1
|
Chen C, Wang S, Chen X, Xie Z, Zhang P, Bu F, Huang L, Zhao D, Wang Y, Liu F, Xie W, Li G, Wang X. Antimicrobial Silicon Rubber Crosslinked with Bornyl-Siloxane. Macromol Rapid Commun 2025:e2400930. [PMID: 39782700 DOI: 10.1002/marc.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Silicone rubber (SiR) has a wide range of medical applications, but it lacks antimicrobial properties, leading to potential infection issues with related implants or medical devices. Most studies focus on adding anti-bacterial agents or surface modification, which usually result in composites with anti-bacterial properties, rather than synthesizing SiR with intrinsically antimicrobial performances. To tackle this issue, a double substituted bornyl-siloxane crosslinker (BC) is designed. This crosslinker can react with hydroxy-terminated polydimethylsiloxane (PDMS) at room temperature to yield SiR with borneol side groups. The process is simple without using additional solvents. Antimicrobial assay on SiR cured with different ratios of BC/PDMS showed that 20 wt.% BC cross-linked network exhibited outstanding anti-bacterial adhesion (Escherichia coli 99.4%, Staphylococcus aureus 97.3%) performance and long-lasting anti-mold (Aspergillus niger over 99% for 30 days) adhesion properties. Moreover, the subcutaneous implantation model in mice demonstrated its excellent anti-infection, biocompatibility and safety. Therefore, this material is promising for widespread adoption in the medical field, especially in silicon-based products or coatings.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Songtao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyu Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zixu Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pengfei Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqiang Bu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lifei Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuanhang Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fang Liu
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Teulé-Trull M, Altuna P, Arregui M, Rodriguez-Ciurana X, Aparicio C. Antibacterial coatings for dental implants: A systematic review. Dent Mater 2024:S0109-5641(24)00346-4. [PMID: 39658405 DOI: 10.1016/j.dental.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES Despite the high survival rates of dental implants, peri-implantitis is a prevalent complication. Peri-implantitis is related to biofilm that adheres to the surface of implants and causes peri-implant chronic inflammation and bone destruction. Different surface treatments have been proposed to prevent biofilm formation. The objective of this systematic review was analyzing different types of antimicrobial coatings and identifying the most effective one(s) to control bacterial colonization over extended periods of analysis. DATA, SOURCES AND STUDY SELECTION We performed a bibliographic search in Pubmed and Cochrane base of articles published after 2010 to answer, according to the PICO system, the following question: What is the most effective antibacterial surface coating for dental implants? Only papers including a minimum follow-up bacteria growth analysis for at least 48 h were selected. After selection, the studies were classified using the PRISMA system. A total of 40 studies were included. CONCLUSIONS Three main categories of coatings were identified: Antibacterial peptides, synthetic antimicrobial molecules (polymers, antibiotics, …), and metallic nanoparticles (silver). Antibacterial peptide coatings to modify dental implant surfaces have been the most studied and effective surface modification to control bacterial colonization over extended periods of incubation as they are highly potent, durable and biocompatible. However, more in vitro and pre-clinical studies are needed to assess their true potential as a technology for preventing peri-implant infections.
Collapse
Affiliation(s)
- Marta Teulé-Trull
- SCOI-Study and Control of Oral Infections Lab, Faculty of Odontology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Pablo Altuna
- Treatment and Rehabilitation of the Oral and Maxillofacial Patient Lab, Faculty of Odontology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - María Arregui
- SCOI-Study and Control of Oral Infections Lab, Faculty of Odontology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Xavier Rodriguez-Ciurana
- Treatment and Rehabilitation of the Oral and Maxillofacial Patient Lab, Faculty of Odontology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Conrado Aparicio
- SCOI-Study and Control of Oral Infections Lab, Faculty of Odontology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona 08195, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona 08010 Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain; BOBI-Bioinspired Oral Biomaterials and Interfaces, UPC-Universitat Politècnica de Catalunya-Barcelona Tech, Barcelona 08019, Spain.
| |
Collapse
|
3
|
Xiang L, Li W, Liu Y, Sathishkumar G, He X, Wu H, Ran R, Zhang K, Rao X, Kang ET, Xu L. Copper tannate nanosheets-embedded multifunctional coating for antifouling and photothermal bactericidal applications. Colloids Surf B Biointerfaces 2024; 245:114208. [PMID: 39255749 DOI: 10.1016/j.colsurfb.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Implant-associated infections (IAIs), triggered by pathogenic bacteria, are a leading cause of implant failure. The design of functionalized coatings on biomedical materials is crucial to address IAIs. Herein, a multifunctional coating with good antifouling effect and antibacterial photothermal therapy (aPTT) performance was developed. The copper tannate nanosheets (CuTA NSs) were formed via coordination bonding of Cu2+ ions and tannic acid (TA). The CuTA NSs were then integrated into the TA and poly(ethylene glycol) (PEG) network to form the TCP coating for deposition on the titanium (Ti) substrates via surface adhesion of TA and gravitational effect. The resulting Ti-TCP substrate exhibited good antifouling property, reactive oxygen species (ROS) scavenging capability and cytocompatibility. The TCP coating exhibited antifouling efficacy in conjunction with aPTT, curtailing the surface adhesion and biofilm formation of pathogens, such as Staphylococcus aureus and Escherichia coli. Notably, the Ti-TCP substrate also exhibited the ability to prevent bacterial infection in vivo in a subcutaneous implantation model. The present work demonstrated a promising approach in designing high-performance antifouling and photothermal bactericidal coatings to combat IAIs.
Collapse
Affiliation(s)
- Li Xiang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Weizhe Li
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Yanqing Liu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Gnanasekar Sathishkumar
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiaodong He
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Huajun Wu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Runlong Ran
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Kai Zhang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xi Rao
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - En-Tang Kang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117576, Singapore.
| | - Liqun Xu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Kazemzadeh-Narbat M, Memic A, McGowan KB, Memic A, Tamayol A. Advances in antimicrobial orthopaedic devices and FDA regulatory challenges. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:032002. [PMID: 39655841 DOI: 10.1088/2516-1091/ad5cb1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 12/18/2024]
Abstract
Implant-associated infections, caused by the formation of biofilms especially antibiotic resistant organisms, are among the leading causes of orthopaedic implant failure. Current strategies to combat infection and biofilm focus on either inhibiting bacterial growth or preventing bacterial adherence that could lead to biofilm creation. Despite research on developing numerous antimicrobial orthopaedic devices, to date, no robust solution has been translated to the clinic. One of the key bottlenecks is the disconnect between researchers and regulatory agencies. In this review, we outline recent strategies for minimizing orthopaedic implant-associated infections. In addition, we discuss the relevant Food and Drug Administration regulatory perspectives, challenges. We also highlight emerging technologies and the directions the field that is expected to expand. We discuss in depth challenges that include identifying strategies that render implants antibacterial permanently or for a long period of time without the use of antimicrobial compounds that could generate resistance in pathogens and negatively impact osseointegration.
Collapse
Affiliation(s)
| | - Asija Memic
- College of Nursing, Wayne State University, Detroit, MI 48202, United States of America
| | - Kevin B McGowan
- MCRA LLC, 803 7th Street NW, Washington, DC 20001, United States of America
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| |
Collapse
|
5
|
Costa T, Sampaio-Marques B, Neves NM, Aguilar H, Fraga AG. Antimicrobial properties of hindered amine light stabilizers in polymer coating materials and their mechanism of action. Front Bioeng Biotechnol 2024; 12:1390513. [PMID: 38978720 PMCID: PMC11229053 DOI: 10.3389/fbioe.2024.1390513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
UV-stabilizers are a class of additives that provide extended polymer resistance to UV-degradation, but have also been suggested to have antimicrobial activity, potentially preventing the spread of pathogens, and inhibiting microbial-induced biodegradation. In this work, we incorporated different UV-stabilizers, a hindered amine light stabilizer (HALS), Tinuvin 770 DF and Tinuvin PA 123, or a hybrid HALS/UV-absorber, Tinuvin 5151, in polyurethane formulations to produce lacquer-films, and tested their antimicrobial activity against Staphylococcus aureus (methicillin-resistant and -sensitive strains), Escherichia coli and Candida albicans. Lacquer-films incorporated with Tinuvin 770 DF showed strong antimicrobial performance against bacteria and fungi, while maintaining cytocompatibility. The mechanism of action revealed a positive relationship between Tinuvin 770 DF concentration, microbial death, and reactive nitrogen species (RNS), suggesting that RNS produced during autoxidation of Tinuvin 770 DF is responsible for the antimicrobial properties of this UV-stabilizer. Conversely, lacquer-films incorporated with Tinuvin 5151 or Tinuvin PA 123 exhibited no antimicrobial properties. Collectively, these results highlight the commercial potential of Tinuvin 770 DF to prevent photo- and biodegradation of polymers, while also inhibiting the spread of potentially harmful pathogens. Furthermore, we provide a better understanding of the mechanism underlying the biocidal activity of HALS associated to autooxidation of the amine group.
