1
|
Gao H, Qu L, Li M, Guan X, Zhang S, Deng X, Wang J, Xing F. Unlocking the potential of chimeric antigen receptor T cell engineering immunotherapy: Long road to achieve precise targeted therapy for hepatobiliary pancreatic cancers. Int J Biol Macromol 2025; 297:139829. [PMID: 39814310 DOI: 10.1016/j.ijbiomac.2025.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Innovative therapeutic strategies are urgently needed to address the ongoing global health concern of hepatobiliary pancreatic malignancies. This review summarizes the latest and most comprehensive research of chimeric antigen receptor (CAR-T) cell engineering immunotherapy for treating hepatobiliary pancreatic cancers. Commencing with an exploration of the distinct anatomical location and the immunosuppressive, hypoxic tumor microenvironment (TME), this review critically assesses the limitations of current CAR-T therapy in hepatobiliary pancreatic cancers and proposes corresponding solutions. Various studies aim at enhancing CAR-T cell efficacy in these cancers through improving T cell persistence, enhancing antigen specificity and reducing tumor heterogeneity, also modulating the immunosuppressive and hypoxic TME. Additionally, the review examines the application of emerging nanoparticles and biotechnologies utilized in CAR-T therapy for these cancers. The results suggest that constructing optimized CAR-T cells to overcome physical barrier, manipulating the TME to relieve immunosuppression and hypoxia, designing CAR-T combination therapies, and selecting the most suitable delivery strategies, all together could collectively enhance the safety of CAR-T engineering and advance the effectiveness of adaptive cell therapy for hepatobiliary pancreatic cancers.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianyue Qu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Chen X, Wan H, Lu L, Li R, Sun B, Ren J. PLGA-PEG-c(RGDfK)- Kushenol E Micelles With a Therapeutic Potential for Targeting Ovarian Cancer. IET Nanobiotechnol 2024; 2024:7136323. [PMID: 39649540 PMCID: PMC11623995 DOI: 10.1049/nbt2/7136323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Background: As a naturally derived inhibitor of autophagy, Kushenol E (KE) is a biprenylated flavonoid and is isolated from Sophora flavescens, which has been used for the treatment of cancer, hepatitis, and skin diseases. However, KE, as a poorly soluble drug, exhibited strong autophagy regulating activity in in vitro cancer cell lines, but no related studies have reported its antiovarian cancer property. Therefore, it is very beneficial to enhance the antineoplastic properties of KE by establishing an ovarian tumor-targeting nanoparticle system modified with tumor-homing c(RGDfK) peptides. Materials and Methods: In the current study, poly(lactic-co-glycolic acid)-poly(ethylene glycol)-modified with cyclic RGDfK peptide (PLGA-PEG-c(RGDfK))-KE micelles (PPCKM) were prepared to overcome the poor water solubility of KE to meet the requirement of tumor-active targeting. The effect of PPCKM on ovarian cancer was evaluated on SKOV-3 cells and xenograft models in BALB/c nude mice. Results: The PPCKM showed a higher drug cumulative release ratio (82.16 ± 7.69% vs. 34.96 ± 3.05%, at 1.5 h) with good morphology, particle size (93.41 ± 2.84 nm), and entrapment efficiency (89.7% ± 1.3%). The cell viability, migration, and apoptosis analysis of SKOV-3 cells demonstrated that PPCKM retained potent antitumor effects and promoted apoptosis at early and advanced stages with concentration-dependent. Based on the establishment of xenograft models in BALB/c nude mice, we discovered that PPCKM reduced tumor volume and weight, inhibited proliferating cell nuclear antigen (PCNA) and Ki67 expression, as well as promoted apoptosis by targeting the tumor site. Conclusion: The findings in this study suggest that PPCKM may serve as an effective therapeutic option for ovarian cancer.
Collapse
Affiliation(s)
- Xue Chen
- Department of Traditional Chinese Medicine, Nanxiang Branch of Ruijin Hospital, Shanghai 201802, China
| | - Haopeng Wan
- Department of Traditional Chinese Medicine, Nanxiang Branch of Ruijin Hospital, Shanghai 201802, China
| | - Lijuan Lu
- Department of Gynecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Ran Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212001, China
| | - Bo Sun
- Department of Gynecology, Fangta Traditional Chinese Medicine Hospital of Songjiang District of Shanghai, Shanghai 201699, China
| | - Juan Ren
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200241, China
| |
Collapse
|
3
|
Agarwal H, Bynum RC, Saleh N, Harris D, MacCuaig WM, Kim V, Sanderson EJ, Dennahy IS, Singh R, Behkam B, Gomez-Gutierrez JG, Jain A, Edil BH, McNally LR. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1983. [PMID: 39140128 PMCID: PMC11328968 DOI: 10.1002/wnan.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most recalcitrant cancers due to its late diagnosis, poor therapeutic response, and highly heterogeneous microenvironment. Nanotechnology has the potential to overcome some of the challenges to improve diagnostics and tumor-specific drug delivery but they have not been plausibly viable in clinical settings. The review focuses on active targeting strategies to enhance pancreatic tumor-specific uptake for nanoparticles. Additionally, this review highlights using actively targeted liposomes, micelles, gold nanoparticles, silica nanoparticles, and iron oxide nanoparticles to improve pancreatic tumor targeting. Active targeting of nanoparticles toward either differentially expressed receptors or PDAC tumor microenvironment (TME) using peptides, antibodies, small molecules, polysaccharides, and hormones has been presented. We focus on microenvironment-based hallmarks of PDAC and the potential for actively targeted nanoparticles to overcome the challenges presented in PDAC. It describes the use of nanoparticles as contrast agents for improved diagnosis and the delivery of chemotherapeutic agents that target various aspects within the TME of PDAC. Additionally, we review emerging nano-contrast agents detected using imaging-based technologies and the role of nanoparticles in energy-based treatments of PDAC. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Happy Agarwal
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Ryan C Bynum
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Nada Saleh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Danielle Harris
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - William M MacCuaig
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Vung Kim
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Emma J Sanderson
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Rohit Singh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Virginia, USA
| | | | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Kumar V, Sethi B, Staller DW, Shrestha P, Mahato RI. Gemcitabine elaidate and ONC201 combination therapy for inhibiting pancreatic cancer in a KRAS mutated syngeneic mouse model. Cell Death Discov 2024; 10:158. [PMID: 38553450 PMCID: PMC10980688 DOI: 10.1038/s41420-024-01920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Approximately 90% of pancreatic cancer (PC) contain KRAS mutations. Mutated KRAS activates the downstream oncogenic PI3K/AKT and MEK signaling pathways and induces drug resistance. However, targeting both pathways with different drugs can also lead to excessive toxicity. ONC201 is a dual PI3K/AKT and MEK pathway inhibitor with an excellent safety profile that targets death receptor 5 (DR5) to induce apoptosis. Gemcitabine (GEM) is a first-line chemotherapy in PC, but it is metabolically unstable and can be stabilized by a prodrug approach. In this study, phospho-Akt, phospho-mTOR, and phospho-ERK protein expressions were evaluated in patient PDAC-tissues (n = 10). We used lipid-gemcitabine (L_GEM) conjugate, which is more stable and enters the cells by passive diffusion. Further, we evaluated the efficacy of L_GEM and ONC201 in PC cells and "KrasLSL-G12D; p53LoxP; Pdx1-CreER (KPC) triple mutant xenograft tumor-bearing mice. PDAC patient tissues showed significantly higher levels of p-AKT (Ser473), p-ERK (T202/T204), and p-mTOR compared to surrounding non-cancerous tissues. ONC201 in combination with L_GEM, showed a superior inhibitory effect on the growth of MIA PaCa-2 cells. In our in-vivo study, we found that ONC201 and L_GEM combination prevented neoplastic proliferation via AKT/ERK blockade to overcome chemoresistance and increased T-cell tumor surveillance. Simultaneous inhibition of the PI3K/AKT and MEK pathways with ONC201 is an attractive approach to potentiate the effect of GEM. Our findings provide insight into rational-directed precision chemo and immunotherapy therapy in PDAC.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dalton W Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prakash Shrestha
