1
|
Wei P, Chen K, Chen J. Engineering an Ultrasound-Responsive Glycopolymersome for Hepatocyte-Specific Gene Delivery. Biomacromolecules 2024; 25:7838-7849. [PMID: 39514216 DOI: 10.1021/acs.biomac.4c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The ability to design liver-targeted gene delivery vectors is plagued with difficulties ranging from carrier-mediated cellular toxicity to challenges in encapsulating sensitive nucleic acids. Herein, we present an ultrasound-responsive glycopolymersome strategy for in situ loading of nucleic acids and achieving hepatocyte-specific gene delivery. This glycopolymersome is self-assembled from a block copolymer, N-acetylgalactosamine-grafted poly(glutamic acid)-block-poly(ε-caprolactone) (PGAGalNAc-b-PCL). GalNAc is introduced to afford liver targeting through the selective binding to the asialoglycoprotein receptor overexpressed on hepatocytes. External ultrasound is utilized to assist in encapsulating nucleic acids within the hydrophilic lumen of glycopolymersomes by exploiting their ultrasound responsiveness nature. Biological studies confirmed the successful encapsulation of plasmid DNA (pDNA) and small interfering RNA (siRNA), rapid nuclear internalization, and efficient gene transfection. These findings collectively demonstrated that this ultrasound-responsive glycopolymersome could be exploited as a novel safe and efficient gene vector targeting hepatocytes.
Collapse
Affiliation(s)
- Ping Wei
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Kai Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Hincapie R, Bhattacharya S, Baksh MM, Sanhueza CA, Echeverri ES, Kim H, Paunovska K, Podilapu AR, Xu M, Dahlman JE, Finn MG. Multivalent Targeting of the Asialoglycoprotein Receptor by Virus-Like Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304263. [PMID: 37649182 PMCID: PMC10840735 DOI: 10.1002/smll.202304263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
The asialoglycoprotein receptor (ASGPR) is expressed in high density on hepatocytes. Multivalent variants of galactosyl carbohydrates bind ASGPR with high affinity, enabling hepatic delivery of ligand-bound cargo. Virus-like particle (VLP) conjugates of a relatively high-affinity ligand were efficiently endocytosed by ASGPR-expressing cells in a manner strongly dependent on the nature and density of ligand display, with the best formulation using a nanomolar-, but not a picomolar-level, binder. Optimized particles were taken up by HepG2 cells with greater efficiency than competing small molecules or the natural multigalactosylated ligand, asialoorosomucoid. Upon systemic injection in mice, these VLPs were rapidly cleared to the liver and were found in association with sinusoidal endothelial cells, Kupffer cells, hepatocytes, dendritic cells, and other immune cells. Both ASGPR-targeted and nontargeted particles were distributed similarly to endothelial and Kupffer cells, but targeted particles were distributed to a greater number and fraction of hepatocytes. Thus, selective cellular trafficking in the liver is difficult to achieve: even with the most potent ASGPR targeting available, barrier cells take up much of the injected particles and hepatocytes are accessed only approximately twice as efficiently in the best case.
Collapse
Affiliation(s)
- Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Michael M Baksh
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Carlos A Sanhueza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ananda R Podilapu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
4
|
Kim Y, Hyun JY, Shin I. Multivalent glycans for biological and biomedical applications. Chem Soc Rev 2021; 50:10567-10593. [PMID: 34346405 DOI: 10.1039/d0cs01606c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of glycans by proteins plays a crucial role in a variety of physiological processes in cells and living organisms. In addition, interactions of glycans with proteins are involved in the development of diverse diseases, such as pathogen infection, inflammation and tumor metastasis. It is well-known that multivalent glycans bind to proteins much more strongly than do their monomeric counterparts. Owing to this property, numerous multivalent glycans have been utilized to elucidate glycan-mediated biological processes and to discover glycan-based biomedical agents. In this review, we discuss recent advances (2014-2020) made in the development and biological and biomedical applications of synthetic multivalent glycans, including neoglycopeptides, neoglycoproteins, glycodendrimers, glycopolymers, glyconanoparticles and glycoliposomes. We hope this review assists researchers in the design and development of novel multivalent glycans with predictable activities.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Liu Y, Tan M, Fang C, Chen X, Liu H, Feng Y, Zhang Y, Min W. A novel multifunctional gold nanorod-mediated and tumor-targeted gene silencing of GPC-3 synergizes photothermal therapy for liver cancer. NANOTECHNOLOGY 2021; 32:175101. [PMID: 33445163 DOI: 10.1088/1361-6528/abdbed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tumor-specific targeted delivery is a major obstacle to clinical treatment of hepatocellular carcinoma (HCC). Here we have developed a novel multi-functional nanostructure GAL-GNR-siGPC-3, which consists of Galactose (GAL) as the HCC-targeting moiety, golden nanorods (GNR) as a framework to destroy tumor cells under laser irradiation, and siRNA of Glypican-3 (siGPC-3) which induce specifically gene silence of GPC-3 in HCC. Glypican-3 (GPC-3) gene is highly associated with HCC and is a new potential target for HCC therapy. On the other hand, Gal can specifically bind to the asialoglycoprotein receptor which is highly expressed on membrane of hepatoma cells. GAL and siGPC-3 can induce targeted silencing of GPC-3 gene in hepatoma cells. In vivo and in vitro results showed that GAL-GNR-siGPC-3 could significantly induce downregulation of GPC-3 gene and inhibit the progression of HCC. More notably, GAL-GNR-siGPC-3 could induce both GPC-3 gene silencing and photothermal effects, and the synergistic treatment of tumors was more effective than individual treatments. In summary, GAL-GNR-siGPC-3 achieved a synergistic outcome to the treatment of cancer, which opens up a new approach for the development of clinical therapies for HCC.
