1
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
2
|
Danielsson A, Kogut MM, Maszota-Zieleniak M, Chopra P, Boons GJ, Samsonov SA. Molecular Dynamics-based descriptors of 3-O-Sulfated Heparan Sulfate as Contributors of Protein Binding Specificity. Comput Biol Chem 2022; 99:107716. [DOI: 10.1016/j.compbiolchem.2022.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
|
3
|
Möller S, Theiß J, Deinert TIL, Golat K, Heinze J, Niemeyer D, Wyrwa R, Schnabelrauch M, Bogner E. High-Sulfated Glycosaminoglycans Prevent Coronavirus Replication. Viruses 2022; 14:v14020413. [PMID: 35216006 PMCID: PMC8877876 DOI: 10.3390/v14020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses (CoVs) are common among humans and many animals, causing respiratory or gastrointestinal diseases. Currently, only a few antiviral drugs against CoVs are available. Especially for SARS-CoV-2, new compounds for treatment of COVID-19 are urgently needed. In this study, we characterize the antiviral effects of two high-sulfated glycosaminoglycan (GAG) derivatives against SARS-CoV-2 and bovine coronaviruses (BCoV), which are both members of the Betacoronavirus genus. The investigated compounds are based on hyaluronan (HA) and chondroitin sulfate (CS) and exhibit a strong inhibitory effect against both CoVs. Yield assays were performed using BCoV-infected PT cells in the presence and absence of the compounds. While the high-sulfated HA (sHA3) led to an inhibition of viral growth early after infection, high-sulfated CS (sCS3) had a slightly smaller effect. Time of addition assays, where sHA3 and sCS3 were added to PT cells before, during or after infection, demonstrated an inhibitory effect during all phases of infection, whereas sHA3 showed a stronger effect even after virus absorbance. Furthermore, attachment analyses with prechilled PT cells revealed that virus attachment is not blocked. In addition, sHA3 and sCS3 inactivated BCoV by stable binding. Analysis by quantitative real-time RT PCR underlines the high potency of the inhibitors against BCoV, as well as B.1-lineage, Alpha and Beta SARS-CoV-2 viruses. Taken together, these results demonstrated that the two high-sulfated GAG derivatives exhibit low cytotoxicity and represent promising candidates for an anti-CoV therapy.
Collapse
Affiliation(s)
- Stephanie Möller
- INNOVENT e.V., Biomaterial Department, 07745 Jena, Germany; (S.M.); (R.W.); (M.S.)
| | - Janine Theiß
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
| | - Thaira I. L. Deinert
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
| | - Karoline Golat
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
| | - Julian Heinze
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
- German Center for Infection Research (DZIF), 10117 Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
- German Center for Infection Research (DZIF), 10117 Berlin, Germany
| | - Ralf Wyrwa
- INNOVENT e.V., Biomaterial Department, 07745 Jena, Germany; (S.M.); (R.W.); (M.S.)
| | | | - Elke Bogner
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
- Correspondence: ; Tel.: +49-30-450-525121
| |
Collapse
|
4
|
Hintze V, Schnabelrauch M, Rother S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front Chem 2022; 10:830671. [PMID: 35223772 PMCID: PMC8873528 DOI: 10.3389/fchem.2022.830671] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan, the extracellular matrix glycosaminoglycan, is an important structural component of many tissues playing a critical role in a variety of biological contexts. This makes hyaluronan, which can be biotechnologically produced in large scale, an attractive starting polymer for chemical modifications. This review provides a broad overview of different synthesis strategies used for modulating the biological as well as material properties of this polysaccharide. We discuss current advances and challenges of derivatization reactions targeting the primary and secondary hydroxyl groups or carboxylic acid groups and the N-acetyl groups after deamidation. In addition, we give examples for approaches using hyaluronan as biomedical polymer matrix and consequences of chemical modifications on the interaction of hyaluronan with cells via receptor-mediated signaling. Collectively, hyaluronan derivatives play a significant role in biomedical research and applications indicating the great promise for future innovative therapies.