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Wang L, Li Y, Yang J, Wu Q, Liang S, Liu Z. Poly(Propylene Carbonate)-Based Biodegradable and Environment-Friendly Materials for Biomedical Applications. Int J Mol Sci 2024; 25:2938. [PMID: 38474185 DOI: 10.3390/ijms25052938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Poly(propylene carbonate) (PPC) is an emerging "carbon fixation" polymer that holds the potential to become a "biomaterial of choice" in healthcare owing to its good biocompatibility, tunable biodegradability and safe degradation products. However, the commercialization and wide application of PPC as a biomedical material are still hindered by its narrow processing temperature range, poor mechanical properties and hydrophobic nature. Over recent decades, several physical, chemical and biological modifications of PPC have been achieved by introducing biocompatible polymers, inorganic ions or small molecules, which can endow PPC with better cytocompatibility and desirable biodegradability, and thus enable various applications. Indeed, a variety of PPC-based degradable materials have been used in medical applications including medical masks, surgical gowns, drug carriers, wound dressings, implants and scaffolds. In this review, the molecular structure, catalysts for synthesis, properties and modifications of PPC are discussed. Recent biomedical applications of PPC-based biomaterials are highlighted and summarized.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yumin Li
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jingde Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Qianqian Wu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
7
|
Pramanik N, Gupta A, Ghanwatkar Y, Mahato RI. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release 2024; 366:231-260. [PMID: 38171473 PMCID: PMC10922996 DOI: 10.1016/j.jconrel.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Despite significant treatment efforts, pancreatic ductal adenocarcinoma (PDAC), the deadliest solid tumor, is still incurable in the preclinical stages due to multifacet stroma, dense desmoplasia, and immune regression. Additionally, tumor heterogeneity and metabolic changes are linked to low grade clinical translational outcomes, which has prompted the investigation of the mechanisms underlying chemoresistance and the creation of effective treatment approaches by selectively targeting genetic pathways. Since targeting upstream molecules in first-line oncogenic signaling pathways typically has little clinical impact, downstream signaling pathways have instead been targeted in both preclinical and clinical studies. In this review, we discuss how the complexity of various tumor microenvironment (TME) components and the oncogenic signaling pathways that they are connected to actively contribute to the development and spread of PDAC, as well as the ways that recent therapeutic approaches have been targeted to restore it. We also illustrate how many endogenous stimuli-responsive linker-based nanocarriers have recently been developed for the specific targeting of distinct oncogenes and their downstream signaling cascades as well as their ongoing clinical trials. We also discuss the present challenges, prospects, and difficulties in the development of first-line oncogene-targeting medicines for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Nilkamal Pramanik
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya Gupta
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
8
|
Chen W, Sullivan MO. Unnatural Amino Acid Engineering for Intracellular Delivery of Protein Therapeutics. Methods Mol Biol 2024; 2720:151-164. [PMID: 37775664 DOI: 10.1007/978-1-0716-3469-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Protein drugs are a critically important therapeutic modality due to the sophisticated binding recognition, catalytic properties, and disease relevance of proteins. There is a clear need for new strategies able to improve pharmacokinetics, bioavailability, and/or intracellular delivery of therapeutic proteins, as stability limitations have significantly hindered clinical advancement, and most proteins are membrane impermeable. Bioconjugation strategies able to site-specifically modify proteins with cell binding, and other ligands offer a particularly valuable approach to facilitate protein delivery due to the importance of ligand presentation on protein bioactivity and cellular uptake. We explored unnatural amino acid (UAA) incorporation as a novel strategy to tunably incorporate clustered cell-binding ligands in fluorescent proteins and suicide enzymes, resulting in substantial increases in cell-specific uptake and targeted cell-killing activity. These approaches offer a valuable and versatile method to modify a variety of proteins and enable improved clinical potential.
Collapse
Affiliation(s)
- Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
9
|
Kumar V, Mahato RI. Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles. Cancer Lett 2023; 579:216462. [PMID: 37924937 PMCID: PMC10842153 DOI: 10.1016/j.canlet.2023.216462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Advanced pancreatic cancer patients have a dismal prognosis despite advances in integrative therapy. The field of tumor immunology has witnessed significant advancements for cancer treatment. However, immunotherapy for pancreatic cancer is not very effective due to its highly complex tumor microenvironment (TME). Natural killer (NK) cells are lymphocytes that play an important role in the innate immune system. NK cells do not require antigen pre-sensitization, nor are they confined by the major histocompatibility complex (MHC). NK cells have the potential to eliminate cancer cells through CAR-dependent and CAR-independent pathways, demonstrating reduced levels of systemic toxicity in the process. The availability of several potential sources of NK cells is an additional benefit that contributes to meeting the therapeutic criteria. Adding nanotechnology to enhance the functions of effector NK cells is also an appealing strategy. This article primarily discusses various approaches recently been utilized to enhance the NK functions for the treatment of pancreatic cancer. In addition, new advances in boosting NK cell therapeutic efficacy by nanoparticle mediation are presented, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
10
|
Hersh J, Yang YP, Roberts E, Bilbao D, Tao W, Pollack A, Daunert S, Deo SK. Targeted Bioluminescent Imaging of Pancreatic Ductal Adenocarcinoma Using Nanocarrier-Complexed EGFR-Binding Affibody-Gaussia Luciferase Fusion Protein. Pharmaceutics 2023; 15:1976. [PMID: 37514162 PMCID: PMC10384630 DOI: 10.3390/pharmaceutics15071976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In vivo imaging has enabled impressive advances in biological research, both preclinical and clinical, and researchers have an arsenal of imaging methods available. Bioluminescence imaging is an advantageous method for in vivo studies that allows for the simple acquisition of images with low background signals. Researchers have increasingly been looking for ways to improve bioluminescent imaging for in vivo applications, which we sought to achieve by developing a bioluminescent probe that could specifically target cells of interest. We chose pancreatic ductal adenocarcinoma (PDAC) as the disease model because it is the most common type of pancreatic cancer and has an extremely low survival rate. We targeted the epidermal growth factor receptor (EGFR), which is frequently overexpressed in pancreatic cancer cells, using an EGFR-specific affibody to selectively identify PDAC cells and delivered a Gaussia luciferase (GLuc) bioluminescent protein for imaging by engineering a fusion protein with both the affibody and the bioluminescent protein. This fusion protein was then complexed with a G5-PAMAM dendrimer nanocarrier. The dendrimer was used to improve the protein stability in vivo and increase signal strength. Our targeted bioluminescent complex had an enhanced uptake into PDAC cells in vitro and localized to PDAC tumors in vivo in pancreatic cancer xenograft mice. The bioluminescent complexes could delineate the tumor shape, identify multiple masses, and locate metastases. Through this work, an EGFR-targeted bioluminescent-dendrimer complex enabled the straightforward identification and imaging of pancreatic cancer cells in vivo in preclinical models. This argues for the targeted nanocarrier-mediated delivery of bioluminescent proteins as a way to improve in vivo bioluminescent imaging.