Collapse
Affiliation(s)
- Tiago Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B’s Research Group on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
| | - Helena Aguilar
- Têxtil Manuel Gonçalves—Tecidos Plastificados e Outros Revestimentos Para a Indústria Automóvel, S.A. (TMG Automotive), Largo Comendador Manuel Gonçalves, Guimarães, Portugal
| | - Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Guo X, You M, Zhang L, Yuan G, Pei J. Enhanced Adsorption Stability and Biofunction Durability with Phosphonate-Grafted, PEGylated Copolymer on Hydroxyapatite Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3190-3201. [PMID: 38294184 DOI: 10.1021/acs.langmuir.3c03659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Nonfouling surfaces are crucial in applications such as biosensors, medical implants, marine coatings, and drug delivery vehicles. However, their long-term coating stability and robust surface binding strength in physiological media remain challenging. Herein, a phosphonate-grafted, PEGylated copolymer on the hydroxyapatite (HA) surface is proposed to significantly improve the adsorption stability and thus enhance the biofunction durability accordingly. The phosphoryl (-PO3) grafted branch is employed in the functional polymer to facilitate attaching to the HA substrate. In addition, the polymer integrates the nonfouling polymer brushes of poly(ethylene glycol) (PEG) with the cell-adhesive moiety of cyclic Arg-Gly-Asp-d-Phe-Cys peptides (cRGD). A systematic study on the as-synthesized PEGylated graft copolymer indicates a synergistic binding mechanism of the NH2 and PO3 groups to HA, achieving a high surface coverage with desirable adsorption stability. The cRGD/PEGylated copolymers of optimized grafting architecture are proven to effectively adsorb to HA surfaces as a self-assembled copolymer monolayer, showing stability with minimal desorption even in a complex, physiological medium and effectively preventing nonspecific protein adsorption as examined with X-ray photoelectron spectroscopy (XPS) and a quartz crystal microbalance with dissipation (QCM-D). Direct adhesion assays further confirm that the enhanced coating stability and biofunction durability of the phosphonate-grafted, cRGD-PEGylated copolymer can considerably promote osteoblast attachment on HA surfaces, meanwhile preventing microbial adhesion. This research has resulted in a solution of self-assembly polymer structure optimization that exhibits stable nonfouling characteristics.
Collapse
Affiliation(s)
- Xin Guo
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyu You
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Su M, Hu Z, Sun Y, Qi Y, Yu B, Xu FJ. Hydroxyl-rich branched polycations for nucleic acid delivery. Biomater Sci 2024; 12:581-595. [PMID: 38014423 DOI: 10.1039/d3bm01394d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Recently, nucleic acid delivery has become an amazing route for the treatment of various malignant diseases, and polycationic vectors are attracting more and more attention among gene vectors. However, conventional polycationic vectors still face many obstacles in nucleic acid delivery, such as significant cytotoxicity, high protein absorption behavior, and unsatisfactory blood compatibility caused by a high positive charge density. To solve these problems, the fabrication of hydroxyl-rich branched polycationic vectors has been proposed. For the synthesis of hydroxyl-rich branched polycations, a one-pot method is considered as the preferred method due to its simple preparation process. In this review, typical one-pot methods for fabricating hydroxyl-rich polycations are presented. In particular, amine-epoxide ring-opening polymerization as a novel approach is mainly introduced. In addition, various therapeutic scenarios of hydroxyl-rich branched polycations via one-pot fabrication are also generalized. We believe that this review will motivate the optimized design of hydroxyl-rich branched polycations for potential nucleic acid delivery and their bio-applications.
Collapse
Affiliation(s)
- Mengrui Su
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zichen Hu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yujie Sun
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yu Qi
- China Meat Food Research Center, Beijing Academy of Food Sciences, Beijing 100068, PR China.
- Beijing Forestry University, Beijing, 100083, PR China
| | - Bingran Yu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
8
|
Zhang H, Liu N, Zhang Y, Cang H, Cai Z, Huang Z, Li J. Croconaine conjugated cationic polymeric nanoparticles for NIR enhanced bacterial killing. Colloids Surf B Biointerfaces 2024; 233:113665. [PMID: 38008013 DOI: 10.1016/j.colsurfb.2023.113665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Light-triggered treatment approach has been regarded as an effective option for sterilization due to noninvasiveness, limited drug resistance, and minimized adverse effects. Herein, we designed and synthesized a functionalized cationic polymer, CR-PQAC, with croconaine bridging agent and quaternary ammonium groups for photothermal enhanced antimicrobial therapy under near-infrared irradiation. The quaternary ammonium group on the pendent chain endowing CR-PQAC the ability to effectively bind to bacteria. The CR-PQAC could self-assembles into micellar nanoparticles in aqueous solution, which exhibited strong absorption in the near-infrared (NIR) region, excellent photostability, and photothermal conversion efficiency of up to 43.8 %. Notably, the CR-PQAC nanoparticles presented remarkable antibacterial activity against both methicillin-resistant Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) bacteria with 808 nm laser irradiation. Moreover, the developed CR-PQAC has negligible dark cytotoxicity and good hemolytic compatibility against mammalian cells. Both in vitro and in vivo studies have demonstrated that the desirable antibacterial efficacy of CR-PQAC was obtained. Therefore, the proposed CR-PQAC may be a promising antimicrobial agent for NIR-enhanced killing bacterial.
Collapse
Affiliation(s)
- Huaihong Zhang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Na Liu
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yuting Zhang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hui Cang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaosheng Cai
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ziqun Huang
- College of Materials and Chemical Engineering, West Anhui University, Luan 237012, China.
| | - Jun Li
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Poudel I, Annaji M, Zhang C, Panizzi PR, Arnold RD, Kaddoumi A, Amin RH, Lee S, Shamsaei N, Babu RJ. Gentamicin Eluting 3D-Printed Implants for Preventing Post-Surgical Infections in Bone Fractures. Mol Pharm 2023; 20:4236-4255. [PMID: 37455392 DOI: 10.1021/acs.molpharmaceut.3c00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A surgically implantable device is an inevitable treatment option for millions of people worldwide suffering from diseases arising from orthopedic injuries. A global paradigm shift is currently underway to tailor and personalize replacement or reconstructive joints. Additive manufacturing (AM) has provided dynamic outflow to the customized fabrication of orthopedic implants by enabling need-based design and surface modification possibilities. Surgical grade 316L Stainless Steel (316L SS) is promising with its cost, strength, composition, and corrosion resistance to fabricate 3D implants. This work investigates the possibilities of application of the laser powder bed fusion (L-PBF) technique to fabricate 3D-printed (3DP) implants, which are functionalized with a multilayered antimicrobial coating to treat potential complications arising due to postsurgical infections (PSIs). Postsurgical implant-associated infection is a primary reason for implantation failure and is complicated mainly by bacterial colonization and biofilm formation at the installation site. PLGA (poly-d,l-lactide-co-glycolide), a biodegradable polymer, was utilized to impart multiple layers of coating using the airbrush spray technique on 3DP implant surfaces loaded with gentamicin (GEN). Various PLGA-based polymers were tested to optimize the ideal lactic acid: glycolic acid ratio and molecular weight suited for our investigation. 3D-Printed PLGA-GEN substrates sustained the release of gentamicin from the surface for approximately 6 weeks. The 3DP surface modification with PLGA-GEN facilitated cell adhesion and proliferation compared to control surfaces. The cell viability studies showed that the implants were safe for application. The 3DP PLGA-GEN substrates showed good concentration-dependent antibacterial efficacy against the common PSI pathogen Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). The GEN-loaded substrates demonstrated antimicrobial longevity and showed significant biofilm growth inhibition compared to control. The substrates offered great versatility regarding the in vitro release rates, antimicrobial properties, and biocompatibility studies. These results radiate great potential in future human and veterinary clinical applications pertinent to complications arising from PSIs, focusing on personalized sustained antibiotic delivery.