Collapse
Affiliation(s)
- Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Sandra Rother
- School of Medicine, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Brunori F, Padhi DK, Alshanski I, Freyse J, Dürig JN, Penk A, Vaccaro L, Hurevich M, Rademann J, Yitzchaik S. Sulfation Pattern Dependent Iron(III) Mediated Interleukin-8 Glycan Binding. Chembiochem 2021; 23:e202100552. [PMID: 34851004 DOI: 10.1002/cbic.202100552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Indexed: 12/30/2022]
Abstract
Cytokines such as interleukin-8 activate the immune system during infection and interact with sulfated glycosaminoglycans with specific sulfation patterns. In some cases, these interactions are mediated by metal ion binding which can be used to tune surface-based glycan-protein interactions. We evaluated the effect of both hyaluronan sulfation degree and Fe3+ on interleukin-8 binding by electrochemical impedance spectroscopy and surface characterizations. Our results show that sulfation degree and metal ion interactions have a synergistic effect in tuning the electrochemical response of the glycated surfaces to the cytokine.
Collapse
Affiliation(s)
- Francesco Brunori
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel.,Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologiae Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Deepak Kumar Padhi
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Israel Alshanski
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Joanna Freyse
- Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, Berlin, 14195, Germany
| | - Jan-Niklas Dürig
- Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, Berlin, 14195, Germany
| | - Anja Penk
- Institute of Medical Physics and Biophysics, Leipzig University, Medical Faculty, Härtelstraße 16/18, 04107, Leipzig, Germany
| | - Luigi Vaccaro
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologiae Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Mattan Hurevich
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Jörg Rademann
- Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, Berlin, 14195, Germany
| | - Shlomo Yitzchaik
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
6
|
Großkopf H, Vogel S, Müller CD, Köhling S, Dürig JN, Möller S, Schnabelrauch M, Rademann J, Hempel U, von Bergen M, Schubert K. Identification of intracellular glycosaminoglycan-interacting proteins by affinity purification mass spectrometry. Biol Chem 2021; 402:1427-1440. [PMID: 34472763 DOI: 10.1515/hsz-2021-0167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are essential functional components of the extracellular matrix (ECM). Artificial GAGs like sulfated hyaluronan (sHA) exhibit pro-osteogenic properties and boost healing processes. Hence, they are of high interest for supporting bone regeneration and wound healing. Although sulfated GAGs (sGAGs) appear intracellularly, the knowledge about intracellular effects and putative interaction partners is scarce. Here we used an affinity-purification mass spectrometry-based (AP-MS) approach to identify novel and particularly intracellular sGAG-interacting proteins in human bone marrow stromal cells (hBMSC). Overall, 477 proteins were found interacting with at least one of four distinct sGAGs. Enrichment analysis for protein localization showed that mainly intracellular and cell-associated interacting proteins were identified. The interaction of sGAG with α2-macroglobulin receptor-associated protein (LRPAP1), exportin-1 (XPO1), and serine protease HTRA1 (HTRA1) was confirmed in reverse assays. Consecutive pathway and cluster analysis led to the identification of biological processes, namely processes involving binding and processing of nucleic acids, LRP1-dependent endocytosis, and exosome formation. Respecting the preferentially intracellular localization of sGAG in vesicle-like structures, also the interaction data indicate sGAG-specific modulation of vesicle-based transport processes. By identifying many sGAG-specific interacting proteins, our data provide a resource for upcoming studies aimed at molecular mechanisms and understanding of sGAG cellular effects.
Collapse
Affiliation(s)
- Henning Großkopf
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
| | - Sarah Vogel
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Claudia Damaris Müller
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Sebastian Köhling
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Jan-Niklas Dürig
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V. Technologieentwicklung Jena, Jena D-07745, Germany
| | - Matthias Schnabelrauch
- Biomaterials Department, INNOVENT e.V. Technologieentwicklung Jena, Jena D-07745, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Leipzig D-04103, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
| |
Collapse
|
7
|
Schiller J, Lemmnitzer K, Dürig JN, Rademann J. Insights into structure, affinity, specificity, and function of GAG-protein interactions through the chemoenzymatic preparation of defined sulfated oligohyaluronans. Biol Chem 2021; 402:1375-1384. [PMID: 34291624 DOI: 10.1515/hsz-2021-0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/04/2021] [Indexed: 11/15/2022]
Abstract
High amounts of glycosaminoglycans (GAG) such as hyaluronan (HA) occur in connective tissues. There is nowadays increasing evidence that a "sulfation code" exists which mediates numerous GAG functions. High molecular weight and inhomogeneity of GAG, however, aggravated detailed studies. Thus, synthetic oligosaccharides were urgently required. We will review here chemoenzymatic and analytic strategies to provide defined sulfated and anomerically modified GAG oligosaccharides of the HA type. Representative studies of protein/GAG interactions by (bio)chemical and biophysical methods are reported yielding novel insights into GAG-protein binding. Finally, the biological conclusions and in vivo applications of defined sulfated GAG oligosaccharides will be discussed.
