1
|
Nair ST, Abhi C, Kamalasanan K, Pavithran K, Unni AR, Sithara MS, Sarma M, Mangalanandan TS. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Mol Pharm 2024; 21:5960-5988. [PMID: 39561094 DOI: 10.1021/acs.molpharmaceut.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Tumor heterogeneity poses a significant challenge in cancer therapy. To address this, we analyze pharmacotherapeutic challenges by categorizing them into static and dynamic barriers, reframing these challenges to improve drug delivery, efficacy, and the development of controlled-release nanomedicines (CRNMs). This pathophysiology-driven approach facilitates the design of novel therapeutics tailored to overcome obstacles in pancreatic ductal adenocarcinoma (PDAC) using nanotechnology. Advanced biomaterials in nanodrug delivery systems offer innovative solutions by combining controlled release, stimuli sensitivity, and smart design strategies. CRNMs are engineered to modulate spatiotemporal signaling and control drug release in PDAC, where resistance to conventional therapies is particularly high. This review explores pharmacokinetic considerations for nanomedicine design, RNA interference (RNAi) for stromal modulation, and the development of targeted nanomedicine strategies. Additionally, we highlight the limitations of current animal models in capturing the complexities of PDAC and discuss notable clinical failures, such as PEGylated hyaluronidase (Phase III HALO 109-301 trial) and evofosfamide (TH-302) with gemcitabine (MAESTRO trial), underscoring the need for improved models and treatment strategies. By targeting pathways like Notch and Hedgehog and incorporating stimuli-sensitive and pathway-modulating agents, CRNMs offer a promising avenue to enhance drug penetration and efficacy, reshaping the paradigm of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - C Abhi
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ashok R Unni
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M S Sithara
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T S Mangalanandan
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
2
|
Lara P, Quiñonero F, Ortiz R, Prados J, Melguizo C. Nanoparticles Bounded to Interfering RNAs as a Therapy for Pancreatic Cancer: A Systematic Review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2013. [PMID: 39510122 DOI: 10.1002/wnan.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Pancreatic cancer is one of the tumors with poor prognosis and low survival due to late diagnosis, high resistance, and very limited effective therapeutic options. Thus, new pharmacological treatments are necessary to improve the prognosis of patients. In this context, nanoparticles represent an efficient system for transporting and administering therapeutic molecules. Furthermore, siRNA can be used in cancer treatment to selectively inhibit the expression of any target gene. Therefore, nanoparticles associated with siRNA have been tested as a new therapeutic strategy to solve the pancreatic cancer treatment failure in the clinical setting. The current article presents a systematic revision of the literature of the last 10 years in which nanoparticles loading siRNA are used in pancreatic cancer. This research was carried out in three databases (PubMed, Scopus, and Web of Science) obtaining 164 articles from which 37 were selected. Our results show an overall view of the high effectiveness of this new therapy that combines nanoparticles with genetic therapy in pancreatic cancer suggesting that siRNA-based medicines will likely open up a new therapeutic era in the treatment of this type of tumors.
Collapse
Affiliation(s)
- Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
| | - Francisco Quiñonero
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Agarwal H, Bynum RC, Saleh N, Harris D, MacCuaig WM, Kim V, Sanderson EJ, Dennahy IS, Singh R, Behkam B, Gomez-Gutierrez JG, Jain A, Edil BH, McNally LR. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1983. [PMID: 39140128 PMCID: PMC11328968 DOI: 10.1002/wnan.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most recalcitrant cancers due to its late diagnosis, poor therapeutic response, and highly heterogeneous microenvironment. Nanotechnology has the potential to overcome some of the challenges to improve diagnostics and tumor-specific drug delivery but they have not been plausibly viable in clinical settings. The review focuses on active targeting strategies to enhance pancreatic tumor-specific uptake for nanoparticles. Additionally, this review highlights using actively targeted liposomes, micelles, gold nanoparticles, silica nanoparticles, and iron oxide nanoparticles to improve pancreatic tumor targeting. Active targeting of nanoparticles toward either differentially expressed receptors or PDAC tumor microenvironment (TME) using peptides, antibodies, small molecules, polysaccharides, and hormones has been presented. We focus on microenvironment-based hallmarks of PDAC and the potential for actively targeted nanoparticles to overcome the challenges presented in PDAC. It describes the use of nanoparticles as contrast agents for improved diagnosis and the delivery of chemotherapeutic agents that target various aspects within the TME of PDAC. Additionally, we review emerging nano-contrast agents detected using imaging-based technologies and the role of nanoparticles in energy-based treatments of PDAC. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Happy Agarwal
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Ryan C Bynum
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Nada Saleh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Danielle Harris
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - William M MacCuaig
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Vung Kim
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Emma J Sanderson