Collapse
Affiliation(s)
- Jessica Hersh
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Yu-Ping Yang
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Evan Roberts
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
- Department of Pathology and Laboratory Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
- Department of Radiation Oncology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alan Pollack
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
- Department of Radiation Oncology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Sapna K. Deo
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| |
Collapse
|
11
|
Rehman U, Abourehab MA, Alexander A, Kesharwani P. Polymeric micelles assisted combinatorial therapy: Is it new hope for pancreatic cancer? Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Han Z, Song B, Yang J, Wang B, Ma Z, Yu L, Li Y, Xu H, Qiao M. Curcumin-Encapsulated Fusion Protein-Based Nanocarrier Demonstrated Highly Efficient Epidermal Growth Factor Receptor-Targeted Treatment of Colorectal Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15464-15473. [PMID: 36454954 DOI: 10.1021/acs.jafc.2c04668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Curcumin, a polyphenol derived from turmeric, has multiple biological functions, such as anti-inflammatory, antioxidant, antibacterial and, above all, antitumor activity. Colorectal cancer is a common malignancy of the gastrointestinal tract with an extremely high mortality rate. However, the low bioavailability and poor targeting properties of curcumin generally limit its clinical application. In the present study, we designed a fusion protein GE11-HGFI as a nanodrug delivery system. The protein was connected by flexible linkers, inheriting the self-assembly properties of hydrophobin HGFI and the targeting ability of GE11. The data show that the encapsulation of curcumin by fusion protein GE11-HGFI can form uniform and stable nanoparticles with a size of only 80 nm. In addition, the nanocarrier had high encapsulation efficiency for curcumin and made it to release sustainably. Notably, the drug-loaded nanosystem selectively targeted colorectal cancer cells with high epidermal growth factor receptor expression, resulting in high aggregated concentrations of curcumin at tumor sites, thus showing a significant anticancer effect. These results suggest that the nanocarrier fusion protein has the potential to be a novel strategy for enhancing molecular bioactivity and drug targeting in cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Bo Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Zhongqiang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Long Yu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Yuanhao Li
- Remegen Co., Ltd., Shandong 264000, P.R. China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
- School of Life Science, Shanxi University, Shanxi 030000, P.R. China
| |
Collapse
|
13
|
Zhao Q, Liu J, Liu S, Han J, Chen Y, Shen J, Zhu K, Ma X. Multipronged Micelles-Hydrogel for Targeted and Prolonged Drug Delivery in Chronic Wound Infections. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46224-46238. [PMID: 36201628 DOI: 10.1021/acsami.2c12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chronic diabetic wounds are a growing threat globally. Many aspects contribute to its deterioration, including bacterial infection, unbalanced microenvironment, dysfunction of cell repair, etc. In this work, we designed a multipronged micelles-hydrogel platform loaded with curcumin and rifampicin (CRMs-hydrogel) for bacteria-infected chronic wound treatment. The curcumin- and rifampicin-loaded micelles (CRMs) exhibited both MMP9-responsive and epidermal growth factor receptor (EGFR)-targeting abilities. On the one hand, drugs could be released from micelles due to responsive disassembly by MMP9, a matrix metalloproteinase overexpressed in a chronic wound environment; on the other hand, CRMs showed specific targeting to EGFR on epithelial cells and fibroblasts and therefore increased intracellular drug delivery. The thermosensitive CRMs-hydrogel could form strong adhesion with the wound area and served as a suitable matrix for sustained release of CRMs directly at the wound bed, with excellent intracellular and extracellular bacterial elimination efficiency and wound healing promotion capability. We found that a single dose of CRMs-hydrogel achieved 99% antibacterial rate at the MRSA-infected diabetic wound, which effectively reduced inflammatory response and promoted the neovascularization and re-epithelialization process, with nearly half reduction of the skin barrier regeneration period. Collectively, our thermosensitive, MMP9-responsive, and targeted micelles-hydrogel nanoplatform is promising for chronic wound treatment.
Collapse
Affiliation(s)
- Qian Zhao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Translational Research Center, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing102218, China
| | - Suhan Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Junhua Han
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yingxian Chen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Kui Zhu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Xiaowei Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
14
|
Bhattarai RS, Bariwal J, Kumar V, Hao C, Deng S, Li W, Mahato RI. pH-sensitive nanomedicine of novel tubulin polymerization inhibitor for lung metastatic melanoma. J Control Release 2022; 350:569-583. [PMID: 36037976 PMCID: PMC10322201 DOI: 10.1016/j.jconrel.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Microtubule binding agents such as paclitaxel and vincristine have activity in metastatic melanoma. However, even responsive tumors develop resistance, highlighting the need to investigate new drug molecules. Here, we showed that a new compound, CH-2-102, developed by our group, has high anti-tumor efficacy in human and murine melanoma cells. We confirmed that CH-2-102 robustly suppresses the microtubule polymerization process by directly interacting with the colchicine binding site. Our results unveil that CH-2-102 suppresses microtubule polymerization and subsequently induces G2 phase cell arrest as one of the possible mechanisms. Notably, CH-2-102 maintains its efficacy even in the paclitaxel resistance melanoma cells due to different binding sites and a non-Pgp substrate. We developed a pH-responsive drug-polymer Schiff bases linker for high drug loading into nanoparticles (NPs). Our CH-2-102 conjugated NPs induced tumor regression more effectively than Abraxane® (Nab-paclitaxel, N-PTX), free drug, and non-sensitive NPs in B16-F10 cell-derived lung metastasis mouse model. Furthermore, our results suggest that the formulation has a high impact on the in vivo efficacy of the drug and warrants further investigation in other cancers, particularly taxane resistant. In conclusion, the microtubule polymerization inhibitor CH-2-102 conjugated pH-responsive NPs induce tumor regression in lung metastasis melanoma mice, suggesting it may be an effective strategy for treating metastatic melanoma.
Collapse
Affiliation(s)
- Rajan S Bhattarai
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jitender Bariwal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chen Hao
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
15
|
de Paiva IM, Vakili MR, Soleimani AH, Tabatabaei Dakhili SA, Munira S, Paladino M, Martin G, Jirik FR, Hall DG, Weinfeld M, Lavasanifar A. Biodistribution and Activity of EGFR Targeted Polymeric Micelles Delivering a New Inhibitor of DNA Repair to Orthotopic Colorectal Cancer Xenografts with Metastasis. Mol Pharm 2022; 19:1825-1838. [PMID: 35271294 PMCID: PMC9175178 DOI: 10.1021/acs.molpharmaceut.1c00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The disruption of polynucleotide kinase/phosphatase (PNKP) in colorectal cancer (CRC) cells deficient in phosphatase and tensin homolog (PTEN) is expected to lead to the loss of cell viability by a process known as synthetic lethality. In previous studies, we have reported on the encapsulation of a novel inhibitor of PNKP, namely, A83B4C63, in polymeric micelles and its activity in slowing the growth of PTEN-deficient CRC cells as well as subcutaneous xenografts. In this study, to enhance drug delivery and specificity to CRC tumors, the surface of polymeric micelles carrying A83B4C63 was modified with GE11, a peptide targeting epidermal growth factor receptor (EGFR) overexpressed in about 70% of CRC tumors. Using molecular dynamics (MD) simulations, we assessed the binding site and affinity of GE11 for EGFR. The GE11-modified micelles, tagged with a near-infrared fluorophore, showed enhanced internalization by EGFR-overexpressing CRC cells in vitro and a trend toward increased primary tumor homing in an orthotopic CRC xenograft in vivo. In line with these observations, the GE11 modification of polymeric micelles was shown to positively contribute to the improved therapeutic activity of encapsulated A83B4C63 against HCT116-PTEN-/- cells in vitro and that of orthotopic CRC xenograft in vivo. In conclusion, our results provided proof of principle evidence for the potential benefit of EGFR targeted polymeric micellar formulations of A83B4C63 as monotherapeutics for aggressive and metastatic CRC tumors but at the same time highlighted the need for the development of EGFR ligands with improved physiological stability and EGFR binding.
