1
|
Li X, Chen J, Wu B, Gao Z, He B. Immobilization and Characterization of a Processive Endoglucanase EG5C-1 from Bacillus subtilis on Melamine-Glutaraldehyde Dendrimer-Functionalized Magnetic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:340. [PMID: 38392713 PMCID: PMC10891739 DOI: 10.3390/nano14040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Exploring an appropriate immobilization approach to enhance catalytic activity and reusability of cellulase is of great importance to reduce the price of enzymes and promote the industrialization of cellulose-derived biochemicals. In this study, Fe3O4 magnetic nanoparticles (MNPs) were functionalized with meso-2,3-dimercaptosuccinic acid to introduce carboxyl groups on the surface (DMNPs). Then, melamine-glutaraldehyde dendrimer-like polymers were grafted on DMNPs to increase protein binding sites for the immobilization of processive endoglucanase EG5C-1. Moreover, this dendrimer-like structure was beneficial to protect the conformation of EG5C-1 and facilitate the interaction between substrate and active center. The loading capacity of the functionalized copolymers (MG-DMNPs) for EG5C-1 was about 195 mg/g, where more than 90% of the activity was recovered. Immobilized EG5C-1 exhibited improved thermal stability and increased tolerability over a broad pH range compared with the free one. Additionally, MG-DMNP/EG5C-1 biocomposite maintained approximately 80% of its initial hydrolysis productivity after five cycles of usage using filter paper as the substrate. Our results provided a promising approach for the functionalization of MNPs, enabling the immobilization of cellulases with a high loading capacity and excellent activity recovery.
Collapse
Affiliation(s)
- Xiaozhou Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (X.L.); (J.C.); (B.W.)
| | - Jie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (X.L.); (J.C.); (B.W.)
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (X.L.); (J.C.); (B.W.)
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (X.L.); (J.C.); (B.W.)
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China;
| |
Collapse
|
2
|
Tomoe R, Fujimoto K, Tanaka T, Arakaki A, Kisailus D, Yoshino T. Lipid membrane modulated control of magnetic nanoparticles within bacterial systems. J Biosci Bioeng 2023; 136:253-260. [PMID: 37422334 DOI: 10.1016/j.jbiosc.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Bacterial magnetosomes synthesized by the magnetotactic bacterium Magnetospirillum magneticum are suitable for biomedical and biotechnological applications because of their high level of chemical purity of mineral with well-defined morphological features and a biocompatible lipid bilayer coating. However, utilizations of native magnetosomes are not sufficient for maximum effectiveness in many applications as the appropriate particle size differs. In this study, a method to control magnetosome particle size is developed for integration into targeted technological applications. The size and morphology of magnetosome crystals are highly regulated by the complex interactions of magnetosome synthesis-related genes; however, these interactions have not been fully elucidated. In contrast, previous studies have shown a positive correlation between vesicle and crystal sizes. Therefore, control of the magnetosome vesicle size is tuned by modifying the membrane lipid composition. Exogenous phospholipid synthesis pathways have been genetically introduced into M. magneticum. The experimental results show that these phospholipids altered the properties of the magnetosome membrane vesicles, which yielded larger magnetite crystal sizes. The genetic engineering approach presented in this study is shown to be useful for controlling magnetite crystal size without involving complex interactions of magnetosome synthesis-related genes.
Collapse
Affiliation(s)
- Ryoto Tomoe
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazushi Fujimoto
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
3
|
Barik S, Dash AK, Saharay M. Immobilization of Cellulase Enzymes on Single-Walled Carbon Nanotubes for Recycling of Enzymes and Better Yield of Bioethanol Using Computer Simulations. J Chem Inf Model 2023; 63:5192-5203. [PMID: 37590465 DOI: 10.1021/acs.jcim.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The utilization of microbial cellulase enzymes for transforming plant biomass into biofuel or bioethanol, which can serve as a substitute for fossil fuel, is a subject of growing interest. Nonetheless, large-scale production of biofuel using cellulases is not economically feasible as the extraction of these enzymes from diverse microorganisms is an expensive process. To address this issue, immobilizing the enzyme to a substrate material, e.g., carbon nanotubes (CNTs), to recycle without a significant decline in its catalytic activity is a promising solution. Due to the hydrophobic nature of CNTs, we employed molecular docking and network analysis methodologies to identify potential CNT-binding sites on the outer surface of a wild-type cellulase enzyme, CelS. Classical molecular dynamics simulations of CNT-bound CelS through one of the selected binding sites resulted in negligible changes in the secondary structure of the enzyme and its catalytic domain, implying the least possible effect on the catalytic activity post-immobilization. Furthermore, our study reveals that while the unfolding near the CNT-binding region in CelS is more pronounced when the enzyme is interacting with a wider CNT, resulting in enhanced contact area and improved binding affinity, its impact on the overall CelS structure is relatively less significant when compared to thinner CNTs. Particularly, CNTs of diameter ∼12 Å can serve as a favorable option for substrate materials in cellulase immobilization. Our study also provides critical insights into the binding mechanisms between cellulase and CNTs, which could lead to the development of more efficient biocatalysts for biofuel production.