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Rohit Singh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Virginia, USA
| | | | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Ma X, Zhao T, Ren X, Lin H, He P. Recent Progress in Polyion Complex Nanoparticles with Enhanced Stability for Drug Delivery. Polymers (Basel) 2024; 16:1871. [PMID: 39000726 PMCID: PMC11244007 DOI: 10.3390/polym16131871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Polyion complex (PIC) nanoparticles, including PIC micelles and PICsomes, are typically composed of poly(ethylene glycol) block copolymers coupled with oppositely charged polyelectrolytes or therapeutic agents via electrostatic interaction. Due to a simple and rapid preparation process with high drug-loading efficiency, PIC nanoparticles are beneficial to maintaining the chemical integrity and high biological activity of the loaded drugs. However, the stability of PIC nanoparticles can be disrupted in high-ionic-strength solutions because electrostatic interaction is the DRIVING force; these disruptions can thus impair drug delivery. Herein, we summarize the advances in the use of PIC nanoparticles for delivery of charged drugs, focusing on the different chemical and physical strategies employed to enhance their stability, including enhancing the charge density, crosslinking, increasing hydrophobic interactions, forming hydrogen bonds, and the development of PIC-based gels. In particular, we describe the use of PIC nanoparticles to load peptide antibiotics targeting antibiotic-resistant and biofilm-related diseases and the use of nanoparticles that load chemotherapeutics and gaseous donors for cancer treatment. Furthermore, the application of PIC nanoparticles as magnetic resonance imaging contrast agents is summarized for the first time. Therefore, this review is of great significance for advances in the use of polymeric nanoparticles for functional drug delivery.
Collapse
Affiliation(s)
- Xinlin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Tianyi Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoyue Ren
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Hui Lin
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
5
|
Marquet F, Hagen H, Stanchieri M, Beinier VS, Grasso G, Danani A, Patrulea V, Borchard G. Clickable polyethyleneimine incorporated into triblock copolymeric micelles as an efficient platform in the delivery of siRNA to NSCLC cells. Int J Pharm 2024; 649:123632. [PMID: 38000648 DOI: 10.1016/j.ijpharm.2023.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The efficacy of transfection vectors to cross the endosomal membrane into the cytosol is a central aspect in the development of nucleic acid-based therapeutics. The challenge remains the same: Delivery, Delivery, Delivery. Despite a rational and appropriate construct of triblock polymeric micelles, which could serve as an ideal platform for the co-delivery of siRNAs and hydrophobic anticancer drugs, we show here its inability to properly convey oligonucleotides to their final destination. In order to overcome biological barriers, a linear PEI comprising two orthogonal groups was synthesized, holding an appropriate balance between safety and efficacy. Micellar carriers were then formulated with this polymer to enhance endosomal siRNA release. This chemical technology also addresses the two major challenges to consider when developing novel micellar products for siRNA delivery, namely cytotoxicity of polycations and endosomal escape. Herein, we demonstrate successful release of siRNA using a polymer tailoring strategy combined with a relevant in vitro approach, considering STAT3 as a promising target in the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Franck Marquet
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Harry Hagen
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Mattia Stanchieri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Véronique Serre Beinier
- Division of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), Polo Universitario Lugano - Campus Est, Via la Santa 1 CH-6962, Lugano-Viganello, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), Polo Universitario Lugano - Campus Est, Via la Santa 1 CH-6962, Lugano-Viganello, Switzerland
| | - Viorica Patrulea
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK, Nurunnabi M. Oral delivery of RNAi for cancer therapy. Cancer Metastasis Rev 2023; 42:699-724. [PMID: 36971908 PMCID: PMC10040933 DOI: 10.1007/s10555-023-10099-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Cancer is a major health concern worldwide and is still in a continuous surge of seeking for effective treatments. Since the discovery of RNAi and their mechanism of action, it has shown promises in targeted therapy for various diseases including cancer. The ability of RNAi to selectively silence the carcinogenic gene makes them ideal as cancer therapeutics. Oral delivery is the ideal route of administration of drug administration because of its patients' compliance and convenience. However, orally administered RNAi, for instance, siRNA, must cross various extracellular and intracellular biological barriers before it reaches the site of action. It is very challenging and important to keep the siRNA stable until they reach to the targeted site. Harsh pH, thick mucus layer, and nuclease enzyme prevent siRNA to diffuse through the intestinal wall and thereby induce a therapeutic effect. After entering the cell, siRNA is subjected to lysosomal degradation. Over the years, various approaches have been taken into consideration to overcome these challenges for oral RNAi delivery. Therefore, understanding the challenges and recent development is crucial to offer a novel and advanced approach for oral RNAi delivery. Herein, we have summarized the delivery strategies for oral delivery RNAi and recent advancement towards the preclinical stages.