Collapse
Affiliation(s)
- Yanling Liu
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Manman Tan
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Chunjuan Fang
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Xiaoyan Chen
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Huan Liu
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Ying Feng
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Yujuan Zhang
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
| | - Weiping Min
- Jiangxi University of Technology, Nanchang, Jiangxi 330008 People's Republic of China
- Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi 330008 People's Republic of China
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, N6A 5A5, Canada
| |
Collapse
|
6
|
Joseph Naguib M, Moustafa Kamel A, Thabet Negmeldin A, Elshafeey AH, Elsayed I. Molecular docking and statistical optimization of taurocholate-stabilized galactose anchored bilosomes for the enhancement of sofosbuvir absorption and hepatic relative targeting efficiency. Drug Deliv 2020; 27:996-1009. [PMID: 32611266 PMCID: PMC8216436 DOI: 10.1080/10717544.2020.1787557] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
The work aimed to improve both absorption and hepatic availability of sofosbuvir. Bilosomes and galactose-anchored bilosomes were investigated as potential nanocarriers for this purpose. Sofosbuvir is a class III drug with high solubility and low permeability. Thus, the drug entrapment into lipid-based galactose-anchored carriers would enhance drug permeability and improve its liver availability. The galactosylated taurocholate was designed and synthesized based on molecular docking studies, where both galactose and taurocholate molecules were connected in a way to avoid affecting crucial interactions and avoid steric clashes with their cellular uptake receptors. The suggested nano-carriers were prepared using a thin-film hydration technique with sodium taurocholate and span 60 as stabilizers. The prepared formulae were statistically optimized using a central composite design. The optimized plain and galactosylated formulae, composed of SAA to drug ratio of 1:1 w/w and sodium taurocholate to span ratio of 10:1 w/w, have a vesicular size, zeta potential and entrapment efficiency in the range of 140-150 nm, -50 mV and 85%, respectively. The optimized formulae were lyophilized to increase their physical stability and facilitate accurate drug dosing. In vivo results showed that Sofosbuvir availability in the liver was significantly increased after oral administration of the plain and the galactosylated bilosomal formulae when compared to the oral drug solution with relative targeting efficiencies (RTIs) of 1.51 and 3.66, respectively. These findings confirmed the hypothesis of considering the galactosylated bilosomes a promising nanocarrier to efficiently target sofosbuvir to the liver.
