1
|
Jaffur BN, Kumar G, Jeetah P, Ramakrishna S, Bhatia SK. Current advances and emerging trends in sustainable polyhydroxyalkanoate modification from organic waste streams for material applications. Int J Biol Macromol 2023; 253:126781. [PMID: 37696371 DOI: 10.1016/j.ijbiomac.2023.126781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The current processes for producing polyhydroxyalkanoates (PHAs) are costly, owing to the high cost of cultivation feedstocks, and the need to sterilise the growth medium, which is energy-intensive. PHA has been identified as a promising biomaterial with a wide range of potential applications and its functionalization from waste streams has made significant advances recently, which can help foster the growth of a circular economy and waste reduction. Recent developments and novel approaches in the functionalization of PHAs derived from various waste streams offer opportunities for addressing these issues. This study focuses on the development of sustainable, efficient, and cutting-edge methods, such as advanced bioprocess engineering, novel catalysts, and advances in materials science. Chemical techniques, such as epoxidation, oxidation, and esterification, have been employed for PHA functionalization, while enzymatic and microbial methods have indicated promise. PHB/polylactic acid blends with cellulose fibers showed improved tensile strength by 24.45-32.08 % and decreased water vapor and oxygen transmission rates while PHB/Polycaprolactone blends with a 1:1 ratio demonstrated an elongation at break four to six times higher than pure PHB, without altering tensile strength or elastic modulus. Moreover, PHB films blended with both polyethylene glycol and esterified sodium alginate showed improvements in crystallinity and decreased hydrophobicity.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental, Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
2
|
Cywar RM, Ling C, Clarke RW, Kim DH, Kneucker CM, Salvachúa D, Addison B, Hesse SA, Takacs CJ, Xu S, Demirtas MU, Woodworth SP, Rorrer NA, Johnson CW, Tassone CJ, Allen RD, Chen EYX, Beckham GT. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability. SCIENCE ADVANCES 2023; 9:eadi1735. [PMID: 37992173 PMCID: PMC10664982 DOI: 10.1126/sciadv.adi1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Cross-linked elastomers are stretchable materials that typically are not recyclable or biodegradable. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are soft and ductile, making these bio-based polymers good candidates for biodegradable elastomers. Elasticity is commonly imparted by a cross-linked network structure, and covalent adaptable networks have emerged as a solution to prepare recyclable thermosets via triggered rearrangement of dynamic covalent bonds. Here, we develop biodegradable and recyclable elastomers by chemically installing the covalent adaptable network within biologically produced mcl-PHAs. Specifically, an engineered strain of Pseudomonas putida was used to produce mcl-PHAs containing pendent terminal alkenes as chemical handles for postfunctionalization. Thiol-ene chemistry was used to incorporate boronic ester (BE) cross-links, resulting in PHA-based vitrimers. mcl-PHAs cross-linked with BE at low density (<6 mole %) affords a soft, elastomeric material that demonstrates thermal reprocessability, biodegradability, and denetworking at end of life. The mechanical properties show potential for applications including adhesives and soft, biodegradable robotics and electronics.