Collapse
Affiliation(s)
- Humayra Afrin
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Renu Geetha Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56/1, 51006, Tartu, Estonia
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Sheikh Shafin Ahmad
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA
| | - Sandeep K Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA.
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
| |
Collapse
|
7
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
8
|
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023; 12:e2202688. [PMID: 36785927 PMCID: PMC11469255 DOI: 10.1002/adhm.202202688] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Lucas Mixich
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Eger Boonstra
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Horacio Cabral
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
9
|
Watanabe T, Mizuno HL, Norimatsu J, Obara T, Cabral H, Tsumoto K, Nakakido M, Kawauchi D, Anraku Y. Ligand Installation to Polymeric Micelles for Pediatric Brain Tumor Targeting. Polymers (Basel) 2023; 15:polym15071808. [PMID: 37050422 PMCID: PMC10097392 DOI: 10.3390/polym15071808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Medulloblastoma is a life-threatening disease with poor therapeutic outcomes. In chemotherapy, low drug accumulation has been a cause of these outcomes. Such inadequate response to treatments has been associated with low drug accumulation, particularly with a limited cellular uptake of drugs. Recently, the conjugation of drugs to ligand molecules with high affinity to tumor cells has attracted much attention for enhancing drug internalization into target cells. Moreover, combining tumor-targeting ligands with nano-scaled drug carriers can potentially improve drug loading capacity and the versatility of the delivery. Herein, we focused on the possibility of targeting CD276/B7-H3, which is highly expressed on the medulloblastoma cell membrane, as a strategy for enhancing the cellular uptake of ligand-installed nanocarriers. Thus, anti-CD276 antibodies were conjugated on the surface of model nanocarriers based on polyion complex micelles (PIC/m) via click chemistry. The results showed that the anti-CD276 antibody-installed PIC/m improved intracellular delivery into CD276-expressing medulloblastoma cells in a CD276-dependent manner. Moreover, increasing the number of antibodies on the surface of micelles improved the cellular uptake efficiency. These observations indicate the potential of anti-CD276 antibody-installed nanocarriers for promoting drug delivery in medulloblastoma.
Collapse
Affiliation(s)
- Takayoshi Watanabe
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hayato Laurence Mizuno
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan
| | - Jumpei Norimatsu
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takumi Obara
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Makoto Nakakido
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
10
|
Zhang W, Taheri-Ledari R, Ganjali F, Afruzi FH, Hajizadeh Z, Saeidirad M, Qazi FS, Kashtiaray A, Sehat SS, Hamblin MR, Maleki A. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy. Heliyon 2022; 8:e09577. [PMID: 35706949 PMCID: PMC9189039 DOI: 10.1016/j.heliyon.2022.e09577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nanobioconjugates are nanoscale drug delivery vehicles that have been conjugated to or decorated with biologically active targeting ligands. These targeting ligands can be antibodies, peptides, aptamers, or small molecules such as vitamins or hormones. Most research studies in this field have been devoted to targeting cancer. Moreover, the nanostructures can be designed with an additional level of targeting by being designed to be stimulus-responsive or "smart" by a judicious choice of materials to be incorporated into the hybrid nanostructures. This stimulus could be an acidic pH, raised temperature, enzyme, ultrasound, redox potential, an externally applied magnetic field, or laser irradiation. In this case, the smart capability can increase the accumulation at the tumor site or the on-demand drug release, while the ligand ensures selective binding to the tumor cells. The present review highlights some interesting studies classified according to the nanostructure material. These materials include natural substances (polysaccharides), multi-walled carbon nanotubes (and halloysite nanotubes), metal-organic frameworks and covalent-organic frameworks, metal nanoparticles (gold and silver), and polymeric micelles.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu 610041, Sichuan Province, PR China
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fereshte Hassanzadeh Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Zoleikha Hajizadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Samin Sadat Sehat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
11
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
12
|
Wang Y, Thies-Weesie DM, Bosman ED, van Steenbergen MJ, van den Dikkenberg J, Shi Y, Lammers T, van Nostrum CF, Hennink WE. Tuning the size of all-HPMA polymeric micelles fabricated by solvent extraction. J Control Release 2022; 343:338-346. [DOI: 10.1016/j.jconrel.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
|
13
|
Suzuki K, Yoshizaki Y, Horii K, Murase N, Kuzuya A, Ohya Y. Preparation of hyaluronic acid-coated polymeric micelles for nasal vaccine delivery. Biomater Sci 2022; 10:1920-1928. [DOI: 10.1039/d1bm01985f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyaluronic acid (HA)-coated biodegradable polymeric micelles were developed as nanoparticulate vaccine delivery systems to establish an effective nasal vaccine. We previously reported HA-coated micelles prepared by forming a polyion complex...
