthogonal click reactions enable the synthesis of ECM-mimetic PEG hydrogels without multi-arm precursors. J Mater Chem B 2018; 6:4929-4936. [PMID: 30746148 PMCID: PMC6368189 DOI: 10.1039/c8tb01399c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Click chemistry reactions have become an important tool for synthesizing user-defined hydrogels consisting of poly(ethylene glycol) (PEG) and bioactive peptides for tissue engineering. However, because click crosslinking proceeds via a step-growth mechanism, multi-arm telechelic precursors are required, which has some disadvantages. Here, we report for the first time that this requirement can be circumvented to create PEG-peptide hydrogels solely from linear precursors through the use of two orthogonal click reactions, the thiol-maleimide Michael addition and thiol-norbornene click reaction. The rapid kinetics of both click reactions allowed for quick formation of norbornene-functionalized PEG-peptide block copolymers via Michael addition, which were subsequently photocrosslinked into hydrogels with a dithiol linker. Characterization and in vitro testing demonstrated that the hydrogels have highly tunable physicochemical properties and excellent cytocompatiiblity. In addition, stoichiometric control over the crosslinking reaction can be leveraged to leave unreacted norbornene groups in the hydrogel for subsequent hydrogel functionalization via bioorthogonal inverse-electron demand Diels-Alder click reactions with s-tetrazines. After selectively capping norbornene groups in a user-defined region with cysteine, this feature was leveraged for protein patterning. Collectively, these results demonstrate that our novel chemical strategy is a simple and versatile approach to the development of hydrogels for tissue engineering that could be useful for a variety of applications.
Collapse
Affiliation(s)
- Faraz Jivan
- Texas A&M University, Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, United States
| | - Natalia Fabela
- Texas A&M University, Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, United States
| | - Zachary Davis
- North Carolina State University, Department of Materials Science and Engineering, 911 Partners Way, Raleigh, NC 27606, United States
| | - Daniel L Alge
- Texas A&M University, Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, United States
- Texas A&M University, Department of Materials Science and Engineering, 3003 TAMU, College Station, TX, 77843, United States
| |
Collapse
|
50
|
Lee JK, Choi IS, Oh TI, Lee E. Cell-Surface Engineering for Advanced Cell Therapy. Chemistry 2018; 24:15725-15743. [PMID: 29791047 DOI: 10.1002/chem.201801710] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/22/2018] [Indexed: 12/16/2022]
Abstract
Stem cells opened great opportunity to overcome diseases that conventional therapy had only limited success. Use of scaffolds made from biomaterials not only helps handling of stem cells for delivery or transplantation but also supports enhanced cell survival. Likewise, cell encapsulation can provide stability for living animal cells even in a state of separateness. Although various chemical reactions were tried to encapsulate stolid microbial cells such as yeasts, a culture environment for the growth of animal cells allows only highly biocompatible reactions. Therefore, the animal cells were mostly encapsulated in hydrogels, which resulted in enhanced cell survival. Interestingly, major findings of chemistry on biological interfaces demonstrate that cell encapsulation in hydrogels have a further a competence for modulating cell characteristics that can go beyond just enhancing the cell survival. In this review, we present a comprehensive overview on the chemical reactions applied to hydrogel-based cell encapsulation and their effects on the characteristics and behavior of living animal cells.
Collapse
Affiliation(s)
- Jungkyu K Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - Insung S Choi
- Department of Chemistry and Center for Cell-Encapsulation Research, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Tong In Oh
- Department of Biomedical Engineering, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - EunAh Lee
- Impedance Imaging Research Center (IIRC), Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|