Collapse
Affiliation(s)
- Marianne Joseph Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Ahmed Thabet Negmeldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy and Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy and Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
| |
Collapse
|
7
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
8
|
Song H, Allison SJ, Brabec V, Bridgewater HE, Kasparkova J, Kostrhunova H, Novohradsky V, Phillips RM, Pracharova J, Rogers NJ, Shepherd SL, Scott P. Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hualong Song
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Simon J. Allison
- School of Applied Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Viktor Brabec
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | | | - Jana Kasparkova
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Hana Kostrhunova
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Vojtech Novohradsky
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Roger M. Phillips
- School of Applied Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Jitka Pracharova
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
- Department of Biophysics Centre of the Region Hana for Biotechnological and Agricultural Research Faculty of Science Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Nicola J. Rogers
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | | | - Peter Scott
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
9
|
Song H, Allison SJ, Brabec V, Bridgewater HE, Kasparkova J, Kostrhunova H, Novohradsky V, Phillips RM, Pracharova J, Rogers NJ, Shepherd SL, Scott P. Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo. Angew Chem Int Ed Engl 2020; 59:14677-14685. [PMID: 32489012 PMCID: PMC7497174 DOI: 10.1002/anie.202006814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Monosaccharides are added to the hydrophilic face of a self-assembled asymmetric FeII metallohelix, using CuAAC chemistry. The sixteen resulting architectures are water-stable and optically pure, and exhibit improved antiproliferative selectivity against colon cancer cells (HCT116 p53+/+ ) with respect to the non-cancerous ARPE-19 cell line. While the most selective compound is a glucose-appended enantiomer, its cellular entry is not mainly glucose transporter-mediated. Glucose conjugation nevertheless increases nuclear delivery ca 2.5-fold, and a non-destructive interaction with DNA is indicated. Addition of the glucose units affects the binding orientation of the metallohelix to naked DNA, but does not substantially alter the overall affinity. In a mouse model, the glucose conjugated compound was far better tolerated, and tumour growth delays for the parent compound (2.6 d) were improved to 4.3 d; performance as good as cisplatin but with the advantage of no weight loss in the subjects.
Collapse
Affiliation(s)
- Hualong Song
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Simon J. Allison
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Viktor Brabec
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | | | - Jana Kasparkova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Hana Kostrhunova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Vojtech Novohradsky
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Roger M. Phillips
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Jitka Pracharova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
- Department of BiophysicsCentre of the Region Hana for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 2778371OlomoucCzech Republic
| | | | | | - Peter Scott
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
10
|
ASGR1 and Its Enigmatic Relative, CLEC10A. Int J Mol Sci 2020; 21:ijms21144818. [PMID: 32650396 PMCID: PMC7404283 DOI: 10.3390/ijms21144818] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
The large family of C-type lectin (CLEC) receptors comprises carbohydrate-binding proteins that require Ca2+ to bind a ligand. The prototypic receptor is the asialoglycoprotein receptor-1 (ASGR1, CLEC4H1) that is expressed primarily by hepatocytes. The early work on ASGR1, which is highly specific for N-acetylgalactosamine (GalNAc), established the foundation for understanding the overall function of CLEC receptors. Cells of the immune system generally express more than one CLEC receptor that serve diverse functions such as pathogen-recognition, initiation of cellular signaling, cellular adhesion, glycoprotein turnover, inflammation and immune responses. The receptor CLEC10A (C-type lectin domain family 10 member A, CD301; also called the macrophage galactose-type lectin, MGL) contains a carbohydrate-recognition domain (CRD) that is homologous to the CRD of ASGR1, and thus, is also specific for GalNAc. CLEC10A is most highly expressed on immature DCs, monocyte-derived DCs, and alternatively activated macrophages (subtype M2a) as well as oocytes and progenitor cells at several stages of embryonic development. This receptor is involved in initiation of TH1, TH2, and TH17 immune responses and induction of tolerance in naïve T cells. Ligand-mediated endocytosis of CLEC receptors initiates a Ca2+ signal that interestingly has different outcomes depending on ligand properties, concentration, and frequency of administration. This review summarizes studies that have been carried out on these receptors.