Collapse
Affiliation(s)
- Shubhashree Barik
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Akarsh Kumar Dash
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| |
Collapse
|
4
|
Tsai SL, Sun Q, Chen W. Advances in consolidated bioprocessing using synthetic cellulosomes. Curr Opin Biotechnol 2022; 78:102840. [PMID: 36356377 DOI: 10.1016/j.copbio.2022.102840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
The primary obstacle impeding the more widespread use of biomass for energy and chemical production is the absence of a low-cost technology for overcoming their recalcitrant nature. It has been shown that the overall cost can be reduced by using a 'consolidated' bioprocessing (CBP) approach, in which enzyme production, biomass hydrolysis, and sugar fermentation can be combined. Cellulosomes are enzyme complexes found in many anaerobic microorganisms that are highly efficient for biomass depolymerization. While initial efforts to display synthetic cellulosomes have been successful, the overall conversion is still low for practical use. This limitation has been partially alleviated by displaying more complex cellulsome structures either via adaptive assembly or by using synthetic consortia. Since synthetic cellulosome nanostructures have also been created using either protein nanoparticles or DNA as a scaffold, there is the potential to tether these nanostructures onto living cells in order to further enhance the overall efficiency.
Collapse
Affiliation(s)
- Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
5
|
Rajendran DS, Venkataraman S, Kumar PS, Rangasamy G, Bhattacharya T, Nguyen Vo DV, Vaithyanathan VK, Cabana H, Kumar VV. Coimmobilized enzymes as versatile biocatalytic tools for biomass valorization and remediation of environmental contaminants - A review. ENVIRONMENTAL RESEARCH 2022; 214:114012. [PMID: 35952747 DOI: 10.1016/j.envres.2022.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Due to stringent regulatory norms, waste processing faces confrontations and challenges in adapting technology for effective management through a convenient and economical system. At the global level, attempts are underway to achieve a green and sustainable treatment for the valorization of lignocellulosic biomass as well as organic contaminants in wastewater. Enzymatic treatment in the environmental aspect thrived on being the promising rapid strategy that appeased the aforementioned predicament. On that account, coimmobilization of various enzymes on single support enhances the catalytic activity ensuing operational stability with industrial applications. This review pivoted towards the coimmobilization of enzymes on diverse supports and their applications in biomass conversion to industrial value-added products and removal of contaminants in wastewater. The limelight of this study chronicles the unique breakthroughs in biotechnology for the production of reusable biocatalysts, which inculcating various enzymes towards the scope of environment application.
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Trishita Bhattacharya
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Vasanth Kumar Vaithyanathan
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Hubert Cabana
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India; University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada.
| |
Collapse
|
6
|
Xu J, Ma S, Zhang W, Jia L, Zheng H, Bo P, Bai X, Sun H, Qi L, Zhang T, Chen C, Li F, Arai F, Tian J, Feng L. In vitro magnetosome remineralization for silver-magnetite hybrid magnetosome biosynthesis and used for healing of the infected wound. J Nanobiotechnology 2022; 20:364. [PMID: 35933359 PMCID: PMC9356440 DOI: 10.1186/s12951-022-01532-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Magnetosomes (BMPs) are organelles of magnetotactic bacteria (MTB) that are responsible for mineralizing iron to form magnetite. In addition, BMP is an ideal biomaterial that is widely used in bio- and nano-technological applications, such as drug delivery, tumor detection and therapy, and immunodetection. The use of BMPs to create multifunctional nanocomposites would further expand the range of their applications. RESULTS In this study, we firstly demonstrate that the extracted BMP can remineralize in vitro when it is exposed to AgNO3 solution, the silver ions (Ag+) were transported into the BMP biomembrane (MM) and mineralized into a silver crystal on one crystal plane of Fe3O4. Resulting in the rapid synthesis of an Ag-Fe3O4 hybrid BMP (BMP-Ag). The synergy between the biomembrane, Fe3O4 crystal, and unmineralized iron enabled the remineralization of BMPs at an Ag+ concentration ≥ 1.0 mg mL-1. The BMP-Ag displayed good biocompatibility and antibacterial activity. At a concentration of 2.0 mg/mL, the BMP-Ag and biomembrane removed Ag-Fe3O4 NPs inhibited the growth of gram-negative and gram-positive bacteria. Thus using BMP-Ag as a wound dressing can effectively enhance the contraction of infected wounds. CONCLUSIONS This study represents the first successful attempt to remineralize organelles ex vivo, realizing the biosynthesis of hybrid BMP and providing an important advancement in the synthesis technology of multifunctional biological nanocomposites.
