1
|
Cheng J, Ati AH, Kawazoe Y, Sun Q. Introducing Noble Gas as Space Holder under High Pressure to Design Porous Titanium Carbides with Open Metal Sites for Hydrogen Storage at Near-Ambient Conditions. J Am Chem Soc 2024; 146:24553-24560. [PMID: 39172081 DOI: 10.1021/jacs.4c07772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
It has been a long-standing challenge to develop high-performance solid-state hydrogen storage materials operated under near-ambient conditions. In this work, we propose a new strategy of using noble gases for space holding to design porous titanium carbides with abundant open metal sites for hydrogen storage. By using machine learning and graph theory-assisted universal structure searching methods, we obtain 28 porous titanium carbides from three precursors (TiC dimer, C atom, and Kr atom) under 30 GPa of pressure. The stability and hydrogen storage performance of the resulting structures are further assessed and validated through density function theory and grand canonical Monte Carlo simulations with a DFT-fitted force field. Finally, p-TiC2 is identified as a promising quasi-molecular hydrogen storage material with capacity of 4.0 wt % and 106.0 g/L at 230 K and 16 bar.
Collapse
Affiliation(s)
- Jiewei Cheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ahmed H Ati
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8577, Japan
- School of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
- Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankurathur, Tamil Nadu 603203, India
| | - Qiang Sun
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Zhang R, Daglar H, Tang C, Li P, Feng L, Han H, Wu G, Limketkai BN, Wu Y, Yang S, Chen AXY, Stern CL, Malliakas CD, Snurr RQ, Stoddart JF. Balancing volumetric and gravimetric capacity for hydrogen in supramolecular crystals. Nat Chem 2024:10.1038/s41557-024-01622-w. [PMID: 39227421 DOI: 10.1038/s41557-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
The storage of hydrogen is key to its applications. Developing adsorbent materials with high volumetric and gravimetric storage capacities, both of which are essential for the efficient use of hydrogen as a fuel, is challenging. Here we report a controlled catenation strategy in hydrogen-bonded organic frameworks (RP-H100 and RP-H101) that depends on multiple hydrogen bonds to guide catenation in a point-contact manner, resulting in high volumetric and gravimetric surface areas, robustness and ideal pore diameters (~1.2-1.9 nm) for hydrogen storage. This approach involves assembling nine imidazole-annulated triptycene hexaacids into a secondary hexagonal superstructure containing three open channels through which seven of the hexagons interpenetrate to form a seven-fold catenated superstructure. RP-H101 exhibits high deliverable volumetric (53.7 g l-1) and gravimetric (9.3 wt%) capacities for hydrogen under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar). This work illustrates the virtues of supramolecular crystals as promising candidates for hydrogen storage.
Collapse
Affiliation(s)
- Ruihua Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Hilal Daglar
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Chun Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Penghao Li
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Liang Feng
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Han Han
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Guangcheng Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Yong Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Shuliang Yang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | | | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| | - J Fraser Stoddart
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- H2MOF Inc., Irvine, CA, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Ali Lashari Z, Haq B, Al-Shehri D, Zaman E, Al-Ahmed A, Lashari N. Recent Development of Physical Hydrogen Storage: Insights into Global Outlook and Future Applications. Chem Asian J 2024; 19:e202300926. [PMID: 38721713 DOI: 10.1002/asia.202300926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/17/2024] [Indexed: 08/06/2024]
Abstract
Transition of global energy market towards an environment-friendly sustainable society requires a profound transformation from fossil fuel to zero carbon emission fuel. To cope with this goal production ofrenewable energy is accelerating worldwide. Research in renewable energy from production and storage to practical utilization requires an organized approach. One of the best renewable energy carrier is the hydrogen, due to its clean combustion and abundance. Nonetheless, its storage is a critical challenge to its success. Hydrogen must be stored long after being produced and transported to a storage site. Physical hydrogen storage is vital among hydrogen storage modes, and its shortcoming needs to overcome for its successful and economic benefits. This review intends to discuss the techniques and applications of physical hydrogen storage in the state of compressed gas, liquefied hydrogen gas, and cold/cryo compressed gas concerning their working principle, chemical and physical properties, influencing factors for physical hydrogen storage, and transportation, economics, and global outlook. Insights of several probable physical hydrogen storage (PHS) systems are highlighted. The outcomes of this review envisioned that the PHS still necessitates technological advancements despite having remarkable success. The Liquid Hydrogen Gas storage marks better sustainability than Compressed and Cryo Compressed Gas. The physical hydrogen storage method can store hydrogen in tanks in any state (liquid or gas) under 20 K for the liquid state and ambient temperature for the gaseous state The Bibliographic analysis depicts that the research in hydrogen rising with time and mostly the research in conducted in USA with 231 articles. Prospects and challenges with lessons learned and the limitation opens the door to further research, which would be helpful for efficient and long-term physical hydrogen storage.
Collapse
Affiliation(s)
- Zeeshan Ali Lashari
- Department of Petroleum and Gas Engineering, Dawood University of Engineering & Technology, 74800, Karachi, Pakistan
| | - Bashirul Haq
- Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - Dhafer Al-Shehri
- Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - Ehsan Zaman
- BOC Limited, 57-61 Baile Road,Canning, Vale, WA 6155, Australia
| | - Amir Al-Ahmed
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, 31231, Dhahran, Saudi Arabia
| | - Najeebullah Lashari
- Department of Petroleum and Gas Engineering, Dawood University of Engineering & Technology, 74800, Karachi, Pakistan
| |
Collapse
|
4
|
Nguyen TT, Tran HV, Nguyen LH, Nguyen HM, Phan TB, Nguyen-The T, Kawazoe Y. Impact of ligand fields on Kubas interaction of open copper sites in MOFs with hydrogen molecules: an electronic structural insight. RSC Adv 2024; 14:26611-26624. [PMID: 39175680 PMCID: PMC11339784 DOI: 10.1039/d4ra03946g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
We investigate hydrogen sorption on open copper sites in various ligand coordinations of metal-organic frameworks (MOFs), including the triangular T(CuL3) in MFU-4l, the linear L(CuL2) in NU2100, and the paddlewheel P(CuL4)2 in HKUST-1 from an electronic structure perspective using DFT calculations. The ligand-field-induced splitting of d states and spd hybridizations in copper are thoroughly examined. The hybridization between Cu s, p, and d orbitals occurs in various forms to optimize the Coulomb repulsion of different ligand fields. Despite the Cu+ oxidation state, which is typically conducive to strong Kubas interactions with hydrogen molecules, the vacant spd z 2 hybrid orbitals of the open copper site in the L(CuL2) coordination are unsuitable for facilitating electron forward donation, thereby preventing effective hydrogen adsorption. In contrast, the vacant spd z 2 hybrid orbitals in the T(CuL3) and P(CuL4)2 coordinations can engage in electron forward donations, forming bonding states between the Cu spd z 2 and H2 σ bonding orbitals. The forward donation in the T(CuL3) configuration is significantly stronger than in the P(CuL4)2 configuration due to both the lower energy of the vacant orbitals and the larger contributions of p and d z 2 characters to the hybrid orbital. Additionally, the occupied Cu pd xz/yz and pd x 2-y 2 hybrid orbitals in the T(CuL3) configuration promote electron back donation to the H2 σ* antibonding orbital, leading to the formation of π bonding states. In the P(CuL4)2 coordination, the repulsion from the electron density distributed over the surrounding ligands prevents the H2 molecule from approaching the copper center closely enough for the back donation to occur. The complete Kubas interaction, involving both forward and back electron donations, results in a large dihydrogen-copper binding energy of 37.6 kJ mol-1 in the T(CuL3) coordination. In contrast, the binding energy of 10.6 kJ mol-1 in the P(CuL4)2 coordination is primarily driven by electrostatic interactions with a minor contribution of the Kubas-like forward donation interaction. This analysis highlights the pivotal role of coordination environments in determining the hydrogen sorption properties of MOFs.
Collapse
Affiliation(s)
- Trang Thuy Nguyen
- Faculty of Physics, University of Science, Vietnam National University Hanoi Vietnam
- Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University Hanoi Vietnam
| | - Hoan Van Tran
- Faculty of Physics, University of Science, Vietnam National University Hanoi Vietnam
| | - Linh Hoang Nguyen
- School of Engineering Physics, Hanoi University of Technology Hanoi Vietnam
| | - Hoang Minh Nguyen
- Faculty of Physics, University of Science, Vietnam National University Hanoi Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures, Vietnam National University Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Toan Nguyen-The
- Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University Hanoi Vietnam
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University Sendai 980-8579 Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamilnadu India
- School of Physics, Institute of Science, Suranaree University of Technology 111 University Avenue Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
5
|
Carrera M, Such-Basáñez I, Marco-Lozar JP, Bueno-López A, Vilaplana-Ortego E, da Silva I, Bautista D, Fernández-Alarcón A, Calbo J, Ortí E, Curiel D. Rational Design of 7-Azaindole-Based Robust Microporous Hydrogen-Bonded Organic Framework for Gas Sorption. Angew Chem Int Ed Engl 2024:e202412981. [PMID: 39141766 DOI: 10.1002/anie.202412981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
7-Azaindole has been integrated as building block with complementary N-H⋅⋅⋅N hydrogen bonding sites for the synthesis of a tetrahedral molecular tecton, namely tetra(α-carbolin-6-yl)methane, TACM. The self-assembly of this molecule results in a 3D hydrogen-bonded organic framework (HOF). This supramolecular structure constitutes a crystalline microporous material with an extraordinary thermal and chemical robustness. Single crystal X-ray diffraction reveals how the five-fold catenation of diamonoid systems, stabilized by hydrogen bonds and π-π interactions, form an interpenetrated network with monodimensional channels. The structural features of the crystalline material are also observed by transmission electron microscopy (TEM). Additionally, the microporosity of the activated TACM-HOF is characterized by gas sorption (N2, CO2, CH4 and H2) experiments performed at different pressures. A selective adsorption is observed for CO2 uptake and TACM-HOF also presents a good adsorption capacity for H2 among supramolecular organic frameworks.