Collapse
Affiliation(s)
- Ishwor Poudel
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Chu Zhang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Peter R Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Rajesh H Amin
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Seungjong Lee
- Department of Mechanical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama 36849, United States
- National Center for Additive Manufacturing Excellence (NCAME), Auburn University, Auburn, Alabama 36849, United States
| | - Nima Shamsaei
- Department of Mechanical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama 36849, United States
- National Center for Additive Manufacturing Excellence (NCAME), Auburn University, Auburn, Alabama 36849, United States
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
10
|
Chen X, Zhou J, Qian Y, Zhao L. Antibacterial coatings on orthopedic implants. Mater Today Bio 2023; 19:100586. [PMID: 36896412 PMCID: PMC9988588 DOI: 10.1016/j.mtbio.2023.100586] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
With the aging of population and the rapid improvement of public health and medical level in recent years, people have had an increasing demand for orthopedic implants. However, premature implant failure and postoperative complications frequently occur due to implant-related infections, which not only increase the social and economic burden, but also greatly affect the patient's quality of life, finally restraining the clinical use of orthopedic implants. Antibacterial coatings, as an effective strategy to solve the above problems, have been extensively studied and motivated the development of novel strategies to optimize the implant. In this paper, a variety of antibacterial coatings recently developed for orthopedic implants were briefly reviewed, with the focus on the synergistic multi-mechanism antibacterial coatings, multi-functional antibacterial coatings, and smart antibacterial coatings that are more potential for clinical use, thereby providing theoretical references for further fabrication of novel and high-performance coatings satisfying the complex clinical needs.
Collapse
Affiliation(s)
- Xionggang Chen
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Yu Qian
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - LingZhou Zhao
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, 100142, PR China
| |
Collapse
|
11
|
Shuaishuai W, Tongtong Z, Dapeng W, Mingran Z, Xukai W, Yue Y, Hengliang D, Guangzhi W, Minglei Z. Implantable biomedical materials for treatment of bone infection. Front Bioeng Biotechnol 2023; 11:1081446. [PMID: 36793442 PMCID: PMC9923113 DOI: 10.3389/fbioe.2023.1081446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The treatment of bone infections has always been difficult. The emergence of drug-resistant bacteria has led to a steady decline in the effectiveness of antibiotics. It is also especially important to fight bacterial infections while repairing bone defects and cleaning up dead bacteria to prevent biofilm formation. The development of biomedical materials has provided us with a research direction to address this issue. We aimed to review the current literature, and have summarized multifunctional antimicrobial materials that have long-lasting antimicrobial capabilities that promote angiogenesis, bone production, or "killing and releasing." This review provides a comprehensive summary of the use of biomedical materials in the treatment of bone infections and a reference thereof, as well as encouragement to perform further research in this field.
Collapse
Affiliation(s)
- Wang Shuaishuai
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhu Tongtong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wang Dapeng
- Department of Orthopedics, Siping Central Hospital, Siping, China
| | - Zhang Mingran
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wang Xukai
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Yue
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dong Hengliang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wu Guangzhi
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Wu Guangzhi, ; Zhang Minglei,
| | - Zhang Minglei
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Wu Guangzhi, ; Zhang Minglei,
| |
Collapse
|
12
|
Yu K, Warsaba R, Yazdani-Ahmadabadi H, Lange D, Jan E, Kizhakkedathu JN. Antibacterial and Antiviral Coating on Surfaces through Dopamine-Assisted Codeposition of an Antifouling Polymer and In Situ Formed Nanosilver. ACS Biomater Sci Eng 2023; 9:329-339. [PMID: 36516234 DOI: 10.1021/acsbiomaterials.2c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria and viruses can adhere onto diverse surfaces and be transmitted in multiple ways. A bifunctional coating that integrates both antibacterial and antiviral activities is a promising approach to mitigate bacterial and viral infections arising from a contaminated surface. However, current coating approaches encounter a slow reaction, limited activity against diverse bacteria or viruses, short-term activity, difficulty in scaling-up, and poor adaptation to diverse material surfaces. Here, we report a new one-step strategy for the development of a polydopamine-based nonfouling antibacterial and antiviral coating by the codeposition of various components. The in situ formed nanosilver in the presence of polydopamine was incorporated into the coating and served as both antibacterial and antiviral agents. In addition, the coassembly of polydopamine and a nonfouling hydrophilic polymer was constructed to prevent the adhesion of bacteria and viruses on the coating. The coating was prepared on model surfaces and thoroughly characterized using various surface analytical techniques. The coating exhibited strong antifouling properties with a reduction of nonspecific protein adsorption up to 90%. The coating was tested against both Gram-positive and Gram-negative bacteria and showed long-term antibacterial effectiveness, which correlated with the composition of the coating. The antiviral activity of the coating was evaluated against human coronavirus 229E. A possible mechanism of action of the coating was proposed. We anticipate that the optimized coating will have applications in the development of infection prevention devices and surfaces.
Collapse
|
13
|
Egghe T, Morent R, Hoogenboom R, De Geyter N. Substrate-independent and widely applicable deposition of antibacterial coatings. Trends Biotechnol 2023; 41:63-76. [PMID: 35863949 DOI: 10.1016/j.tibtech.2022.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
Antibacterial coatings are regarded as a necessary tool to prevent implant-related infections. Substrate-independent and widely applicable coating techniques are gaining significant interest to synthesize different types of antibacterial films, which can be relevant from a fundamental and application-oriented perspective. Plasma polymer- and polydopamine-based antibacterial coatings represent the most widely studied and versatile approaches among these coating techniques. Both single- and dual-functional antibacterial coatings can be fabricated with these approaches and a variety of dual-functional antibacterial coating strategies can still be explored in future work. These coatings can potentially be used for a wide range of different implants (material, shape, and size). However, for most implants, significantly more fundamental knowledge needs to be gained before these coatings can find real-life use.
Collapse
Affiliation(s)
- Tim Egghe
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Akshaya S, Rowlo PK, Dukle A, Nathanael AJ. Antibacterial Coatings for Titanium Implants: Recent Trends and Future Perspectives. Antibiotics (Basel) 2022; 11:antibiotics11121719. [PMID: 36551376 PMCID: PMC9774638 DOI: 10.3390/antibiotics11121719] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Titanium and its alloys are widely used as implant materials for biomedical devices owing to their high mechanical strength, biocompatibility, and corrosion resistance. However, there is a significant rise in implant-associated infections (IAIs) leading to revision surgeries, which are more complicated than the original replacement surgery. To reduce the risk of infections, numerous antibacterial agents, e.g., bioactive compounds, metal ions, nanoparticles, antimicrobial peptides, polymers, etc., have been incorporated on the surface of the titanium implant. Various coating methods and surface modification techniques, e.g., micro-arc oxidation (MAO), layer-by-layer (LbL) assembly, plasma electrolytic oxidation (PEO), anodization, magnetron sputtering, and spin coating, are exploited in the race to create a biocompatible, antibacterial titanium implant surface that can simultaneously promote tissue integration around the implant. The nature and surface morphology of implant coatings play an important role in bacterial inhibition and drug delivery. Surface modification of titanium implants with nanostructured materials, such as titanium nanotubes, enhances bone regeneration. Antimicrobial peptides loaded with antibiotics help to achieve sustained drug release and reduce the risk of antibiotic resistance. Additive manufacturing of patient-specific porous titanium implants will have a clear future direction in the development of antimicrobial titanium implants. In this review, a brief overview of the different types of coatings that are used to prevent implant-associated infections and the applications of 3D printing in the development of antibacterial titanium implants is presented.
Collapse
Affiliation(s)
- S. Akshaya
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Praveen Kumar Rowlo
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore 632014, India
| | - A. Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- Correspondence:
| |
Collapse
|
15
|
Chug M, Brisbois EJ. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS MATERIALS AU 2022; 2:525-551. [PMID: 36124001 PMCID: PMC9479141 DOI: 10.1021/acsmaterialsau.2c00040] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Recent Progress on Bioinspired Antibacterial Surfaces for Biomedical Application. Biomimetics (Basel) 2022; 7:biomimetics7030088. [PMID: 35892358 PMCID: PMC9326651 DOI: 10.3390/biomimetics7030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Surface bacterial fouling has become an urgent global challenge that calls for resilient solutions. Despite the effectiveness in combating bacterial invasion, antibiotics are susceptible to causing microbial antibiotic resistance that threatens human health and compromises the medication efficacy. In nature, many organisms have evolved a myriad of surfaces with specific physicochemical properties to combat bacteria in diverse environments, providing important inspirations for implementing bioinspired approaches. This review highlights representative natural antibacterial surfaces and discusses their corresponding mechanisms, including repelling adherent bacteria through tailoring surface wettability and mechanically killing bacteria via engineering surface textures. Following this, we present the recent progress in bioinspired active and passive antibacterial strategies. Finally, the biomedical applications and the prospects of these antibacterial surfaces are discussed.