Collapse
Affiliation(s)
- Igor Moura de Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | - Amir Hasan Soleimani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | | | - Sirazum Munira
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | - Marco Paladino
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | | - Dennis G Hall
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada.,Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2H5, Canada
| |
Collapse
|
16
|
Han H, Li S, Zhong Y, Huang Y, Wang K, Jin Q, Ji J, Yao K. Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian J Pharm Sci 2022; 17:35-52. [PMID: 35261643 PMCID: PMC8888143 DOI: 10.1016/j.ajps.2021.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Gemcitabine has been extensively applied in treating various solid tumors. Nonetheless, the clinical performance of gemcitabine is severely restricted by its unsatisfactory pharmacokinetic parameters and easy deactivation mainly because of its rapid deamination, deficiencies in deoxycytidine kinase (DCK), and alterations in nucleoside transporter. On this account, repeated injections with a high concentration of gemcitabine are adopted, leading to severe systemic toxicity to healthy cells. Accordingly, it is highly crucial to fabricate efficient gemcitabine delivery systems to obtain improved therapeutic efficacy of gemcitabine. A large number of gemcitabine pro-drugs were synthesized by chemical modification of gemcitabine to improve its biostability and bioavailability. Besides, gemcitabine-loaded nano-drugs were prepared to improve the delivery efficiency. In this review article, we introduced different strategies for improving the therapeutic performance of gemcitabine by the fabrication of pro-drugs and nano-drugs. We hope this review will provide new insight into the rational design of gemcitabine-based delivery strategies for enhanced cancer therapy.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Su Li
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yueyang Zhong
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Wang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
17
|
Yue S, Zhang Y, Wei Y, Haag R, Sun H, Zhong Z. Cetuximab-Polymersome-Mertansine Nanodrug for Potent and Targeted Therapy of EGFR-Positive Cancers. Biomacromolecules 2021; 23:100-111. [PMID: 34913340 DOI: 10.1021/acs.biomac.1c01065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeted nanomedicines particularly armed with monoclonal antibodies are considered to be the most promising advanced chemotherapy for malignant cancers; however, their development is hindered by their instability and drug leakage problems. Herein, we constructed a robust cetuximab-polymersome-mertansine nanodrug (C-P-DM1) for highly potent and targeted therapy of epidermal growth factor receptor (EGFR)-positive solid tumors. C-P-DM1 with a tailored cetuximab surface density of 2 per P-DM1 exhibited a size of ca. 60 nm, high stability with minimum DM1 leakage, glutathione-triggered release of native DM1, and 6.0-11.3-fold stronger cytotoxicity in EGFR-positive human breast (MDA-MB-231), lung (A549), and liver (SMMC-7721) cancer cells (IC50 = 27.1-135.5 nM) than P-DM1 control. Notably, intravenous injection of C-P-DM1 effectively repressed subcutaneous MDA-MB-231 breast cancer and orthotopic A549-Luc lung carcinoma in mice without inducing toxic effects. Strikingly, intratumoral injection of C-P-DM1 completely cured 60% of mice bearing breast tumor without recurrence. This robust cetuximab-polymersome-mertansine nanodrug provides a promising new strategy for targeted treatment of EGFR-positive solid malignancies.
Collapse
Affiliation(s)
- Shujing Yue
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Rainer Haag
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Huanli Sun
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
18
|
Yang L, Fang H, Jiang J, Sha Y, Zhong Z, Meng F. EGFR-targeted pemetrexed therapy of malignant pleural mesothelioma. Drug Deliv Transl Res 2021; 12:2527-2536. [PMID: 34802094 DOI: 10.1007/s13346-021-01094-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy with poor prognosis, for which chemotherapy with pemetrexed (PEM) is among the few clinical treatments. PEM suffers, however, fast clearance, moderate drug exposure, and dose-limiting toxicities. Here, we report on epidermal growth factor receptor (EGFR)-targeted disulfide-crosslinked biodegradable chimaeric polymersomes (EGFR-CPs) to firmly load PEM and boost chemotherapy of MPM. EGFR-CPs encapsulating 8.7-16.4 wt.% PEM (EGFR-CPs-PEM) showed diameters of 62-65 nm and reduction-responsive drug release property. EGFR-CPs-PEM was more efficiently taken up by EGFR-overexpressed MSTO-211H cells, inducing about 4.7-fold enhanced anticancer activity compared with non-targeted CPs-PEM control. Intriguingly, the in vivo experiments in MSTO-211H xenograft mouse model revealed that EGFR-CPs-PEM brought about superior tumor deposition and penetration to CPs-PEM, and significantly more potent tumor repression than CPs-PEM and free PEM. This polymersome-enabled EGFR-targeted delivery of PEM offers an appealing therapeutic strategy for MPM.
Collapse
Affiliation(s)
- Liang Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hanghang Fang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jingjing Jiang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
19
|
Ansari I, Singh P, Mittal A, Mahato RI, Chitkara D. 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials 2021; 275:120953. [PMID: 34218051 DOI: 10.1016/j.biomaterials.2021.120953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
Designing grafted biodegradable polymers with tailored multi-functional properties is one of the most researched fields with extensive biomedical applications. Among many biodegradable polymers, polycarbonates have gained much attention due to their ease of synthesis, high drug loading, and excellent biocompatibility profiles. Among various monomers, 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) derived cyclic carbonate monomers have been extensively explored in terms of their synthesis as well as their polymerization. Since the late 90s, significant advancements have been made in the design of bis-MPA derived cyclic carbonate monomers as well as in their reaction schemes. Currently, bis-MPA derived polycarbonates have taken a form of an entire platform with a multitude of applications, the latest being in the field of nanotechnology, targeted drug, and nucleic acid delivery. The present review outlines an up to date developments that have taken place in the last two decades in the design, synthesis, and biomedical applications of bis-MPA derived cyclic carbonates and their (co)polymers.
Collapse
Affiliation(s)
- Imran Ansari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India.
| |
Collapse
|
20
|
Lu Z, Long Y, Wang Y, Wang X, Xia C, Li M, Zhang Z, He Q. Phenylboronic acid modified nanoparticles simultaneously target pancreatic cancer and its metastasis and alleviate immunosuppression. Eur J Pharm Biopharm 2021; 165:164-173. [PMID: 34020022 DOI: 10.1016/j.ejpb.2021.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignant tumors, its drug resistance, immunosuppression and metastasis makes the traditional chemotherapy and immunotherapy inefficient. Here we confirmed a 3-aminophenylboronic acid-modified low molecular weight heparin-D-α-tocopheryl succinate micellar nanoparticle (PBA-LMWH-TOS NP, PLT NP) could inhibit orthotopic pancreatic tumor and its spontaneous metastases. The small particle size and high affinity of PBA to sialic acid residue (SA) made PLT/PTX NPs significantly targeted and accumulated in both pancreatic tumor tissues and metastases. The immunosuppressive microenvironment of pancreatic tumor was most caused by the infiltration of immunosuppressive cells, mainly myeloid-derived suppressor cells (MDSCs). We first reported that P-selectin glycoprotein ligand-1 (PSGL-1) was expressed on the surfaces of MDSCs in pancreatic tumor tissues. Meanwhile, we found that LMWH could inhibit the early stage of adhesion cascade between vascular endothelial cells (VECs) and MDSCs by interfering with P-selectin/PSGL-1 binding, thus inhibiting MDSC recruitment to pancreatic tumor tissues. The therapeutic results indicated that PLT/PTX NPs could significantly improve the immune microenvironment of pancreatic tumor and inhibit spontaneous metastases. This nanosystem provides a new immune microenvironment regulation mechanism based on carrier materials in pancreatic tumor, and has high clinical application potential.