Collapse
Affiliation(s)
- Junjie Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shijiao Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Lina Jia
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Haolan Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pang Bo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xue Bai
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Lei Qi
- State Key Laboratory of Ophthalmology, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou, 325027, China
| | - Tongwei Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Feng Li
- College of Life Science, Huaibei Normal University, Huaibei, 235000, China
| | - Fumihito Arai
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Jiesheng Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China.
| |
Collapse
|
7
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
8
|
Biomanufacturing Biotinylated Magnetic Nanomaterial via Construction and Fermentation of Genetically Engineered Magnetotactic Bacteria. Bioengineering (Basel) 2022; 9:bioengineering9080356. [PMID: 36004881 PMCID: PMC9404834 DOI: 10.3390/bioengineering9080356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Biosynthesis provides a critical way to deal with global sustainability issues and has recently drawn increased attention. However, modifying biosynthesized magnetic nanoparticles by extraction is challenging, limiting its applications. Magnetotactic bacteria (MTB) synthesize single-domain magnetite nanocrystals in their organelles, magnetosomes (BMPs), which are excellent biomaterials that can be biologically modified by genetic engineering. Therefore, this study successfully constructed in vivo biotinylated BMPs in the MTB Magnetospirillum gryphiswaldense by fusing biotin carboxyl carrier protein (BCCP) with membrane protein MamF of BMPs. The engineered strain (MSR−∆F−BF) grew well and synthesized small-sized (20 ± 4.5 nm) BMPs and were cultured in a 42 L fermenter; the yield (dry weight) of cells and BMPs reached 8.14 g/L and 134.44 mg/L, respectively, approximately three-fold more than previously reported engineered strains and BMPs. The genetically engineered BMPs (BMP−∆F−BF) were successfully linked with streptavidin or streptavidin-labelled horseradish peroxidase and displayed better storage stability compared with chemically constructed biotinylated BMPs. This study systematically demonstrated the biosynthesis of engineered magnetic nanoparticles, including its construction, characterization, and production and detection based on MTB. Our findings provide insights into biomanufacturing multiple functional magnetic nanomaterials.
Collapse
|
9
|
Kotakadi SM, Borelli DPR, Nannepaga JS. Therapeutic Applications of Magnetotactic Bacteria and Magnetosomes: A Review Emphasizing on the Cancer Treatment. Front Bioeng Biotechnol 2022; 10:789016. [PMID: 35547173 PMCID: PMC9081342 DOI: 10.3389/fbioe.2022.789016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Magnetotactic bacteria (MTB) are aquatic microorganisms have the ability to biomineralize magnetosomes, which are membrane-enclosed magnetic nanoparticles. Magnetosomes are organized in a chain inside the MTB, allowing them to align with and traverse along the earth’s magnetic field. Magnetosomes have several potential applications for targeted cancer therapy when isolated from the MTB, including magnetic hyperthermia, localized medication delivery, and tumour monitoring. Magnetosomes features and properties for various applications outperform manufactured magnetic nanoparticles in several ways. Similarly, the entire MTB can be regarded as prospective agents for cancer treatment, thanks to their flagella’s ability to self-propel and the magnetosome chain’s ability to guide them. MTBs are conceptualized as nanobiots that can be guided and manipulated by external magnetic fields and are driven to hypoxic areas, such as tumor sites, while retaining the therapeutic and imaging characteristics of isolated magnetosomes. Furthermore, unlike most bacteria now being studied in clinical trials for cancer treatment, MTB are not pathogenic but might be modified to deliver and express certain cytotoxic chemicals. This review will assess the current and prospects of this burgeoning research field and the major obstacles that must be overcome before MTB can be successfully used in clinical treatments.
Collapse
Affiliation(s)
- Sai Manogna Kotakadi
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | | | - John Sushma Nannepaga
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
- *Correspondence: John Sushma Nannepaga, , orcid.org/0000-0002-8739-9936
| |
Collapse
|
10
|
Dey N, Kumar G, Vickram AS, Mohan M, Singhania RR, Patel AK, Dong CD, Anbarasu K, Thanigaivel S, Ponnusamy VK. Nanotechnology-assisted production of value-added biopotent energy-yielding products from lignocellulosic biomass refinery - A review. BIORESOURCE TECHNOLOGY 2022; 344:126171. [PMID: 34695586 DOI: 10.1016/j.biortech.2021.126171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 05/22/2023]
Abstract
The need to develop sustainable alternatives for pretreatment and hydrolysis of lignocellulosic biomass (LCB) is a massive concern in the industrial sector today. Breaking down of LCB yields sugars and fuel in the bulk scale. If explored under nanotechnology, LCB can be refined to yield high-performance fuel sources. The toxicity and cost of conventional methods can be reduced by applying nanoparticles (NPs) in refining LCB. Immobilization of enzymes onto NPs or used in conjugation with nanomaterials would instill specific and eco-friendly options for hydrolyzing LCB. Nanomaterials increase the proficiency, reusability, and stability of enzymes. Notably, magnetic NPs have bagged their place in the downstream processing of LCB effluents due to their efficient separation and cost-effectiveness. The current review highlights the role of nanotechnology and its particles in refining LCB into various commercial precursors and value-added products. The relationship between nanotechnology and LCB refinery is portrayed effectively in the present study.