Collapse
|
17
|
Preparation and in vivo bacteriostatic application of PPDO-coated Ag loading TiO 2 nanoparticles. Sci Rep 2022; 12:10585. [PMID: 35732700 PMCID: PMC9217793 DOI: 10.1038/s41598-022-14814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Implant-associated infections limit the clinical application of implants therapy; hence, exploiting strategies to prevent biomaterial-associated infections has become important. Therefore, in this study, a series of poly (p-dioxanone) (PPDO)-coated Ag loading TiO2 nanoparticles (Ag@TiO2-PPDO) was synthesized to be applied as bacteriostatic coating materials that could be easily dispersed in organic solvent and coated onto implantable devices via temperate methods such as electrospraying. The lattice parameters of TiO2 were a = 0.504 nm, b = c = 1.05 nm, alpha = beta = gamma = 90 degree and the size of crystallite was about 13 nm, indicating that part of Ag has been embedded into crystal defects of TiO2. Both XRD and TEM determinations indicated the successful grating of PPDO on the surface of Ag@TiO2. Among Ag@TiO2 nanoparticles with various Ag loading quantities, 12% Ag@TiO2 nanoparticles exhibited relatively higher grafting efficiency and Ag contents on the surface of grafted composites. In addition, 12% Ag@TiO2-PPDO exhibited the best bacteriostatic effect in vitro owing to its higher grafted efficiency and relatively short length of PPDO segments. Subsequently, Ag@TiO2-PPDO was coated on the surface of a poly lactic-co-glycolic acid (PLGA) electrospun membrane via the electrospraying method. Finally, the in vivo bacteriostatic effect of 12% Ag@TiO2-PPDO coating was verified by implanting 12% Ag@TiO2-PPDO-coated PLGA membrane into a rat subcutaneously combined with an injection of Staphylococcus aureus at implanting sites.
Collapse
|
18
|
Liu S, Chen X, Yu M, Li J, Liu J, Xie Z, Gao F, Liu Y. Applications of Titanium Dioxide Nanostructure in Stomatology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123881. [PMID: 35745007 PMCID: PMC9229536 DOI: 10.3390/molecules27123881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Breakthroughs in the field of nanotechnology, especially in nanochemistry and nanofabrication technologies, have been attracting much attention, and various nanomaterials have recently been developed for biomedical applications. Among these nanomaterials, nanoscale titanium dioxide (nano-TiO2) has been widely valued in stomatology due to the fact of its excellent biocompatibility, antibacterial activity, and photocatalytic activity as well as its potential use for applications such as dental implant surface modification, tissue engineering and regenerative medicine, drug delivery carrier, dental material additives, and oral tumor diagnosis and treatment. However, the biosafety of nano-TiO2 is controversial and has become a key constraint in the development of nano-TiO2 applications in stomatology. Therefore, in this review, we summarize recent research regarding the applications of nano-TiO2 in stomatology, with an emphasis on its performance characteristics in different fields, and evaluations of the biological security of nano-TiO2 applications. In addition, we discuss the challenges, prospects, and future research directions regarding applications of nano-TiO2 in stomatology that are significant and worthy of further exploration.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Xingzhu Chen
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Mingyue Yu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jinyao Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Zunxuan Xie
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| |
Collapse
|
19
|
Chug MK, Massoumi H, Wu Y, Brisbois E. Prevention of medical device infections via multi-action nitric oxide and chlorhexidine diacetate releasing medical grade silicone biointerfaces. J Biomed Mater Res A 2022; 110:1263-1277. [PMID: 35170212 PMCID: PMC8986591 DOI: 10.1002/jbm.a.37372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
Abstract
The presence of bacteria and biofilm on medical device surfaces has been linked to serious infections, increased health care costs, and failure of medical devices. Therefore, antimicrobial biointerfaces and medical devices that can thwart microbial attachment and biofilm formation are urgently needed. Both nitric oxide (NO) and chlorhexidine diacetate (CHXD) possess broad-spectrum antibacterial properties. In the past, individual polymer release systems of CHXD and NO donor S-nitroso-N-acetylpenicillamine (SNAP) incorporated polymer platforms have attracted considerable attention for biomedical/therapeutic applications. However, the combination of the two surfaces has not yet been explored. Herein, the synergy of NO and CHXD was evaluated to create an antimicrobial medical-grade silicone rubber. The 10 wt% SNAP films were fabricated using solvent casting with a topcoat of CHXD (1, 3, and 5 wt%) to generate a dual-active antibacterial interface. Chemiluminescence studies confirmed the NO release from SNAP-CHXD films at physiologically relevant levels (0.5-4 × 10-10 mol min-1 cm-2 ) for at least 3 weeks and CHXD release for at least 7 days. Further characterization of the films via SEM-EDS confirmed uniform distribution of SNAP and presence of CHXD within the polymer films without substantial morphological changes, as confirmed by contact angle hysteresis. Moreover, the dual-active SNAP-CHXD films were able to significantly reduce Escherichia coli and Staphylococcus aureus bacteria (>3-log reduction) compared to controls with no explicit toxicity towards mouse fibroblast cells. The synergy between the two potent antimicrobial agents will help combat bacterial contamination on biointerfaces and enhance the longevity of medical devices.
Collapse
Affiliation(s)
- Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA USA
| | - Hamed Massoumi
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA USA
| | - Yi Wu
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA USA
| | - Elizabeth Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA USA
| |
Collapse
|
20
|
Gao L, Hou Y, Wang H, Li M, Ma L, Chu Z, Donskyi IS, Haag R. A Metal‐Ion‐Incorporated Mussel‐Inspired Poly(Vinyl Alcohol)‐Based Polymer Coating Offers Improved Antibacterial Activity and Cellular Mechanoresponse Manipulation. Angew Chem Int Ed Engl 2022; 61:e202201563. [PMID: 35178851 PMCID: PMC9401572 DOI: 10.1002/anie.202201563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/12/2022]
Abstract
Cobalt (CoII) ions have been an attractive candidate for the biomedical modification of orthopedic implants for decades. However, limited research has been performed into how immobilized CoII ions affect the physical properties of implant devices and how these changes regulate cellular behavior. In this study we modified biocompatible poly(vinyl alcohol) with terpyridine and catechol groups (PVA‐TP‐CA) to create a stable surface coating in which bioactive metal ions could be anchored, endowing the coating with improved broad‐spectrum antibacterial activity against Escherichia coli and Staphylococcus aureus, as well as enhanced surface stiffness and cellular mechanoresponse manipulation. Strengthened by the addition of these metal ions, the coating elicited enhanced mechanosensing from adjacent cells, facilitating cell adhesion, spreading, proliferation, and osteogenic differentiation on the surface coating. This dual‐functional PVA‐TP‐CA/Co surface coating offers a promising approach for improving clinical implantation outcomes.
Collapse
Affiliation(s)
- Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University 710069 Xi'an China
| | - Yong Hou
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
- Department of Electrical and Electronic Engineering The University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Haojie Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University 710069 Xi'an China
| | - Mingjun Li
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
- School of Health Sciences and Biomedical Engineering Hebei University of Technology 300130 Tianjin China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering The University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering The University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Ievgen S. Donskyi
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| |
Collapse
|
21
|
Surgical Applications of Materials Engineered with Antimicrobial Properties. Bioengineering (Basel) 2022; 9:bioengineering9040138. [PMID: 35447700 PMCID: PMC9030825 DOI: 10.3390/bioengineering9040138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The infection of surgically placed implants is a problem that is both large in magnitude and that broadly affects nearly all surgical specialties. Implant-associated infections deleteriously affect patient quality-of-life and can lead to greater morbidity, mortality, and cost to the health care system. The impact of this problem has prompted extensive pre-clinical and clinical investigation into decreasing implant infection rates. More recently, antimicrobial approaches that modify or treat the implant directly have been of great interest. These approaches include antibacterial implant coatings (antifouling materials, antibiotics, metal ions, and antimicrobial peptides), antibacterial nanostructured implant surfaces, and antibiotic-releasing implants. This review provides a compendium of these approaches and the clinical applications and outcomes. In general, implant-specific modalities for reducing infections have been effective; however, most applications remain in the preclinical or early clinical stages.
Collapse
|
22
|
Gao L, Hou Y, Wang H, Li M, Ma L, Chu Z, Donskyi IS, Haag R. A Metal‐Ion‐Incorporated Mussel‐Inspired Poly(Vinyl Alcohol)‐Based Polymer Coating Offers Improved Antibacterial Activity and Cellular Mechanoresponse Manipulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lingyan Gao
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yong Hou
- Freie Universitat Berlin Biology, Chemistry, Pharmacy GERMANY
| | - Haojie Wang
- Northwest University College of Chemistry & Materials Science CHINA
| | - Mingjun Li
- Freie Universität Berlin Fachbereich Biologie Chemie Pharmazie: Freie Universitat Berlin Fachbereich Biologie Chemie Pharmazie Biology, Chemistry, Pharmacy GERMANY
| | - Linjie Ma
- The University of Hong Kong Department of Electrical and Electronic Engineering HONG KONG
| | - Zhiqin Chu
- The University of Hong Kong Department of Electrical and Electronic Engineering HONG KONG
| | - Ievgen S. Donskyi
- Freie Universität Berlin Fachbereich Biologie Chemie Pharmazie: Freie Universitat Berlin Fachbereich Biologie Chemie Pharmazie Biology, Chemistry, Pharmacy GERMANY
| | - Rainer Haag
- Freie Universität Berlin: Freie Universitat Berlin Takustr. 3Institute of Chemistry and Biochemistry 14195 Berlin GERMANY
| |
Collapse
|
23
|
Khlyustova A, Kirsch M, Ma X, Cheng Y, Yang R. Surfaces with Antifouling-Antimicrobial Dual Function via Immobilization of Lysozyme on Zwitterionic Polymer Thin Films. J Mater Chem B 2022; 10:2728-2739. [DOI: 10.1039/d1tb02597j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the emergence of wide-spread infectious diseases, there is a heightened need for antimicrobial and/or antifouling coatings that can be used to prevent infection and transmission in a variety...