Collapse
|
14
|
Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021; 13:cancers13246175. [PMID: 34944794 PMCID: PMC8699181 DOI: 10.3390/cancers13246175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite access to a vast arsenal of anticancer agents, many fail to realise their full therapeutic potential in clinical practice. One key determinant of this is the evolution of multifaceted resistance mechanisms within the tumour that may either pre-exist or develop during the course of therapy. This is particularly evident in pancreatic cancer, where limited responses to treatment underlie dismal survival rates, highlighting the urgent need for new therapeutic approaches. Here, we discuss the major features of pancreatic tumours that contribute to therapy resistance, and how they may be alleviated through exploitation of the mounting and exciting promise of nanomedicines; a unique collection of nanoscale platforms with tunable and multifunctional capabilities that have already elicited a widespread impact on cancer management. Abstract The development of drug resistance remains one of the greatest clinical oncology challenges that can radically dampen the prospect of achieving complete and durable tumour control. Efforts to mitigate drug resistance are therefore of utmost importance, and nanotechnology is rapidly emerging for its potential to overcome such issues. Studies have showcased the ability of nanomedicines to bypass drug efflux pumps, counteract immune suppression, serve as radioenhancers, correct metabolic disturbances and elicit numerous other effects that collectively alleviate various mechanisms of tumour resistance. Much of this progress can be attributed to the remarkable benefits that nanoparticles offer as drug delivery vehicles, such as improvements in pharmacokinetics, protection against degradation and spatiotemporally controlled release kinetics. These attributes provide scope for precision targeting of drugs to tumours that can enhance sensitivity to treatment and have formed the basis for the successful clinical translation of multiple nanoformulations to date. In this review, we focus on the longstanding reputation of pancreatic cancer as one of the most difficult-to-treat malignancies where resistance plays a dominant role in therapy failure. We outline the mechanisms that contribute to the treatment-refractory nature of these tumours, and how they may be effectively addressed by harnessing the unique capabilities of nanomedicines. Moreover, we include a brief perspective on the likely future direction of nanotechnology in pancreatic cancer, discussing how efforts to develop multidrug formulations will guide the field further towards a therapeutic solution for these highly intractable tumours.
Collapse
|
15
|
Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells 2021; 10:cells10123348. [PMID: 34943856 PMCID: PMC8699513 DOI: 10.3390/cells10123348] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant tumor in men. The epigenetic and genetic alterations appear to be responsible for development of PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce expression level of a specific gene. The various critical genes involved in PC progression can be effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target effects and their degradation by enzymes in serum can diminish their potential in gene silencing. Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are discussed in this article. This review also reveals that how naked siRNAs and their delivery systems can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials, significant progress can be made by translating the current findings into the clinical settings.