Collapse
|
11
|
Mnich ME, van Dalen R, van Sorge NM. C-Type Lectin Receptors in Host Defense Against Bacterial Pathogens. Front Cell Infect Microbiol 2020; 10:309. [PMID: 32733813 PMCID: PMC7358460 DOI: 10.3389/fcimb.2020.00309] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Antigen-presenting cells (APCs) are present throughout the human body—in tissues, at barrier sites and in the circulation. They are critical for processing external signals to instruct both local and systemic responses toward immune tolerance or immune defense. APCs express an extensive repertoire of pattern-recognition receptors (PRRs) to detect and transduce these signals. C-type lectin receptors (CLRs) comprise a subfamily of PRRs dedicated to sensing glycans, including those expressed by commensal and pathogenic bacteria. This review summarizes recent findings on the recognition of and responses to bacteria by membrane-expressed CLRs on different APC subsets, which are discussed according to the primary site of infection. Many CLR-bacterial interactions promote bacterial clearance, whereas other interactions are exploited by bacteria to enhance their pathogenic potential. The discrimination between protective and virulence-enhancing interactions is essential to understand which interactions to target with new prophylactic or treatment strategies. CLRs are also densely concentrated at APC dendrites that sample the environment across intact barrier sites. This suggests an–as yet–underappreciated role for CLR-mediated recognition of microbiota-produced glycans in maintaining tolerance at barrier sites. In addition to providing a concise overview of identified CLR-bacteria interactions, we discuss the main challenges and potential solutions for the identification of new CLR-bacterial interactions, including those with commensal bacteria, and for in-depth structure-function studies on CLR-bacterial glycan interactions. Finally, we highlight the necessity for more relevant tissue-specific in vitro, in vivo and ex vivo models to develop therapeutic applications in this area.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, Netherlands.,GSK, Siena, Italy
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
12
|
Beyer VP, Monaco A, Napier R, Yilmaz G, Becer CR. Bottlebrush Glycopolymers from 2-Oxazolines and Acrylamides for Targeting Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin and Mannose-Binding Lectin. Biomacromolecules 2020; 21:2298-2308. [PMID: 32320219 DOI: 10.1021/acs.biomac.0c00246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lectins are omnipresent carbohydrate binding proteins that are involved in a multitude of biological processes. Unearthing their binding properties is a powerful tool toward the understanding and modification of their functions in biological applications. Herein, we present the synthesis of glycopolymers with a brush architecture via a "grafting from" methodology. The use of a versatile 2-oxazoline inimer was demonstrated to open avenues for a wide range of 2-oxazoline/acrylamide bottle brush polymers utilizing aqueous Cu-mediated reversible deactivation radical polymerization (Cu-RDRP). The polymers in the obtained library were assessed for their thermal properties in aqueous solution and their binding toward the C-type animal lectins dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and mannose-binding lectin (MBL) via surface plasmon resonance spectrometry. The encapsulation properties of a hydrophobic drug-mimicking compound demonstrated the potential use of glyco brush copolymers in biological applications.
Collapse
Affiliation(s)
- Valentin P Beyer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
13
|
Begum AA, Toth I, Hussein WM, Moyle PM. Advances in Targeted Gene Delivery. Curr Drug Deliv 2020; 16:588-608. [PMID: 31142250 DOI: 10.2174/1567201816666190529072914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/31/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Gene therapy has the potential to treat both acquired and inherited genetic diseases. Generally, two types of gene delivery vectors are used - viral vectors and non-viral vectors. Non-viral gene delivery systems have attracted significant interest (e.g. 115 gene therapies approved for clinical trials in 2018; clinicaltrials.gov) due to their lower toxicity, lack of immunogenicity and ease of production compared to viral vectors. To achieve the goal of maximal therapeutic efficacy with minimal adverse effects, the cell-specific targeting of non-viral gene delivery systems has attracted research interest. Targeting through cell surface receptors; the enhanced permeability and retention effect, or pH differences are potential means to target genes to specific organs, tissues, or cells. As for targeting moieties, receptorspecific ligand peptides, antibodies, aptamers and affibodies have been incorporated into synthetic nonviral gene delivery vectors to fulfill the requirement of active targeting. This review provides an overview of different potential targets and targeting moieties to target specific gene delivery systems.
Collapse
Affiliation(s)
- Anjuman A Begum
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia.,Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, St Lucia 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| |
Collapse
|
14
|
Hoshino Y, Shimohara S, Wada Y, Nakamoto M, Miura Y. Affinity purification of multifunctional oligomeric ligands synthesizedviacontrolled radical polymerization. J Mater Chem B 2020; 8:5597-5601. [DOI: 10.1039/d0tb00849d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abiotic oligomeric ligands with a strong affinity for a target peptide sequence were isolated by affinity purification from a pool of 30-mer acrylic random ter-oligomers that were synthesizedviaa controlled radical polymerization process.