Collapse
Affiliation(s)
- Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, 04107Leipzig, Germany
| | - Katharina Lemmnitzer
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, 04107Leipzig, Germany
| | - Jan-Niklas Dürig
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195Berlin, Germany
| | - Jörg Rademann
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195Berlin, Germany
| |
Collapse
|
8
|
Vogel S, Ullm F, Müller CD, Pompe T, Hempel U. Impact of binding mode of low-sulfated hyaluronan to 3D collagen matrices on its osteoinductive effect for human bone marrow stromal cells. Biol Chem 2021; 402:1465-1478. [PMID: 34085493 DOI: 10.1515/hsz-2021-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Synthetically sulfated hyaluronan derivatives were shown to facilitate osteogenic differentiation of human bone marrow stromal cells (hBMSC) by application in solution or incorporated in thin collagen-based coatings. In the presented study, using a biomimetic three-dimensional (3D) cell culture model based on fibrillary collagen I (3D Col matrix), we asked on the impact of binding mode of low sulfated hyaluronan (sHA) in terms of adsorptive and covalent binding on osteogenic differentiation of hBMSC. Both binding modes of sHA induced osteogenic differentiation. Although for adsorptive binding of sHA a strong intracellular uptake of sHA was observed, implicating an intracellular mode of action, covalent binding of sHA to the 3D matrix induced also intense osteoinductive effects pointing towards an extracellular mode of action of sHA in osteogenic differentiation. In summary, the results emphasize the relevance of fibrillary 3D Col matrices as a model to study hBMSC differentiation in vitro in a physiological-like environment and that sHA can display dose-dependent osteoinductive effects in dependence on presentation mode in cell culture scaffolds.
Collapse
Affiliation(s)
- Sarah Vogel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| | - Franziska Ullm
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Johannisallee 21-23, D-04103Leipzig, Germany
| | - Claudia Damaris Müller
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Johannisallee 21-23, D-04103Leipzig, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| |
Collapse
|
9
|
Krieghoff J, Picke AK, Salbach-Hirsch J, Rother S, Heinemann C, Bernhardt R, Kascholke C, Möller S, Rauner M, Schnabelrauch M, Hintze V, Scharnweber D, Schulz-Siegmund M, Hacker MC, Hofbauer LC, Hofbauer C. Increased pore size of scaffolds improves coating efficiency with sulfated hyaluronan and mineralization capacity of osteoblasts. Biomater Res 2019; 23:26. [PMID: 31890268 PMCID: PMC6921484 DOI: 10.1186/s40824-019-0172-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background Delayed bone regeneration of fractures in osteoporosis patients or of critical-size bone defects after tumor resection are a major medical and socio-economic challenge. Therefore, the development of more effective and osteoinductive biomaterials is crucial. Methods We examined the osteogenic potential of macroporous scaffolds with varying pore sizes after biofunctionalization with a collagen/high-sulfated hyaluronan (sHA3) coating in vitro. The three-dimensional scaffolds were made up from a biodegradable three-armed lactic acid-based macromer (TriLA) by cross-polymerization. Templating with solid lipid particles that melt during fabrication generates a continuous pore network. Human mesenchymal stem cells (hMSC) cultivated on the functionalized scaffolds in vitro were investigated for cell viability, production of alkaline phosphatase (ALP) and bone matrix formation. Statistical analysis was performed using student’s t-test or two-way ANOVA. Results We succeeded in generating scaffolds that feature a significantly higher average pore size and a broader distribution of individual pore sizes (HiPo) by modifying composition and relative amount of lipid particles, macromer concentration and temperature for cross-polymerization during scaffold fabrication. Overall porosity was retained, while the scaffolds showed a 25% decrease in compressive modulus compared to the initial TriLA scaffolds with a lower pore size (LoPo). These HiPo scaffolds were more readily coated as shown by higher amounts of immobilized collagen (+ 44%) and sHA3 (+ 25%) compared to LoPo scaffolds. In vitro, culture of hMSCs on collagen and/or sHA3-coated HiPo scaffolds demonstrated unaltered cell viability. Furthermore, the production of ALP, an early marker of osteogenesis (+ 3-fold), and formation of new bone matrix (+ 2.5-fold) was enhanced by the functionalization with sHA3 of both scaffold types. Nevertheless, effects were more pronounced on HiPo scaffolds about 112%. Conclusion In summary, we showed that the improvement of scaffold pore sizes enhanced the coating efficiency with collagen and sHA3, which had a significant positive effect on bone formation markers, underlining the promise of using this material approach for in vivo studies.