Collapse
|
16
|
Functional Characteristics and Regulated Expression of Alternatively Spliced Tissue Factor: An Update. Cancers (Basel) 2021; 13:cancers13184652. [PMID: 34572880 PMCID: PMC8471299 DOI: 10.3390/cancers13184652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
In human and mouse, alternative splicing of tissue factor's primary transcript yields two mRNA species: one features all six TF exons and encodes full-length tissue factor (flTF), and the other lacks exon 5 and encodes alternatively spliced tissue factor (asTF). flTF, which is oftentimes referred to as "TF", is an integral membrane glycoprotein due to the presence of an alpha-helical domain in its C-terminus, while asTF is soluble due to the frameshift resulting from the joining of exon 4 directly to exon 6. In this review, we focus on asTF-the more recently discovered isoform of TF that appears to significantly contribute to the pathobiology of several solid malignancies. There is currently a consensus in the field that asTF, while dispensable to normal hemostasis, can activate a subset of integrins on benign and malignant cells and promote outside-in signaling eliciting angiogenesis; cancer cell proliferation, migration, and invasion; and monocyte recruitment. We provide a general overview of the pioneering, as well as more recent, asTF research; discuss the current concepts of how asTF contributes to cancer progression; and open a conversation about the emerging utility of asTF as a biomarker and a therapeutic target.
Collapse
|
17
|
Aghamiri S, Raee P, Talaei S, Mohammadi-Yeganeh S, Bayat S, Rezaee D, Ghavidel AA, Teymouri A, Roshanzamiri S, Farhadi S, Ghanbarian H. Nonviral siRNA delivery systems for pancreatic cancer therapy. Biotechnol Bioeng 2021; 118:3669-3690. [PMID: 34170520 DOI: 10.1002/bit.27869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
The serious drawbacks of the conventional treatment of pancreatic ductal adenocarcinoma (PDAC) such as nonspecific toxicity and high resistance to chemo and radiation therapy, have prompted the development and application of countless small interfering RNA (siRNA)-based therapeutics. Recent advances in drug delivery systems hold great promise for improving siRNA-based therapeutics and developing a new class of drugs, known as nano-siRNA drugs. However, many fundamental questions, regarding toxicity, immunostimulation, and poor knowledge of nano-bio interactions, need to be addressed before clinical translation. In this review, we provide recent achievements in the design and development of various nonviral delivery vehicles for pancreatic cancer therapy. More importantly, codelivery of conventional anticancer drugs with siRNA as a new revolutionary pancreatic cancer combinational therapy is completely discussed.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sam Talaei
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Bayat
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin A Ghavidel
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Teymouri
- Department of Infectious Disease, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Farhadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Miyazaki T, Nakagawa Y, Cabral H. Strategies for ligand-installed nanocarriers. HANDBOOK OF NANOTECHNOLOGY APPLICATIONS 2021:633-655. [DOI: 10.1016/b978-0-12-821506-7.00024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020; 41:755-775. [PMID: 32893005 PMCID: PMC7470715 DOI: 10.1016/j.tips.2020.08.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Therapeutic RNA molecules possess high potential for treating medical conditions if they can successfully reach the target cell upon administration. However, unmodified RNA molecules are rapidly degraded and cleared from the circulation. In addition, their large size and negative charge complicates their passing through the cell membrane. The difficulty of RNA therapy, therefore, lies in the efficient intracellular delivery of intact RNA molecules to the tissue of interest without inducing adverse effects. Here, we outline the recent developments in therapeutic RNA delivery and discuss the wide potential in manipulating the function of cells with RNAs. The focus is not only on the variety of delivery strategies but also on the versatile nature of RNA and its wide applicability. This wide applicability is especially interesting when considering the modular nature of nucleic acids. An optimal delivery vehicle, therefore, can facilitate numerous clinical applications of RNA.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel,School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel,Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel,Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel,Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
21
|
Pereira-Silva M, Jarak I, Santos AC, Veiga F, Figueiras A. Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. Eur J Pharm Sci 2020; 153:105461. [DOI: 10.1016/j.ejps.2020.105461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