Collapse
Affiliation(s)
- Manuel Carrera
- Department of Organic Chemistry-Faculty of Chemistry, University of Murcia, 30100-, Murcia, Spain
| | - Ion Such-Basáñez
- Technical Research Services (SSTTI), University of Alicante Parque Científico, 03690, Sant Vicent del Raspeig, Alicante, Spain
| | - Juan Pablo Marco-Lozar
- Gas to Materials Technologies S. L., c/ El Martillo, 7, 03690, Sant Vicent del Raspeig, Alicante, Spain
| | - Agustín Bueno-López
- Department of Inorganic Chemistry-Faculty of Science, University of Alicante, 03690, Sant Vicent del Raspeig, Alicante, Spain
| | - Eduardo Vilaplana-Ortego
- Department of Inorganic Chemistry-Faculty of Science, University of Alicante, 03690, Sant Vicent del Raspeig, Alicante, Spain
| | - Iván da Silva
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110QX, United Kingdom
| | - Delia Bautista
- Scientific Instrumentation Services, University of Murcia, 30100-, Murcia, Spain
| | - Alberto Fernández-Alarcón
- Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Joaquín Calbo
- Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Enrique Ortí
- Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - David Curiel
- Department of Organic Chemistry-Faculty of Chemistry, University of Murcia, 30100-, Murcia, Spain
| |
Collapse
|
6
|
Yabuuchi Y, Furukawa H, Carsch KM, Klein RA, Tkachenko NV, Huang AJ, Cheng Y, Taddei KM, Novak E, Brown CM, Head-Gordon M, Long JR. Geometric Tuning of Coordinatively Unsaturated Copper(I) Sites in Metal-Organic Frameworks for Ambient-Temperature Hydrogen Storage. J Am Chem Soc 2024; 146:22759-22776. [PMID: 39092909 PMCID: PMC11328132 DOI: 10.1021/jacs.4c08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Porous solids can accommodate and release molecular hydrogen readily, making them attractive for minimizing the energy requirements for hydrogen storage relative to physical storage systems. However, H2 adsorption enthalpies in such materials are generally weak (-3 to -7 kJ/mol), lowering capacities at ambient temperature. Metal-organic frameworks with well-defined structures and synthetic modularity could allow for tuning adsorbent-H2 interactions for ambient-temperature storage. Recently, Cu2.2Zn2.8Cl1.8(btdd)3 (H2btdd = bis(1H-1,2,3-triazolo-[4,5-b],[4',5'-i])dibenzo[1,4]dioxin; CuI-MFU-4l) was reported to show a large H2 adsorption enthalpy of -32 kJ/mol owing to π-backbonding from CuI to H2, exceeding the optimal binding strength for ambient-temperature storage (-15 to -25 kJ/mol). Toward realizing optimal H2 binding, we sought to modulate the π-backbonding interactions by tuning the pyramidal geometry of the trigonal CuI sites. A series of isostructural frameworks, Cu2.7M2.3X1.3(btdd)3 (M = Mn, Cd; X = Cl, I; CuIM-MFU-4l), was synthesized through postsynthetic modification of the corresponding materials M5X4(btdd)3 (M = Mn, Cd; X = CH3CO2, I). This strategy adjusts the H2 adsorption enthalpy at the CuI sites according to the ionic radius of the central metal ion of the pentanuclear cluster node, leading to -33 kJ/mol for M = ZnII (0.74 Å), -27 kJ/mol for M = MnII (0.83 Å), and -23 kJ/mol for M = CdII (0.95 Å). Thus, CuICd-MFU-4l provides a second, more stable example of optimal H2 binding energy for ambient-temperature storage among reported metal-organic frameworks. Structural, computational, and spectroscopic studies indicate that a larger central metal planarizes trigonal CuI sites, weakening the π-backbonding to H2.
Collapse
Affiliation(s)
- Yuto Yabuuchi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hiroyasu Furukawa
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kurtis M Carsch
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
| | - Ryan A Klein
- Material, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Nikolay V Tkachenko
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adrian J Huang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Keith M Taddei
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eric Novak
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Sutton AL, Mardel JI, Hill MR. Metal-Organic Frameworks (MOFs) As Hydrogen Storage Materials At Near-Ambient Temperature. Chemistry 2024; 30:e202400717. [PMID: 38825571 DOI: 10.1002/chem.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Hydrogen may play a critical role in our efforts to de-carbonize by 2050. However, there remain technical challenges in the storage and transport of hydrogen. Metal-organic frameworks (MOFs) have shown significant promise for hydrogen storage at cryogenic temperatures. A material that can meet the US department of energy (DOE) ultimate goal of 6.5 wt. % for gravimetric performance and 50 g/L for volumetric storage at near-ambient temperatures would unlock hydrogen as a future fuel source for on-board applications. Metal-organic frameworks typically have low heat of adsorptions (i. e. 4-7 kJ/mol), whereas for storing significant quantities of hydrogen at near-ambient temperatures, 15-25 kJ/mol is likely required. In this review we explore the current methods used (i. e., open-metal sites, alkali dopants and hydrogen spillover) for promoting strong adsorption within MOFs. Further we discuss MOF-based materials with respect to the technical aspects of deliverable capacity, kinetics and stability.
Collapse
Affiliation(s)
- Ashley L Sutton
- Manufacturing, CSIRO, Private Bag 33, Clayton South MDC, Vic 3169, Australia
| | - James I Mardel
- Manufacturing, CSIRO, Private Bag 33, Clayton South MDC, Vic 3169, Australia
| | - Matthew R Hill
- Manufacturing, CSIRO, Private Bag 33, Clayton South MDC, Vic 3169, Australia
- Department of Chemical and Biological Engineering, Monash University, Department of Chemical and Biological Engineering, Monash University, Clayton, Vic 3168, Australia
| |
Collapse
|
8
|
Choe JH, Kim H, Yun H, Kurisingal JF, Kim N, Lee D, Lee YH, Hong CS. Extended MOF-74-Type Variant with an Azine Linkage: Efficient Direct Air Capture and One-Pot Synthesis. J Am Chem Soc 2024; 146:19337-19349. [PMID: 38953459 DOI: 10.1021/jacs.4c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Direct air capture (DAC) shows considerable promise for the effective removal of CO2; however, materials applicable to DAC are lacking. Among metal-organic framework (MOF) adsorbents, diamine-Mg2(dobpdc) (dobpdc4- = 4,4-dioxidobiphenyl-3,3'-dicarboxylate) effectively removes low-pressure CO2, but the synthesis of the organic ligand requires high temperature, high pressure, and a toxic solvent. Besides, it is necessary to isolate the ligand for utilization in the synthesis of the framework. In this study, we synthesized a new variant of extended MOF-74-type frameworks, M2(hob) (M = Mg2+, Co2+, Ni2+, and Zn2+; hob4- = 5,5'-(hydrazine-1,2-diylidenebis(methanylylidene))bis(2-oxidobenzoate)), constructed from an azine-bonded organic ligand obtained through a facile condensation reaction at room temperature. Functionalization of Mg2(hob) with N-methylethylenediamine, N-ethylethylenediamine, and N,N'-dimethylethylenediamine (mmen) enables strong interactions with low-pressure CO2, resulting in top-tier adsorption capacities of 2.60, 2.49, and 2.91 mmol g-1 at 400 ppm of CO2, respectively. Under humid conditions, the CO2 capacity was higher than under dry conditions due to the presence of water molecules that aid in the formation of bicarbonate species. A composite material combining mmen-Mg2(hob) and polyvinylidene fluoride, a hydrophobic polymer, retained its excellent adsorption performance even after 7 days of exposure to 40% relative humidity. In addition, the one-pot synthesis of Mg2(hob) from a mixture of the corresponding monomers is achieved without separate ligand synthesis steps; thus, this framework is suitable for facile large-scale production. This work underscores that the newly synthesized Mg2(hob) and its composites demonstrate significant potential for DAC applications.
Collapse
Affiliation(s)
- Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | | | - Namju Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Donggyu Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yong Hoon Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Hu Y, Sengupta B, Long H, Wayment LJ, Ciora R, Jin Y, Wu J, Lei Z, Friedman K, Chen H, Yu M, Zhang W. Molecular recognition with resolution below 0.2 angstroms through thermoregulatory oscillations in covalent organic frameworks. Science 2024; 384:1441-1447. [PMID: 38935724 DOI: 10.1126/science.adj8791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Crystalline materials with uniform molecular-sized pores are desirable for a broad range of applications, such as sensors, catalysis, and separations. However, it is challenging to tune the pore size of a single material continuously and to reversibly distinguish small molecules (below 4 angstroms). We synthesized a series of ionic covalent organic frameworks using a tetraphenoxyborate linkage that maintains meticulous synergy between structural rigidity and local flexibility to achieve continuous and reversible (100 thermal cycles) tunability of "dynamic pores" between 2.9 and 4.0 angstroms, with resolution below 0.2 angstroms. This results from temperature-regulated, gradual amplitude change of high-frequency linker oscillations. These thermoelastic apertures selectively block larger molecules over marginally smaller ones, demonstrating size-based molecular recognition and the potential for separating challenging gas mixtures such as oxygen/nitrogen and nitrogen/methane.