Collapse
Affiliation(s)
- Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036, Stavanger, Norway
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Monisha Mohan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Reeta Rani Singhania
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan
| | - Anil Kumar Patel
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan
| | - Cheng-Di Dong
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - S Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Vinoth Kumar Ponnusamy
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan; Department of Medicinal and Applied Chemistry. & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan.
| |
Collapse
|
11
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
12
|
Correa T, Presciliano R, Abreu F. Why Does Not Nanotechnology Go Green? Bioprocess Simulation and Economics for Bacterial-Origin Magnetite Nanoparticles. Front Microbiol 2021; 12:718232. [PMID: 34489907 PMCID: PMC8418543 DOI: 10.3389/fmicb.2021.718232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Nanotechnological developments, including fabrication and use of magnetic nanomaterials, are growing at a fast pace. Magnetic nanoparticles are exciting tools for use in healthcare, biological sensors, and environmental remediation. Due to better control over final-product characteristics and cleaner production, biogenic nanomagnets are preferable over synthetic ones for technological use. In this sense, the technical requirements and economic factors for setting up industrial production of magnetotactic bacteria (MTB)-derived nanomagnets were studied in the present work. Magnetite fabrication costs in a single-stage fed-batch and a semicontinuous process were US$ 10,372 and US$ 11,169 per kilogram, respectively. Depending on the variations of the production process, the minimum selling price for biogenic nanomagnets ranged between US$ 21 and US$ 120 per gram. Because these prices are consistently below commercial values for synthetic nanoparticles, we suggest that microbial production is competitive and constitutes an attractive alternative for a greener manufacturing of magnetic nanoparticles nanotools with versatile applicability.
Collapse
Affiliation(s)
- Tarcisio Correa
- Laboratório de Biologia Celular e Magnetotaxia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rogério Presciliano
- Laboratório de Biologia Celular e Magnetotaxia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Laboratório de Biologia Celular e Magnetotaxia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Biocompatibility of Bacterial Magnetosomes as MRI Contrast Agent: A Long-Term In Vivo Follow-Up Study. NANOMATERIALS 2021; 11:nano11051235. [PMID: 34067162 PMCID: PMC8151038 DOI: 10.3390/nano11051235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 01/03/2023]
Abstract
Derived from magnetotactic bacteria (MTB), magnetosomes consist of magnetite crystals enclosed within a lipid bilayer membrane and are known to possess advantages over artificially synthesized nanoparticles because of the narrow size distribution, uniform morphology, high purity and crystallinity, single magnetic domain, good biocompatibility, and easy surface modification. These unique properties have increasingly attracted researchers to apply bacterial magnetosomes (BMs) in the fields of biology and medicine as MRI imaging contrast agents. Due to the concern of biosafety, a long-term follow-up of the distribution and clearance of BMs after entering the body is necessary. In this study, we tracked changes of BMs in major organs of mice up to 135 days after intravenous injection using a combination of several techniques. We not only confirmed the liver as the well-known targeted organs of BMs, but also found that BMs accumulated in the spleen. Besides, two major elimination paths, as well as the approximate length of time for BMs to be cleared from the mice, were revealed. Together, the results not only confirm that BMs have high biocompatibility, but also provide a long-term in-vivo assessment which may further help to forward the clinical applications of BMs as an MRI contrast agent.
Collapse
|
14
|
Dubey NC, Tripathi BP. Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS APPLIED BIO MATERIALS 2021; 4:1077-1114. [PMID: 35014469 DOI: 10.1021/acsabm.0c01293] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a biological system, the spatiotemporal arrangement of enzymes in a dense cellular milieu, subcellular compartments, membrane-associated enzyme complexes on cell surfaces, scaffold-organized proteins, protein clusters, and modular enzymes have presented many paradigms for possible multienzyme immobilization designs that were adapted artificially. In metabolic channeling, the catalytic sites of participating enzymes are close enough to channelize the transient compound, creating a high local concentration of the metabolite and minimizing the interference of a competing pathway for the same precursor. Over the years, these phenomena had motivated researchers to make their immobilization approach naturally realistic by generating multienzyme fusion, cluster formation via affinity domain-ligand binding, cross-linking, conjugation on/in the biomolecular scaffold of the protein and nucleic acids, and self-assembly of amphiphilic molecules. This review begins with the discussion of substrate channeling strategies and recent empirical efforts to build it synthetically. After that, an elaborate discussion covering prevalent concepts related to the enhancement of immobilized enzymes' catalytic performance is presented. Further, the central part of the review summarizes the progress in nature motivated multienzyme assembly over the past decade. In this section, special attention has been rendered by classifying the nature-inspired strategies into three main categories: (i) multienzyme/domain complex mimic (scaffold-free), (ii) immobilization on the biomolecular scaffold, and (iii) compartmentalization. In particular, a detailed overview is correlated to the natural counterpart with advances made in the field. We have then discussed the beneficial account of coassembly of multienzymes and provided a synopsis of the essential parameters in the rational coimmobilization design.