Collapse
Affiliation(s)
- Jan Krieghoff
- 1Institute for Pharmacy, Pharmaceutical Technology, University Leipzig, Leipzig, Germany
| | - Ann-Kristin Picke
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany
| | - Juliane Salbach-Hirsch
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany
| | - Sandra Rother
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Present address: Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA USA
| | - Christiane Heinemann
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Ricardo Bernhardt
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,6Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Christian Kascholke
- 1Institute for Pharmacy, Pharmaceutical Technology, University Leipzig, Leipzig, Germany
| | | | - Martina Rauner
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany
| | | | - Vera Hintze
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Dieter Scharnweber
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Michael C Hacker
- 1Institute for Pharmacy, Pharmaceutical Technology, University Leipzig, Leipzig, Germany
| | - Lorenz C Hofbauer
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany.,8Center for Regenerative Therapies, Dresden, Germany
| | - Christine Hofbauer
- 9Orthopedics and Trauma Surgery Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Alshanski I, Blaszkiewicz J, Mervinetsky E, Rademann J, Yitzchaik S, Hurevich M. Sulfation Patterns of Saccharides and Heavy Metal Ion Binding. Chemistry 2019; 25:12083-12090. [DOI: 10.1002/chem.201901538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Israel Alshanski
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Joanna Blaszkiewicz
- Medicinal ChemistryFreie Universität Berlin Königin-Luise-Strasse 2+4 Berlin 14195 Germany
| | - Evgeniy Mervinetsky
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Jörg Rademann
- Medicinal ChemistryFreie Universität Berlin Königin-Luise-Strasse 2+4 Berlin 14195 Germany
| | - Shlomo Yitzchaik
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Mattan Hurevich
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| |
Collapse
|
11
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
12
|
Schmidt JR, Vogel S, Moeller S, Kalkhof S, Schubert K, von Bergen M, Hempel U. Sulfated hyaluronic acid and dexamethasone possess a synergistic potential in the differentiation of osteoblasts from human bone marrow stromal cells. J Cell Biochem 2019; 120:8706-8722. [PMID: 30485523 DOI: 10.1002/jcb.28158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
The development of novel bioactive biomaterials is urgently needed to meet the needs of an aging population. Both sulfated hyaluronic acid and dexamethasone are candidates for the functionalization of bone grafts, as they have been shown to enhance the differentiation of osteoblasts from bone marrow stromal cells in vitro and in vivo. However, the underlying mechanisms are not fully understood. Furthermore, studies combining different approaches to assess synergistic potentials are rare. In this study, we aim to gain insights into the mode of action of both sulfated hyaluronic acid and dexamethasone by a comprehensive analysis of the cellular fraction, released matrix vesicles, and the extracellular matrix, combining classical biochemical assays with mass spectrometry-based proteomics, supported by novel bioinformatical computations. We found elevated differentiation levels for both treatments, which were further enhanced by a combination of sulfated hyaluronic acid and dexamethasone. Single treatments revealed specific effects on osteogenic differentiation. Dexamethasone activates signalling pathways involved in the differentiation of osteoblasts, for example, CXC-motif chemokine receptor type 4 and mitogen-activated protein kinases. The effects of sulfated hyaluronic acid were predominantly linked to an alteration in the composition of the extracellular matrix, affecting the synthesis, secretion, and/or activity of fibrillary (fibronectin and thrombospondin-2) and nonfibrillary (transglutaminase-2, periostin, and lysyloxidase) extracellular matrix components, including proteases and their inhibitors (matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-3). The effects were treatment specific, and less additive or contrary effects were found. Thus, we anticipate that the synergistic action of the treatment-specific effects is the key driver in elevated osteogenesis.