Collapse
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Shinnosuke Shimohara
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yusuke Wada
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Masahiko Nakamoto
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yoshiko Miura
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
15
|
Li J, Zhang Y, Cai C, Rong X, Shao M, Li J, Yang C, Yu G. Collaborative assembly of doxorubicin and galactosyl diblock glycopolymers for targeted drug delivery of hepatocellular carcinoma. Biomater Sci 2019; 8:189-200. [PMID: 31821399 DOI: 10.1039/c9bm01604j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) patients suffer from severe pain due to the serious systemic side effects and low efficiency of chemotherapeutic drugs, and it is important to develop novel drug delivery systems to circumvent these issues. In this study, a series of galactose-based glycopolymers, poly(N-(prop-2-enoyl)-β-d-galactopyranosylamine)-b-poly(N-isopropyl acrylamide) (pGal(OH)-b-pNIPAA), were prepared through a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization and tetrabutylammonium hydroxide (TBAOH)-mediated removal of acetyl groups. Hydrophilic doxorubicin hydrochloride was introduced to undergo collaborative assembly with poly(N-(prop-2-enoyl)-β-d-peracetylated galactosamine)-b-poly(N-isopropyl acrylamide) (pGal(Ac)-b-pNIPAA) via TBAOH treatment. pGal-b-pNIPAA/doxorubicin (DOX) delivery nanoparticles (GND NPs) formed by collaborative assembly were fully characterized by NMR, TEM and FT-IR, indicating the well-controlled formation of particles with uniform size and high efficiency in terms of drug loading and encapsulation compared with conventional adsorption methods. Meanwhile, the GND NPs were observed to be rapidly disintegrated under acidic conditions and resulted in an increased release of DOX. Cellular experiments showed that pGal-b-pNIPAA/DOX is apparently an asialoglycoprotein receptor (ASGPR)-mediated target of HCC, resulting in enhanced cellular uptake to HepG2 cells and anti-tumor efficacy in vitro. Furthermore, GND NPs III exerted more sustainable and effective anti-tumor effects compared to free DOX on a transgenic zebrafish TO(KrasG12V) model in vivo. These results indicated that the biocompatible nanomaterials developed by collaborative assembly with galactosyl diblock glycopolymers and DOX may serve as a promising candidates for targeting therapy of HCC.
Collapse
Affiliation(s)
- Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Meng Shao
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jiarui Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
16
|
Madeira do O J, Foralosso R, Yilmaz G, Mastrotto F, King PJS, Xerri RM, He Y, van der Walle CF, Fernandez-Trillo F, Laughton CA, Styliari I, Stolnik S, Mantovani G. Poly(triazolyl methacrylate) glycopolymers as potential targeted unimolecular nanocarriers. NANOSCALE 2019; 11:21155-21166. [PMID: 31663091 DOI: 10.1039/c9nr05836b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic glycopolymers are increasingly investigated as multivalent ligands for a range of biological and biomedical applications. This study indicates that glycopolymers with a fine-tuned balance between hydrophilic sugar pendant units and relatively hydrophobic polymer backbones can act as single-chain targeted nanocarriers for low molecular weight hydrophobic molecules. Non-covalent complexes formed from poly(triazolyl methacrylate) glycopolymers and low molecular weight hydrophobic guest molecules were characterised through a range of analytical techniques - DLS, SLS, TDA, fluorescence spectroscopy, surface tension analysis - and molecular dynamics (MD) modelling simulations provided further information on the macromolecular characteristics of these single chain complexes. Finally, we show that these nanocarriers can be utilised to deliver a hydrophobic guest molecule, Nile red, to both soluble and surface-immobilised concanavalin A (Con A) and peanut agglutinin (PNA) model lectins with high specificity, showing the potential of non-covalent complexation with specific glycopolymers in targeted guest-molecule delivery.
Collapse
Affiliation(s)
- J Madeira do O
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - R Foralosso
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - G Yilmaz
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - F Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - P J S King
- Malvern Panalytical Ltd, Malvern, WR14 1XZ, UK
| | - R M Xerri
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - Y He
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | | | | | - C A Laughton
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - I Styliari
- University of Hertfordshire, Hatfield, Hertfordshire, UK.
| | - S Stolnik
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - G Mantovani
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| |
Collapse
|
17
|
Hoshino Y, Taniguchi S, Takimoto H, Akashi S, Katakami S, Yonamine Y, Miura Y. Homogeneous Oligomeric Ligands Prepared via Radical Polymerization that Recognize and Neutralize a Target Peptide. Angew Chem Int Ed Engl 2019; 59:679-683. [DOI: 10.1002/anie.201910558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shohei Taniguchi
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hinata Takimoto
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Sotaro Akashi
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Sho Katakami
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yusuke Yonamine
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
18
|
Hoshino Y, Taniguchi S, Takimoto H, Akashi S, Katakami S, Yonamine Y, Miura Y. Homogeneous Oligomeric Ligands Prepared via Radical Polymerization that Recognize and Neutralize a Target Peptide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shohei Taniguchi
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hinata Takimoto
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Sotaro Akashi
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Sho Katakami
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yusuke Yonamine
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
19
|
Whitfield R, Truong NP, Messmer D, Parkatzidis K, Rolland M, Anastasaki A. Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chem Sci 2019; 10:8724-8734. [PMID: 33552458 PMCID: PMC7844732 DOI: 10.1039/c9sc03546j] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023] Open
Abstract
The width and shape of molecular weight distributions can significantly affect the properties of polymeric materials and thus are key parameters to control. This mini-review aims to critically summarise recent approaches developed to tailor molecular weight distributions and highlights the strengths and limitations of each technique. Special emphasis will also be given to applications where tuning the molecular weight distribution has been used as a strategy to not only enhance polymer properties but also to increase the fundamental understanding behind complex mechanisms and phenomena.
