1
|
Chang YK, Hao SJ, Wu FG. Recent Biomedical Applications of Functional Materials Based on Polyhedral Oligomeric Silsesquioxane (POSS). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401762. [PMID: 39279395 DOI: 10.1002/smll.202401762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/06/2024] [Indexed: 09/18/2024]
Abstract
Polyhedral oligomeric silsesquioxane (POSS) is a 3D, cage-like nanoparticle with an inorganic Si-O-Si core and eight tunable corner functional groups. Its well-defined structure grants it distinctive physical, chemical, and biological properties and has been widely used for preparing high-performance materials. Recently, click chemistry has enabled the synthesis of various functional POSS-based materials for diverse biomedical applications. This article reviews the recent applications of POSS-based materials in the biomedical field, including cancer treatment, tissue engineering, antibacterial use, and biomedical imaging. Representative examples are discussed in detail. Among the various POSS-based applications, cancer treatment and tissue engineering are the most important. Finally, this review presents the current limitations of POSS-based materials and provides guidance for future research.
Collapse
Affiliation(s)
- Yun-Kai Chang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Shi-Jie Hao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
2
|
Akkurt Yıldırım M, Özer B, Türkoğlu N, Denktaş C. Evaluation of the Mechanical Strength and Cell Adhesion Capacity of POSS Doped PVA/CMC Hernia Patch. Macromol Biosci 2024; 24:e2400095. [PMID: 39052386 DOI: 10.1002/mabi.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Peritoneal adhesion typically occurs in applications such as abdominal, pelvic, and vascular surgery. It is necessary to develop a mechanical barrier to prevent adhesion. In this study, a novel biomaterial as a mechanical barrier is developed by combining polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC), doped with polyhedral oligomeric silsesquioxane (POSS) to prevent peritoneal adhesion. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods reveal that POSS nanoparticles in the PVA matrix disrupted the intramolecular hydroxyl groups and structure of the crystal region. Electron microscopy (EM) images reveal that high concentrations of POSS (2 wt.%) cause irregular clustering in the composite matrix. As the concentration of POSS increases in the matrix, the degradation of the membranes increases, and protein adhesion decreases. In vitro cytotoxicity tests show a toxic effect on cells for PVA/CMC composite membranes, while on the other hand, the addition of POSS increases cell viability. According to the MMT test the POSS decreases cell adhesion of membranes. When comparing the POSS doped membrane to the undoped PVA/CMC membrane, an increase in the total antioxidant level and a decrease in the total oxidant level is observed.
Collapse
Affiliation(s)
- Meryem Akkurt Yıldırım
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34349, Turkey
| | - Barkın Özer
- Department of Physics, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Nelisa Türkoğlu
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34349, Turkey
| | - Cenk Denktaş
- Department of Physics, Yildiz Technical University, Istanbul, 34220, Turkey
| |
Collapse
|
3
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
4
|
POSS and SSQ Materials in Dental Applications: Recent Advances and Future Outlooks. Int J Mol Sci 2023; 24:ijms24054493. [PMID: 36901923 PMCID: PMC10003367 DOI: 10.3390/ijms24054493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 03/03/2023] Open
Abstract
Recently, silsesquioxanes (SSQ) and polyhedral oligomeric silsesquioxanes (POSS) have gained much interest in the area of biomaterials, mainly due to their intrinsic properties such as biocompatibility, complete non-toxicity, the ability to self-assemble and to form a porous structure, facilitating cell proliferation, creating a superhydrophobic surface, osteoinductivity, and ability to bind hydroxyapatite. All the above has resulted in new developments in medicine. However, the application of POSS-containing materials in dentistry is still at initial stage and deserves a systematic description to ensure future development. Significant problems, such as reduction of polymerization shrinkage, water absorption, hydrolysis rate, poor adhesion and strength, unsatisfactory biocompatibility, and corrosion resistance of dental alloys, can be addressed by the design of multifunctional POSS-containing materials. Because of the presence of silsesquioxanes, it is possible to obtain smart materials that allow the stimulation of phosphates deposition and repairing of micro-cracks in dental fillings. Hybrid composites result in materials exhibiting shape memory, as well as antibacterial, self-cleaning, and self-healing properties. Moreover, introducing POSS into polymer matrix allows for materials for bone reconstruction, and wound healing. This review covers the recent developments in the field of POSS application in dental materials and gives the future perspectives within a promising field of biomedical material science and chemical engineering.