Collapse
Affiliation(s)
- Yiming Hu
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bratin Sengupta
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Hai Long
- Computational Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Richard Ciora
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jingyi Wu
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kaleb Friedman
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Miao Yu
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
10
|
Peng P, Jiang HZH, Collins S, Furukawa H, Long JR, Breunig H. Long Duration Energy Storage Using Hydrogen in Metal-Organic Frameworks: Opportunities and Challenges. ACS ENERGY LETTERS 2024; 9:2727-2735. [PMID: 38903404 PMCID: PMC11187639 DOI: 10.1021/acsenergylett.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024]
Abstract
Materials-based H2 storage plays a critical role in facilitating H2 as a low-carbon energy carrier, but there remains limited guidance on the technical performance necessary for specific applications. Metal-organic framework (MOF) adsorbents have shown potential in power applications, but need to demonstrate economic promises against incumbent compressed H2 storage. Herein, we evaluate the potential impact of material properties, charge/discharge patterns, and propose targets for MOFs' deployment in long-duration energy storage applications including backup, load optimization, and hybrid power. We find that state-of-the-art MOF could outperform cryogenic storage and 350 bar compressed storage in applications requiring ≤8 cycles per year, but need ≥5 g/L increase in uptake to be cost-competitive for applications that require ≥30 cycles per year. Existing challenges include manufacturing at scale and quantifying the economic value of lower-pressure storage. Lastly, future research needs are identified including integrating thermodynamic effects and degradation mechanisms.
Collapse
Affiliation(s)
- Peng Peng
- Energy
Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Henry Z. H. Jiang
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephanie Collins
- Energy
Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Hiroyasu Furukawa
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Hanna Breunig
- Energy
Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Kim DW, Chen Y, Kim H, Kim N, Lee YH, Oh H, Chung YG, Hong CS. High Hydrogen Storage in Trigonal Prismatic Monomer-Based Highly Porous Aromatic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401739. [PMID: 38618663 DOI: 10.1002/adma.202401739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Hydrogen storage is crucial in the shift toward a carbon-neutral society, where hydrogen serves as a pivotal renewable energy source. Utilizing porous materials can provide an efficient hydrogen storage solution, reducing tank pressures to manageable levels and circumventing the energy-intensive and costly current technological infrastructure. Herein, two highly porous aromatic frameworks (PAFs), C-PAF and Si-PAF, prepared through a Yamamoto C─C coupling reaction between trigonal prismatic monomers, are reported. These PAFs exhibit large pore volumes and Brunauer-Emmett-Teller areas, 3.93 cm3 g-1 and 4857 m2 g-1 for C-PAF, and 3.80 cm3 g-1 and 6099 m2 g-1 for Si-PAF, respectively. Si-PAF exhibits a record-high gravimetric hydrogen delivery capacity of 17.01 wt% and a superior volumetric capacity of 46.5 g L-1 under pressure-temperature swing adsorption conditions (77 K, 100 bar → 160 K, 5 bar), outperforming benchmark hydrogen storage materials. By virtue of the robust C─C covalent bond, both PAFs show impressive structural stabilities in harsh environments and unprecedented long-term durability. Computational modeling methods are employed to simulate and investigate the structural and adsorption properties of the PAFs. These results demonstrate that C-PAF and Si-PAF are promising materials for efficient hydrogen storage.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Chen
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunlim Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Namju Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Young Hoon Lee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunchul Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yongchul G Chung
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
12
|
Letwaba J, Uyor UO, Mavhungu ML, Achuka NO, Popoola PA. A review on MOFs synthesis and effect of their structural characteristics for hydrogen adsorption. RSC Adv 2024; 14:14233-14253. [PMID: 38690110 PMCID: PMC11058478 DOI: 10.1039/d4ra00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Climate change is causing a rise in the need to transition from fossil fuels to renewable and clean energy such as hydrogen as a sustainable energy source. The issue with hydrogen's practical storage, however, prevents it from being widely used as an energy source. Current solutions, such as liquefied and compressed hydrogen storage, are insufficient to meet the U.S. Department of Energy's (US DOE) extensive on-board application requirements. Thus, a backup strategy involving material-based storage is required. Metal organic frameworks (MOFs) belong to the category of crystalline porous materials that have seen rapid interest in the field of energy storage due to their large surface area, high pore volume, and modifiable structure. Therefore, advanced technologies employed in the construction of MOFs, such as solvothermal, mechanochemical, microwave assisted, and sonochemical methods are reviewed. Finally, this review discussed the selected factors and structural characteristics of MOFs, which affect the hydrogen capacity.
Collapse
Affiliation(s)
- John Letwaba
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| | - Uwa Orji Uyor
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka Private Bag 0004 Nsukka Enugu State Nigeria
| | - Mapula Lucey Mavhungu
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| | - Nwoke Oji Achuka
- Department of Agricultural and Bioresources Engineering, University of Nigeria, Nsukka Private Bag 0004 Nsukka Enugu State Nigeria
| | - Patricia Abimbola Popoola
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| |
Collapse
|
13
|
Chakraborty R, Talbot JJ, Shen H, Yabuuchi Y, Carsch KM, Jiang HZH, Furukawa H, Long JR, Head-Gordon M. Quantum chemical modeling of hydrogen binding in metal-organic frameworks: validation, insight, predictions and challenges. Phys Chem Chem Phys 2024; 26:6490-6511. [PMID: 38324335 DOI: 10.1039/d3cp05540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A detailed chemical understanding of H2 interactions with binding sites in the nanoporous crystalline structure of metal-organic frameworks (MOFs) can lay a sound basis for the design of new sorbent materials. Computational quantum chemical calculations can aid in this quest. To set the stage, we review general thermodynamic considerations that control the usable storage capacity of a sorbent. We then discuss cluster modeling of H2 ligation at MOF binding sites using state-of-the-art density functional theory (DFT) calculations, and how the binding can be understood using energy decomposition analysis (EDA). Employing these tools, we illustrate the connections between the character of the MOF binding site and the associated adsorption thermodynamics using four experimentally characterized MOFs, highlighting the role of open metal sites (OMSs) in accessing binding strengths relevant to room temperature storage. The sorbents are MOF-5, with no open metal sites, Ni2(m-dobdc), containing Lewis acidic Ni(II) sites, Cu(I)-MFU-4l, containing π basic Cu(I) sites and V2Cl2.8(btdd), also containing π-basic V(II) sites. We next explore the potential for binding multiple H2 molecules at a single metal site, with thermodynamics useful for storage at ambient temperature; a materials design goal which has not yet been experimentally demonstrated. Computations on Ca2+ or Mg2+ bound to catecholate or Ca2+ bound to porphyrin show the potential for binding up to 4 H2; there is precedent for the inclusion of both catecholate and porphyrin motifs in MOFs. Turning to transition metals, we discuss the prediction that two H2 molecules can bind at V(II)-MFU-4l, a material that has been synthesized with solvent coordinated to the V(II) site. Additional calculations demonstrate binding three equivalents of hydrogen per OMS in Sc(I) or Ti(I)-exchanged MFU-4l. Overall, the results suggest promising prospects for experimentally realizing higher capacity hydrogen storage MOFs, if nontrivial synthetic and desolvation challenges can be overcome. Coupled with the unbounded chemical diversity of MOFs, there is ample scope for additional exploration and discovery.
Collapse
Affiliation(s)
- Romit Chakraborty
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Justin J Talbot
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Hengyuan Shen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Yuto Yabuuchi
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Kurtis M Carsch
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Hiroyasu Furukawa
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Department of Chemical and Biomedical Engineering, University of California, Berkeley, CA 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Liu L, Zheng SJ, Chen H, Cai J, Zang SQ. Tandem Nitrate-to-Ammonia Conversion on Atomically Precise Silver Nanocluster/MXene Electrocatalyst. Angew Chem Int Ed Engl 2024; 63:e202316910. [PMID: 38179795 DOI: 10.1002/anie.202316910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Electrocatalytic reduction of nitrate (NO3 RR) to synthesize ammonia (NH3 ) provides a competitive manner for carbon neutrality and decentralized NH3 synthesis. Atomically precise nanoclusters, as an advantageous platform for investigating the NO3 RR mechanisms and actual active sites, remain largely underexplored due to the poor stability. Herein, we report a (NH4 )9 [Ag9 (mba)9 ] nanoclusters (Ag9 NCs) loaded on Ti3 C2 MXene (Ag9 /MXene) for highly efficient NO3 RR performance towards ambient NH3 synthesis with improved stability in neutral medium. The composite structure of MXene and Ag9 NCs enables a tandem catalysis process for nitrate reduction, significantly increasing the selectivity and FE of NH3 . Besides, compared with individual Ag9 NCs, Ag9 /MXene has better stability with the current density performed no decay after 108 hours of reaction. This work provides a strategy for improving the catalytic activity and stability of atomically precise metal NCs, expanding the mechanism research and application of metal NCs.