Collapse
|
24
|
Amphiphilic Graft Copolymers of Hydroxypropyl Cellulose Backbone with Nonpolar Polyisobutylene Branches. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2546-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Huang G, Pan ST, Qiu JX. The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2647. [PMID: 34070153 PMCID: PMC8158527 DOI: 10.3390/ma14102647] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in the long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it to effectively avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta-based implants or prostheses have shown their clinical value in the treatment of individual patients who need specially designed implants or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.
Collapse
Affiliation(s)
| | | | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (G.H.); (S.-T.P.)
| |
Collapse
|
26
|
Ghimire A, Song J. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20921-20937. [PMID: 33914499 PMCID: PMC8130912 DOI: 10.1021/acsami.1c01389] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, periprosthetic bacterial infection remains a major challenge for orthopedic and dental implants. Bacterial colonization/biofilm formation around implants and their invasion into the dense skeletal tissue matrices are difficult to treat and could lead to implant failure and osteomyelitis. These complications require major revision surgeries and extended antibiotic therapies that are associated with high treatment cost, morbidity, and even mortality. Effective preventative measures mitigating risks for implant-related infections are thus in dire need. This review focuses on recent developments of anti-periprosthetic infection strategies aimed at either reducing bacterial adhesion, colonization, and biofilm formation or killing bacteria directly in contact with and/or in the vicinity of implants. These goals are accomplished through antifouling, quorum-sensing interfering, or bactericidal implant surface topographical engineering or surface coatings through chemical modifications. Surface topographical engineering of lotus leaf mimicking super-hydrophobic antifouling features and cicada wing-mimicking, bacterium-piercing nanopillars are both presented. Conventional physical coating/passive release of bactericidal agents is contrasted with their covalent tethering to implant surfaces through either stable linkages or linkages labile to bacterial enzyme cleavage or environmental perturbations. Pros and cons of these emerging anti-periprosthetic infection approaches are discussed in terms of their safety, efficacy, and translational potentials.
Collapse
Affiliation(s)
- Ananta Ghimire
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
27
|
Nwabor OF, Singh S, Wunnoo S, Lerwittayanon K, Voravuthikunchai SP. Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces. BIOFOULING 2021; 37:538-554. [PMID: 34148443 DOI: 10.1080/08927014.2021.1934457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Surface modification is an emerging strategy for the design of contact materials. Fabricated alumina discs were functionalized by deposition of biogenic silver nanoparticles. The surfaces were characterized for physico-chemical, antibacterial and antibiofilm properties against microbial pathogens. The surface demonstrated improved hydrophobicity and a surface silver nanoparticle content of 6.4 w%. A reduction of more than 99.9% in CFU mL-i was observed against the Gram-positive and Gram-negative bacteria tested, with >90% reduction of the fungal isolate. After 4 h, microbial adhesion was reduced by >99.9 and 90% for Escherichia coli and Staphylococcus aureus, respectively. Scanning electron micrographs further revealed a biofilm reduction. Cell viability tests indicated a bioincompatibility higher than 80% with Caco-2 and HaCaT cell lines after 48 h contact. The results suggest that deposition of biogenic silver nanoparticles on the surface of contact materials could be employed as a strategy to prevent biofilm formation.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Division of Biological Science, Faculty of Science and Natural Product Research Centre of Excellence, Prince of Songkla University, Songkla, Thailand
| | - Sudarshan Singh
- Division of Biological Science, Faculty of Science and Natural Product Research Centre of Excellence, Prince of Songkla University, Songkla, Thailand
| | - Suttiwan Wunnoo
- Division of Biological Science, Faculty of Science and Natural Product Research Centre of Excellence, Prince of Songkla University, Songkla, Thailand
| | - Kowit Lerwittayanon
- Division of Physical Sciences, Faculty of Science, Prince of Songkla University, Songkla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Division of Biological Science, Faculty of Science and Natural Product Research Centre of Excellence, Prince of Songkla University, Songkla, Thailand
| |
Collapse
|
28
|
Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021; 7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections are a major threat to human health, exacerbated by increasing antibiotic resistance. These infections can result in tremendous morbidity and mortality, emphasizing the need to identify and treat pathogenic bacteria quickly and effectively. Recent developments in detection methods have focused on electrochemical, optical, and mass-based biosensors. Advances in these systems include implementing multifunctional materials, microfluidic sampling, and portable data-processing to improve sensitivity, specificity, and ease of operation. Concurrently, advances in antibacterial treatment have largely focused on targeted and responsive delivery for both antibiotics and antibiotic alternatives. Antibiotic alternatives described here include repurposed drugs, antimicrobial peptides and polymers, nucleic acids, small molecules, living systems, and bacteriophages. Finally, closed-loop therapies are combining advances in the fields of both detection and treatment. This review provides a comprehensive summary of the current trends in detection and treatment systems for bacterial infections.
Collapse
Affiliation(s)
- Carly Deusenbery
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Yingying Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
29
|
Joseph E, Rajput SS, Patil S, Nisal A. Mechanism of Adhesion of Natural Polymer Coatings to Chemically Modified Siloxane Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2974-2984. [PMID: 33645228 DOI: 10.1021/acs.langmuir.1c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface coatings play an important role in improving the performance of biomedical implants. Polydimethylsiloxane (PDMS) is a commonly used material for biomedical implants, and surface-coated PDMS implants frequently face problems such as delamination or cracking of the coating. In this work, we have measured the performance of nano-coatings of the biocompatible protein polymer silk fibroin (SF) on pristine as well as modified PDMS surfaces. The PDMS surfaces have been modified using oxygen plasma treatment and 3-amino-propyl-triethoxy-silane (APTES) treatment. Although these techniques of PDMS modification have been known, their effects on adhesion of SF nano-coatings have not been studied. Interestingly, testing of the coated samples using a bulk technique such as tensile and bending deformation showed that the SF nano-coating exhibits improved crack resistance when the PDMS surface has been modified using APTES treatment as compared to an oxygen plasma treatment. These results were validated at the microscopic and mesoscopic length scales through nano-scratch and nano-indentation measurements. Further, we developed a unique method using modified atomic force microscopy to measure the adhesive energy between treated PDMS surfaces and SF molecules. These measurements indicated that the adhesive strength of PDMS-APTES-SF is 10 times more compared to PDMS-O2-SF due to the higher number of molecular linkages formed in this nanoscale contact. This lower number of molecular linkages in the PDMS-O2 indicates that only fewer numbers of surface hydroxyl groups interact with the SF protein through secondary interactions such as hydrogen bonding. On the other hand, a larger number of amine groups present on PDMS-APTES surface hydrogen bond with the polar amino acids present on the silk fibroin protein chain, resulting in better adhesion. Thus, APTES modification to the PDMS substrate results in improved adhesion of nano-coating to the substrate and enhances the delamination and crack resistance of the nano-coatings.
Collapse
Affiliation(s)
- Emmanuel Joseph
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shatruhan Singh Rajput
- Center for Energy Science, Department of Physics, Indian Institute of Science Education and Research, Pune 411008 India
| | - Shivprasad Patil
- Center for Energy Science, Department of Physics, Indian Institute of Science Education and Research, Pune 411008 India
| | - Anuya Nisal
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Rahimi A, Stafslien SJ, Vanderwal L, Bahr J, Safaripour M, Finlay JA, Clare AS, Webster DC. Critical Amphiphilic Concentration: Effect of the Extent of Amphiphilicity on Marine Fouling-Release Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2728-2739. [PMID: 33586437 DOI: 10.1021/acs.langmuir.0c03446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amphiphilic surfaces, containing both hydrophilic and hydrophobic domains, offer desirable performance for many applications such as marine coatings or anti-icing purposes. This work explores the effect of the concentration of amphiphilic moieties on converting a polyurethane (PU) system to a coating having fouling-release properties. A novel amphiphilic compound is synthesized and added at increasing amounts to a PU system, where the amount of the additive is the only variable in the study. The additive-modified surfaces are characterized by a variety of techniques including ATR-FTIR, XPS, contact angle measurements, and AFM. Surface characterizations indicate the presence of amphiphilic domains on the surface due to the introduction of the self-stratifying amphiphilic additive. The fouling-release properties of the surfaces are assessed with three biological assays using Ulva linza, Cellulophaga lytica, and Navicula Incerta as the test organisms. A change in the fouling-release performance is observed and plateaued once a certain amount of amphiphilicity is attained in the coating system, which we call the critical amphiphilic concentration (CAC).