Collapse
Affiliation(s)
- Nidhi C Dubey
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
15
|
Correa T, Bazylinski DA, Garcia F, Abreu F. A rapid and simple preparation of amphotericin B-loaded bacterial magnetite nanoparticles. RSC Adv 2021; 11:28000-28007. [PMID: 35480720 PMCID: PMC9038061 DOI: 10.1039/d1ra03950d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional representation of amphotericin B molecules bound to magnetosomes derived from Magnetovibrio blakemorei strain MV-1T. Drug molecules are electrostatically adsorbed onto nanoparticles coated with positively charged poly-l-lysine.
Collapse
Affiliation(s)
- Tarcisio Correa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil
| | - Dennis A. Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, USA
| | - Flávio Garcia
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
16
|
Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach. ENERGIES 2020. [DOI: 10.3390/en13205300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The conversion of lignocellulosic biomass (LB) to sugar is an intricate process which is the costliest part of the biomass conversion process. Even though acid/enzyme catalysts are usually being used for LB hydrolysis, enzyme immobilization has been recognized as a potential strategy nowadays. The use of nanobiocatalysts increases hydrolytic efficiency and enzyme stability. Furthermore, biocatalyst/enzyme immobilization on magnetic nanoparticles enables easy recovery and reuse of enzymes. Hence, the exploitation of nanobiocatalysts for LB to biofuel conversion will aid in developing a lucrative and sustainable approach. With this perspective, the effects of nanobiocatalysts on LB to biofuel production were reviewed here. Several traits, such as switching the chemical processes using nanomaterials, enzyme immobilization on nanoparticles for higher reaction rates, recycling ability and toxicity effects on microbial cells, were highlighted in this review. Current developments and viability of nanobiocatalysts as a promising option for enhanced LB conversion into the biofuel process were also emphasized. Mostly, this would help in emerging eco-friendly, proficient, and cost-effective biofuel technology.
Collapse
|
17
|
Memarpoor-Yazdi M, Haghighatian S, Doroodmand MM, Derakhshandeh A, Moezzi MS. Introducing a bioelectrochemical method for highly selective enumeration of magnetotactic bacteria. Sci Rep 2020; 10:8522. [PMID: 32444683 PMCID: PMC7244547 DOI: 10.1038/s41598-020-65499-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/05/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, we employed an electrochemical (potentiometric) method to enumerate magnetotactic bacteria (MTB) during its coupling with iodometric titration to obtain a selective, precise and rapid counting system. Oxygen was considered as an important factor for the orientation and movement of MTB towards the magnet-modified indicator electrode. In the direct potentiometry, a linear correlation was detected between potentiometric response and dissolved oxygen (DO) concentrations. By the increase of the DO concentration, potential difference would increase in the range of 4.0 to 20.0 parts per million (ppm) at different pressure conditions. The reliability of the O2 bio-sensing feature provides a selective MTB-based cell enumeration methodology based on indirect potentiometric titration. Furthermore, a five-minute H2-purging resulted in an increase of potentiometric response sensitivity arising from the decrease in DO concentration of the electrolyte solution. Results were also investigated by zeta potential difference, which show the effect of charge density of MTB in presence of DO. Zeta potential was increased proportionally by addition of the MTB population. Regarding the reliability of the suggested method, data obtained by the designed system showed no statistical difference from those obtained by the most common procedure in microbiology for enumeration of bacteria, known as colony forming unit (CFU) method.
Collapse
Affiliation(s)
| | | | | | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maryam Sadat Moezzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
18
|
Cypriano J, Bahri M, Dembelé K, Baaziz W, Leão P, Bazylinski DA, Abreu F, Ersen O, Farina M, Werckmann J. Insight on thermal stability of magnetite magnetosomes: implications for the fossil record and biotechnology. Sci Rep 2020; 10:6706. [PMID: 32317676 PMCID: PMC7174351 DOI: 10.1038/s41598-020-63531-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/25/2020] [Indexed: 11/14/2022] Open
Abstract
Magnetosomes are intracellular magnetic nanocrystals composed of magnetite (Fe3O4) or greigite (Fe3S4), enveloped by a lipid bilayer membrane, produced by magnetotactic bacteria. Because of the stability of these structures in certain environments after cell death and lysis, magnetosome magnetite crystals contribute to the magnetization of sediments as well as providing a fossil record of ancient microbial ecosystems. The persistence or changes of the chemical and magnetic features of magnetosomes under certain conditions in different environments are important factors in biotechnology and paleomagnetism. Here we evaluated the thermal stability of magnetosomes in a temperature range between 150 and 500 °C subjected to oxidizing conditions by using in situ scanning transmission electron microscopy. Results showed that magnetosomes are stable and structurally and chemically unaffected at temperatures up to 300 °C. Interestingly, the membrane of magnetosomes was still observable after heating the samples to 300 °C. When heated between 300 °C and 500 °C cavity formation in the crystals was observed most probably associated to the partial transformation of magnetite into maghemite due to the Kirkendall effect at the nanoscale. This study provides some insight into the stability of magnetosomes in specific environments over geological periods and offers novel tools to investigate biogenic nanomaterials.