Collapse
Affiliation(s)
- Lin Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Su-Jun Zheng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinmeng Cai
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
15
|
Shanmugam M, Agamendran N, Sekar K, Natarajan TS. Metal-organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Phys Chem Chem Phys 2023; 25:30116-30144. [PMID: 37909363 DOI: 10.1039/d3cp04297a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The increasing energy demands in society and industrial sectors have inspired the search for alternative energy sources that are renewable and sustainable, also driving the development of clean energy storage and delivery systems. Various solid-state materials (e.g., oxides, sulphides, polymer and conductive nanomaterials, activated carbon and their composites) have been developed for energy production (water splitting-H2 production), gaseous fuel (H2 and CH4) storage and electrochemical energy storage (batteries and supercapacitors) applications. Nevertheless, the low surface area, pore volume and conductivity, and poor physical and chemical stability of the reported materials have resulted in higher requirements and challenges in the development of energy production and energy storage technologies. Thus, to overcome these issues, the development of metal-organic frameworks (MOFs) has attracted significant attention. MOFs are a class of porous materials with extremely high porosity and surface area, structural diversity, multifunctionality, and chemical and structural stability, and thus they can be used in a wide range of applications. In the present review, we precisely discuss the interesting properties of MOFs and the various methodologies for their synthesis, and also the future dependence on the valorization of solid waste for the recovery of metals and organic ligands for the synthesis of new classes of MOFs. Subsequently, the utilization of these interesting characteristics for energy production (water splitting), storage of gaseous fuels (H2 and CH4), and electrochemical storage (batteries and supercapacitors) applications are described. However, although MOFs are efficient materials with versatile uses, they still have many challenges, limiting their practical applications. Therefore, finally, we highlight the challenges associated with MOFs and show the way forward in overcoming them for the development of these highly porous materials with large-scale practical utility.
Collapse
Affiliation(s)
- Mariyappan Shanmugam
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Nithish Agamendran
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Karthikeyan Sekar
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
16
|
Chiu NC, Compton D, Gładysiak A, Simrod S, Khivantsev K, Woo TK, Stadie NP, Stylianou KC. Hydrogen Adsorption in Ultramicroporous Metal-Organic Frameworks Featuring Silent Open Metal Sites. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37913526 DOI: 10.1021/acsami.3c12139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In this study, we utilized an ultramicroporous metal-organic framework (MOF) named [Ni3(pzdc)2(ade)2(H2O)4]·2.18H2O (where H3pzdc represents pyrazole-3,5-dicarboxylic acid and ade represents adenine) for hydrogen (H2) adsorption. Upon activation, [Ni3(pzdc)2(ade)2] was obtained, and in situ carbon monoxide loading by transmission infrared spectroscopy revealed the generation of open Ni(II) sites. The MOF displayed a Brunauer-Emmett-Teller (BET) surface area of 160 m2/g and a pore size of 0.67 nm. Hydrogen adsorption measurements conducted on this MOF at 77 K showed a steep increase in uptake (up to 1.93 mmol/g at 0.04 bar) at low pressure, reaching a H2 uptake saturation at 2.11 mmol/g at ∼0.15 bar. The affinity of this MOF for H2 was determined to be 9.7 ± 1.0 kJ/mol. In situ H2 loading experiments supported by molecular simulations confirmed that H2 does not bind to the open Ni(II) sites of [Ni3(pzdc)2(ade)2], and the high affinity of the MOF for H2 is attributed to the interplay of pore size, shape, and functionality.
Collapse
Affiliation(s)
- Nan Chieh Chiu
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Dalton Compton
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Andrzej Gładysiak
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Scott Simrod
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa K1N 6N5, Canada
| | | | - Tom K Woo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa K1N 6N5, Canada
| | - Nicholas P Stadie
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
17
|
Evans HA, Yildirim T, Peng P, Cheng Y, Deng Z, Zhang Q, Mullangi D, Zhao D, Canepa P, Breunig HM, Cheetham AK, Brown CM. Hydrogen Storage with Aluminum Formate, ALF: Experimental, Computational, and Technoeconomic Studies. J Am Chem Soc 2023; 145:22150-22157. [PMID: 37767573 DOI: 10.1021/jacs.3c08037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Long-duration storage of hydrogen is necessary for coupling renewable H2 with stationary fuel cell power applications. In this work, aluminum formate (ALF), which adopts the ReO3-type structure, is shown to have remarkable H2 storage performance at non-cryogenic (>120 K) temperatures and low pressures. The most promising performance of ALF is found between 120 K and 160 K and at 10 bar to 20 bar. The study illustrates H2 adsorption performance of ALF over the 77 K to 296 K temperature range using gas isotherms, in situ neutron powder diffraction, and DFT calculations, as well as technoeconomic analysis (TEA), illustrating ALF's competitive performance for long-duration storage versus compressed hydrogen and leading metal-organic frameworks. In the TEA, it is shown that ALF's storage capacity, when combined with a temperature/pressure swing process, has advantages versus compressed H2 at a fraction of the pressure (15 bar versus 350 bar). Given ALF's performance in the 10 bar to 20 bar regime under moderate cooling, it is particularly promising for use in safe storage systems serving fuel cells.
Collapse
Affiliation(s)
- Hayden A Evans
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Taner Yildirim
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Peng Peng
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Zeyu Deng
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Qiang Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Dinesh Mullangi
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117575 Singapore
| | - Pieremanuele Canepa
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Hanna M Breunig
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anthony K Cheetham
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
18
|
Sengupta D, Melix P, Bose S, Duncan J, Wang X, Mian MR, Kirlikovali KO, Joodaki F, Islamoglu T, Yildirim T, Snurr RQ, Farha OK. Air-Stable Cu(I) Metal-Organic Framework for Hydrogen Storage. J Am Chem Soc 2023; 145:20492-20502. [PMID: 37672758 DOI: 10.1021/jacs.3c06393] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Metal-organic frameworks (MOFs) that contain open metal sites have the potential for storing hydrogen (H2) at ambient temperatures. In particular, Cu(I)-based MOFs demonstrate very high isosteric heats of adsorption for hydrogen relative to other reported MOFs with open metal sites. However, most of these Cu(I)-based MOFs are not stable in ambient conditions since the Cu(I) species display sensitivity toward moisture and can rapidly oxidize in air. As a result, researchers have focused on the synthesis of new air-stable Cu(I)-based materials for H2 storage. Here, we have developed a de novo synthetic strategy to generate a robust Cu(I)-based MOF, denoted as NU-2100, using a mixture of Cu/Zn precursors in which zinc acts as a catalyst to transform an intermediate MOF into NU-2100 without getting incorporated into the final MOF structure. NU-2100 is air-stable and displays one of the initial highest isosteric heats of adsorption (32 kJ/mol) with good hydrogen storage capability under ambient conditions (10.4 g/L, 233 K/100 bar to 296 K/5 bar). We further elucidated the H2 storage performance of NU-2100 using a combination of spectroscopic analysis and computational modeling studies. Overall, this new synthetic route may enable the design of additional stable Cu(I)-MOFs for next-generation hydrogen storage adsorbents at ambient temperatures.
Collapse
Affiliation(s)
- Debabrata Sengupta
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Patrick Melix
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig, Germany
| | - Saptasree Bose
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joshua Duncan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Faramarz Joodaki
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Taner Yildirim
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Pappas NS, Mason JA. Effect of modulator ligands on the growth of Co 2(dobdc) nanorods. Chem Sci 2023; 14:4647-4652. [PMID: 37152265 PMCID: PMC10155910 DOI: 10.1039/d2sc06869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Control over the size, shape, uniformity, and external surface chemistry of metal-organic framework nanocrystals is important for a wide range of applications. Here, we investigate how monotopic modulators that mimic the coordination mode of native bridging ligands affect the growth of anisotropic Co2(dobdc) (dobdc4- = 2,5-dihydroxy-1,4-benzenedicarboxylic acid) nanorods. Through a combination of transmission electron microscopy (TEM) and nuclear magnetic resonance spectroscopy (NMR) studies, nanorod diameter was found to be strongly correlated to the acidity of the modulator and to the degree of modulator incorporation into the nanorod structure. Notably, highly acidic modulators allowed for the preparation of sub-10 nm nanorods, a previously elusive size regime for the M2(dobdc) family. More broadly, this study provides new insights into the mechanism of modulated growth of metal-organic framework nanoparticles.