Collapse
Affiliation(s)
- AliReza Rahimi
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Shane J Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Lyndsi Vanderwal
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - James Bahr
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Maryam Safaripour
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Dean C Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
31
|
Robust anti-infective multilayer coatings with rapid self-healing property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111828. [PMID: 33579468 DOI: 10.1016/j.msec.2020.111828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/06/2020] [Accepted: 12/22/2020] [Indexed: 11/23/2022]
Abstract
Surface coatings are extensively applied on biomedical devices to provide protection against biofouling and infections. However, most surface coatings prevent both bacteria and cells interactions with the biomaterials, limiting their uses as implants. Furthermore, damage to the surface such as scratches and abrasions can happen during transport and clinical usage, resulting in the loss of antibacterial property. In this work, we introduce an efficient method to fabricate stable anti-infective and self-healable multilayer coatings on stainless steel surface via a three-step procedue. Firstly, modified polyethyleneimine (PEI) and poly(acrylic acid) (PAA), both contain pendant furan groups, were deposited on the surface using Layer-by-Layer (LbL) self-assembly technique. Secondly, the polymer layers were cross-linked, via Diels-Alder cycloaddition, using a bismaleimide poly(ethylene glycol) linker, to enhance the stability of the coatings. Thirdly, the Diels-Alder adduct was utilised in the thiol-ene click reaction for post-modification of the coatings, which allowed for the grafting of antimicrobial poly(hexamethylene biguanide) (PHMB) and ε-poly(lysine) (EPL). The resultant multilayer coatings not only exhibited rapid self-healing property, with complete scratch closure within 30 min, but also demonstrated effective antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In addition, biofouling of bovine serum albumin was found to be inhibited on the coated surfaces. Furthermore, these coatings showed no toxicity effect towards seeded osteoblastic cells (MC3T3-E1) and evidence of anti-inflamatory activity when tested against macrophage cell line U-937. Our coating method thus represents an effective strategy for the anti-infective protection of biomedical-devices having direct contact with tissues.
Collapse
|
32
|
Shahrour H, Dandache I, Martínez-López AL, González-Gaitano G, Chokr A, Martínez-de-Tejada G. An antibiotic potentiator retains its activity after being immobilized on silicone and prevents growth of multidrug-resistant Pseudomonas aeruginosa biofilms. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111876. [PMID: 33579499 DOI: 10.1016/j.msec.2021.111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022]
Abstract
Device-Associated Healthcare-Associated Infections (DA-HAI) are a major threat to public health worldwide since they are associated with increased hospital stays, morbidity, mortality, financial burden, and hospital overload. A strategy to combat DA-HAI involves the use of medical devices endowed with surfaces that can kill or repel pathogens and prevent biofilm formation. We aimed to develop low-toxic protease-resistant anti-biofilm surfaces that can sensitize drug-resistant bacteria to sub-inhibitory concentrations of antibiotics. To this end, we hypothesized that polymyxin B nonapeptide (PMBN) could retain its antibiotic-enhancing potential upon immobilization on a biocompatible polymer, such as silicone. The ability of PMBN-coated silicone to sensitize a multidrug-resistant clinical isolate of Pseudomonas aeruginosa (strain Ps4) to antibiotics and block biofilm formation was assessed by viable counting, confocal microscopy and safranin uptake. These assays demonstrated that covalently immobilized PMBN enhances not only antibiotics added exogenously but also those incorporated into the functionalized coating. As a result, the functionalized surface exerted a potent bactericidal activity that precluded biofilm formation. PMBN-coated silicone displayed a high level of stability and very low cytotoxicity and hemolytic activity in the presence of antibiotics. We demonstrated for the first time that an antibiotic enhancer can retain its activity when covalently attached to a solid surface. These findings may be applied to the development of medical devices resistant to biofilm formation.
Collapse
Affiliation(s)
- Hawraa Shahrour
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Research Laboratory of Microbiology, Department of Life & Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat campus, Beirut, Lebanon; Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat campus, Beirut, Lebanon
| | - Israa Dandache
- Research Laboratory of Microbiology, Department of Life & Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat campus, Beirut, Lebanon; Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat campus, Beirut, Lebanon
| | - Ana L Martínez-López
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | | | - Ali Chokr
- Research Laboratory of Microbiology, Department of Life & Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat campus, Beirut, Lebanon; Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat campus, Beirut, Lebanon
| | - Guillermo Martínez-de-Tejada
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
33
|
Xiong SW, Fu PG, Zou Q, Chen LY, Jiang MY, Zhang P, Wang ZG, Cui LS, Guo H, Gai JG. Heat Conduction and Antibacterial Hexagonal Boron Nitride/Polypropylene Nanocomposite Fibrous Membranes for Face Masks with Long-Time Wearing Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:196-206. [PMID: 33356094 DOI: 10.1021/acsami.0c17800] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Wearing surgical masks is one of the best protective measures to protect humans from viral invasion during the 2019 coronavirus (COVID-19) outbreak. However, wearing surgical masks for extended periods will cause uncomfortable sweltering sense to users and are easy to breed bacteria. Here, we reported a novel fibrous membrane with outstanding comfortability and antibacterial activity prepared by PP ultrafine fiber nonwovens and antibacterial functionalized h-BN nanoparticles (QAC/h-BN). The thermal conductivity of commercial PP nonwovens was only 0.13 W m-1 K-1, but that of the QAC/h-BN/PP nanocomposite fibrous membranes can reach 0.88 W m-1 K-1, an enhancement of 706.5% than commercial PP nonwovens. The surface temperature of commercial PP surgical masks was 31.8 °C when the wearing time was 60 min. In contrast, QAC/h-BN/PP surgical masks can reach 33.6 °C at the same tested time, exhibiting stronger heat dissipation than commercial PP surgical masks. Besides, the antibacterial rates of QAC/h-BN/PP nanocomposite fibrous membranes were 99.3% for E. coli and 96.1% for S. aureus, and their antibacterial mechanism was based on "contact killing" without the release of unfavorable biocides. We think that the QAC/h-BN/PP nanocomposite fibrous membranes could provide better protection to people.
Collapse
Affiliation(s)
- Si-Wei Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Pei-Gen Fu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Qian Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Li-Ye Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng-Ying Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Pan Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Ze-Gang Wang
- Shandong Chenzhong Machinery Co., Ltd, No.3 Jingtian Road, Tianzhuang Town, Huantai County, Zibo City, Shandong Province 256402, China
| | - Li-Sheng Cui
- Shandong Chenzhong Machinery Co., Ltd, No.3 Jingtian Road, Tianzhuang Town, Huantai County, Zibo City, Shandong Province 256402, China
| | - Hu Guo
- Shandong HFT Environmental Protection Technology CO., Ltd., Block B1, Chuangzhi Valley, Huantai County, Zibo City, Shandong Province 256400, China
| | - Jing-Gang Gai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
34
|
Hao W, Zheng Z, Zhu L, Pang L, Ma J, Zhu S, Du L, Jin Y. 3D printing-based drug-loaded implanted prosthesis to prevent breast cancer recurrence post-conserving surgery. Asian J Pharm Sci 2021; 16:86-96. [PMID: 33613732 PMCID: PMC7878459 DOI: 10.1016/j.ajps.2020.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic chemotherapy of breast cancer is commonly delivered as a large dose and has toxic side effects. Local chemotherapy would overcome the shortcomings of systemic reconstruction and could play an important role in breast cancer surgery according to personalized demand. The application of three-dimensional (3D) printing technology makes personalized customization possible. We designed and prepared a prosthesis containing paclitaxel (PTX) and doxorubicin (DOX) microspheres (PPDM) based on 3D printing to prevent tumor recurrence and metastasis after breast conserving surgery. Polydimethysiloxane has good biocompatibility and was used as a drug carrier in this study. The average particle size of the PTX and DOX microspheres were approximately 3.1 µm and 2.2 µm, respectively. The drug loading of PTX and DOX microspheres was 4.2% and 2.1%, respectively. In vitro drug release studies demonstrated that the 3D-printed prosthesis loaded with PTX and DOX microspheres could release the drugs continuously for more than 3 weeks and thereby suppress cancer recurrence with reduced side effects. The PTX and DOX microspheres not only exerted a synergistic effect, but also achieved a good sustained release effect. In vivo evaluation showed that the PPDM could effectively inhibit breast cancer recurrence and metastasis in mice with breast cancer. PPDM are expected to achieve postoperative chemotherapy for breast cancer and be highly efficient to prevent local breast cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Wenyan Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Weifang Medical University, Weifang 261000, China
| | | | - Lin Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lulu Pang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinqiu Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Siqing Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Anhui Medical University, Hefei 230032, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Weifang Medical University, Weifang 261000, China
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Anhui Medical University, Hefei 230032, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Anhui Medical University, Hefei 230032, China
| |
Collapse
|
35
|
Xu H, Cai Y, Chu X, Chu H, Li J, Zhang D. A mussel-bioinspired multi-functional hyperbranched polymeric coating with integrated antibacterial and antifouling activities for implant interface modification. Polym Chem 2021. [DOI: 10.1039/d1py00246e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of a function integrating strategy, a mussel-inspired hyperbranched polymeric coating with antibacterial and antifouling properties was ingeniously designed and synthesized for the interface modification of implants.