Collapse
|
5
|
Yu T, Zhang L, Dou X, Bai R, Wang H, Deng J, Zhang Y, Sun Q, Li Q, Wang X, Han B. Mechanically Robust Hydrogels Facilitating Bone Regeneration through Epigenetic Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203734. [PMID: 36161289 PMCID: PMC9661832 DOI: 10.1002/advs.202203734] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Development of artificial biomaterials by mimicking extracellular matrix of bone tissue is a promising strategy for bone regeneration. Hydrogel has emerged as a type of viable substitute, but its inhomogeneous networks and weak mechanics greatly impede clinical applications. Here, a dual crosslinked gelling system is developed with tunable architectures and mechanics to promote osteogenic capacity. Polyhedral oligomeric silsesquioxane (POSS) is designated as a rigid core surrounded by six disulfide-linked PEG shells and two 2-ureido-4[1H]-pyrimidinone (UPy) groups. Thiol-disulfide exchange is employed to fabricate chemical network because of the pH-responsive "on/off" function. While self-complementary UPy motif is capable of optimizing local microstructure to enhance mechanical properties. Taking the merits of biocompatibility and high-mechanics in periodontal ligament stem cells (PDLSCs) proliferation, attachment, and osteogenesis, hybrid hydrogel exhibits outstanding osteogenic potential both in vitro and in vivo. Importantly, it is the first time that a key epigenetic regulator of ten-eleven translocation 2 (Tet2) is discovered to significantly elevate the continuously active the WNT/β-catenin through Tet2/HDAC1/E-cadherin/β-catenin signaling cascade, thereby promoting PDLSCs osteogenesis. This work represents a general strategy to design the hydrogels with customized networks and biomimetic mechanics, and illustrates underlying osteogenic mechanisms that will extend the design rationales for high-functional biomaterials in tissue engineering.
Collapse
Affiliation(s)
- Tingting Yu
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Lingyun Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Xueyu Dou
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rushui Bai
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Hufei Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Deng
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yunfan Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qiannan Sun
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qian Li
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Xing Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Bing Han
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
6
|
Kreutz M, Kreutz C, Kanzow P, Tauböck TT, Burrer P, Noll C, Bader O, Rohland B, Wiegand A, Rizk M. Effect of Bioactive and Antimicrobial Nanoparticles on Properties and Applicability of Dental Adhesives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3862. [PMID: 36364638 PMCID: PMC9694625 DOI: 10.3390/nano12213862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The aim of the study was to examine the applicability of bioactive and antibacterial nanoparticles to an experimental adhesive. The adhesive (60 wt% BisGMA, 15 wt% TEGDMA, 25 wt% HEMA) was mixed with combinations of 5 wt% methacryl-functionalized polyhedral oligomeric silsesquioxane (MA-POSS) and one kind of bioactive/antibacterial nanoparticles: 1 wt% core-shell silica-silver nanoparticle (SiO2@Ag), 1 wt% bioactive glass with bismuth (BAG-Bi) or 1 wt% calcium phosphate (CAP). Pure adhesive served as control. The physicochemical (degree of conversion (DC), linear shrinkage (LS), shear and complex viscosity, water sorption (WS), sol fraction (SF)), biological (antimicrobial effect) and bioactive (mineral precipitation) properties were investigated. DC and LS remained unchanged. The combination of BAG-Bi/MA-POSS resulted in a significantly increased WS and SF compared to control. In addition, the combination of CAP/MA-POSS slightly increased the shear viscosity of the adhesive. The addition of the nanoparticles did not influence the antimicrobial effects compared to the pure adhesive. Improved mineral inducing capacity could be detected in all nanoparticle combinations. The combination of bioactive and/or antibacterial nanoparticles showed improved mineral inducing capacity, but no antibacterial properties. The material properties were not or only slightly affected.