Collapse
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Nghia P Truong
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Daniel Messmer
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Manon Rolland
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Athina Anastasaki
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| |
Collapse
|
20
|
Mnich ME, van Dalen R, Gerlach D, Hendriks A, Xia G, Peschel A, van Strijp JAG, van Sorge NM. The C-type lectin receptor MGL senses N-acetylgalactosamine on the unique Staphylococcus aureus ST395 wall teichoic acid. Cell Microbiol 2019; 21:e13072. [PMID: 31219660 PMCID: PMC6771913 DOI: 10.1111/cmi.13072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a common skin commensal but is also associated with various skin and soft tissue pathologies. Upon invasion, S. aureus is detected by resident innate immune cells through pattern-recognition receptors (PRRs), although a comprehensive understanding of the specific molecular interactions is lacking. Recently, we demonstrated that the PRR langerin (CD207) on epidermal Langerhans cells senses the conserved β-1,4-linked N-acetylglucosamine (GlcNAc) modification on S. aureus wall teichoic acid (WTA), thereby increasing skin inflammation. Interestingly, the S. aureus ST395 lineage as well as certain species of coagulase-negative staphylococci (CoNS) produce a structurally different WTA molecule, consisting of poly-glycerolphosphate with α-O-N-acetylgalactosamine (GalNAc) residues, which are attached by the glycosyltransferase TagN. Here, we demonstrate that S. aureus ST395 strains interact with the human Macrophage galactose-type lectin (MGL; CD301) receptor, which is expressed by dendritic cells and macrophages in the dermis. MGL bound S. aureus ST395 in a tagN- and GalNAc-dependent manner but did not interact with different tagN-positive CoNS species. However, heterologous expression of Staphylococcus lugdunensis tagN in S. aureus conferred phage infection and MGL binding, confirming the role of this CoNS enzyme as GalNAc-transferase. Functionally, the detection of GalNAc on S. aureus ST395 WTA by human monocyte-derived dendritic cells significantly enhanced cytokine production. Together, our findings highlight differential recognition of S. aureus glycoprofiles by specific human innate receptors, which may affect downstream adaptive immune responses and pathogen clearance.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Glaxo-Smith Kline, Siena, Italy
| | - Rob van Dalen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Tübingen, Germany
| | - Astrid Hendriks
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Glaxo-Smith Kline, Siena, Italy
| | - Guoqing Xia
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Tübingen, Germany
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Tanaka J, Gurnani P, Cook AB, Häkkinen S, Zhang J, Yang J, Kerr A, Haddleton DM, Perrier S, Wilson P. Microscale synthesis of multiblock copolymers using ultrafast RAFT polymerisation. Polym Chem 2019. [DOI: 10.1039/c8py01437j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We demonstrate that ultrafast RAFT in the presence of air can be scaled down to 2 μL with good control using microvolume insert vials as the polymerisation vessel.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry
- University of Warwick
- CV4 7AL Coventry
- UK
| | - Pratik Gurnani
- Department of Chemistry
- University of Warwick
- CV4 7AL Coventry
- UK
| | | | - Satu Häkkinen
- Department of Chemistry
- University of Warwick
- CV4 7AL Coventry
- UK
| | - Junliang Zhang
- Department of Chemistry
- University of Warwick
- CV4 7AL Coventry
- UK
| | - Jie Yang
- Department of Chemistry
- University of Warwick
- CV4 7AL Coventry
- UK
| | - Andrew Kerr
- Department of Chemistry
- University of Warwick
- CV4 7AL Coventry
- UK
| | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- CV4 7AL Coventry
- UK
- Monash Institute of Pharmaceutical Sciences
| | - Paul Wilson
- Department of Chemistry
- University of Warwick
- CV4 7AL Coventry
- UK
- Monash Institute of Pharmaceutical Sciences
| |
Collapse
|
22
|
Whitfield R, Anastasaki A, Truong NP, Cook AB, Omedes-Pujol M, Loczenski Rose V, Nguyen TAH, Burns JA, Perrier S, Davis TP, Haddleton DM. Efficient Binding, Protection, and Self-Release of dsRNA in Soil by Linear and Star Cationic Polymers. ACS Macro Lett 2018; 7:909-915. [PMID: 35650964 DOI: 10.1021/acsmacrolett.8b00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Double stranded RNA (dsRNA) exhibits severe degradation within 3 days in live soil, limiting its potential application in crop protection. Herein we report the efficient binding, protection, and self-release of dsRNA in live soil through the usage of a cationic polymer. Soil stability assays show that linear poly(2-(dimethylamino)ethyl acrylate) can delay the degradation of dsRNA by up to 1 week while the star shaped analogue showed an increased stabilization of dsRNA by up to 3 weeks. Thus, the architecture of the polymer can significantly affect the lifetime of dsRNA in soil. In addition, the hydrolysis and dsRNA binding and release profiles of these polymers were carefully evaluated and discussed. Importantly, hydrolysis could occur independently of environmental conditions (e.g., different pH, different temperature) showing the potential for many opportunities in agrochemicals where protection and subsequent self-release of dsRNA in live soil is required.