Collapse
Affiliation(s)
- Robin M. Cywar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Chen Ling
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Ryan W. Clarke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Dong Hyun Kim
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Colin M. Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sarah A. Hesse
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher J. Takacs
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Shu Xu
- Applied Materials Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Northwestern Argonne Institute of Science and Engineering, 2205 Tech Drive, Suite 1160, Evanston, IL 60208, USA
| | | | - Sean P. Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Nicholas A. Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Christopher W. Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Christopher J. Tassone
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Robert D. Allen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| |
Collapse
|
3
|
Gürler N, Torğut G. Dielectric Biodegradable Biopolymer‐Based Graphene Nanocomposites for Use in the Packaging Industry and Capacitor Application. ChemistrySelect 2022. [DOI: 10.1002/slct.202201975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nedim Gürler
- Department of Food Process Tunceli Vocational School Munzur University Tunceli 62000 Turkey
| | - Gülben Torğut
- Department of Hotel Restaurant and Catering Services Tunceli Vocational School Munzur University Tunceli 62000 Turkey
| |
Collapse
|
4
|
Morphology and crystallization behaviour of polyhydroxyalkanoates-based blends and composites: A review. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Effect of GNPs on the Piezoresistive, Electrical and Mechanical Properties of PHA and PLA Films. FIBERS 2021. [DOI: 10.3390/fib9120086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sustainability has become the primary focus for researchers lately. Biopolymers such as polyhydroxyalkanoate (PHA) and polylactic acid (PLA) are biocompatible and biodegradable. Introducing piezoresistive response in the films produced by PLA and PHA by adding nanoparticles can be interesting. Hence, a study was performed to evaluate the mechanical, electrical and piezoresistive response of films made from PHA and PLA. The films were produced by solvent casting, and they were reinforced with graphene nanoplatelets (GNPs) at different nanoparticle concentrations (from 0.15 to 15 wt.%). Moreover, cellulose nanocrystals (CNC) as reinforcing elements and polyethylene glycol (PEG) as plasticizers were added. After the assessment of the nanoparticle distribution, the films were subjected to tests such as tensile, electrical conductivity and piezoresistive response. The dispersion was found to be good in PLA films and there exist some agglomerations in PHA films. The results suggested that the incorporation of GNPs enhanced the mechanical properties until 0.75 wt.% and they reduced thereon. The addition of 1% CNCs and 20% PEG in 15 wt.% GNPs’ tensile values deteriorated further. The PHA films showed better electrical conductivity compared to the PLA films for the same GNPs wt.%. Gauge factor (GF) values of 6.30 and 4.31 were obtained for PHA and PLA, respectively.
Collapse
|
6
|
Dias OAT, Konar S, Pakharenko V, Graziano A, Leão AL, Tjong J, Jaffer S, Sain M. Regioselective Protection and Deprotection of Nanocellulose Molecular Design Architecture: Robust Platform for Multifunctional Applications. Biomacromolecules 2021; 22:4980-4987. [PMID: 34791880 DOI: 10.1021/acs.biomac.1c00909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regioselectively substituted nanocellulose was synthesized by protecting the primary hydroxyl group. Herein, we took advantage of the different reactivities of primary and secondary hydroxyl groups to graft large capping structures. This study mainly focuses on regioselective installation of trityl protecting groups on nanocellulose chains. The elemental analysis and nuclear magnetic resonance spectroscopy of regioselectively substituted nanofibrillated cellulose (NFC) suggested that the trityl group was successfully grafted in the primary hydroxyl group with a degree of substitution of nearly 1. Hansen solubility parameters were employed, and the binary system composed of an ionic liquid and pyridine as a base was revealed to be the optimum condition for regioselective functionalization of nanocellulose. Interestingly, the dissolution of NFC in the ionic liquid and the subsequent deprotection process of NFC substrates hardly affected the crystalline structure of NFC (3.6% decrease in crystallinity). This method may provide endless possibilities for the design of advanced engineered nanomaterials with multiple functionalities. We envisage that this protection/deprotection approach may lead to a bright future for the fabrication of multifunctional devices based on nanocellulose.