Collapse
Affiliation(s)
- Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yang Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuhui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chunyu Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
21
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
22
|
Tang SY, Wei H, Yu CY. Peptide-functionalized delivery vehicles for enhanced cancer therapy. Int J Pharm 2021; 593:120141. [DOI: 10.1016/j.ijpharm.2020.120141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 02/08/2023]
|
23
|
Xin X, Kumar V, Lin F, Kumar V, Bhattarai R, Bhatt VR, Tan C, Mahato RI. Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. SCIENCE ADVANCES 2020; 6:eabd6764. [PMID: 33177098 PMCID: PMC7673723 DOI: 10.1126/sciadv.abd6764] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Desmoplastic and hypoxic pancreatic cancer microenvironment induces aberrant expression of miRNAs and hypoxia-inducible factor-1α (HIF-1α) responsible for gemcitabine (GEM) resistance. We demonstrated that miR-519c was down-regulated in pancreatic cancer and transfection of miR-519c in GEM-resistant pancreatic cancer cells inhibited HIF-1α level under hypoxia. We synthesized redox-sensitive mPEG-co-P(Asp)-g-DC-g-S-S-GEM polymer, with GEM payload of 14% (w/w) and 90% GEM release upon incubation with l-glutathione. We synthesized mPEG-co-P(Asp)-g-TEPA-g-DC for complex formation with miRNA. Chemical modification of miR-519c with 2'-O-methyl phosphorothioate (OMe-PS) at 3' end enhanced its stability and activity without being immunogenic. Epidermal growth factor receptor targeting peptide GE11 decoration increased tumor accumulation of micelles after systemic administration and significantly inhibited orthotopic desmoplastic pancreatic cancer growth in NSG mice by down-regulating HIF-1α and genes responsible for glucose uptake and cancer cell metabolism. Our multifunctional nanomedicine of GEM and OMe-PS-miR-519c offers a novel therapeutic strategy to treat desmoplasia and hypoxia-induced chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Feng Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vinod Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rajan Bhattarai
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijaya R Bhatt
- Department of Internal Medicine, Division of Hematology-Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA.
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
24
|
Forest CR, Silva CAC, Thordarson P. Dual‐peptide functionalized nanoparticles for therapeutic use. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chelsea R. Forest
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of New South Wales Sydney New South Wales Australia
| | - Caitlin A. C. Silva
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of New South Wales Sydney New South Wales Australia
| | - Pall Thordarson
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
25
|
Paiva I, Mattingly S, Wuest M, Leier S, Vakili MR, Weinfeld M, Lavasanifar A, Wuest F. Synthesis and Analysis of 64Cu-Labeled GE11-Modified Polymeric Micellar Nanoparticles for EGFR-Targeted Molecular Imaging in a Colorectal Cancer Model. Mol Pharm 2020; 17:1470-1481. [DOI: 10.1021/acs.molpharmaceut.9b01043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Igor Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Stephanie Mattingly
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Melinda Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
| | - Samantha Leier
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Frank Wuest
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
| |
Collapse
|
26
|
Peng Y, Bariwal J, Kumar V, Tan C, Mahato RI. Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Peng
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Jitender Bariwal
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Virender Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University MS 38677 USA
| | - Ram I. Mahato
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
27
|
Samanta K, Setua S, Kumari S, Jaggi M, Yallapu MM, Chauhan SC. Gemcitabine Combination Nano Therapies for Pancreatic Cancer. Pharmaceutics 2019; 11:E574. [PMID: 31689930 PMCID: PMC6920852 DOI: 10.3390/pharmaceutics11110574] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the deadliest causes of cancer-related death in the United States, with a 5-year overall survival rate of 6 to 8%. These statistics suggest that immediate medical attention is needed. Gemcitabine (GEM) is the gold standard first-line single chemotherapy agent for pancreatic cancer but, after a few months, cells develop chemoresistance. Multiple clinical and experimental investigations have demonstrated that a combination or co-administration of other drugs as chemotherapies with GEM lead to superior therapeutic benefits. However, such combination therapies often induce severe systemic toxicities. Thus, developing strategies to deliver a combination of chemotherapeutic agents more securely to patients is needed. Nanoparticle-mediated delivery can offer to load a cocktail of drugs, increase stability and availability, on-demand and tumor-specific delivery while minimizing chemotherapy-associated adverse effects. This review discusses the available drugs being co-administered with GEM and the limitations associated during the process of co-administration. This review also helps in providing knowledge of the significant number of delivery platforms being used to overcome problems related to gemcitabine-based co-delivery of other chemotherapeutic drugs, thereby focusing on how nanocarriers have been fabricated, considering the modes of action, targeting receptors, pharmacology of chemo drugs incorporated with GEM, and the differences in the physiological environment where the targeting is to be done. This review also documents the focus on novel mucin-targeted nanotechnology which is under development for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Kamalika Samanta
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Saini Setua
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sonam Kumari
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Immunology and Microbiology, Institute for Cancer Immunotherapy, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, Institute for Cancer Immunotherapy, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA.
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, Institute for Cancer Immunotherapy, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA.
| |
Collapse
|
28
|
Daeg J, Xu X, Zhao L, Boye S, Janke A, Temme A, Zhao J, Lederer A, Voit B, Shi X, Appelhans D. Bivalent Peptide- and Chelator-Containing Bioconjugates as Toolbox Components for Personalized Nanomedicine. Biomacromolecules 2019; 21:199-213. [DOI: 10.1021/acs.biomac.9b01127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jennifer Daeg
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Technische Universität Dresden, Dresden 01062, Germany
| | - Xiaoying Xu
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Technische Universität Dresden, Dresden 01062, Germany
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People’s Republic of China
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, Universitätsklinikum Carl Gustav Carus, Dresden 01307, Germany
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People’s Republic of China
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Technische Universität Dresden, Dresden 01062, Germany
| | - Xiangyang Shi
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People’s Republic of China
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| |
Collapse
|
29
|
Lieser RM, Chen W, Sullivan MO. Controlled Epidermal Growth Factor Receptor Ligand Display on Cancer Suicide Enzymes via Unnatural Amino Acid Engineering for Enhanced Intracellular Delivery in Breast Cancer Cells. Bioconjug Chem 2019; 30:432-442. [PMID: 30615416 DOI: 10.1021/acs.bioconjchem.8b00783] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteins are ideal candidates for disease treatment because of their high specificity and potency. Despite this potential, delivery of proteins remains a significant challenge due to the intrinsic size, charge, and stability of proteins. Attempts to overcome these challenges have most commonly relied on direct conjugation of polymers and peptides to proteins via reactive groups on naturally occurring residues. While such approaches have shown some success, they allow limited control of the spacing and number of moieties coupled to proteins, which can hinder bioactivity and delivery capabilities of the therapeutic. Here, we describe a strategy to site-specifically conjugate delivery moieties to therapeutic proteins through unnatural amino acid (UAA) incorporation, in order to explore the effect of epidermal growth factor receptor (EGFR)-targeted ligand valency and spacing on internalization of proteins in EGFR-overexpressing inflammatory breast cancer (IBC) cells. Our results demonstrate the ability to enhance targeted protein delivery by tuning a small number of EGFR ligands per protein and clustering these ligands to promote multivalent ligand-receptor interactions. Furthermore, the tailorability of this simple approach was demonstrated through IBC-targeted cell death via the delivery of yeast cytosine deaminase (yCD), a prodrug converting enzyme.