Collapse
Affiliation(s)
- Marietta Kreutz
- Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christian Kreutz
- Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Philipp Kanzow
- Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Tobias T. Tauböck
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Phoebe Burrer
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Christine Noll
- Institute of Medical Microbiology and Virology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Oliver Bader
- Institute of Medical Microbiology and Virology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Bianca Rohland
- Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Annette Wiegand
- Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Marta Rizk
- Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
7
|
Krizhanovskiy I, Temnikov M, Kononevich Y, Anisimov A, Drozdov F, Muzafarov A. The Use of the Thiol-Ene Addition Click Reaction in the Chemistry of Organosilicon Compounds: An Alternative or a Supplement to the Classical Hydrosilylation? Polymers (Basel) 2022; 14:polym14153079. [PMID: 35956590 PMCID: PMC9370781 DOI: 10.3390/polym14153079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
This review presents the main achievements in the use of the thiol-ene reaction in the chemistry of silicones. Works are considered, starting from monomers and ending with materials.The main advantages and disadvantages of this reaction are demonstrated using various examples. A critical analysis of the use of this reaction is made in comparison with the hydrosilylation reaction.
Collapse
Affiliation(s)
- Ilya Krizhanovskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Maxim Temnikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Yuriy Kononevich
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Anton Anisimov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Correspondence: (A.A.); (A.M.)
| | - Fedor Drozdov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
| | - Aziz Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
- Correspondence: (A.A.); (A.M.)
| |
Collapse
|
8
|
Cao J, Ma X, Liu L, Zhang G, Wu Y, Fu Y, Gong A, Yang Z, Zhao Y, Zhang L, Li Y. Cortistatin attenuates titanium particle-induced osteolysis through regulation of TNFR1-ROS-caspase-3 signaling in osteoblasts. Ann N Y Acad Sci 2022; 1513:140-152. [PMID: 35419858 DOI: 10.1111/nyas.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aseptic loosening is a major complication of prosthetic joint surgery and is associated with impaired osteoblast homeostasis. Cortistatin (CST) is a neuropeptide that protects against inflammatory conditions. In this study, we found that expression of CST was diminished in patients with prosthetic joint loosening and in titanium (Ti) particle-induced animal models. A Ti particle-induced calvarial osteolysis model was established in wild-type and CST gene knockout mice; CST deficiency enhanced, while exogenously added CST attenuated, the severity of Ti particle-mediated osteolysis. CST protected against inflammation as well as apoptosis and maintained the osteogenic function of MC3T3-E1 osteoblasts upon stimulation with Ti particles. Furthermore, CST antagonized reactive oxygen species production and suppressed caspase-3-associated apoptosis mediated by Ti particles in osteoblasts. Additionally, CST protects against Ti particle-induced osteolysis through tumor necrosis factor receptor 1. Taken together, CST might provide a therapeutic strategy for wear debris-induced inflammatory osteolysis.