Collapse
Affiliation(s)
- Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Mounib Bahri
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France
| | - Kassiogé Dembelé
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, 89154-4004, USA
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Jacques Werckmann
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil. .,Centro Brasileiro de Pesquisas Físicas, LABNANO, rua Xavier Sigaud, 150, CEP, 22290-180, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Wong JX, Ogura K, Chen S, Rehm BHA. Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Front Bioeng Biotechnol 2020; 8:156. [PMID: 32195237 PMCID: PMC7064635 DOI: 10.3389/fbioe.2020.00156] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Enzymes function as biocatalysts and are extensively exploited in industrial applications. Immobilization of enzymes using support materials has been shown to improve enzyme properties, including stability and functionality in extreme conditions and recyclability in biocatalytic processing. This review focuses on the recent advances utilizing the design space of in vivo self-assembled polyhydroxyalkanoate (PHA) particles as biocatalyst immobilization scaffolds. Self-assembly of biologically active enzyme-coated PHA particles is a one-step in vivo production process, which avoids the costly and laborious in vitro chemical cross-linking of purified enzymes to separately produced support materials. The homogeneous orientation of enzymes densely coating PHA particles enhances the accessibility of catalytic sites, improving enzyme function. The PHA particle technology has been developed into a remarkable scaffolding platform for the design of cost-effective designer biocatalysts amenable toward robust industrial bioprocessing. In this review, the PHA particle technology will be compared to other biological supramolecular assembly-based technologies suitable for in vivo enzyme immobilization. Recent progress in the fabrication of biological particulate scaffolds using enzymes of industrial interest will be summarized. Additionally, we outline innovative approaches to overcome limitations of in vivo assembled PHA particles to enable fine-tuned immobilization of multiple enzymes to enhance performance in multi-step cascade reactions, such as those used in continuous flow bioprocessing.
Collapse
Affiliation(s)
- Jin Xiang Wong
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | - Kampachiro Ogura
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
20
|
Carli S, Carneiro LABDC, Ward RJ, Meleiro LP. Immobilization of a β-glucosidase and an endoglucanase in ferromagnetic nanoparticles: A study of synergistic effects. Protein Expr Purif 2019; 160:28-35. [DOI: 10.1016/j.pep.2019.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/11/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
|
21
|
Changing surface grafting density has an effect on the activity of immobilized xylanase towards natural polysaccharides. Sci Rep 2019; 9:5763. [PMID: 30962508 PMCID: PMC6453946 DOI: 10.1038/s41598-019-42206-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Enzymes are involved in various types of biological processes. In many cases, they are part of multi-component machineries where enzymes are localized in close proximity to each-other. In such situations, it is still not clear whether inter-enzyme spacing actually plays a role or if the colocalization of complementary activities is sufficient to explain the efficiency of the system. Here, we focus on the effect of spatial proximity when identical enzymes are immobilized onto a surface. By using an innovative grafting procedure based on the use of two engineered protein fragments, Jo and In, we produce model systems in which enzymes are immobilized at surface densities that can be controlled precisely. The enzyme used is a xylanase that participates to the hydrolysis of plant cell wall polymers. By using a small chromogenic substrate, we first show that the intrinsic activity of the enzymes is fully preserved upon immobilization and does not depend on surface density. However, when using beechwood xylan, a naturally occurring polysaccharide, as substrate, we find that the enzymatic efficiency decreases by 10–60% with the density of grafting. This unexpected result is probably explained through steric hindrance effects at the nanoscale that hinder proper interaction between the enzymes and the polymer. A second effect of enzyme immobilization at high densities is the clear tendency for the system to release preferentially shorter oligosaccharides from beechwood xylan as compared to enzymes in solution.