Collapse
Affiliation(s)
- Rachel M Lieser
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| |
Collapse
|
30
|
Sun H, Dong Y, Feijen J, Zhong Z. Peptide-decorated polymeric nanomedicines for precision cancer therapy. J Control Release 2018; 290:11-27. [PMID: 30290243 DOI: 10.1016/j.jconrel.2018.09.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 01/12/2023]
|
31
|
Smart nanoparticles assembled by endogenous molecules for siRNA delivery and cancer therapy via CD44 and EGFR dual-targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:208-217. [PMID: 30352311 DOI: 10.1016/j.nano.2018.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022]
Abstract
We developed an anticancer siRNA delivery system (named HLPR) through modular assembly of endogenous molecules. The structure of HLPR was a tightly condensed siRNA-peptide inner core in turn surrounded by the disordered lipid layer and thin HA coating from which the EGFR-targeted amino acid sequences of YHWYGYTPQNVI partially protrude outside of cell surfaces. Both HA and YHWYGYTPQNVI anchored on HLPR were responsible for targeting CD44 and EGFR overexpressed on the tumor cell surfaces, respectively. HLPR was relatively stable in the blood circulation and reached the tumor tissue in vivo through passive and active targeting. Then HLPR entered tumor cells mainly through EGFR-mediated pathway followed by the separation of HA from the remaining parts of nanocomplexes. The HA-uncoated complexes escaped the endosome through the membrane fusion function of DOPE and released cargoes (siRNA and peptide/siRNA) in the cytoplasm. HLPR significantly inhibited the growth of implanted subcutaneous liver tumors without toxicity.
Collapse
|
32
|
Habban Akhter M, Sateesh Madhav N, Ahmad J. Epidermal growth factor receptor based active targeting: a paradigm shift towards advance tumor therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1188-1198. [PMID: 29991287 DOI: 10.1080/21691401.2018.1481863] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a cell surface receptor belonging to erythroblastic leukemia viral oncogene homologue (ErbB) family of tyrosine kinase. It plays critical role in the regulation of cell proliferation, survival and differentiation. The EGFR receptor is crucial in a variety of tumor development due to unlikely triggered by receptor overexpression, chromosomal mutation and or ligand-dependent receptor dimerization. The EGFR inhibition established a major therapeutic target in cancer therapy. The signal transduction pathway of EGFR is directly involved in tumor pathogenesis and progression. The combinatorial approach with EGFR inhibitors bring novel therapeutic regime with proved clinical efficacy. This critique briefly addressed EGFR receptor characteristics, worldwide report on various cancers and EGFR based potential targeting modalities in skin, breast, ovary, brain, lungs, pancreas, gastric and colorectal tumors and molecular pathways involved in EGFR targeting.
Collapse
Affiliation(s)
- Md Habban Akhter
- a Faculty of Pharmacy , DIT University , Dehradun , India.,b School of Pharmaceutical Education and Research , Jamia Hamdard , New Delhi , India
| | | | - Javed Ahmad
- c Department of Pharmaceutics , Najran University , Najran , Saudi Arabia
| |
Collapse
|
33
|
Li J, Yao S, Wang K, Lu Z, Su X, Li L, Yuan C, Feng J, Yan S, Kong B, Song K. Hypocrellin B-loaded, folate-conjugated polymeric micelle for intraperitoneal targeting of ovarian cancer in vitro and in vivo. Cancer Sci 2018; 109:1958-1969. [PMID: 29617063 PMCID: PMC5989858 DOI: 10.1111/cas.13605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 01/30/2023] Open
Abstract
Photodynamic therapy (PDT) is considered an innovative and attractive modality to treat ovarian cancer. In the present study, a biodegradable polymer poly (ethylene glycol) (PEG)‐poly (lactic acid)(PLA)‐folate (FA‐PEG‐PLA) was prepared in order to synthesize an active‐targeting, water‐soluble and pharmacomodulated photosensitizer nanocarrier. Drug‐loading content, encapsulation efficiency, in vitro and in vivo release were characterized, in which hypocrellin B (HB)/FA‐PEG‐PLA micelles had a high encapsulation efficiency and much slower control release for drugs compared to free drugs (P < .05). To evaluate the targeting ability of the HB/FA‐PEG‐PLA micelles, a cellular uptake study in vitro was carried out, which showed significantly enhanced uptake of HB/FA‐PEG‐PLA micelles in SKOV3 (FR+) compared to A2780 cancer cells (FR−). The enhanced uptake of HB/FA‐PEG‐PLA micelles to cancer cells resulted in a more effective post‐PDT killing of SKOV3 cells compared to plain micelles and free drugs. Binding and uptake of HB/FA‐PEG‐PLA micelles by SKOV3 cells were also observed in vivo after ip injection of folate‐targeted micelles in tumor‐bearing ascitic ovarian cancer animals. Drug levels in ascitic tumor tissues were increased 20‐fold (P < .001), which underscored the effect of a regional therapy approach with folate targeting. Furthermore, the HB‐loaded micelles were mainly distributed in kidney and liver (the main clearance organs) in biodistribution. These results showed that our newly developed PDT photosensitizer HB/FA‐PEG‐PLA micelles have a high drug‐loading capacity, good biocompatibility, controlled drug release, and enhanced targeting and antitumor effect, which is a potential approach to future targeting ovarian cancer therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Shu Yao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Kai Wang
- Department of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Zaijun Lu
- Department of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Xuantao Su
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Li Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Cunzhong Yuan
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Jinbo Feng
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Shi Yan
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
34
|
Chu WY, Tsai MH, Peng CL, Shih YH, Luo TY, Yang SJ, Shieh MJ. pH-Responsive Nanophotosensitizer for an Enhanced Photodynamic Therapy of Colorectal Cancer Overexpressing EGFR. Mol Pharm 2018; 15:1432-1444. [PMID: 29498860 DOI: 10.1021/acs.molpharmaceut.7b00925] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) has been shown to kill cancer cells and improve survival and quality of life in cancer patients, and numerous new approaches have been considered for maximizing the efficacy of PDT. In this study, a new multifunctional nanophotosensitizer Ce6/GE11-(pH)micelle was developed to target epidermal growth factor receptor (EGFR) overexpressing colorectal cancer (CRC) cells. This nanophotosensitizer was synthesized using a micelle comprising pH-responsive copolymers (PEGMA-PDPA), biodegradable copolymers (mPEG-PCL), and maleimide-modified biodegradable copolymers (Mal-PEG-PCL) to entrap the potential hydrophobic photosensitizer chlorin e6 (Ce6) and to present EGFR-targeting peptides (GE11) on its surface. In the presence of Ce6/GE11-(pH)micelles, Ce6 uptake by EGFR-overexpressing CRC cells significantly increased due to GE11 specificity. Moreover, Ce6 was released from Ce6/GE11-(pH)micelles in tumor environments, leading to improved elimination of cancer cells in PDT. These results indicate enhanced efficacy of PDT using Ce6/GE11-(pH)micelle, which is a powerful nanophotosensitizer with high potential for application to future PDT for CRC.