Collapse
Affiliation(s)
- Nina S Pappas
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| |
Collapse
|
20
|
Fu Y, Yang D, Chen Y, Shi J, Zhang X, Hao Y, Zhang Z, Sun Y, Zhang J. MOF-Based Active Packaging Materials for Extending Post-Harvest Shelf-Life of Fruits and Vegetables. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3406. [PMID: 37176288 PMCID: PMC10180191 DOI: 10.3390/ma16093406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Active packaging that can extend the shelf-life of fresh fruits and vegetables after picking can assure food quality and avoid food waste. Such packaging can prevent the growth of microbial and bacterial pathogens or delay the production of ethylene, which accelerates the ripening of fruits and vegetables after harvesting. Proposed technologies include packaging that enables the degradation of ethylene, modified atmosphere packaging, and bioactive packaging. Packaging that can efficiently adsorb/desorb ethylene, and thus control its concentration, is particularly promising. However, there are still large challenges around toxicity, low selectivity, and consumer acceptability. Metal-organic framework (MOF) materials are porous, have a specific surface area, and have excellent gas adsorption/desorption performance. They can encapsulate and release ethylene and are thus good candidates for use in ethylene-adjusting packaging. This review focuses on MOF-based active-packaging materials and their applications in post-harvest fruit and vegetable packaging. The fabrication and characterization of MOF-based materials and the ethylene adsorption/desorption mechanism of MOF-based packaging and its role in fruit and vegetable preservation are described. The design of MOF-based packaging and its applications are reviewed. Finally, the potential future uses of MOF-based active materials in fresh food packaging are considered.
Collapse
Affiliation(s)
- Yabo Fu
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Dan Yang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yiyang Chen
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Jiazi Shi
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Xinlin Zhang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yuwei Hao
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zhipeng Zhang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yunjin Sun
- Beijing Laboratory of Food Quality and Safety, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Jingyi Zhang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
21
|
Azbell TJ, Pitt TA, Bollmeyer MM, Cong C, Lancaster KM, Milner PJ. Ionothermal Synthesis of Metal-Organic Frameworks Using Low-Melting Metal Salt Precursors. Angew Chem Int Ed Engl 2023; 62:e202218252. [PMID: 36811601 PMCID: PMC10079605 DOI: 10.1002/anie.202218252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with myriad potential applications in chemical separations, catalysis, and drug delivery. A major barrier to the application of MOFs is their poor scalability, as most frameworks are prepared under highly dilute solvothermal conditions using toxic organic solvents. Herein, we demonstrate that combining a range of linkers with low-melting metal halide (hydrate) salts leads directly to high-quality MOFs without added solvent. Frameworks prepared under these ionothermal conditions possess porosities comparable to those prepared under traditional solvothermal conditions. In addition, we report the ionothermal syntheses of two frameworks that cannot be prepared directly under solvothermal conditions. Overall, the user-friendly method reported herein should be broadly applicable to the discovery and synthesis of stable metal-organic materials.
Collapse
Affiliation(s)
- Tyler J Azbell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Tristan A Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Melissa M Bollmeyer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Christina Cong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
- Current address: Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
22
|
Jung C, Choi SB, Park J, Jung M, Kim J, Oh H, Kim J. Porous zeolitic imidazolate frameworks assembled with highly-flattened tetrahedral copper(II) centres and 2-nitroimidazolates. Chem Commun (Camb) 2023; 59:4040-4043. [PMID: 36924406 DOI: 10.1039/d2cc06797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cu(II)-based zeolitic imidazolates (Cu-ZIFs), Cu-ZIF-gis and -rho, formulated as Cu(nIm)2 (nIm = 2-nitroimidazolate) have highly-flattened tetrahedral coordination geometry. Cu-ZIF-gis has 2.4 Å cylindrical pores that can adsorb H2 gas, and Cu-ZIF-rho has 19.8 Å cages with a BET surface area of 1320 m2 g-1.
Collapse
Affiliation(s)
- Cheolwon Jung
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Sang Beom Choi
- Department of Physics and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jaewoo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Minji Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Jonghoon Kim
- Department of Physics and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Hyunchul Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea. .,Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jaheon Kim
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
23
|
In situ single-crystal synchrotron X-ray diffraction studies of biologically active gases in metal-organic frameworks. Commun Chem 2023; 6:44. [PMID: 36859657 PMCID: PMC9977776 DOI: 10.1038/s42004-023-00845-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Metal-organic frameworks (MOFs) are well known for their ability to adsorb various gases. The use of MOFs for the storage and release of biologically active gases, particularly nitric oxide (NO) and carbon monoxide (CO), has been a subject of interest. To elucidate the binding mechanisms and geometry of these gases, an in situ single crystal X-ray diffraction (scXRD) study using synchrotron radiation at Diamond Light Source has been performed on a set of MOFs that display promising gas adsorption properties. NO and CO, were introduced into activated Ni-CPO-27 and the related Co-4,6-dihydroxyisophthalate (Co-4,6-dhip). Both MOFs show strong binding affinity towards CO and NO, however CO suffers more from competitive co-adsorption of water. Additionally, we show that morphology can play an important role in the ease of dehydration for these two systems.
Collapse
|
24
|
Bhunia S, Peña-Duarte A, Li H, Li H, Sanad MF, Saha P, Addicoat MA, Sasaki K, Strom TA, Yacamán MJ, Cabrera CR, Seshadri R, Bhattacharya S, Brédas JL, Echegoyen L. [2,1,3]-Benzothiadiazole-Spaced Co-Porphyrin-Based Covalent Organic Frameworks for O 2 Reduction. ACS NANO 2023; 17:3492-3505. [PMID: 36753696 DOI: 10.1021/acsnano.2c09838] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Designing N-coordinated porous single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) is a promising approach to achieve enhanced energy conversion due to maximized atom utilization and higher activity. Here, we report two Co(II)-porphyrin/ [2,1,3]-benzothiadiazole (BTD)-based covalent organic frameworks (COFs; Co@rhm-PorBTD and Co@sql-PorBTD), which are efficient SAC systems for O2 electrocatalysis (ORR). Experimental results demonstrate that these two COFs outperform the mass activity (at 0.85 V) of commercial Pt/C (20%) by 5.8 times (Co@rhm-PorBTD) and 1.3 times (Co@sql-PorBTD), respectively. The specific activities of Co@rhm-PorBTD and Co@sql-PorBTD were found to be 10 times and 2.5 times larger than that of Pt/C, respectively. These COFs also exhibit larger power density and recycling stability in Zn-air batteries compared with a Pt/C-based air cathode. A theoretical analysis demonstrates that the combination of Co-porphyrin with two different BTD ligands affords two crystalline porous electrocatalysts having different d-band center positions, which leads to reactivity differences toward alkaline ORR. The strategy, design, and electrochemical performance of these two COFs offer a pyrolysis-free bottom-up approach that avoids the creation of random atomic sites, significant metal aggregation, or unpredictable structural features.
Collapse
Affiliation(s)
- Subhajit Bhunia
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Armando Peña-Duarte
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Huifang Li
- College of Electromechanical Engineering, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, Shandong266061, China
| | - Hong Li
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 East Lowell Street, Tucson, Arizona85721-0088, United States
| | - Mohamed Fathi Sanad
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Pranay Saha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| | - Matthew A Addicoat
- Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, NottinghamNG11 8NS, United Kingdom
| | - Kotaro Sasaki
- Chemistry Department, Brookhaven National Laboratory, Upton, New York11973, United States
| | - T Amanda Strom
- Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California93106, United States
| | - Miguel José Yacamán
- Department of Applied Physics and Materials Science, Northern Arizona University, 525 South Beaver Street, Flagstaff, Arizona86011, United States
| | - Carlos R Cabrera
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Ram Seshadri
- Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California93106, United States
| | - Santanu Bhattacharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
- Department of Organic Chemistry, Indian Institute of Science, Tala Marg, Bangalore560 012, India
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 East Lowell Street, Tucson, Arizona85721-0088, United States
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| |
Collapse
|
25
|
Vasconcellos LC, de Carvalho EFV, Roberto-Neto O. Hydrogen physisorption on the (BeO) n, B 2H 4(Be,Ti), and B 6Ti 3 metal clusters: a computational study of energies and atomic charges. J Mol Model 2023; 29:48. [PMID: 36658290 DOI: 10.1007/s00894-022-05432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/18/2022] [Indexed: 01/21/2023]
Abstract
The equilibrium structures of BeO clusters and Be,Ti-decorated boranes were computed with the ωB97X-D method and the 6-31G + (2d,2p) and aug-cc-pVTZ basis sets to study their intermolecular interactions with hydrogen molecules. Thermochemical and molecular properties such as the harmonic vibrational frequency, dipole and quadrupole moments, and atomic charges are employed to understand the attractive interactions that control the adsorption process. Comparison of molecular properties and atomic charges of the studied compounds before and after H2 molecule adsorption shows that most of the interactions among the BeO clusters and boranes with H2 molecules constitute a combination of dispersion, electrostatic, and weak charge transfer interactions. Calculated values of Hirschfeld atomic charges and ΔEe (in parenthesis) (BeO)4.8H2 (0.028 e and -2.0 kcal.mol-1), (BeO)2.12H2 (0.030 e and -2.8 kcal.mol-1), B6Ti3.10H2 (0.045 e and -15.4 kcal.mol-1), and B6Ti3+.10H2 (0.058 e and -15.3 kcal.mol-1) show qualitative correlation between hydrogen atomic charges and electronic energy of hydrogen interaction. The ωB97X-D/6-31 + G(2d,2p) values of Gibbs free energy at 298.15 K for (BeO)4.8H2 B2H4Ti.4H2 and B6Ti3.10H2 clusters are equal to -5.0, -4.9, and -5.1 kcal.mol-1, respectively, which are within the range of energy parameters of materials that could be employed in hydrogen storage tanks for light vehicles.