|
22
|
Pereira-Silva M, Jarak I, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. J Control Release 2020; 323:442-462. [DOI: 10.1016/j.jconrel.2020.04.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/09/2023]
|
23
|
Shimizu K, Takeuchi Y, Otsuka K, Mori T, Narita Y, Takasugi S, Magata Y, Matsumura Y, Oku N. Development of tissue factor-targeted liposomes for effective drug delivery to stroma-rich tumors. J Control Release 2020; 323:519-529. [DOI: 10.1016/j.jconrel.2020.04.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022]
|
24
|
Min HS, Kim HJ, Naito M, Ogura S, Toh K, Hayashi K, Kim BS, Fukushima S, Anraku Y, Miyata K, Kataoka K. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood-Brain Barrier with a Glucose-Coated Polymeric Nanocarrier. Angew Chem Int Ed Engl 2020; 59:8173-8180. [PMID: 31995252 PMCID: PMC7317551 DOI: 10.1002/anie.201914751] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Current antisense oligonucleotide (ASO) therapies for the treatment of central nervous system (CNS) disorders are performed through invasive administration, thereby placing a major burden on patients. To alleviate this burden, we herein report systemic ASO delivery to the brain by crossing the blood-brain barrier using glycemic control as an external trigger. Glucose-coated polymeric nanocarriers, which can be bound by glucose transporter-1 expressed on the brain capillary endothelial cells, are designed for stable encapsulation of ASOs, with a particle size of about 45 nm and an adequate glucose-ligand density. The optimized nanocarrier efficiently accumulates in the brain tissue 1 h after intravenous administration and exhibits significant knockdown of a target long non-coding RNA in various brain regions, including the cerebral cortex and hippocampus. These results demonstrate that the glucose-modified polymeric nanocarriers enable noninvasive ASO administration to the brain for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Hyun Su Min
- Department of Materials EngineeringGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Hyun Jin Kim
- Center for Disease Biology and Integrative MedicineGraduate School of MedicineThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-0033Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative MedicineGraduate School of MedicineThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-0033Japan
| | - Satomi Ogura
- Department of Materials EngineeringGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Kazuko Toh
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3-25-14 Tonomachi, Kawasaki-kuKawasaki210-0821Japan
| | - Kotaro Hayashi
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3-25-14 Tonomachi, Kawasaki-kuKawasaki210-0821Japan
| | - Beob Soo Kim
- Department of Materials EngineeringGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Shigeto Fukushima
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3-25-14 Tonomachi, Kawasaki-kuKawasaki210-0821Japan
| | - Yasutaka Anraku
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3-25-14 Tonomachi, Kawasaki-kuKawasaki210-0821Japan
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Kanjiro Miyata
- Department of Materials EngineeringGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial Promotion3-25-14 Tonomachi, Kawasaki-kuKawasaki210-0821Japan
- Institute for Future InitiativesThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-0033Japan
| |
Collapse
|
25
|
Su T, Yang B, Gao T, Liu T, Li J. Polymer nanoparticle-assisted chemotherapy of pancreatic cancer. Ther Adv Med Oncol 2020; 12:1758835920915978. [PMID: 32426046 PMCID: PMC7222269 DOI: 10.1177/1758835920915978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a lethal disease characterized by highly dense stroma fibrosis. Only 15-20% of patients with pancreatic cancer have resectable tumors, and only around 20% of them survive to 5 years. Traditional cancer treatments have little effect on their prognosis, and successful surgical resection combined with effective perioperative therapy is the main method for maximizing long-term survival. For this reason, chemotherapy is an adjunct treatment for resectable cancer and is the main therapy for incurable pancreatic cancer, including metastatic pancreatic adenocarcinoma. However, there are various side effects of chemotherapeutic medicine and low drug penetration because the complex tumor microenvironment limits the application of chemotherapy. As a novel strategy, polymer nanoparticles make it possible to target the tumor microenvironment, release cytotoxic agents through various responsive reactions, and thus overcome the treatment barrier. As drug carriers, polymer nanoparticles show marked advantages, such as increased drug delivery and efficiency, controlled drug release, decreased side effects, prolonged half-life, and evasion of immunogenic blockade. In this review, we discuss the factors that cause chemotherapy obstacles in pancreatic cancer, and introduce the application of polymer nanoparticles to treat pancreatic cancer.