Collapse
Affiliation(s)
- Jiankang Cao
- Department of Pain, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Xiaojie Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Long Liu
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Yawei Wu
- Caoxian People's Hospital, Heze, P. R. China
| | - Yu Fu
- The First Affiliated Hospital of Shandong First Medical University, Jinan, P. R. China
| | - Ao Gong
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhongbo Yang
- Shandong Yellow River Hospital, Yellow River Shandong Bureau, Jinan, P. R. China
| | - Yunpeng Zhao
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, P. R. China.,Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, P. R. China
| | - Yuhua Li
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| |
Collapse
|
9
|
Lee YL, Lester DW, Jones JR, Georgiou TK. Effect of Polymer Molecular Mass and Structure on the Mechanical Properties of Polymer-Glass Hybrids. ACS OMEGA 2022; 7:786-792. [PMID: 35036745 PMCID: PMC8757365 DOI: 10.1021/acsomega.1c05424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Organic-inorganic hybrid materials are a promising class of materials for tissue engineering and other biomedical applications. In this systematic study, the effect of the polymer molecular mass (MM) with a linear architecture on hybrid mechanical properties is reported. Well-defined linear poly(methyl methacrylate-co-(3-(trimethoxysilyl)propyl methacrylate)) polymers with a range of MMs of 9 to 90 kDa and one 90 kDa star-shaped polymer were synthesized and then used to form glass-polymer hybrids. It was demonstrated that increasing linear polymer MM decreases the resultant hybrid mechanical strength. Furthermore, a star-polymer hybrid was synthesized as a comparison and demonstrated significantly different mechanical properties relative to its linear-polymer counterpart.
Collapse
Affiliation(s)
- Yu Lin Lee
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
| | - Daniel W. Lester
- Polymer
Characterisation Research Technology Platform, University of Warwick, Coventry CV4 7AL, U.K.
| | - Julian R. Jones
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
| | - Theoni K. Georgiou
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
| |
Collapse
|
10
|
Tang Y, Wang H, Sun Y, Jiang Y, Fang S, Kan Z, Lu Y, Liu S, Zhou X, Li Z. Using Platelet-Rich Plasma Hydrogel to Deliver Mesenchymal Stem Cells into Three-Dimensional PLGA Scaffold for Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2021; 4:8607-8614. [PMID: 35005939 DOI: 10.1021/acsabm.1c01160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthetic biodegradable polyester-based rigid porous scaffolds and cell-laden hydrogels have been separately employed as therapeutic modality for cartilage repair. However, the synthetic rigid scaffolds alone may be limited due to the inherent lack of bioactivity for cartilage regeneration, while the hydrogels have insufficient mechanical properties that are not ideal for load-bearing cartilage applications. In the present study, a hybrid construct was designed to merge the advantage of 3D-printed rigid poly(lactic-co-glycolic acid) (PLGA) scaffolds with cell-laden platelet-rich plasma (PRP) hydrogels that can release growth factors to regulate the tissue healing process. PRP hydrogels potentially achieved the effective delivery of mesenchymal stem cells (MSCs) into PLGA scaffolds. This hybrid construct could obtain adequate mechanical properties and independently provide MSCs with appropriate clues for proliferation and differentiation. Real-time gene expression analysis showed that PRP stimulated both chondrogenic and osteogenic differentiation of MSC seeding into PLGA scaffolds. Finally, the hybrid constructs were implanted into rabbits to simultaneously regenerate both articular cartilage and subchondral bone within osteochondral defects. Our findings suggest that this unique hybrid system could be practically applied for osteochondral regeneration due to its capacity for cell transportation, growth factors release, and excellent mechanical strength, which would greatly contribute to the progress of cartilage tissue engineering.