Collapse
Affiliation(s)
- Johannes R Schmidt
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sarah Vogel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Stefan Kalkhof
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Kristin Schubert
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Martin von Bergen
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Ruiz-Gómez G, Vogel S, Möller S, Pisabarro MT, Hempel U. Glycosaminoglycans influence enzyme activity of MMP2 and MMP2/TIMP3 complex formation - Insights at cellular and molecular level. Sci Rep 2019; 9:4905. [PMID: 30894640 PMCID: PMC6426840 DOI: 10.1038/s41598-019-41355-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/08/2019] [Indexed: 01/01/2023] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic network constantly remodeled by a fine-tuned protein formation and degradation balance. Matrix metalloproteinases (MMPs) constitute key orchestrators of ECM degradation. Their activity is controlled by tissue inhibitors of metalloproteinases (TIMPs) and glycosaminoglycans (GAG). Here, we investigated the molecular interplay of MMP2 with different GAG (chondroitin sulfate, hyaluronan (HA), sulfated hyaluronan (SH) and heparin (HE)) and the impact of GAG on MMP2/TIMP3 complex formation using in vitro-experiments with human bone marrow stromal cells, in silico docking and molecular dynamics simulations. SH and HE influenced MMP2 and TIMP3 protein levels and MMP2 activity. Only SH supported the alignment of both proteins in fibrillar-like structures, which, based on our molecular models, would be due to a stabilization of the interactions between MMP2-hemopexin domain and TIMP3-C-terminal tail. Dependent on the temporal sequential order in which the final ternary complex was formed, our models indicated that SH and HA can affect TIMP3-induced MMP2 inhibition through precluding or supporting their interactions, respectively. Our combined experimental and theoretical approach provides valuable new insights on how GAG interfere with MMP2 activity and MMP2/TIMP3 complex formation. The results obtained evidence GAG as promising molecules for fine-balanced intervention of ECM remodeling.
Collapse
Affiliation(s)
- Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Sarah Vogel
- Medical Department, Institute of Physiological Chemistry, TU Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V., Prüssingstraße 27 B, 07745, Jena, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Ute Hempel
- Medical Department, Institute of Physiological Chemistry, TU Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
| |
Collapse
|
14
|
Kanakis I, Liu K, Poulet B, Javaheri B, van 't Hof RJ, Pitsillides AA, Bou-Gharios G. Targeted Inhibition of Aggrecanases Prevents Articular Cartilage Degradation and Augments Bone Mass in the STR/Ort Mouse Model of Spontaneous Osteoarthritis. Arthritis Rheumatol 2019; 71:571-582. [PMID: 30379418 DOI: 10.1002/art.40765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/25/2018] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Cartilage destruction in osteoarthritis (OA) is mediated mainly by matrix metalloproteinases (MMPs) and ADAMTS. The therapeutic candidature of targeting aggrecanases has not yet been defined in joints in which spontaneous OA arises from genetic susceptibility, as in the case of the STR/Ort mouse, without a traumatic or load-induced etiology. In addition, we do not know the long-term effect of aggrecanase inhibition on bone. We undertook this study to assess the potential aggrecanase selectivity of a variant of tissue inhibitor of metalloproteinases 3 (TIMP-3), called [-1A]TIMP-3, on spontaneous OA development and bone formation in STR/Ort mice. METHODS Using the background of STR/Ort mice, which develop spontaneous OA, we generated transgenic mice that overexpress [-1A]TIMP-3, either ubiquitously or conditionally in chondrocytes. [-1A]TIMP-3 has an extra alanine at the N-terminus that selectively inhibits ADAMTS but not MMPs. We analyzed a range of OA-related measures in all mice at age 40 weeks. RESULTS Mice expressing high levels of [-1A]TIMP-3 were protected against development of OA, while those expressing low levels were not. Interestingly, we also found that high levels of [-1A]TIMP-3 transgene overexpression resulted in increased bone mass, particularly in females. This regulation of bone mass was at least partly direct, as adult mouse primary osteoblasts infected with [-1A]TIMP-3 in vitro showed elevated rates of mineralization. CONCLUSION The results provide evidence that [-1A]TIMP-3-mediated inhibition of aggrecanases can protect against cartilage degradation in a naturally occurring mouse model of OA, and they highlight a novel role that aggrecanase inhibition may play in increased bone mass.