Collapse
Affiliation(s)
- Richard Whitfield
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
| | - Athina Anastasaki
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
| | - Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Alexander B. Cook
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
| | - Marta Omedes-Pujol
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Vanessa Loczenski Rose
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Tuan A. H. Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A. Burns
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Sébastien Perrier
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Thomas P. Davis
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M. Haddleton
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
23
|
Hadjicharalambous C, Flouraki C, Narain R, Chatzinikolaidou M, Vamvakaki M. Controlling pre-osteoblastic cell adhesion and spreading on glycopolymer brushes of variable film thickness. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:98. [PMID: 29946888 DOI: 10.1007/s10856-018-6112-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Controlling the cell behavior on biocompatible polymer surfaces is critical for the development of suitable medical implant coatings as well as in anti-adhesive applications. Synthetic glycopolymer brushes, based on sugar methacrylate monomers have been reported as robust surfaces to resist protein adsorption and cell adhesion. In this study, poly(D-gluconamidoethyl methacrylate) (PGAMA) brushes of various chain lengths were synthesized directly from initiator functionalized glass substrates using surface-initiated atom transfer radical polymerization. The glycopolymer film thicknesses were determined by ellipsometry, whereas the wettability and the morphology of the surfaces were characterized by static water contact angle measurements and atomic force microscopy, respectively. Stable, grafted films with thicknesses in the dry state between 4 and 20 nm and of low roughness (~1 nm) were obtained by varying the polymerization time. Cell experiments with MC3T3-E1 pre-osteoblasts cultured on the PGAMA brushes were performed to examine the effect of film thickness on the cell morphology, cytoskeleton organization and growth. The results revealed good cell spreading and proliferation on PGAMA layers of low film thickness, whereas cell adhesion was prevented on polymer films with thickness higher than ~10 nm, indicating their potential use in medical implants and anti-adhesive surfaces, respectively.
Collapse
Affiliation(s)
- Chrystalleni Hadjicharalambous
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Chara Flouraki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, Canada
| | - Maria Chatzinikolaidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece.
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece.