Collapse
Affiliation(s)
- Tianqi Su
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tianren Gao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tongjun Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Jiannan Li
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|
26
|
Mi P, Cabral H, Kataoka K. Ligand-Installed Nanocarriers toward Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902604. [PMID: 31353770 DOI: 10.1002/adma.201902604] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Development of drug-delivery systems that selectively target neoplastic cells has been a major goal of nanomedicine. One major strategy for achieving this milestone is to install ligands on the surface of nanocarriers to enhance delivery to target tissues, as well as to enhance internalization of nanocarriers by target cells, which improves accuracy, efficacy, and ultimately enhances patient outcomes. Herein, recent advances regarding the development of ligand-installed nanocarriers are introduced and the effect of their design on biological performance is discussed. Besides academic achievements, progress on ligand-installed nanocarriers in clinical trials is presented, along with the challenges faced by these formulations. Lastly, the future perspectives of ligand-installed nanocarriers are discussed, with particular emphasis on their potential for emerging precision therapies.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
27
|
Min HS, Kim HJ, Naito M, Ogura S, Toh K, Hayashi K, Kim BS, Fukushima S, Anraku Y, Miyata K, Kataoka K. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood–Brain Barrier with a Glucose‐Coated Polymeric Nanocarrier. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hyun Su Min
- Department of Materials Engineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine Graduate School of Medicine The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine Graduate School of Medicine The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Satomi Ogura
- Department of Materials Engineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuko Toh
- Innovation Center of Nanomedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
| | - Kotaro Hayashi
- Innovation Center of Nanomedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
| | - Beob Soo Kim
- Department of Materials Engineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shigeto Fukushima
- Innovation Center of Nanomedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
| | - Yasutaka Anraku
- Innovation Center of Nanomedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kanjiro Miyata
- Department of Materials Engineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM) Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
- Institute for Future Initiatives The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
28
|
Zhao X, Ning Q, Mo Z, Tang S. A promising cancer diagnosis and treatment strategy: targeted cancer therapy and imaging based on antibody fragment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3621-3630. [PMID: 31468992 DOI: 10.1080/21691401.2019.1657875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the arrival of the precision medicine and personalized treatment era, targeted therapy that improves efficacy and reduces side effects has become the mainstream approach of cancer treatment. Antibody fragments that further enhance penetration and retain the most critical antigen-specific binding functions are considered the focus of research targeting cancer imaging and therapy. Thanks to the superior penetration and rapid blood clearance of antibody fragments, antibody fragment-based imaging agents enable efficient and sensitive imaging of tumour sites. In tumour-targeted therapy, antibody fragments can directly inhibit tumour proliferation and growth, serve as an ideal carrier for delivery of anti-tumour drugs, or manipulate the immune system to eliminate tumour cells. In this review, the excellent physicochemical properties and the basic structure of antibody fragments are expressly depicted depicted, the progress of antibody fragments in cancer therapy and imaging are thoroughly summarized, and the future development of antibody fragments is predicted.
Collapse
Affiliation(s)
- Xuhong Zhao
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China , Hengyang , China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| | - Zhongcheng Mo
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China , Hengyang , China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China , Hengyang , China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| |
Collapse
|
29
|
Kargaard A, Sluijter JPG, Klumperman B. Polymeric siRNA gene delivery - transfection efficiency versus cytotoxicity. J Control Release 2019; 316:263-291. [PMID: 31689462 DOI: 10.1016/j.jconrel.2019.10.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Within the field of gene therapy, there is a considerable need for the development of non-viral vectors that are able to compete with the efficiency obtained by viral vectors, while maintaining a good toxicity profile and not inducing an immune response within the body. While there have been many reports of possible polymeric delivery systems, few of these systems have been successful in the clinical setting due to toxicity, systemic instability or gene regulation inefficiency, predominantly due to poor endosomal escape and cytoplasmic release. The objective of this review is to provide an overview of previously published polymeric non-coding RNA and, to a lesser degree, oligo-DNA delivery systems with emphasis on their positive and negative attributes, in order to provide insight in the numerous hurdles that still limit the success of gene therapy.
Collapse
Affiliation(s)
- Anna Kargaard
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa; University Medical Center Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands
| | - Joost P G Sluijter
- University Medical Center Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; Utrecht University, the Netherlands
| | - Bert Klumperman
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
30
|
Sun H, Gu X, Zhang Q, Xu H, Zhong Z, Deng C. Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules 2019; 20:4299-4311. [DOI: 10.1021/acs.biomac.9b01291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Xiaolei Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Hao Xu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
31
|
Zinger A, Koren L, Adir O, Poley M, Alyan M, Yaari Z, Noor N, Krinsky N, Simon A, Gibori H, Krayem M, Mumblat Y, Kasten S, Ofir S, Fridman E, Milman N, Lübtow MM, Liba L, Shklover J, Shainsky-Roitman J, Binenbaum Y, Hershkovitz D, Gil Z, Dvir T, Luxenhofer R, Satchi-Fainaro R, Schroeder A. Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors. ACS NANO 2019; 13:11008-11021. [PMID: 31503443 PMCID: PMC6837877 DOI: 10.1021/acsnano.9b02395] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Overexpressed extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) limits drug penetration into the tumor and is associated with poor prognosis. Here, we demonstrate that a pretreatment based on a proteolytic-enzyme nanoparticle system disassembles the dense PDAC collagen stroma and increases drug penetration into the pancreatic tumor. More specifically, the collagozome, a 100 nm liposome encapsulating collagenase, was rationally designed to protect the collagenase from premature deactivation and prolonged its release rate at the target site. Collagen is the main component of the PDAC stroma, reaching 12.8 ± 2.3% vol in diseased mice pancreases, compared to 1.4 ± 0.4% in healthy mice. Upon intravenous injection of the collagozome, ∼1% of the injected dose reached the pancreas over 8 h, reducing the level of fibrotic tissue to 5.6 ± 0.8%. The collagozome pretreatment allowed increased drug penetration into the pancreas and improved PDAC treatment. PDAC tumors, pretreated with the collagozome followed by paclitaxel micelles, were 87% smaller than tumors pretreated with empty liposomes followed by paclitaxel micelles. Interestingly, degrading the ECM did not increase the number of circulating tumor cells or metastasis. This strategy holds promise for degrading the extracellular stroma in other diseases as well, such as liver fibrosis, enhancing tissue permeability before drug administration.