Collapse
Affiliation(s)
| | - Ke Liu
- University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
15
|
Unravel a neuroactive sHA sulfation pattern with neurogenesis activity by a library of defined oligosaccharides. Eur J Med Chem 2019; 163:583-596. [DOI: 10.1016/j.ejmech.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023]
|
16
|
Köhling S, Blaszkiewicz J, Ruiz-Gómez G, Fernández-Bachiller MI, Lemmnitzer K, Panitz N, Beck-Sickinger AG, Schiller J, Pisabarro MT, Rademann J. Syntheses of defined sulfated oligohyaluronans reveal structural effects, diversity and thermodynamics of GAG-protein binding. Chem Sci 2018; 10:866-878. [PMID: 30774881 PMCID: PMC6346292 DOI: 10.1039/c8sc03649g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023] Open
Abstract
High binding affinities of GAG toward extracellular regulatory proteins are governed by recognition diversity, sulfation pattern, length, and anomeric functionalization.
Binding of sulfated glycosaminoglycans (GAG) to a wide spectrum of extracellular regulatory proteins is crucial for physiological processes such as cell growth, migration, tissue homeostasis and repair. Thus, GAG derivatives exhibit great relevance in the development of innovative biomaterials for tissue regeneration therapies. We present a synthetic strategy for the preparation of libraries of defined sulfated oligohyaluronans as model GAG systematically varied in length, sulfation pattern and anomeric substitution in order to elucidate the effects of these parameters on GAG recognition by regulatory proteins. Through an experimental and computational approach using fluorescence polarization, ITC, docking and molecular dynamics simulations we investigate the binding of these functionalized GAG derivatives to ten representative regulatory proteins including IL-8, IL-10, BMP-2, sclerostin, TIMP-3, CXCL-12, TGF-β, FGF-1, FGF-2, and AT-III, and we establish structure–activity relationships for GAG recognition. Binding is mainly driven by enthalpy with only minor entropic contributions. In several cases binding is determined by GAG length, and in all cases by the position and number of sulfates. Affinities strongly depend on the anomeric modification of the GAG. Highest binding affinities are effected by anomeric functionalization with large fluorophores and by GAG dimerization. Our experimental and theoretical results suggest that the diversity of GAG binding sites and modes is responsible for the observed high affinities and other binding features. The presented new insights into GAG–protein recognition will be of relevance to guide the design of GAG derivatives with customized functions for the engineering of new biomaterials.
Collapse
Affiliation(s)
- Sebastian Köhling
- Institute of Pharmacy - Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany .
| | - Joanna Blaszkiewicz
- Institute of Pharmacy - Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany .
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics , BIOTEC TU Dresden , Tatzberg 47-51 , Dresden 01307 , Germany .
| | | | - Katharina Lemmnitzer
- Institute of Medical Physics and Biophysics , University of Leipzig , Härtelstr. 16/18 , 04107 Leipzig , Germany
| | - Nydia Panitz
- Institute of Biochemistry , University of Leipzig , Brüderstr. 34 , 04103 Leipzig , Germany
| | | | - Jürgen Schiller
- Institute of Medical Physics and Biophysics , University of Leipzig , Härtelstr. 16/18 , 04107 Leipzig , Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics , BIOTEC TU Dresden , Tatzberg 47-51 , Dresden 01307 , Germany .
| | - Jörg Rademann
- Institute of Pharmacy - Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany .
| |
Collapse
|
17
|
Corsuto L, Rother S, Koehler L, Bedini E, Moeller S, Schnabelrauch M, Hintze V, Schiraldi C, Scharnweber D. Sulfation degree not origin of chondroitin sulfate derivatives modulates keratinocyte response. Carbohydr Polym 2018; 191:53-64. [PMID: 29661321 DOI: 10.1016/j.carbpol.2018.02.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022]
Abstract
Chondroitin sulfate (CS) sulfation-dependently binds transforming growth factor-β1 (TGF-β1) and chronic wounds often accompany with epidermal hyperproliferation due to downregulated TGF-β signaling. However, the impact of CS on keratinocytes is unknown. Especially biotechnological-chemical strategies are promising to replace animal-derived CS. Thus, this study aims to evaluate the effects of CS derivatives on the interaction with vascular endothelial growth factor-A (VEGF-A) and on keratinocyte response. Over-sulfated CS (sCS3) interacts stronger with VEGF-A than CS. Furthermore, collagen coatings with CS variants are prepared by in vitro fibrillogenesis. Stability analyses demonstrate that collagen is firmly integrated, while the fibril diameters decrease with increasing sulfation degree. CS variants sulfation-dependently decelerate keratinocyte (HaCaT) migration and proliferation in a scratch assay. HaCaT cultured on sCS3-containing coatings produced increased amounts of solute active TGF-β1 which could be translated into biomaterials able to decrease epidermal hyperproliferation in chronic wounds. Overall, semi-synthetic and natural CS yield to comparable responses.