Collapse
Affiliation(s)
- Huilin Xu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Yusong Cai
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Xing Chu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Hetao Chu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering
| | - Dongyue Zhang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
36
|
Robust and Self-healable Antibiofilm Multilayer Coatings. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Zhang D, Ren B, Zhang Y, Liu Y, Chen H, Xiao S, Chang Y, Yang J, Zheng J. Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property. J Colloid Interface Sci 2020; 578:242-253. [DOI: 10.1016/j.jcis.2020.05.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/31/2020] [Indexed: 12/25/2022]
|
38
|
Ma Y, Zhang Z, Nitin N, Sun G. Integration of photo-induced biocidal and hydrophilic antifouling functions on nanofibrous membranes with demonstrated reduction of biofilm formation. J Colloid Interface Sci 2020; 578:779-787. [DOI: 10.1016/j.jcis.2020.06.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 01/05/2023]
|
39
|
Xiao F, Cao B, Wen L, Su Y, Zhan M, Lu L, Hu X. Photosensitizer conjugate-functionalized poly(hexamethylene guanidine) for potentiated broad-spectrum bacterial inhibition and enhanced biocompatibility. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic release. Biomaterials 2020; 262:120341. [PMID: 32911255 DOI: 10.1016/j.biomaterials.2020.120341] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/10/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Bacteria biofilm has extracellular polymeric substances to protect bacteria from external threats, which is a stubborn problem for human health. Herein, a kind of gasifiable nanodroplet is fabricated to ablate Staphylococcus aureus (S. aureus) biofilm. Upon NIR pulsed laser irradiation, the nanodroplets can gasify to generate destructive gas shockwave, which further potentiates initial acoustic cavitation effect, thus synergistically disrupting the protective biofilm and killing resident bacteria. More importantly, the gasification can further promote antibiotic release in deep biofilm for residual bacteria eradication. The nanodroplets not only exhibit deep biofilm penetration capacity and high potency to ablate biofilms, but also good biocompatibility without detectable side effects. In vivo mouse implant model indicates that the nanodroplets can accumulate at the S. aureus infected implant sites. Upon pulsed laser treatment, the nanodroplets efficiently eradicate bacteria biofilm in implanted catheter by synergistic contribution of gas shockwave-enhanced cavitation and deep antibiotic release. Current phase changeable nanodroplets with synergistic physical and chemical therapeutic modalities are promising to combat complex bacterial biofilms with drug resistance, which provides an alternative visual angle for biofilm inhibition in biomedicine.
Collapse
|
41
|
Cheng K, Zhu Y, Wang D, Li Y, Xu X, Cai H, Chu H, Li J, Zhang D. Biomimetic synthesis of chondroitin sulfate-analogue hydrogels for regulating osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111368. [PMID: 32919697 DOI: 10.1016/j.msec.2020.111368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
As a typical representative of crucial glycosaminoglycans (GAGs), chondroitin sulfate (CS) with sulfonated polysaccharide in structures extensively exists in the extracellular matrix (ECM) and exhibits peculiar bioactivity on the regulation of cells behaviors and fates (e.g. proliferation and differentiation) in organisms. Nevertheless, some intrinsic disadvantages of natural CS mainly ascribe to the intricate structure and inhomogeneous composition (especially the uncontrollable sulfonate degrees), resulting in overt restrictions on its physiological functions and applications. Although recent bionic synthesis of artificial GAGs analogues at the molecular level have already provides an efficient strategy to reconstruct GAG for regulating the cellular behaviors and fates, it still remains great challenges to rationally design and synthesize GAGs analogues with special composition and structure for precisely mimicking ECM. Simultaneously, the relevant regulation process of GAG analogues on cell fate needs to be further studied as well. Herein, chondroitin sulfate-analogue (CS-analogue) hydrogels with diverse contents of saccharide and sulfonate units in the networks were fabricated through photo-polymerization and then characterized by Fourier transform infrared (FT-IR) spectroscopy, zeta potential and scanning electron microscope (SEM). Additionally, CS-analogue hydrogels with proper mechanical properties exhibited favorable swelling, degradation performance and prominent cytocompatibility. According to cell cultivation results, CS-analogue hydrogel with a certain proportion of saccharide and sulfonate units presented preferable promotion on the adhesion, spreading, proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), shedding light on the significance of saccharide and sulfonate units in regulating cell behaviors. Furthermore, BMSCs cultivated with CS-analogue hydrogels under different culture conditions were also systematically investigated, revealing that with the help of cultivation environment CS-analogue hydrogels owned the remarkable capacity of directing either chondrogenic or osteogenic differentiation of BMSCs. Therefore, it is envisioned that versatile CS-analogue hydrogels would have promising application prospects in the biomedical and clinical fields.
Collapse
Affiliation(s)
- Kai Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yalin Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yichen Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huijuan Cai
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
42
|
The Impact of Engineered Silver Nanomaterials on the Immune System. NANOMATERIALS 2020; 10:nano10050967. [PMID: 32443602 PMCID: PMC7712063 DOI: 10.3390/nano10050967] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Over the last decades there has been a tremendous volume of research efforts focused on engineering silver-based (nano)materials. The interest in silver has been mostly driven by the element capacity to kill pathogenic bacteria. In this context, the main area of application has been medical devices that are at significant risk of becoming colonized by bacteria and subsequently infected. However, silver nanomaterials have been incorporated in a number of other commercial products which may or may not benefit from antibacterial protection. The rapid expansion of such products raises important questions about a possible adverse influence on human health. This review focuses on examining currently available literature and summarizing the current state of knowledge of the impact of silver (nano)materials on the immune system. The review also looks at various surface modification strategies used to generate silver-based nanomaterials and the immunomodulatory potential of these materials. It also highlights the immune response triggered by various silver-coated implantable devices and provides guidance and perspective towards engineering silver nanomaterials for modulating immunological consequences.
Collapse
|
43
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
44
|
Li B, Liu Y, Rogachev AV, Yarmolenko VA, Rogachev AA, Pyzh AE, Jiang X, Yarmolenko MA. Features of electron beam deposition of polymer coatings with the prolonged release of the drug component. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110730. [PMID: 32204041 DOI: 10.1016/j.msec.2020.110730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/25/2022]
Abstract
The first part of the paper provides a comprehensive analysis of the features of electron beam formation of polymer coatings with the prolonged release of the drug compound using ciprofloxacin and clotrimazole as an example. The influence features of the low-energy electron beam on the molecular structure of medicinal chemical preparations have been established. The impossibility of producing the coatings based on medicinal compounds with a complex molecular structure (vancomycin, micafungin, etc.) by a low-energy electron beam has been justified. The second part of the paper introduces a fundamentally new vacuum method for the formation of the composite coatings based on antibiotics and antifungal drugs, accompanied by the prolonged release of the drug component. This method allows the formation of composite coatings based on medicinal compounds with a complex molecular structure. It is effective for modifying implants to prevent the risk of implant-associated infectious complications which are the result of the occurrence of mixed biofilms. The method can be used to form composite layers based on topical antitumor drugs for cancer control.