Collapse
Affiliation(s)
- L C Vasconcellos
- Divisão de Aerotermodinâmica E Hipersônica, Instituto de Estudos Avançados, São José Dos CamposSão Paulo, 12228-001, Brazil
| | - E F V de Carvalho
- Departamento de Física, Universidade Federal Do Maranhão, São LuísMaranhão, 65085-580, Brazil
| | - O Roberto-Neto
- Divisão de Aerotermodinâmica E Hipersônica, Instituto de Estudos Avançados, São José Dos CamposSão Paulo, 12228-001, Brazil.
| |
Collapse
|
26
|
Lu X, Tang Y, Yang G, Wang YY. Porous functional metal–organic frameworks (MOFs) constructed from different N-heterocyclic carboxylic ligands for gas adsorption/separation. CrystEngComm 2023. [DOI: 10.1039/d2ce01667b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review mainly summarizes the recent progress of MOFs composed of N-heterocyclic carboxylate ligands in gas sorption/separation. This work may help to understand the relationship between the structures of MOFs and gas sorption/separation.
Collapse
Affiliation(s)
- Xiangmei Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
27
|
Chakraborty R, Carsch KM, Jaramillo DE, Yabuuchi Y, Furukawa H, Long JR, Head-Gordon M. Prediction of Multiple Hydrogen Ligation at a Vanadium(II) Site in a Metal-Organic Framework. J Phys Chem Lett 2022; 13:10471-10478. [PMID: 36326596 DOI: 10.1021/acs.jpclett.2c02844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Densifying hydrogen in a metal-organic framework (MOF) at moderate pressures can circumvent challenges associated with high-pressure compression. The highly tunable structural and chemical composition in MOFs affords vast possibilities to optimize binding interactions. At the heart of this search are the nanoscale characteristics of molecular adsorption at the binding site(s). Using density functional theory (DFT) to model binding interactions of hydrogen to the exposed metal site of cation-exchanged MFU-4l, we predict multiple hydrogen ligation of H2 at the first coordination sphere of V(II) in V(II)-exchanged MFU-4l. We find that the strength of this binding between the metal site and H2 molecules can be tuned by altering the halide counterion adjacent to the metal site and that the fluoride containing node affords the most favorable interactions for high-density H2 storage. Using energy decomposition analysis, we delineate electronic contributions that enable multiple hydrogen ligation and demonstrate its benefits for hydrogen adsorption and release at modest pressures.
Collapse
Affiliation(s)
- Romit Chakraborty
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Kurtis M Carsch
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - David E Jaramillo
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Yuto Yabuuchi
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Hiroyasu Furukawa
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemical and Biomedical Engineering, University of California, Berkeley, California94720, United States
| | - Martin Head-Gordon
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
28
|
Allendorf MD, Stavila V, Snider JL, Witman M, Bowden ME, Brooks K, Tran BL, Autrey T. Challenges to developing materials for the transport and storage of hydrogen. Nat Chem 2022; 14:1214-1223. [DOI: 10.1038/s41557-022-01056-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
|
29
|
Kwon H, Jiang DE. Tuning Metal-Dihydrogen Interaction in Metal-Organic Frameworks for Hydrogen Storage. J Phys Chem Lett 2022; 13:9129-9133. [PMID: 36162809 DOI: 10.1021/acs.jpclett.2c02628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inspired by a recently reported metal-organic framework (MOF), V2Cl2.8(btdd) [H2btdd = bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin], that shows a greatly improved H2 adsorption enthalpy, we employ density functional theory to probe how the number of d electrons and the mixed valences influence the M-H2 interaction inside the M2Clx(btdd) MOFs. We find a cliff in the H2 adsorption energy: the interaction strength remains strong from Sc to V and then falls sharply at Cr. Our results confirm V2Cl2.8(btdd) as one of the best performing hydrogen adsorbents and predict that Ti2Cl2.8(btdd) is equally promising while Sc2Cl2(btdd) and Ti2Cl2(btdd) may be even better. Our analysis indicates that an empty dx2-y2 orbital is the key to the much stronger binding of H2 at the open M(II) site (M = Sc, Ti, or V), whereas a partially filled dx2-y2 orbital in Cr(II) and later M(II) greatly weakens H2 binding. Our findings will be useful in designing MOFs to enhance H2 adsorption.
Collapse
Affiliation(s)
- Hyuna Kwon
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
30
|
Garg A, Almáši M, Bednarčík J, Sharma R, Rao VS, Panchal P, Jain A, Sharma A. Gd(III) metal-organic framework as an effective humidity sensor and its hydrogen adsorption properties. CHEMOSPHERE 2022; 305:135467. [PMID: 35764119 DOI: 10.1016/j.chemosphere.2022.135467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) represent a class of nanoporous materials built up by metal ions and organic linkers with several interesting potential applications. The present study described the synthesis and characterization of Gd(III)-based MOF with the chemical composition [Gd(BTC)(H2O)]·DMF (BTC - trimesate, DMF = N,N'-dimethylformamide), known as MOF-76(Gd) for hydrogen adsorption/desorption capacity and humidity sensing applications. The structure and morphology of as-synthesized material were studied using powder X-ray diffraction, scanning and transmission electron microscopy. The crystal structure of MOF-76(Gd) consists of gadolinium (III) and benzene-1,3,5-tricarboxylate ions, one coordinated aqua ligand and one crystallization DMF molecule. The polymeric framework of MOF-76(Gd) contains 1D sinusoidally shaped channels with sizes of 6.7 × 6.7 Å propagating along c crystallographic axis. The thermogravimetric analysis, heating infrared spectroscopy and in-situ heating powder X-ray diffraction experiments of the prepared framework exhibited thermal stability up to 550 °C. Nitrogen adsorption/desorption measurement at -196 °C showed a BET surface area of 605 m2 g-1 and pore volume of 0.24 cm3 g-1. The maximal hydrogen storage capacity of MOF-76(Gd) was 1.66 wt % and 1.34 wt % -196 °C and -186 °C and pressure up to 1 bar, respectively. Finally, the humidity sensing measurements (water adsorption experiments) were performed, and the results indicate that MOF-76(Gd) is a suitable material for moisture sensing application with a fast response (11 s) and recovery time (2 s) in the relative humidity range of 11-98%.
Collapse
Affiliation(s)
- Akash Garg
- Department of Physics, School of Applied Science, Suresh Gyan Vihar University, Jaipur, 302017, India
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 041 54, Kosice, Slovak Republic.
| | - Jozef Bednarčík
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice, 040 01, Slovak Republic
| | - Rishabh Sharma
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Vikrant Singh Rao
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Priyanka Panchal
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Ankur Jain
- Department of Physics, School of Applied Science, Suresh Gyan Vihar University, Jaipur, 302017, India; Centre for Renewable Energy & Storage, Suresh Gyan Vihar University, Jaipur, 302017, India
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
31
|
Chen JF, Ge YL, Wu DH, Cui HT, Mu ZL, Xiao HP, Li X, Ge JY. Two-dimensional dysprosium(III) coordination polymer: Structure, single-molecule magnetic behavior, proton conduction, and luminescence. Front Chem 2022; 10:974914. [PMID: 36003620 PMCID: PMC9393541 DOI: 10.3389/fchem.2022.974914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
A new dysprosium (III) coordination polymer [Dy(Hm-dobdc) (H2O)2]·H2O (Dy-CP), was hydrothermal synthesized based on 4,6-dioxido-1,3-benzenedicarboxylate (H4m-dobdc) ligand containing carboxyl and phenolic hydroxyl groups. The Dy(III) center adopts an octa-coordinated [DyO8] geometry, which can be described as a twisted square antiprism (D4d symmetry). Neighboring Dy(III) ions are interconnected by deprotonated Hm-dobdc3− ligand to form the two-dimensional infinite layers, which are further linked to generate three-dimensional structure through abundant hydrogen bonds mediated primarily by coordinated and lattice H2O molecules. Magnetic studies demonstrates that Dy-CP shows the field-induced slow relaxation of magnetization and the energy barrier Ueff/kB and relaxation time τ0 are 35.3 K and 1.31 × 10–6 s, respectively. Following the vehicular mechanism, Dy-CP displays proton conductivity with σ equal to 7.77 × 10–8 S cm−1 at 353 K and 30%RH. Moreover, luminescence spectra reveal that H4m-dobdc can sensitize characteristic luminescence of Dy(III) ion. Herein, good magnetism, proton conduction, and luminescence are simultaneously achieved, and thus, Dy-CP is a potential multifunctional coordination polymer material.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong-Ping Xiao
- *Correspondence: Jing-Yuan Ge, ; Hong-Ping Xiao, ; Xinhua Li,
| | - Xinhua Li
- *Correspondence: Jing-Yuan Ge, ; Hong-Ping Xiao, ; Xinhua Li,
| | - Jing-Yuan Ge
- *Correspondence: Jing-Yuan Ge, ; Hong-Ping Xiao, ; Xinhua Li,
| |
Collapse
|
32
|
Madden DG, O'Nolan D, Rampal N, Babu R, Çamur C, Al Shakhs AN, Zhang SY, Rance GA, Perez J, Maria Casati NP, Cuadrado-Collados C, O'Sullivan D, Rice NP, Gennett T, Parilla P, Shulda S, Hurst KE, Stavila V, Allendorf MD, Silvestre-Albero J, Forse AC, Champness NR, Chapman KW, Fairen-Jimenez D. Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity. J Am Chem Soc 2022; 144:13729-13739. [PMID: 35876689 PMCID: PMC9354247 DOI: 10.1021/jacs.2c04608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We are currently witnessing the dawn of hydrogen (H2) economy, where H2 will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H2 can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel via adsorption onto porous materials. Metal-organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H2 storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H2 as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF (monoMOF) for H2 storage. After densification, this monoMOF stores 46 g L-1 H2 at 50 bar and 77 K and delivers 41 and 42 g L-1 H2 at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature-pressure (25-50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H2 gas when compared with benchmark materials and an 83% reduction compared to compressed H2 gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H2 storage applications.