Collapse
Affiliation(s)
- Luisana Corsuto
- Department of Experimental Medicine, Section of Biotechnology, Second University of Naples, Italy
| | - Sandra Rother
- Technische Universitaet Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, D-01069 Dresden, Germany
| | - Linda Koehler
- Technische Universitaet Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, D-01069 Dresden, Germany
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy
| | | | | | - Vera Hintze
- Technische Universitaet Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, D-01069 Dresden, Germany
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Second University of Naples, Italy.
| | - Dieter Scharnweber
- Technische Universitaet Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, D-01069 Dresden, Germany.
| |
Collapse
|
18
|
Rother S, Samsonov SA, Moeller S, Schnabelrauch M, Rademann J, Blaszkiewicz J, Köhling S, Waltenberger J, Pisabarro MT, Scharnweber D, Hintze V. Sulfated Hyaluronan Alters Endothelial Cell Activation in Vitro by Controlling the Biological Activity of the Angiogenic Factors Vascular Endothelial Growth Factor-A and Tissue Inhibitor of Metalloproteinase-3. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9539-9550. [PMID: 28248081 DOI: 10.1021/acsami.7b01300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Several pathologic conditions such as rheumatoid arthritis, ocular neovascularization, cancer, or atherosclerosis are often associated with abnormal angiogenesis, which requires innovative biomaterial-based treatment options to control the activity of angiogenic factors. Here, we studied how sulfated hyaluronan (sHA) and oversulfated chondroitin sulfate derivatives as potential components of functional biomaterials modulate vascular endothelial growth factor-A (VEGF-A) signaling and endothelial cell activity in vitro. Tissue inhibitor of metalloproteinase-3 (TIMP-3), an effective angiogenesis inhibitor, exerts its activity by competing with VEGF-A for binding to VEGF receptor-2 (VEGFR-2). However, even though TIMP-3 and VEGF-A are known to interact with glycosaminoglycans (GAGs), the potential role and mechanism by which GAGs alter the VEGF-A/TIMP-3 regulated VEGFR-2 signaling remains unclear. Combining surface plasmon resonance, immunobiochemical analysis, and molecular modeling, we demonstrate the simultaneous binding of VEGF-A and TIMP-3 to sHA-coated surfaces and identified a novel mechanism by which sulfated GAG derivatives control angiogenesis: GAG derivatives block the binding of VEGF-A and TIMP-3 to VEGFR-2 thereby reducing their biological activity in a defined, sulfation-dependent manner. This effect was stronger for sulfated GAG derivatives than for native GAGs. The simultaneous formation of TIMP-3/sHA complexes partially rescues the sHA inhibited VEGF-A/VEGFR-2 signaling and endothelial cell activation. These results provide novel insights into the regulation of angiogenic factors by GAG derivatives and highlight the potential of sHA derivatives for the treatment of diseases associated with increased VEGF-A and VEGFR-2 levels.
Collapse
Affiliation(s)
- Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , 01069 Dresden, Germany
| | - Sergey A Samsonov
- Structural Bioinformatics, BIOTEC Technische Universität Dresden , Tatzberg 47-51, 01307 Dresden, Germany
| | | | | | - Jörg Rademann
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
- Institute of Medical Physics and Biophysics, Universität Leipzig , Härtelstrasse 16/18, 04107 Leipzig, Germany
| | - Joanna Blaszkiewicz
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
- Institute of Medical Physics and Biophysics, Universität Leipzig , Härtelstrasse 16/18, 04107 Leipzig, Germany
| | - Sebastian Köhling
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
- Institute of Medical Physics and Biophysics, Universität Leipzig , Härtelstrasse 16/18, 04107 Leipzig, Germany
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, University of Münster , Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC Technische Universität Dresden , Tatzberg 47-51, 01307 Dresden, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , 01069 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , 01069 Dresden, Germany
| |
Collapse
|