Collapse
Affiliation(s)
- Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Omer Adir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Mohammed Alyan
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Zvi Yaari
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Noor
- The School for Molecular Cell Biology and Biotechnology and the Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Assaf Simon
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Hadas Gibori
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Majd Krayem
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yelena Mumblat
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shira Kasten
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Sivan Ofir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Eran Fridman
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Neta Milman
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Michael M. Lübtow
- Functional Polymer Materials, Lehrstuhl für Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Lior Liba
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav Binenbaum
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Dov Hershkovitz
- Department of Pathology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997800, Israel
| | - Ziv Gil
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Tal Dvir
- The School for Molecular Cell Biology and Biotechnology and the Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Robert Luxenhofer
- Functional Polymer Materials, Lehrstuhl für Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- Corresponding author: (AS)
| |
Collapse
|
32
|
Takemoto H, Wang CL, Nomoto T, Matsui M, Tomoda K, Nishiyama N. Pyruvate Responsiveness Based on α-Oxohydrazone Formation for Intracellular siRNA Release from Polyion Complex-Based Carriers. Biomacromolecules 2019; 20:2305-2314. [DOI: 10.1021/acs.biomac.9b00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| | - Chih-Ling Wang
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keishiro Tomoda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
33
|
Horn JM, Kapelner RA, Obermeyer AC. Macro- and Microphase Separated Protein-Polyelectrolyte Complexes: Design Parameters and Current Progress. Polymers (Basel) 2019; 11:E578. [PMID: 30960562 PMCID: PMC6523202 DOI: 10.3390/polym11040578] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 01/02/2023] Open
Abstract
Protein-containing polyelectrolyte complexes (PECs) are a diverse class of materials, composed of two or more oppositely charged polyelectrolytes that condense and phase separate near overall charge neutrality. Such phase-separation can take on a variety of morphologies from macrophase separated liquid condensates, to solid precipitates, to monodispersed spherical micelles. In this review, we present an overview of recent advances in protein-containing PECs, with an overall goal of defining relevant design parameters for macro- and microphase separated PECs. For both classes of PECs, the influence of protein characteristics, such as surface charge and patchiness, co-polyelectrolyte characteristics, such as charge density and structure, and overall solution characteristics, such as salt concentration and pH, are considered. After overall design features are established, potential applications in food processing, biosensing, drug delivery, and protein purification are discussed and recent characterization techniques for protein-containing PECs are highlighted.
Collapse
Affiliation(s)
- Justin M Horn
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Rachel A Kapelner
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
34
|
Wang Y, Jia F, Wang Z, Qian Y, Fan L, Gong H, Luo A, Sun J, Hu Z, Wang W. Boosting the Theranostic Effect of Liposomal Probes toward Prominin-1 through Optimized Dual-Site Targeting. Anal Chem 2019; 91:7245-7253. [DOI: 10.1021/acs.analchem.9b00622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuehua Wang
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Fei Jia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihua Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yixia Qian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linyang Fan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Beijing Institute of Technology, Beijing 100081, China
| | - He Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Aiqin Luo
- Beijing Institute of Technology, Beijing 100081, China
| | - Jian Sun
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Weizhi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
35
|
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , 215123 , P. R. China
| | - Harm-Anton Klok
- Laboratoire des Polymères, Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques , École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD , Station 12 , CH-1015 Lausanne , Switzerland
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , 215123 , P. R. China
| |
Collapse
|