Collapse
Affiliation(s)
- David Gerard Madden
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Daniel O'Nolan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790-3400, United States
| | - Nakul Rampal
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Robin Babu
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ceren Çamur
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ali N Al Shakhs
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Shi-Yuan Zhang
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Graham A Rance
- Nanoscale and Microscale Research Center (nmRC), University of Nottingham, University Park, Nottingham NG7 2RD, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Javier Perez
- Synchrotron SOLEIL, Gif sur Yvette Cedex, Saint-Aubin 91190, France
| | - Nicola Pietro Maria Casati
- 10 Laboratory for Synchrotron Radiation─Condensed Matter, Paul Scherrer Institute, PSI, 11, Villigen 5232, Switzerland
| | - Carlos Cuadrado-Collados
- Laboratorio de Materiales Avanzados (LMA), Departamento de Química Inorgánica-IUMA, Universidad de Alicante, San Vicente del Raspeig 03690, Spain
| | - Denis O'Sullivan
- Immaterial Ltd., 25 Cambridge Science Park, Milton Road, Cambridge CB4 0FW, U.K
| | - Nicholas P Rice
- Immaterial Ltd., 25 Cambridge Science Park, Milton Road, Cambridge CB4 0FW, U.K
| | - Thomas Gennett
- Materials and Chemical Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Philip Parilla
- Materials and Chemical Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Sarah Shulda
- Materials and Chemical Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Katherine E Hurst
- Materials and Chemical Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Mark D Allendorf
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Joaquin Silvestre-Albero
- Laboratorio de Materiales Avanzados (LMA), Departamento de Química Inorgánica-IUMA, Universidad de Alicante, San Vicente del Raspeig 03690, Spain
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Neil R Champness
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790-3400, United States
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
33
|
do Pim WD, Marcotte S, Kitos AA, Richardson P, Pallister P, Murugesu M. Straightforward Mechanosynthesis of a Phase-Pure Interpenetrated MOF-5 Bearing a Size-Matching Tetrazine-Based Linker. Inorg Chem 2022; 61:11695-11701. [PMID: 35854222 DOI: 10.1021/acs.inorgchem.2c01285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The archetypal metal-organic framework-5 (MOF-5 or IRMOF-1) has been explored as a benchmark sorbent material with untapped potential to be studied in the capture and storage of gases and chemical confinement. Several derivatives of this framework have been prepared using the multivariate (MTV) strategy through mixing size-matching linkers to isolate, for example, MIXMOFs that outperform same-linker congeners when employed as gas reservoirs. Herein, we describe a straightforward protocol that uses mechanosynthesis (solvent-free grinding) followed by mild activation in dimethylformamide (DMF)/CHCl3 (40 °C and ambient pressure) to synthesize a functional phase-pure interpenetrated MOF-5 (int-MOF-5) bearing the size-matching 1,4-benzene dicarboxylate (BDC) and 1,2,4,5-tetrazine-3,6-dicarboxylate (TZDC) linkers in the backbone of the interpenetrated MIXMOF. We found that the grinding involving a mixture of H2TZDC and H2BDC in a 1:4 ratio (20% of H2TZDC) in the presence of zinc(II) acetate yields a crystalline solid that upon activation forms a phase-pure int-MOF-5 herein referred to as 20%TZDC-MOF-5. The crystalline phase, thermal stability, and porous structure of 20%TZDC-MOF-5 were thoroughly characterized, and the gas adsorption performance of the MIXMOF was investigated through the isotherms of N2 and H2 at 77 K and CO2 at 273 and 296 K. The pore size distribution for 20%TZDC-MOF-5 was found to be very similar to that determined using single crystals of the same-linker int-MOF-5. The presence of TZDC in the MIXMOF led to a slight increase in the uptake values for both H2 and CO2, suggesting that beneficial interactions take place. To the best of our knowledge, this is the first report presenting a suitable protocol to yield a functionalized int-MOF-5 as a promising means of synergistically fine-tuning the confinement of small target molecules such as CO2 and H2.
Collapse
Affiliation(s)
- Walace D do Pim
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Sébastien Marcotte
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Paul Richardson
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Peter Pallister
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
34
|
Ozbek MO, Ipek B. A Theoretical Investigation of Cu+, Ni2+ and Co2+-exchanged Zeolites for Hydrogen Storage. Chemphyschem 2022; 23:e202200272. [PMID: 35785512 DOI: 10.1002/cphc.202200272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/03/2022] [Indexed: 11/06/2022]
Abstract
This study investigates the H 2 adsorption on Cu + , Ni 2+ and Co 2+ -exchanged SSZ-13 (CHA) and SSZ-39 (AEI) using periodic DFT computations. Most stable Cu + position was found to be the 6-membered-ring window for both zeolites. Similarly, for investigated Ni 2+ and Co 2+ loadings on 6-membered-ring windows, the third nearest neighbor Al positions, i.e., Al-O-Si-O-Si-O-Al coordination, was found to be the most stable position. H 2 adsorption was investigated for all the Cu + , Ni 2+ and Co 2+ centers. AEI and CHA resulted in similar H 2 -Cu interactions for the Al and B substituted structures. H 2 adsorption on Cu + located in the 8-membered-ring gave the highest adsorption energy for both frameworks. Replacing Al with B in the framework increased the electron back donation from Cu + (3d) orbitals to H 2 antibonding orbital (s H2 * ). The H 2 adsorption energies on the Ni 2+ and Co 2+ -exchanged zeolites were found to be between -15 and -44 kJ/mol. Higher energy values were observed on the AEI framework, especially when two Al atoms have the Al-O-Si-O-Al configuration. Lesser interaction of the d-orbitals in the case of the Co 2+ and Ni 2+ cations resulted in heat of H 2 adsorption close to optimum values required for H 2 storage on porous materials.
Collapse
Affiliation(s)
- M Olus Ozbek
- Gebze Technical University: Gebze Teknik Universitesi, Chemical Engineering Department, Cumhuriyet 2254 St. No.2, Gebze, 41400, Kocaeli, TURKEY
| | - Bahar Ipek
- Middle East Technical University: Orta Dogu Teknik Universitesi, Chemical and Biomolecular Engineering, Dumlupinar Bulv. No 1, Cankaya, 06800, Ankara, TURKEY
| |
Collapse
|
35
|
Thangarasu S, Oh TH. Impact of Polymers on Magnesium-Based Hydrogen Storage Systems. Polymers (Basel) 2022; 14:2608. [PMID: 35808653 PMCID: PMC9269507 DOI: 10.3390/polym14132608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
In the present scenario, much importance has been provided to hydrogen energy systems (HES) in the energy sector because of their clean and green behavior during utilization. The developments of novel techniques and materials have focused on overcoming the practical difficulties in the HES (production, storage and utilization). Comparatively, considerable attention needs to be provided in the hydrogen storage systems (HSS) because of physical-based storage (compressed gas, cold/cryo compressed and liquid) issues such as low gravimetric/volumetric density, storage conditions/parameters and safety. In material-based HSS, a high amount of hydrogen can be effectively stored in materials via physical or chemical bonds. In different hydride materials, Mg-based hydrides (Mg-H) showed considerable benefits such as low density, hydrogen uptake and reversibility. However, the inferior sorption kinetics and severe oxidation/contamination at exposure to air limit its benefits. There are numerous kinds of efforts, like the inclusion of catalysts that have been made for Mg-H to alter the thermodynamic-related issues. Still, those efforts do not overcome the oxidation/contamination-related issues. The developments of Mg-H encapsulated by gas-selective polymers can effectively and positively influence hydrogen sorption kinetics and prevent the Mg-H from contaminating (air and moisture). In this review, the impact of different polymers (carboxymethyl cellulose, polystyrene, polyimide, polypyrrole, polyvinylpyrrolidone, polyvinylidene fluoride, polymethylpentene, and poly(methyl methacrylate)) with Mg-H systems has been systematically reviewed. In polymer-encapsulated Mg-H, the polymers act as a barrier for the reaction between Mg-H and O2/H2O, selectively allowing the H2 gas and preventing the aggregation of hydride nanoparticles. Thus, the H2 uptake amount and sorption kinetics improved considerably in Mg-H.