Collapse
Affiliation(s)
- Otavio Augusto Titton Dias
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada
| | - Samir Konar
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| | - Viktoriya Pakharenko
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada
| | - Antimo Graziano
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Alcides Lopes Leão
- College of Agricultural Sciences, São Paulo State University (Unesp), Botucatu, São Paulo 18610307, Brazil
| | - Jimi Tjong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| | - Shaffiq Jaffer
- TOTAL American Services Inc., Hopkinton, Massachusetts 01748, United States
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| |
Collapse
|
7
|
Rekhi P, Goswami M, Ramakrishna S, Debnath M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit Rev Biotechnol 2021; 42:668-692. [PMID: 34645360 DOI: 10.1080/07388551.2021.1960265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polymers are synonymous with the modern way of living. However, polymers with a large carbon footprint, especially those derived from nonrenewable petrochemical sources, are increasingly perceived as detrimental to the environment and a sustainable future. Polyhydroxyalkanoate (PHA) is a microbial biopolymer and a plausible alternative for renewable sources. However, PHA in its monomeric forms has very limited applications due to its limited flexibility, tensile strength, and moldability. Herein, the life cycle of PHA molecules, from biosynthesis to commercial utilization for diverse applications is discussed. For clarity, the applications of this bioplastic biocomposite material are further segregated into two domains, namely, the industrial sector and the medical sector. The industry sectors reviewed here include food packaging, textiles, agriculture, automotive, and electronics. High-value addition of PHA for a sustainable future can be foreseen in the medical domain. Properties such as biodegradability and biocompatibility make PHA a suitable candidate for decarbonizing biomaterials during tissue repair, organ reconstruction, drug delivery, bone tissue engineering, and chemotherapeutics.
Collapse
Affiliation(s)
- Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
8
|
Kumar AN, Katakojwala R, Amulya K, Mohan SV. Polyhydroxybutyrate production from dark-fermentative effluent and composite grafting with bagasse derived α-cellulose in a biorefinery approach. CHEMOSPHERE 2021; 279:130563. [PMID: 34134408 DOI: 10.1016/j.chemosphere.2021.130563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The study evaluated the preparation of a biocomposite using waste-derived polyhydroxybutyrate (PHB) and bagasse cellulose (α-cellulose) in a biorefinery approach. PHB was produced using dark fermentation effluent rich in volatile fatty acids (VFA) derived from vegetable waste and α-cellulose was extracted from sugarcane bagasse (SCB). Nutrient limitation induced microbial PHB accumulation, wherein maximum production of 0.28 ± 0.06 g PHB/g DCW (28%) was observed. Confocal examination showed the deposition of PHB granules in the cell cytoplasm and NMR spectrum exhibited a structural correlation. α-Cellulose (0.22 ± 0.02 g α-cellulose/g SCB) was extracted through SCB pretreatment. Thereafter, grafting α-cellulose with PHB offered intermolecular bonding, which resulted in enhanced thermal stability of the biocomposite than corresponding pristine PHB. FE-SEM morphological examination of biocomposite depicted that α-cellulose functioned as a filler to PHB. XRD profiles showed significant decrement in PHB crystallinity, signifying the functional role of α-cellulose as an effective reinforcing agent. Additionally, ether functional group of α-cellulose and ester group of PHB also appeared in XPS analysis of the composite, thus authorizing the effective blending of α-cellulose and PHB. Utilization of bagasse-derived cellulose for strengthening biologically produced PHB expands its applications, while simultaneously addressing the plastic pollution issues. Additional value from this process was further achieved by incorporating the concept of biorefinery, wherein acidogenic fermentation effluents were used for the production of PHA, which enabled the re-entry of products (VFA) to the production cycle, thus achieving circularity.
Collapse
Affiliation(s)
- A Naresh Kumar
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Ranaprathap Katakojwala
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - K Amulya
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Goswami M, Rekhi P, Debnath M, Ramakrishna S. Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds. Molecules 2021; 26:860. [PMID: 33562111 PMCID: PMC7915662 DOI: 10.3390/molecules26040860] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) are proteinaceous storage granules ranging from 100 nm to 500 nm. Bacillus sp. serve as unique bioplastic sources of short-chain length and medium-chain length PHA showcasing properties such as biodegradability, thermostability, and appreciable mechanical strength. The PHA can be enhanced by adding functional groups to make it a more industrially useful biomaterial. PHA blends with hydroxyapatite to form nanocomposites with desirable features of compressibility. The reinforced matrices result in nanocomposites that possess significantly improved mechanical and thermal properties both in solid and melt states along with enhanced gas barrier properties compared to conventional filler composites. These superior qualities extend the polymeric composites' applications to aggressive environments where the neat polymers are likely to fail. This nanocomposite can be used in different industries as nanofillers, drug carriers for packaging essential hormones and microcapsules, etc. For fabricating a bone scaffold, electrospun nanofibrils made from biocomposite of hydroxyapatite and polyhydroxy butyrate, a form of PHA, can be incorporated with the targeted tissue. The other methods for making a polymer scaffold, includes gas foaming, lyophilization, sol-gel, and solvent casting method. In this review, PHA as a sustainable eco-friendly NextGen biomaterial from bacterial sources especially Bacillus cereus, and its application for fabricating bone scaffold using different strategies for bone regeneration have been discussed.