Collapse
Affiliation(s)
- Wen-Yu Chu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , No. 1, Section 1, Jen-Ai Road , Taipei 100 , Taiwan
| | - Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , No. 1, Section 1, Jen-Ai Road , Taipei 100 , Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division , Institute of Nuclear Energy Research , P.O. Box 3-27, Longtan, Taoyuan 325 , Taiwan
| | - Ying-Hsia Shih
- Isotope Application Division , Institute of Nuclear Energy Research , P.O. Box 3-27, Longtan, Taoyuan 325 , Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division , Institute of Nuclear Energy Research , P.O. Box 3-27, Longtan, Taoyuan 325 , Taiwan
| | - Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , No. 1, Section 1, Jen-Ai Road , Taipei 100 , Taiwan.,Gene'e Tech Co. Ltd. 2F., No. 661, Bannan Road , Zhonghe Dist., New Taipei City 235 , Taiwan.,Apius Bio Inc. 1F., No. 92, Daxin Street , Yonghe Dist., New Taipei City 234 , Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , No. 1, Section 1, Jen-Ai Road , Taipei 100 , Taiwan.,Department of Oncology , National Taiwan University Hospital and College of Medicine , No. 7, Chung-Shan South Road , Taipei 100 , Taiwan
| |
Collapse
|
35
|
Coadministration of Polymeric Conjugates of Docetaxel and Cyclopamine Synergistically Inhibits Orthotopic Pancreatic Cancer Growth and Metastasis. Pharm Res 2018; 35:17. [PMID: 29305793 DOI: 10.1007/s11095-017-2303-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to determine whether co-administration of hedgehog (Hh) pathway inhibitor cyclopamine (CYP) and microtubule stabilizer docetaxel (DTX) as polymer-drug conjugates, methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-cyclopamine) (P-CYP) and methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol-graft-docetaxel) (P-DTX) could synergistically inhibit orthotopic pancreatic tumor growth in NSG mice. METHODS P-DTX and P-CYP were synthesized from mPEG-b-PCC through carbodiimide coupling reaction and characterized by 1H-NMR. The micelles were prepared by film hydration and particle size was measured by dynamic light scattering (DLS). Cytotoxicity, apoptosis and cell cycle analysis of P-DTX and P-CYP were evaluated in MIA PaCa-2 cells. In vivo efficacy of P-DTX and P-CYP were evaluated in NSG mice bearing MIA PaCa-2 cells derived orthotopic pancreatic tumor. RESULTS P-CYP and P-DTX self-assembled into micelles of <90 nm and their combination therapy efficiently inhibited the proliferation of MIA PaCa-2 cells, induced apoptosis and cell cycle arrest at M-phase more efficiently than P-CYP and P-DTX monotherapies. Furthermore, the combination therapy of P-CYP and P-DTX significantly reduced Hh component expression compared to P-CYP alone as determined by Western blot analysis. Lastly, the combination therapy induced greater inhibition of orthotopic pancreatic tumor growth in NSG mice compared to their monotherapies. CONCLUSION Combination of polymer conjugated anticancer drug (P-DTX) with polymer conjugated Hh inhibitor (P-CYP) enhanced pancreatic cancer cell killing, apoptosis as well as in vivo tumor growth inhibition with no obvious toxicities.
Collapse
|
36
|
Liu J, He J, Zhang M, Xu G, Ni P. A synergistic polyphosphoester-based co-delivery system of the anticancer drug doxorubicin and the tumor suppressor gene p53 for lung cancer therapy. J Mater Chem B 2018; 6:3262-3273. [DOI: 10.1039/c8tb00746b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hybrid micelles composed of polymeric prodrug and gene carrier were constructed by polyphosphoester-based co-delivery system for lung cancer therapy.
Collapse
Affiliation(s)
- Jie Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- P. R. China
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| |
Collapse
|
37
|
Fang Y, Yang W, Cheng L, Meng F, Zhang J, Zhong Z. EGFR-targeted multifunctional polymersomal doxorubicin induces selective and potent suppression of orthotopic human liver cancer in vivo. Acta Biomater 2017; 64:323-333. [PMID: 29030307 DOI: 10.1016/j.actbio.2017.10.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Liver cancer is a globally leading malignancy that has a poor five-year survival rate of less than 20%. The systemic chemotherapeutics are generally ineffective for liver cancers partly due to fast clearance and low tumor uptake. Here, we report that GE11 peptide functionalized polymersomal doxorubicin (GE11-PS-DOX) effectively targets and inhibits epidermal growth factor receptor (EGFR)-positive SMMC7721 orthotopic human liver tumor xenografts in mice. GE11-PS-DOX with a GE11 surface density of 10% displayed a high drug loading of 15.4 wt%, a small size of 78 nm, and glutathione-triggered release of DOX. MTT assays, flow cytometry and confocal microscopy studies revealed that GE11-PS-DOX mediated obviously more efficient DOX delivery into SMMC7721 cells than the non-targeting PS-DOX and clinically used liposomal doxorubicin (Lipo-DOX) controls. The in vivo studies showed that GE11-PS-DOX had a long circulation time and an extraordinary accumulation in the tumors (13.3 %ID/g). Interestingly, GE11-PS-DOX caused much better treatment of SMMC7721 orthotopic liver tumor-bearing mice as compared to PS-DOX and Lipo-DOX. The mice treated with GE11-PS-DOX (12 mg DOX equiv./kg) exhibited a significantly improved survival rate (median survival time: 130 days versus 70 and 38 days for PS-DOX at 12 mg DOX equiv./kg and Lipo-DOX at 6 mg DOX equiv./kg, respectively) and achieved 50% complete regression. Notably, GE11-PS-DOX induced obviously lower systemic toxicity than Lipo-DOX. EGFR-targeted multifunctional polymersomal doxorubicin with improved efficacy and safety has a high potential for treating human liver cancers. STATEMENT OF SIGNIFICANCE Liver cancer is one of the top five leading causes of cancer death worldwide. The systemic chemotherapeutics and biotherapeutics generally have a low treatment efficacy for hepatocellular carcinoma partly due to fast clearance and/or low tumor uptake. Nanomedicines based on biodegradable micelle and polymersomes offer a most promising treatment for malignant liver cancers. Their clinical effectiveness remains, however, suboptimal owing to issues like inadequate systemic stability, low tumor accumulation and selectivity, and poor control over drug release. Here we report that GE11 peptide-functionalized, disulfide-crosslinked multifunctional polymersomal doxorubicin (GE11-PS-DOX) can effectively suppress the growth of orthotopic SMMC7721 human liver tumors in nude mice. They showed significantly decreased systemic toxicity and improved mouse survival rate with 3.4-fold longer median survival time as compared to clinically used pegylated liposomal doxorubicin (Lipo-DOX) and achieving 50% complete regression. GE11-PS-DOX, based on PEG-PTMC is biodegradable, nontoxic, and easy to prepare, appears as a safe, robust, versatile and all-function-in-one nanoplatform that has a high potential in targeted chemotherapy of EGFR expressed hepatocellular carcinoma.
Collapse
|
38
|
Affram K, Udofot O, Singh M, Krishnan S, Reams R, Rosenberg J, Agyare E. Smart thermosensitive liposomes for effective solid tumor therapy and in vivo imaging. PLoS One 2017; 12:e0185116. [PMID: 28934281 PMCID: PMC5608370 DOI: 10.1371/journal.pone.0185116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022] Open
Abstract
In numerous studies, liposomes have been used to deliver anticancer drugs such as doxorubicin to local heat-triggered tumor. Here, we investigate: (i) the ability of thermosensitive liposomal nanoparticle (TSLnp) as a delivery system to deliver poorly membrane-permeable anticancer drug, gemcitabine (Gem) to solid pancreatic tumor with the aid of local mild hyperthermia and, (ii) the possibility of using gadolinium (Magnevist®) loaded-TSLnps (Gd-TSLnps) to increase magnetic resonance imaging (MRI) contrast in solid tumor. In this study, we developed and tested gemcitabine-loaded thermosensitive liposomal nanoparticles (Gem-TSLnps) and gadolinium-loaded thermosensitive liposomal nanoparticles (Gd-TSLnps) both in in-vitro and in-vivo. The TSLnps exhibited temperature-dependent release of Gem, at 40-42°C, 65% of Gem was released within 10 min, whereas < 23% Gem leakage occurred at 37°C after a period of 2 h. The pharmacokinetic parameters and tissue distribution of both Gem-TSLnps and Gd-TSLnps were significantly greater compared with free Gem and Gd, while Gem-TSLnps plasma clearance was reduced by 17-fold and that of Gd-TSLpns was decreased by 2-fold. Area under the plasma concentration time curve (AUC) of Gem-TSLnps (35.17± 0.04 μghr/mL) was significantly higher than that of free Gem (2.09 ± 0.01 μghr/mL) whereas, AUC of Gd-TSLnps was higher than free Gd by 3.9 fold high. TSLnps showed significant Gem accumulation in heated tumor relative to free Gem. Similar trend of increased Gd-TSLnps accumulation was observed in non-heated tumor compared to that of free Gd; however, no significant difference in MRI contrast enhancement between free Gd and Gd-TSLnps ex-vivo tumor images was observed. Despite Gem-TSLnps dose being half of free Gem dose, antitumor efficacy of Gem-TSLnps was comparable to that of free Gem(Gem-TSLnps 10 mg Gem/kg compared with free Gem 20 mg/kg). Overall, the findings suggest that TSLnps may be used to improve Gem delivery and enhance its antitumor activity. However, the formulation of Gd-TSLnp needs to be fully optimized to significantly enhance MRI contrast in tumor.