Collapse
|
22
|
Affiliation(s)
- Ee Taek Hwang
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Seonbyul Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| |
Collapse
|
23
|
Xu J, Liu L, He J, Ma S, Li S, Wang Z, Xu T, Jiang W, Wen Y, Li Y, Tian J, Li F. Engineered magnetosomes fused to functional molecule (protein A) provide a highly effective alternative to commercial immunomagnetic beads. J Nanobiotechnology 2019; 17:37. [PMID: 30841927 PMCID: PMC6402170 DOI: 10.1186/s12951-019-0469-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/22/2019] [Indexed: 11/25/2022] Open
Abstract
Background Magnetosomes (also called bacterial magnetic nanoparticles; BMPs) are biomembrane-coated nanoparticles synthesized by magnetotactic bacteria (MTB). Engineered BMPs fused to protein A (termed ∆F-BMP-FA) bind antibodies (Abs) automatically, and thus provide a series of potential advantages. However, no report so far has systematically evaluated functional applicability of genetically engineered BMPs. Results We evaluated properties of ∆F-BMP-FA, and developed/optimized culture methods for host strain Magnetospirillum gryphiswaldense ΔF-FA, ∆F-BMP-FA extraction conditions, conditions for Ab conjugation to ∆F-BMP-FA surface, and procedures for antigen detection using ∆F-BMP-FA/Ab complexes (termed BMP-A-Ab). Fed-batch culture for 36 h in a 42-L fermentor resulted in yields (dry weight) of 2.26 g/L for strain ΔF-FA and 62 mg/L for ∆F-BMP-FA. Optimal wash cycle number for ∆F-BMP-FA purification was seven, with magnetic separation following each ultrasonication step. Fusion of protein A to BMPs resulted in ordered arrangement of Abs on BMP surface. Linkage rate 962 μg Ab per mg ∆F-BMP-FA was achieved. BMP-A-Ab were tested for detection of pathogen (Vibrio parahaemolyticus; Vp) surface antigen and hapten (gentamicin sulfate). Maximal Vp capture rate for BMP-A-Ab was 90% (higher than rate for commercial immunomagnetic beads), and detection sensitivity was 5 CFU/mL. ∆F-BMP-FA also bound Abs from crude mouse ascites to form complex. Lowest gentamicin sulfate detection line for BMP-A-Ab was 0.01 ng/mL, 400-fold lower than that for double Ab sandwich ELISA, and gentamicin sulfate recovery rate for BMP-A-Ab was 93.2%. Conclusion Our findings indicate that engineered BMPs such as ∆F-BMP-FA are inexpensive, eco-friendly alternatives to commercial immunomagnetic beads for detection or diagnostic immunoassays, and have high Ab-conjugation and antigen-adsorption capacity. Electronic supplementary material The online version of this article (10.1186/s12951-019-0469-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junjie Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,College of Life Science, Huaibei Normal University, Huaibei, 235000, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lingzi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinxin He
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shijiao Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuli Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhanhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Jiang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiesheng Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Feng Li
- College of Life Science, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
24
|
|
25
|
Myco-Nanotechnological Approach for Improved Degradation of Lignocellulosic Waste: Its Future Aspect. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Vargas G, Cypriano J, Correa T, Leão P, Bazylinski DA, Abreu F. Applications of Magnetotactic Bacteria, Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Molecules 2018; 23:E2438. [PMID: 30249983 PMCID: PMC6222368 DOI: 10.3390/molecules23102438] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Magnetotactic bacteria (MTB) biomineralize magnetosomes, which are defined as intracellular nanocrystals of the magnetic minerals magnetite (Fe₃O₄) or greigite (Fe₃S₄) enveloped by a phospholipid bilayer membrane. The synthesis of magnetosomes is controlled by a specific set of genes that encode proteins, some of which are exclusively found in the magnetosome membrane in the cell. Over the past several decades, interest in nanoscale technology (nanotechnology) and biotechnology has increased significantly due to the development and establishment of new commercial, medical and scientific processes and applications that utilize nanomaterials, some of which are biologically derived. One excellent example of a biological nanomaterial that is showing great promise for use in a large number of commercial and medical applications are bacterial magnetite magnetosomes. Unlike chemically-synthesized magnetite nanoparticles, magnetosome magnetite crystals are stable single-magnetic domains and are thus permanently magnetic at ambient temperature, are of high chemical purity, and display a narrow size range and consistent crystal morphology. These physical/chemical features are important in their use in biotechnological and other applications. Applications utilizing magnetite-producing MTB, magnetite magnetosomes and/or magnetosome magnetite crystals include and/or involve bioremediation, cell separation, DNA/antigen recovery or detection, drug delivery, enzyme immobilization, magnetic hyperthermia and contrast enhancement of magnetic resonance imaging. Metric analysis using Scopus and Web of Science databases from 2003 to 2018 showed that applied research involving magnetite from MTB in some form has been focused mainly in biomedical applications, particularly in magnetic hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Gabriele Vargas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Tarcisio Correa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA.