Collapse
Affiliation(s)
- Beibei Li
- International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei street, Nanjing 210094, China
| | - Yiming Liu
- International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei street, Nanjing 210094, China
| | - A V Rogachev
- International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei street, Nanjing 210094, China; Francisk Skorina Gomel State University, 104, Sovetskaya street, Gomel 246019, Belarus
| | - V A Yarmolenko
- Gomel State Medical University, 5, Lange street, Gomel 246000, Belarus
| | - A A Rogachev
- International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei street, Nanjing 210094, China; Francisk Skorina Gomel State University, 104, Sovetskaya street, Gomel 246019, Belarus
| | - A E Pyzh
- Institute of physiology National Academy of Sciences of Belarus, 28, Academicheskaya street, Minsk 220072, Belarus
| | - Xiaohong Jiang
- International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei street, Nanjing 210094, China.
| | - M A Yarmolenko
- International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei street, Nanjing 210094, China; Francisk Skorina Gomel State University, 104, Sovetskaya street, Gomel 246019, Belarus
| |
Collapse
|
45
|
Lee BS, Lin YC, Hsu WC, Hou CH, Shyue JJ, Hsiao SY, Wu PJ, Lee YT, Luo SC. Engineering Antifouling and Antibacterial Stainless Steel for Orthodontic Appliances through Layer-by-Layer Deposition of Nanocomposite Coatings. ACS APPLIED BIO MATERIALS 2019; 3:486-494. [DOI: 10.1021/acsabm.9b00939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bor-Shiunn Lee
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Yi-Chen Lin
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Wei-Chieh Hsu
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Cheng-Hung Hou
- Research Center for Applied Science, Academia Sinica, Taipei 115, Taiwan
| | - Jing-Jong Shyue
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Research Center for Applied Science, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Yun Hsiao
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Pei-Ju Wu
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Ying-Te Lee
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
46
|
Tran TN, Pasetto P, Pichon C, Bruant D, Brotons G, Nourry A. Natural rubber based films integrating Zosteric acid analogues as bioactive monomers. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Sun Y, Zhao YQ, Zeng Q, Wu YW, Hu Y, Duan S, Tang Z, Xu FJ. Dual-Functional Implants with Antibacterial and Osteointegration-Promoting Performances. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36449-36457. [PMID: 31532178 DOI: 10.1021/acsami.9b14572] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multifunctional antibacterial materials have great significance for treating biomedical device-associated infections (BAIs). In the present work, a facile and rational strategy was developed to produce dual-functional implants with antibacterial and osteointegration-promoting properties for the treatment of BAI. A titanium implant, as a representative demo of implants, was first functionalized with ethanediamine-functionalized poly(glycidyl methacrylate) (PGED) brushes. Then, low-molecular-weight quaternized polyethyleneimine (QPEI, a cationic antibacterial agent) and alendronate (ALN, a clinically used drug with high affinity for bone minerals) were covalently conjugated onto PGED brushes to produce dual-functional dental implants (Ti-AQ). The QPEI component imparted Ti-AQ with antibacterial abilities, and the ALN component could balance the cytotoxicity of a cationic antibacterial agent, improving the biocompatibility for osteoblast cells. The effective performances of anti-infection and osteointegration were demonstrated in a BAI animal model. The results indicated that Ti-AQ inhibited bacterial infection at the early stage and enhanced the osteointegration and biomechanical properties between the implants and bone tissues at the late stage. This study will provide one facile and universal strategy for the design and development of novel multifunctional antibacterial implants.
Collapse
Affiliation(s)
- Yujie Sun
- Second Clinical Division, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Peking University School and Hospital of Stomatology , Beijing 100101 , China
| | - Yu-Qing Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Qiang Zeng
- Second Clinical Division, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Peking University School and Hospital of Stomatology , Beijing 100101 , China
| | - Yu-Wei Wu
- Second Clinical Division, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Peking University School and Hospital of Stomatology , Beijing 100101 , China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Shun Duan
- Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhihui Tang
- Second Clinical Division, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Peking University School and Hospital of Stomatology , Beijing 100101 , China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
48
|
Zhu W, Liu X, Tan L, Cui Z, Yang X, Liang Y, Li Z, Zhu S, Yeung KWK, Wu S. AgBr Nanoparticles in Situ Growth on 2D MoS 2 Nanosheets for Rapid Bacteria-Killing and Photodisinfection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34364-34375. [PMID: 31442020 DOI: 10.1021/acsami.9b12629] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this study, a multifunctional hybrid coating composed of AgBr nanoparticles (AgBrNPs) and two-dimensional molybdenum sulfide (MoS2) nanosheets (AgBr@MoS2) was constructed on Ti implant materials using an in situ growth method for the first time. With 660 nm light and visible light irradiation, the electrons were rapidly excited from the valence band of MoS2 to its conduction band, at the same time, AgBrNPs was used as a photoelectric receiver, which exhibited an enhanced photocatalytic activity due to the rapid transfer of photoelectrons from MoS2 nanosheets to AgBrNPs and the suppression of the recombination of electron-hole pairs. This contributed to the rapid production of reactive oxygen species under 660 nm light irradiation, thus the AgBr@MoS2 system killed bacteria and degraded organic matter quickly and efficiently in a short time. Meanwhile, the AgBr@MoS2 system showed excellent stability due to the strong covalent binding between S and Ag in the system, thus preventing AgBrNPs from being reduced to metal Ag.
Collapse
Affiliation(s)
- Weidong Zhu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Lei Tan
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , China
| | - Xianjin Yang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , China
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Pokfulam, Hong Kong 999077 , China
| | - Shuilin Wu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
49
|
Yang L, Jing L, Jiao Y, Wang L, Marchesan JT, Offenbacher S, Schoenfisch MH. In Vivo Antibacterial Efficacy of Nitric Oxide-Releasing Hyperbranched Polymers against Porphyromonas gingivalis. Mol Pharm 2019; 16:4017-4023. [PMID: 31361146 PMCID: PMC6752707 DOI: 10.1021/acs.molpharmaceut.9b00671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The in vivo antibacterial activity of NO-releasing hyperbranched polymers was evaluated against Porphyromonas gingivalis, a key oral pathogen associated with periodontitis, using a murine subcutaneous chamber model. Escalating doses of NO-releasing polymers (1.5, 7.5, and 37.5 mg/kg) were administered into a P. gingivalis-infected chamber once a day for 3 days. Chamber fluids were collected on day 4, with microbiological evaluation indicating a dose-dependent bactericidal action. In particular, NO-releasing polymers at 37.5 mg/kg (1170 μg of NO/kg) achieved complete bacterial eradication (>6-log reduction in bacterial viability), demonstrating greater efficacy than amoxicillin (∼4-log reduction in bacterial viability), a commonly used antibiotic. Time-kill assays further revealed that largest dose (37.5 mg/kg; 1170 μg of NO/kg) resulted in ∼3-log killing of P. gingivalis after only a single dose. Based on these results, the potential clinical utility of NO-releasing hyperbranched polymers appears promising, particularly for oral health applications.
Collapse
Affiliation(s)
| | | | | | - Lufei Wang
- Oral and Craniofacial Biomedicine Program, School of Dentistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | | | | | | |
Collapse
|
50
|
Chen DW, Yu HH, Luo LJ, Rajesh Kumar S, Chen CH, Lin TY, Lai JY, Jessie Lue S. Osteoblast Biocompatibility and Antibacterial Effects Using 2-Methacryloyloxyethyl Phosphocholine-Grafted Stainless-Steel Composite for Implant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E939. [PMID: 31261737 PMCID: PMC6669514 DOI: 10.3390/nano9070939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022]
Abstract
Poor osteogenesis and bacterial infections lead to an implant failure, so the enhanced osteogenic and antimicrobial activity of the implantable device is of great importance in orthopedic applications. In this study, 2-methacryloyloxyethyl phosphocholine (MPC) was grafted onto 316L stainless steel (SS) using a facile photo-induced radical graft polymerization method via a benzophenone (BP) photo initiator. Atomic force microscopy (AFM) was employed to determine the nanoscale morphological changes on the surface. The grafted BP-MPC layer was estimated to be tens of nanometers thick. The SS-BP-MPC composite was more hydrophilic and smoother than the untreated and BP-treated SS samples. Staphylococcus aureus (S. aureus) bacteria binding onto the SS-BP-MPC composite film surface was significantly reduced compared with the pristine SS and SS-BP samples. Mouse pre-osteoblast (MC3T3-E1) cells showed good adhesion on the MPC-modified samples and better proliferation and metabolic activity (73% higher) than the pristine SS sample. Biological studies revealed that grafting MPC onto the SS substrate enhanced the antibacterial efficiency and also retained osteoblast biocompatibility. This proposed procedure is promising for use with other implant materials.
Collapse
Affiliation(s)
- Dave W Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 401, Taiwan
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Hsin-Hsin Yu
- Department of Chemical and Materials Engineering and Green Technology Research Center, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Li-Jyuan Luo
- Graduate institute of Biomedical Engineering, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering and Green Technology Research Center, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Chien-Hao Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 401, Taiwan
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Tung-Yi Lin
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 401, Taiwan
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Jui-Yang Lai
- Graduate institute of Biomedical Engineering, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan.
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering and Green Technology Research Center, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Guishan District, Taoyuan City 333, Taiwan.
- Department of Safety, Health and Environment Engineering, Ming Chi University of Technology, Taishan District, New Taipei City 243, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li District, Taoyuan City 320, Taiwan.
| |
Collapse
|