Collapse
Affiliation(s)
- Ying Tang
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huaping Wang
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yilin Sun
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yang Jiang
- Hematology Department, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Sha Fang
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ze Kan
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingxi Lu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shenghou Liu
- Department of Orthopaedics, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Xianfeng Zhou
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Nie D, Luo Y, Li G, Jin J, Yang S, Li S, Zhang Y, Dai J, Liu R, Zhang W. The Construction of Multi-Incorporated Polylactic Composite Nanofibrous Scaffold for the Potential Applications in Bone Tissue Regeneration. NANOMATERIALS 2021; 11:nano11092402. [PMID: 34578717 PMCID: PMC8465462 DOI: 10.3390/nano11092402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
To improve the bone regeneration ability of pure polymer, varieties of bioactive components were incorporated to a biomolecular scaffold with different structures. In this study, polysilsesquioxane (POSS), pearl powder and dexamethasone loaded porous carbon nanofibers (DEX@PCNFs) were incorporated into polylactic (PLA) nanofibrous scaffold via electrospinning for the application of bone tissue regeneration. The morphology observation showed that the nanofibers were well formed through electrospinning process. The mineralization test of incubation in simulated body fluid (SBF) revealed that POSS incorporated scaffold obtained faster hydroxyapatite depositing ability than pristine PLA nanofibers. Importantly, benefitting from the bioactive components of pearl powder like bone morphogenetic protein (BMP), bone mesenchymal stem cells (BMSCs) cultured on the composite scaffold presented higher proliferation rate. In addition, by further incorporating with DEX@PCNFs, the alkaline phosphatase (ALP) level and calcium deposition were a little higher based on pearl powder. Consequently, the novel POSS, pearl powder and DEX@PCNFs multi-incorporated PLA nanofibrous scaffold can provide better ability to enhance the biocompatibility and accelerate osteogenic differentiation of BMSCs, which has potential applications in bone tissue regeneration.
Collapse
Affiliation(s)
- Du Nie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
| | - Guang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (G.L.); (J.J.); (S.Y.)
| | - Junhong Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (G.L.); (J.J.); (S.Y.)
| | - Shenglin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (G.L.); (J.J.); (S.Y.)
| | - Suying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
| | - Yu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
| | - Jiamu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
- Correspondence: (J.D.); (R.L.); (W.Z.)
| | - Rong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
- Correspondence: (J.D.); (R.L.); (W.Z.)
| | - Wei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
- Correspondence: (J.D.); (R.L.); (W.Z.)
| |
Collapse
|
12
|
Ma H, Sun Y, Tang Y, Shen Y, Kan Z, Li Q, Fang S, Lu Y, Zhou X, Li Z. Robust Electrospun Nanofibers from Chemosynthetic Poly(4-hydroxybutyrate) as Artificial Dural Substitute. Macromol Biosci 2021; 21:e2100134. [PMID: 33955128 DOI: 10.1002/mabi.202100134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/07/2022]
Abstract
Bioresorbable poly(4-hydroxybutyrate) (P4HB) may fulfill the specific requirements that are necessary for a dural substitute, including its high elasticity, long-term strength retention properties, and the biocompatibility without significant accumulation of acidic degradation products. However, commercial P4HB can only be produced by the bacterial fermentation, which limits its applications in the cerebrospinal system due to higher endotoxin restriction. Meanwhile, P4HB can be prepared via the ring-opening polymerization of γ-butyrolactone. In this contribution, high molecular weight P4HB from chemosynthesis is electrospun into fibrous membrane, showing good mechanical properties that match the natural dura mater. Such P4HB membrane induces fast cellular migration, adhesion, and proliferation of fibroblasts in vitro. Subcutaneous implantation in rats demonstrates excellent biocompatibility of the P4HB membrane with proper biodegradation behaviors. After implantation in the rabbit dural defect model as an onlay graft, the P4HB membranes prevent cerebrospinal fluid leakage and regenerate dura tissue without detecting any local or systematic infections or foreign body responses. Thus, the electrospun P4HB membranes may be particularly useful as artificial dural substitutes to induce wound closure and tissue regeneration, which will be of great benefit to neurosurgery in the future.