Collapse
Affiliation(s)
- Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| |
Collapse
|
10
|
Calvo-Correas T, Shirole A, Alonso-Varona A, Palomares T, Weder C, Corcuera MA, Eceiza A. Impact of the Combined Use of Magnetite Nanoparticles and Cellulose Nanocrystals on the Shape-Memory Behavior of Hybrid Polyurethane Bionanocomposites. Biomacromolecules 2020; 21:2032-2042. [PMID: 32286809 DOI: 10.1021/acs.biomac.9b01764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hybrid bionanocomposites with shape-memory behavior are reported. The materials were accessed by combining a polyurethane matrix with a highly renewable carbon content, cellulose nanocrystals (CNCs), and magnetite nanoparticles (MNPs). The integration of the two nanoparticle types resulted in tough materials that display a higher stiffness and storage modulus in the glassy and rubbery state, thus contributing to the structural reinforcement, as well as magnetic properties, reflecting a synergistic effect of this combination. A quantitative characterization of the thermoactivated shape-memory effect made evident that the addition of CNCs increases the shape fixity, due to the higher glass transition temperature (Tg) and the higher stiffness below Tg than the neat PU, while the addition of MNPs made it possible to activate the shape recovery by applying an alternating magnetic field. Moreover, the new hybrid bionanocomposites showed good bio- and hemocompatibility.
Collapse
Affiliation(s)
- Tamara Calvo-Correas
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Pza Europa 1, Donostia-San Sebastian 20018, Spain
| | - Anuja Shirole
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Ana Alonso-Varona
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940, Leioa-Bizkaia, Spain
| | - Teodoro Palomares
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940, Leioa-Bizkaia, Spain
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - M Angeles Corcuera
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Pza Europa 1, Donostia-San Sebastian 20018, Spain
| | - Arantxa Eceiza
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Pza Europa 1, Donostia-San Sebastian 20018, Spain
| |
Collapse
|
11
|
Li F, Yu HY, Wang YY, Zhou Y, Zhang H, Yao JM, Abdalkarim SYH, Tam KC. Natural Biodegradable Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Nanocomposites with Multifunctional Cellulose Nanocrystals/Graphene Oxide Hybrids for High-Performance Food Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10954-10967. [PMID: 31365242 DOI: 10.1021/acs.jafc.9b03110] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-performance and useful graphene oxide (GO) and cellulose nanocrystals (CNCs) are easily extracted from natural graphite and cellulose raw materials, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is produced by bacterial fermentation from natural plant corn stalks, etc. In this study, novel ternary nanocomposites consisting of PHBV/cellulose nanocrystal-graphene oxide nanohybrids were prepared via a simple solution casting method. The synergistic effect of CNC with GO nanohybrids obtained by chemical grafting (CNC-GO, covalent bonds) and physical blending (CNC/GO, noncovalent bonds) on the physicochemical properties of PHBV nanocomposites was evaluated and the results compared with a single component nanofiller (CNC or GO) in binary nanocomposites. More interestingly, ternary nanocomposites displayed the highest thermal stability and mechanical properties. Compared to neat PHBV, the tensile strength and elongation to break increased by 170.2 and 52.1%, respectively, and maximum degradation temperature (Tmax) increment by 26.3 °C, were observed for the ternary nanocomposite with 1 wt % covalent bonded CNC-GO. Compared to neat PHBV, binary, and 1:0.5 wt % noncovalent CNC/GO based nanocomposites, the ternary nanocomposites with 1 wt % covalent bonded CNC-GO exhibited excellent barrier properties, good antibacterial activity (antibacterial ratio of 100.0%), reduced barrier properties, and lower migration level for both food simulants. Such a synergistic effect yielded high-performance ternary nanocomposites with great potential for bioactive food packaging materials.