Collapse
Affiliation(s)
- Kevin Affram
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida, United States of America
| | - Ofonime Udofot
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida, United States of America
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida, United States of America
| | - Sunil Krishnan
- The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Renee Reams
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida, United States of America
| | - Jens Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida, United States of America
| |
Collapse
|
39
|
Mondal G, Almawash S, Chaudhary AK, Mahato RI. EGFR-Targeted Cationic Polymeric Mixed Micelles for Codelivery of Gemcitabine and miR-205 for Treating Advanced Pancreatic Cancer. Mol Pharm 2017; 14:3121-3133. [PMID: 28719220 DOI: 10.1021/acs.molpharmaceut.7b00355] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gemcitabine (GEM), a first-line chemotherapy for pancreatic cancer undergoes rapid metabolism and develops chemoresistance after repeated administration. We previously demonstrated that the combination of GEM and miR-205 provides an effective therapeutic strategy to sensitize GEM-resistant pancreatic cancer cells. Since epidermal growth factor receptor (EGFR) is overexpressed in pancreatic cancer cells, in this study, we aimed to deliver mixed micelles containing GEM and miR-205 decorated with EGFR-targeting cetuximab (C225) monoclonal antibody for targeted therapy. Cetuximab C225 was conjugated to malemido-poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol (C225-PEG-PCD) to prepare mixed micelles with mPEG-b-PCC-g-GEM-g-DC-g-TEPA for targeted codelivery of GEM and miR-205. This mixed micelle formulation showed a significant enhancement in EGFR-mediated cellular uptake in GEM-resistant MIA PaCa-2R cells. Further, an enhanced tumor accumulation of C225-micelles conjugated with near-infrared fluorescent Cy7.5 dye and Dy677-labeled miR-205 in orthotopic pancreatic tumor bearing NSG mice was evident after systemic administration. In addition, inhibition of tumor growth was also observed with increased apoptosis and reduced EMT after treatment with C225-micelles containing GEM and miR-205. Therefore, we believe that the targeted delivery of GEM and miR-205 in combination could be a novel strategy for treating advanced pancreatic cancer.
Collapse
Affiliation(s)
- Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Saud Almawash
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Amit Kumar Chaudhary
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
40
|
Moretton MA, Bernabeu E, Grotz E, Gonzalez L, Zubillaga M, Chiappetta DA. A glucose-targeted mixed micellar formulation outperforms Genexol in breast cancer cells. Eur J Pharm Biopharm 2017; 114:305-316. [PMID: 28192249 DOI: 10.1016/j.ejpb.2017.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
Breast cancer represents the top cancer among women, accounting 521.000 deaths per year. Development of targeted nanomedicines to breast cancer tissues represents a milestone to reduce chemotherapy side effects. Taking advantage of the over-expression of glucose (Glu) membrane transporters in breast cancer cells, we aim to expand the potential of a paclitaxel (PTX)-loaded mixed micellar formulation based on polyvinyl caprolactam-polyvinylacetate-polyethylene glycol graft copolymer (Soluplus®) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) by its surface decoration with Glu moieties. The glycopolymer (Soluplus(Glu)) was obtained by microwave-assisted ring opening reaction of δ-gluconolactone initiated by Soluplus®. The glycosylation was confirmed by 1H NMR and by agglutination assays employing Concanavalin A. The hydrodynamic diameter of Soluplus(Glu) micelles was characterized by dynamic light scattering (100.3±3.8nm) as well as the critical micellar concentration value (0.0151% w/v). Then, a mixed micelle formulation employing Soluplus®, Soluplus(Glu) and TPGS (3:1:1wt ratio) loaded with PTX (4mg/mL) was developed as a multifunctional nanocarrier. Its in vitro anticancer performance in MCF-7 (1.6-fold) and MDA-MB-231 (14.1-fold) was significantly enhanced (p<0.05) versus the unique commercially available micellar-based PTX-nanoformulation (Genexol®). Furthermore, the in vitro PTX cellular uptake assays revealed that the drug intracellular/cell content was significantly (p<0.05) higher for the Glu-containing mixed micelles versus Genexol® after 6h of incubation with MCF-7 (30.5-fold) and MDA-MB-231 (5-fold). Overall, results confirmed the potential of our Glu-decorated mixed colloidal formulation as an intelligent nanocarrier for PTX-targeted breast cancer chemotherapy.
Collapse
Affiliation(s)
- Marcela A Moretton
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ezequiel Bernabeu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Estefanía Grotz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Lorena Gonzalez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcela Zubillaga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Diego A Chiappetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
41
|
Dutta R, Kumar V, Peng Y, Evande RE, Grem JL, Mahato RI. Pharmacokinetics and Biodistribution of GDC-0449 Loaded Micelles in Normal and Liver Fibrotic Mice. Pharm Res 2016; 34:564-578. [DOI: 10.1007/s11095-016-2081-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
|
42
|
Kattel K, Mondal G, Lin F, Kumar V, Mahato RI. Biodistribution of Self-Assembling Polymer-Gemcitabine Conjugate after Systemic Administration into Orthotopic Pancreatic Tumor Bearing Mice. Mol Pharm 2016; 14:1365-1372. [PMID: 27798825 DOI: 10.1021/acs.molpharmaceut.6b00929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Therapeutic efficacy of gemcitabine (GEM) is severely limited due to its rapid metabolism by enzymatic deamination in vivo. We recently determined its therapeutic efficacy before (F-GEM) and after conjugation to poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate) (mPEG-b-PCC-g-GEM-g-DC, abbreviated as P-GEM) in subcutaneous and orthotopic pancreatic tumor bearing mice. In this study, pharmacokinetic (PK) parameters and biodistribution profiles of F-GEM and P-GEM were determined after intravenous injection into orthotopic pancreatic tumor bearing NSG mice. To assess the short-term toxicity, the levels of hematological, hepatic, and renal injury markers were measured after 24 h postadministration into these mice. P-GEM was distributed to all the major organs, with higher accumulation in the liver, spleen, and tumor compared to F-GEM. Area under the curve (AUC), elimination half-life (t1/2), and mean residence time (MRT) of P-GEM treated group were significantly higher compared to those of F-GEM treated group: 246,425 ± 1605 vs 83,591 ± 1844 ng/mL × h as AUC, 5.77 ± 2.02 vs 1.99 ± 0.09 h as t1/2, and 4.45 ± 0.15 vs 1.12 ± 0.13 h as MRT. Further, P-GEM exhibited negligible systemic toxicity as evidenced by almost similar alanine aminotransferase (ALT) and aspartate aminotransferase (AST) values for both P-GEM and F-GEM. These results suggest that P-GEM protects GEM from degradation and provides sustained drug release, resulting in enhanced GEM delivery to the tumor by more than 2.5-fold compared to F-GEM. Hence, P-GEM is a promising gemcitabine conjugated polymeric micelle for treating pancreatic cancer.
Collapse
Affiliation(s)
- Krishna Kattel
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Feng Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|