Collapse
Affiliation(s)
- Huihui Ma
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Yilin Sun
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Ying Tang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Yong Shen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Ze Kan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Qing Li
- Qingdao Chunghao Tissue Engineering Co. Ltd., Qingdao, 266003, P. R. China
| | - Sha Fang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Yingxi Lu
- College of Material Science and engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xianfeng Zhou
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
13
|
Kim HS, Lee JH, Mandakhbayar N, Jin GZ, Kim SJ, Yoon JY, Jo SB, Park JH, Singh RK, Jang JH, Shin US, Knowles JC, Kim HW. Therapeutic tissue regenerative nanohybrids self-assembled from bioactive inorganic core / chitosan shell nanounits. Biomaterials 2021; 274:120857. [PMID: 33965799 DOI: 10.1016/j.biomaterials.2021.120857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Natural inorganic/organic nanohybrids are a fascinating model in biomaterials design due to their ultra-microstructure and extraordinary properties. Here, we report unique-structured nanohybrids through self-assembly of biomedical inorganic/organic nanounits, composed of bioactive inorganic nanoparticle core (hydroxyapatite, bioactive glass, or mesoporous silica) and chitosan shell - namely Chit@IOC. The inorganic core thin-shelled with chitosan could constitute as high as 90%, strikingly contrasted with the conventional composites. The Chit@IOC nanohybrids were highly resilient under cyclic load and resisted external stress almost an order of magnitude effectively than the conventional composites. The nanohybrids, with the nano-roughened surface topography, could accelerate the cellular responses through stimulated integrin-mediated focal adhesions. The nanohybrids were also able to load multiple therapeutic molecules in the core and shell compartment and then release sequentially, demonstrating controlled delivery systems. The nanohybrids compartmentally-loaded with therapeutic molecules (dexamethasone, fibroblast growth factor 2, and phenamil) were shown to stimulate the anti-inflammatory, pro-angiogenic and osteogenic events of relevant cells. When implanted in the in vivo calvarium defect model with 3D-printed scaffold forms, the therapeutic nanohybrids were proven to accelerate new bone formation. Overall, the nanohybrids self-assembled from Chit@IOC nanounits, with their unique properties (ultrahigh inorganic content, nano-topography, high resilience, multiple-therapeutics delivery, and cellular activation), can be considered as promising 3D tissue regenerative platforms.
Collapse
Affiliation(s)
- Han-Sem Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, South Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sung-Jin Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Ueon Sang Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea.
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea; UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London, WC1X 8LD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, South Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
14
|
Fan L, Wang X, Wu D. Polyhedral Oligomeric Silsesquioxanes (
POSS
)‐based Hybrid Materials: Molecular Design, Solution
Self‐Assembly
and Biomedical Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000536] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Linfeng Fan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
15
|
Chen S, Zhou L, An Z, He H, Ma M, Shi Y, Wang X. Driving force balance-the "identity card" of supramolecules in a self-sorting multicomponent assembly system. SOFT MATTER 2021; 17:153-159. [PMID: 33164015 DOI: 10.1039/d0sm01405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Contrary to the popular belief that multicomponent assembly systems will theoretically co-assemble under the same type of driving forces, two distinct assembly modes from a system composed of two chemically similar supramolecules were demonstrated in this work. Although with exactly the same driving forces, molecule-level self-sorting unexpectedly occurred in this two-component system made of polyhedral oligomeric silsesquioxane (POSS) core-based supramolecules with one and eight lysine derivative arms. From the experiments, it was concluded that instead of driving force types, driving force counterpoise plays a vital role here, which we called "identity card hypothesis". The hypothesis suggests that two highly similar components show high affinity for the same molecules through the differentiated "identity card"-like balance of driving forces induced by the difference in the molecular spatial shape, which has never been reported before.