| |
Collapse
|
24
|
Cai L, Gu Z, Zhong J, Wen D, Chen G, He L, Wu J, Gu Z. Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discov Today 2018; 23:1126-1138. [DOI: 10.1016/j.drudis.2018.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/22/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
|
25
|
Eggink LL, Roby KF, Cote R, Kenneth Hoober J. An innovative immunotherapeutic strategy for ovarian cancer: CLEC10A and glycomimetic peptides. J Immunother Cancer 2018; 6:28. [PMID: 29665849 PMCID: PMC5905120 DOI: 10.1186/s40425-018-0339-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Receptors specific for the sugar N-acetylgalactosamine (GalNAc) include the human type II, C-type lectin receptor macrophage galactose-type lectin/C-type lectin receptor family member 10A (MGL/CLEC10A/CD301) that is expressed prominently by human peripheral immature dendritic cells, dendritic cells in the skin, alternatively-activated (M2a) macrophages, and to lesser extents by several other types of tissues. CLEC10A is an endocytic receptor on antigen-presenting cells and has been proposed to play an important role in maturation of dendritic cells and initiation of an immune response. In this study, we asked whether a peptide that binds in the GalNAc-binding site of CLEC10A would serve as an effective tool to activate an immune response against ovarian cancer. METHODS A 12-mer sequence emerged from a screen of a phage display library with a GalNAc-specific lectin. The peptide, designated svL4, and a shorter peptide consisting of the C-terminal 6 amino acids, designated sv6D, were synthesized as tetravalent structures based on a tri-lysine core. In silico and in vitro binding assays were developed to evaluate binding of the peptides to GalNAc-specific receptors. Endotoxin-negative peptide solutions were administered by subcutaneous injection and biological activity of the peptides was determined by secretion of cytokines and the response of peritoneal immune cells in mice. Anti-cancer activity was studied in a murine model of ovarian cancer. RESULTS The peptides bound to recombinant human CLEC10A with high avidity, with half-maximal binding in the low nanomolar range. Binding to the receptor was Ca2+-dependent. Subcutaneous injection of low doses of peptides into mice on alternate days resulted in several-fold expansion of populations of mature immune cells within the peritoneal cavity. Peptide sv6D effectively suppressed development of ascites in a murine ovarian cancer model as a monotherapy and in combination with the chemotherapeutic drug paclitaxel or the immunotherapeutic antibody against the receptor PD-1. Toxicity, including antigenicity and release of cytotoxic levels of cytokines, was not observed. CONCLUSION sv6D is a functional ligand for CLEC10A and induces maturation of immune cells in the peritoneal cavity. The peptide caused a highly significant extension of survival of mice with implanted ovarian cancer cells with a favorable toxicity and non-antigenic profile.
Collapse
Affiliation(s)
- Laura L Eggink
- Susavion Biosciences, Inc., 1615 W. University Drive, Suite 132, Tempe, AZ, 85281, USA
| | | | - Robert Cote
- Susavion Biosciences, Inc., 1615 W. University Drive, Suite 132, Tempe, AZ, 85281, USA
| | - J Kenneth Hoober
- Susavion Biosciences, Inc., 1615 W. University Drive, Suite 132, Tempe, AZ, 85281, USA.
| |
Collapse
|
26
|
Zhang Y, Wang B, Zhang Y, Zheng Y, Wen X, Bai L, Wu Y. Hyperbranched Glycopolymers of 2-(α-d-Mannopyranose) Ethyl Methacrylate and N,N'-Methylenebisacrylamide: Synthesis, Characterization and Multivalent Recognitions with Concanavalin A. Polymers (Basel) 2018; 10:E171. [PMID: 30966207 PMCID: PMC6415052 DOI: 10.3390/polym10020171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/02/2023] Open
Abstract
A series of novel hyperbranched poly[2-(α-d-mannopyranosyloxy) ethyl methacrylate-co-N,N'-methylenebisacrylamide] (HPManEMA-co-MBA) are synthesized via a reversible addition fragmentation polymerization (RAFT). The dosage ratios of linear and branch units are tuned to obtain different degree of branching (DB) in hyperbranched glycopolymers. The DB values are calculated according to the content of nitrogen, which are facilely determined by elemental analysis. The lectin-binding properties of HPManEMA-co-MBA to concanavalin A (ConA) are examined using a turbidimetric assay. The influence of defined DB value and molecular weight of HPManEMA-co-MBA on the clustering rate is studied. Notably, HPManEMA-co-MBAs display a low cytotoxicity in the MTT assay, thus are potential candidates for biomedical applications.
Collapse
Affiliation(s)
- Yuangong Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Bo Wang
- College of Chemical Engineering and Materials, Handan University, Handan 056005, China.
| | - Ye Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Ying Zheng
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Xin Wen
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Libin Bai
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
- College of Chemical Engineering and Materials, Handan University, Handan 056005, China.
| | - Yonggang Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
27
|
Xiao N, Cheng A, Zhu QG, Cheng Q, Wu RB, Yu BR, Wang Z. Synthesis of Homoleptic and Heteroleptic Ruthenium Complexes Appended with Glucosyl Ligand by the Click-to-Chelate Approach. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363217120507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Whitfield R, Anastasaki A, Jones GR, Haddleton DM. Cu(0)-RDRP of styrene: balancing initiator efficiency and dispersity. Polym Chem 2018. [DOI: 10.1039/c8py00814k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optimisation of all components within Cu(0)-wire mediated polymerisation of styrene is illustrated yielding well-defined polystyrene with enhanced initiator efficiency and dispersity at higher molecular weights.
Collapse
|
29
|
Cote R, Lynn Eggink L, Kenneth Hoober J. CLEC receptors, endocytosis and calcium signaling. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|