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
27
|
Ren E, Lei Z, Wang J, Zhang Y, Liu G. Magnetosome Modification: From Bio-Nano Engineering Toward Nanomedicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Biology; School of Life Sciences; Xiamen University; Xiamen 361102 China
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
28
|
Yoshino T, Shimada T, Ito Y, Honda T, Maeda Y, Matsunaga T, Tanaka T. Biosynthesis of Thermoresponsive Magnetic Nanoparticles by Magnetosome Display System. Bioconjug Chem 2018; 29:1756-1762. [DOI: 10.1021/acs.bioconjchem.8b00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takumi Shimada
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasuhito Ito
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Toru Honda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
29
|
Khoshnevisan K, Vakhshiteh F, Barkhi M, Baharifar H, Poor-Akbar E, Zari N, Stamatis H, Bordbar AK. Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Kutralam-Muniasamy G, Perez-Guevara F. Recombinant surface engineering to enhance and expand the potential of biologically produced nanoparticles: A review. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Yan L, Da H, Zhang S, López VM, Wang W. Bacterial magnetosome and its potential application. Microbiol Res 2017; 203:19-28. [PMID: 28754204 DOI: 10.1016/j.micres.2017.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/08/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023]
Abstract
Bacterial magnetosome, synthetized by magnetosome-producing microorganisms including magnetotactic bacteria (MTB) and some non-magnetotactic bacteria (Non-MTB), is a new type of material comprising magnetic nanocrystals surrounded by a phospholipid bilayer. Because of the special properties such as single magnetic domain, excellent biocompatibility and surface modification, bacterial magnetosome has become an increasingly attractive for researchers in biology, medicine, paleomagnetism, geology and environmental science. This review briefly describes the general feature of magnetosome-producing microorganisms. This article also highlights recent advances in the understanding of the biochemical and magnetic characteristics of bacterial magnetosome, as well as the magnetosome formation mechanism including iron ions uptake, magnetosome membrane formation, biomineralization and magnetosome chain assembly. Finally, this review presents the potential applications of bacterial magnetosome in biomedicine, wastewater treatment, and the significance of mineralization of magnetosome in biology and geology.
Collapse
Affiliation(s)
- Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Huiyun Da
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Viviana Morillo López
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| |
Collapse
|
32
|
Rehm FBH, Chen S, Rehm BHA. Bioengineering toward direct production of immobilized enzymes: A paradigm shift in biocatalyst design. Bioengineered 2017; 9:6-11. [PMID: 28463573 PMCID: PMC5972917 DOI: 10.1080/21655979.2017.1325040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The need for cost-effectively produced and improved biocatalysts for industrial, pharmaceutical and environmental processes is steadily increasing. While enzyme properties themselves can be improved via protein engineering, immobilization by attachment to carrier materials remains a critical step for stabilization and process implementation. A new emerging immobilization approach, the in situ immobilization, enables simultaneous production of highly active enzymes and carrier materials using bioengineering/synthetic biology of microbial cells. In situ enzyme immobilization holds the promise of cost-effective production of highly functional immobilized biocatalysts for uses such as in bioremediation, drug synthesis, bioenergy and food processing.
Collapse
Affiliation(s)
- Fabian B H Rehm
- a Institute for Molecular Bioscience, The University of Queensland , St Lucia , Brisbane , Australia
| | - Shuxiong Chen
- b Institute of Fundamental Sciences, Massey University , Palmerston North , New Zealand
| | - Bernd H A Rehm
- b Institute of Fundamental Sciences, Massey University , Palmerston North , New Zealand.,c Australian Institute of Innovative Materials, University of Wollongong , Australia
| |
Collapse
|
33
|
Rai M, Ingle AP, Gaikwad S, Dussán KJ, da Silva SS. Role of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Ethanol. NANOTECHNOLOGY FOR BIOENERGY AND BIOFUEL PRODUCTION 2017. [DOI: 10.1007/978-3-319-45459-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Rehm FBH, Chen S, Rehm BHA. Enzyme Engineering for In Situ Immobilization. Molecules 2016; 21:E1370. [PMID: 27754434 PMCID: PMC6273058 DOI: 10.3390/molecules21101370] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.
Collapse
Affiliation(s)
- Fabian B H Rehm
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Shuxiong Chen
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
35
|
Polka JK, Hays SG, Silver PA. Building Spatial Synthetic Biology with Compartments, Scaffolds, and Communities. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a024018. [PMID: 27270297 DOI: 10.1101/cshperspect.a024018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traditional views of synthetic biology often treat the cell as an unstructured container in which biological reactions proceed uniformly. In reality, the organization of biological molecules has profound effects on cellular function: not only metabolic, but also physical and mechanical. Here, we discuss a variety of perturbations available to biologists in controlling protein, nucleotide, and membrane localization. These range from simple tags, fusions, and scaffolds to heterologous expression of compartments and other structures that confer unique physical properties to cells. Next, we relate these principles to those guiding the spatial environments outside of cells such as the extracellular matrix. Finally, we discuss new directions in building intercellular organizations to create novel symbioses.
Collapse
Affiliation(s)
- Jessica K Polka
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| | - Stephanie G Hays
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| |
Collapse
|
36
|
Sun Q, Chen W. HaloTag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis. Chem Commun (Camb) 2016; 52:6701-4. [DOI: 10.1039/c6cc02035f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report here the generation of artificial cellulosomes onto a DNA scaffold using the self-labeling HaloTag for DNA conjugation. Rolling circle amplification multiplexing templates were used to increase the complexity of this system with higher efficiency observed.
Collapse
Affiliation(s)
- Qing Sun
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
| |
Collapse
|