Collapse
Affiliation(s)
- Fang Li
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Yan-Yan Wang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
| | - Ying Zhou
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
| | - Heng Zhang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
| | - Ju-Ming Yao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
12
|
Luo Z, Wu YL, Li Z, Loh XJ. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications. Biotechnol J 2019; 14:e1900283. [PMID: 31469496 DOI: 10.1002/biot.201900283] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/20/2019] [Indexed: 12/16/2022]
Abstract
In recent years, naturally biodegradable polyhydroxyalkanoate (PHA) monopolymers have become focus of public attentions due to their good biocompatibility. However, due to its poor mechanical properties, high production costs, and limited functionality, its applications in materials, energy, and biomedical applications are greatly limited. In recent years, researchers have found that PHA copolymers have better thermal properties, mechanical processability, and physicochemical properties relative to their homopolymers. This review summarizes the synthesis of PHA copolymers by the latest biosynthetic and chemical modification methods. The modified PHA copolymer could greatly reduce the production cost with elevated mechanical or physicochemical properties, which can further meet the practical needs of various fields. This review further summarizes the broad applications of modified PHA copolymers in biomedical applications, which might shred lights on their commercial applications.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Science and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| |
Collapse
|
13
|
Zhang X, Li Z, Che X, Yu L, Jia W, Shen R, Chen J, Ma Y, Chen GQ. Synthesis and Characterization of Polyhydroxyalkanoate Organo/Hydrogels. Biomacromolecules 2019; 20:3303-3312. [PMID: 31094501 DOI: 10.1021/acs.biomac.9b00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic organogels/hydrogels are attracting growing interests due to their potential applications in biomedical fields, organic electronics, and photovoltaics. Photogelation methods for synthesis of organogels/hydrogels have been shown particularly promising because of the high efficiency and simple synthetic procedures. This study synthesized new biodegradable polyhydroxyalkanoates (PHA)-based organogels/hydrogels via UV photo-cross-linking using unsaturated PHA copolymer poly[(R)-3-hydroxyundecanoate-co-(R)-3-hydroxy-10-undecenoate] (PHU10U) with polyethylene glycol dithiol (PDT) as a photo-cross-linker. The PHU10U was synthesized by an engineered Pseudomonas entomophila and characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), and 13C NMR. With decreasing the molar ratio of PHU10U to PDT, both the swelling ratio and pore size were decreased. Meanwhile, increasing densities of the gel networks resulted in a higher compressive modulus. Cell cytotoxicity studies based on the CCK-8 assay on both the PHU10U precursor and PHU10U/PDT hydrogels showed that the novel PHA-based biodegradables acting as hydrogels possess good biocompatibility.
Collapse
Affiliation(s)
- Xu Zhang
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Zihua Li
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Xuemei Che
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China.,Center for Nano- and Micro Mechanics, Tsinghua University , Beijing 100084 , China
| | - Linping Yu
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Wangyue Jia
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Rui Shen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Jinchun Chen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Yiming Ma
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Guo-Qiang Chen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China.,Center for Nano- and Micro Mechanics, Tsinghua University , Beijing 100084 , China.,MOE Key Lab for Industrial Biocatalysis, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
14
|
Percec S, Albertsson AC. Rational Design of Multifunctional Renewable-Resourced Materials. Biomacromolecules 2019; 20:569-572. [DOI: 10.1021/acs.biomac.9b00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|