Collapse
Affiliation(s)
- Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Xiong A, He Y, Gao L, Li G, Weng J, Kang B, Wang D, Zeng H. Smurf1-targeting miR-19b-3p-modified BMSCs combined PLLA composite scaffold to enhance osteogenic activity and treat critical-sized bone defects. Biomater Sci 2020; 8:6069-6081. [PMID: 33000773 DOI: 10.1039/d0bm01251c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past few years, tissue-engineering technology provided a new direction for bone defects therapy, which involved developing applicable biological materials composite with seed cells to repair bone defects tissue. However, as one of the commonest seed cells for tissue engineering, BMSCs (bone marrow mesenchymal stem cells), are still lacking an efficient and accurate differentiation ability into functional osteoblast. Given these facts, the development of a novel tissue engineering technology integrated BMSCs and scaffold materials have become an urgent need for bone defects repair. In this work, we found that miR-19b-3p could suppress the expression of Smurf1 which is a negative regulator of osteogenesis. By employing lentivirus pLVTHM-miR-19b-3p transfected BMSCs, we verified that miR-19b-3p could promote BMSCs osteogenic differentiation via suppressing Smurf1 expression. Furthermore, we designed a new porous PLLA/POSS scaffold combined with BMSCs for tissue engineering. In vitro experiment showed that miR-19b-3p modified BMSCs facilitated the expansion and proliferation of BMSCs when culturing with the PLLA/POSS scaffold. We established rats calvarial critical-sized defect model, after transplanting the BMSCs/PLLA/POSS for 3 month, the pathology, immunohistochemical and Micro-CT results showed that miR-19b-BMSCs/PLLA/POSS significantly facilitated the osteogenesis differentiation, enhanced the bone density of defect area and accelerated the repair of bone defect. We elucidated the mechanism that miR-19b-3p suppressed the expression of Smurf1 and provided a novel tissue engineering strategy for using microRNA gene-modified BMSCs combined with PLLA/POSS scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Li Z, Li H, Zhang J, Liu X, Gu Z, Li Y. Ultrasmall Nanoparticle ROS Scavengers Based on Polyhedral Oligomeric Silsesquioxanes. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2486-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Chen M, Zhang Y, Zhang W, Li J. Polyhedral Oligomeric Silsesquioxane-Incorporated Gelatin Hydrogel Promotes Angiogenesis during Vascularized Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22410-22425. [PMID: 32349479 DOI: 10.1021/acsami.0c00714] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many approaches have been made toward the development of scaffolds with good biocompatibility and appreciable physicochemical properties to facilitate stem cell adhesion, osteogenic differentiation, and vascularization in tissue engineering. Nowadays, vascularization is a main bottleneck in tissue engineering strategies that is needed to be overcome and developed. Herein, we construct a series of polyhedral oligomeric silsesquioxane (POSS)-modified porous gelatin hydrogels with different POSS concentrations from 0 to 5 wt %, defined as X% POSS hydrogels (X = 0, 1, 2, 3, 4, 5) to support vascularized bone repair. The introduction of POSS into gelatin effectively promoted adhesive protein adsorption and integrin α5β1 expression, subsequently leading to enhanced adhesion of both rat bone marrow mesenchymal stem cells and human umbilical vein endothelial cells (HUVECs). In vitro experiments further demonstrated that POSS-containing hybrid hydrogels more effectively support the angiogenic tube and network formation in HUVECs than the 0% POSS hydrogel. Besides, POSS-containing hybrid hydrogels showed desirable performance as a sustained release system of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2), and they further accelerated vascular network establishment and the formation of a new bone in defect regions. When the hydrogels were implanted into critical-sized rat calvarial defects in vivo, the VEGF/BMP-2-coupled 3% POSS group gained a higher blood vessel volume in the bone defect regions (5.49 ± 0.35 mm3) than the 3% POSS group (3.12 ± 0.20 mm3) and the 0% POSS group (1.57 ± 0.25 mm3), suggesting that the 3% POSS hydrogel with VEGF/BMP-2 would expedite vascularization. Based on these evaluations, our results indicated that the POSS-incorporated gelatin hydrogel would provide a promising bone graft scheme in potential clinical application of large bone defect repair.
Collapse
Affiliation(s)
- Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People's Republic of China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People's Republic of China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People's Republic of China
| |
Collapse
|
19
|
Abstract
Cage-like silsesquioxanes are considered to be ideal and versatile building blocks of hybrid materials due to their unique structures and excellent performance. This Perspective highlights recent advances in the field of cage-like silsesquioxane-based hybrid materials, ranging from monomer functionalization and materials preparation to application. The existing issues are reviewed and the challenges and prospects in this field are also discussed for further development and exploitation.
Collapse
Affiliation(s)
- Yajing Du
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| | | |
Collapse
|