Collapse
Affiliation(s)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
36
|
Bonneau M, Lavenn C, Zheng JJ, Legrand A, Ogawa T, Sugimoto K, Coudert FX, Reau R, Sakaki S, Otake KI, Kitagawa S. Tunable acetylene sorption by flexible catenated metal-organic frameworks. Nat Chem 2022; 14:816-822. [PMID: 35449219 DOI: 10.1038/s41557-022-00928-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The safe storage of flammable gases, such as acetylene, is essential for current industrial purposes. However, the narrow pressure (P) and temperature range required for the industrial use of pure acetylene (100 < P < 200 kPa at 298 K) and its explosive behaviour at higher pressures make its storage and release challenging. Flexible metal-organic frameworks that exhibit a gated adsorption/desorption behaviour-in which guest uptake and release occur above threshold pressures, usually accompanied by framework deformations-have shown promise as storage adsorbents. Herein, the pressures for gas uptake and release of a series of zinc-based mixed-ligand catenated metal-organic frameworks were controlled by decorating its ligands with two different functional groups and changing their ratio. This affects the deformation energy of the framework, which in turn controls the gated behaviour. The materials offer good performances for acetylene storage with a usable capacity of ~90 v/v (77% of the overall amount) at 298 K and under a practical pressure range (100-150 kPa).
Collapse
Affiliation(s)
- Mickaele Bonneau
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Japan
| | | | - Jia-Jia Zheng
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Japan.,Element Strategy Initiative for Catalyst and Batteries, Kyoto University, Nishikyo-ku, Japan
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Japan
| | - Tomofumi Ogawa
- Air Liquide Laboratories, Innovation Campus Tokyo, Yokosuka, Japan
| | - Kunihisa Sugimoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Japan.,Japan Synchrotron Radiation Research Institute/SPring-8, Sayo, Japan
| | - Francois-Xavier Coudert
- Chimie Paris Tech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Regis Reau
- Air Liquide R&D, Les Loges-en-Josas, France
| | - Shigeyoshi Sakaki
- Element Strategy Initiative for Catalyst and Batteries, Kyoto University, Nishikyo-ku, Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Japan.
| |
Collapse
|
37
|
Gong X, Gnanasekaran K, Ma K, Forman CJ, Wang X, Su S, Farha OK, Gianneschi NC. Rapid Generation of Metal-Organic Framework Phase Diagrams by High-Throughput Transmission Electron Microscopy. J Am Chem Soc 2022; 144:6674-6680. [PMID: 35385280 DOI: 10.1021/jacs.2c01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-organic frameworks (MOFs) constructed from Zr6 nodes and tetratopic carboxylate linkers display high structural diversity and complexity in which various crystal topologies can result from identical building units. To determine correlations between MOF topologies and experimental parameters, such as solvent choice or modulator identity and concentration, we demonstrate the rapid generation of phase diagrams for Zr6-MOFs with 1,4-dibromo-2,3,5,6-tetrakis(4-carboxyphenyl)benzene linkers under a variety of conditions. We have developed a full set of methods for high-throughput transmission electron microscopy (TEM), including automated sample preparation and data acquisition, to accelerate MOF characterization. The use of acetic acid as a modulator yields amorphous, NU-906, NU-600, and mixed-phase structures depending on the ratio of N,N-dimethylformamide to N,N-diethylformamide solvent and the quantity of the modulator. Notably, the use of formic acid as a modulator enables direct control of crystal growth along the c direction through variation of the modulator quantity, thus realizing aspect ratio control of NU-1008 crystals with different catalytic hydrolysis performance toward a nerve agent simulant.
Collapse
Affiliation(s)
- Xinyi Gong
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karthikeyan Gnanasekaran
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher J Forman
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
Antonio AM, Korman KJ, Deegan MM, Taggart GA, Yap GPA, Bloch ED. Utilization of a Mixed-Ligand Strategy to Tune the Properties of Cuboctahedral Porous Coordination Cages. Inorg Chem 2022; 61:4609-4617. [PMID: 35263080 DOI: 10.1021/acs.inorgchem.1c03519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand functionalization has been thoroughly leveraged to alter the properties of paddlewheel-based coordination cages where, in the case of ligand-terminated cages, functional groups are positioned on the periphery of synthesized cages. While these groups can be used to optimize solubility, porosity, crystal packing, thermal stability toward desolvation, reactivity, or optical activity, optimization of multiple properties can be challenging given their interconnected nature. For example, installation of functional groups to increase the solubility of porous cages typically has the effect of decreasing their porosity and stability toward thermal activation. Here we show that mixed-ligand cages can potentially address these issues as the benefits of various functional groups can be combined into one mixed-ligand cage. We further show that although ligand exchange reactions can be employed to obtain mixed ligand copper(II)-based cages, direct synthesis of mixed-ligand products is necessary for molybdenum(II) paddlewheel-based cages as these substitutionally inert clusters are resistant to ligand exchange. We ultimately show that highly soluble, highly porous, and thermally stable cuboctahedral cages are isolable by this strategy.
Collapse
Affiliation(s)
- Alexandra M Antonio
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Kyle J Korman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Meaghan M Deegan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Garrett A Taggart
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
39
|
Anene UA, Alpay SP. Ab Initio Study of Hydrostable Metal-Organic Frameworks for Postsynthetic Modification and Tuning toward Practical Applications. ACS OMEGA 2022; 7:7791-7805. [PMID: 35284705 PMCID: PMC8908368 DOI: 10.1021/acsomega.1c06658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs), a subclass of nanoporous coordination polymers, have emerged as one of the most promising next-generation materials. The postsynthetic modification method, a strategy that provides tunability and control of these materials, plays an important role in enhancing its properties and functionalities. However, knowing adjustments which leads to a desired structure-function a priori remains a challenge. In this comprehensive study, the intermolecular interactions between 21 industrially important gases and a hydrostable STAM-17-OEt MOF were investigated using density functional theory. Substitutions on its 5-ethoxy isophthalate linker included two classes of chemical groups, electron-donating (-NH2, -OH, and -CH3) and electron-withdrawing (-CN, -COOH, and -F), as well as the effect of mono-, di-, and tri-substitutions. This resulted in 651 unique MOF-gas complexes. The adsorption energies at the ground state and room temperature, bond lengths, adsorption geometry, natural bond orbital analysis of the electric structure, HOMO-LUMO interactions, and the predicted zwitterionic properties are presented and discussed. This study provides a viable strategy for the functionalization, which leads to the strongest affinity for each gas, an insight into the role of different chemical groups in adsorbing various gas molecules, and identifies synthetic routes for moderating the gas adsorption capacity and reducing water adsorption. Recommendations for various applications are discussed. A custom Python script to assess and visualize the hypothetical separation of two equal gas mixtures of interest is provided. The methodology presented here provides new opportunities to expand the chemical space and physical properties of STAM-17-OEt and advances the development of other hydrostable MOFs.
Collapse
Affiliation(s)
- Uchenna A. Anene
- Department
of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - S. Pamir Alpay
- Department
of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
40
|
García-Ben J, McHugh LN, Bennett TD, Bermúdez-García JM. Dicyanamide-perovskites at the edge of dense hybrid organic–inorganic materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Subramani M, Rajamani A, Subramaniam V, Hatshan MR, Gopi S, Ramasamy S. Reinforcing the tetracene-based two-dimensional C 48H 16 sheet by decorating the Li, Na, and K atoms for hydrogen storage and environmental application -A DFT study. ENVIRONMENTAL RESEARCH 2022; 204:112114. [PMID: 34571036 DOI: 10.1016/j.envres.2021.112114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
To meet the increasing need of energy resources, hydrogen (H2) is being considered as a promising candidate for energy carrier that has motivated research into appropriate storage materials among scientists. Thus, in this study for the first time, zig-zag and armchair edged tetracene based porous carbon sheet (C48H16) is investigated for H2 storage using the density functional theory. To explore the hydrogen storage capacity, the hydrogen molecule is initially positioned parallel to the C48H16 sheet at three different sites, resulting in lower adsorption energies of -0.020, -0.024, and -0.015 eV respectively. The Li, Na, and K atoms are decorated to improve H2 adsorption on the C48H16 sheet. The Li atom decorated C48H16 sheet has a higher binding energy value of -2.070 eV than the Na and K atom decorated C48H16 sheet. The presence of Li, Na, and K atoms on the C48H16 sheet enhance the H2 adsorption energy than the H2 on the pristine C48H16 sheet. The decrease of Mulliken charge in alkali metal atoms (Li, Na, and K atom) on the C48H16 sheet reveal that the electron is transferred from H-σ orbital to s orbital of alkali metal atoms on the C48H16 sheet, leads to the enhancement of H2 binding. Compared to H2 adsorption on Na and K atom decorated C48H16 sheet, the H2 adsorption on Li atom decorated C48H16 sheet has the maximum adsorption energy value of -0.389 eV. The obtained hydrogen storage capacity of Li, Na, and K atoms decorated C48H16 sheets are about 7.49 wt%, 7.31 wt%, and 7.14 wt% respectively for four H2 molecules, which is greater than the targeted hydrogen storage capacity of the United States Department of Energy (DOE). Thus the obtained results in this work reveal that the decorated C48H16 sheets with Li, Na, and K atom plays the potential role in the H2 storage.
Collapse
Affiliation(s)
| | - Akilan Rajamani
- Laboratoire de Physique des Lasers, Atomes et Molécules, University de Lille, France
| | | | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sivalingam Gopi
- Department of BioNano Technology, Gachon University, GyeongGi -Do, 13120, Republic of Korea
| | - Shankar Ramasamy
- Department of Physics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
42
|
Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review. Processes (Basel) 2022. [DOI: 10.3390/pr10020304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With the rapid growth in demand for effective and renewable energy, the hydrogen era has begun. To meet commercial requirements, efficient hydrogen storage techniques are required. So far, four techniques have been suggested for hydrogen storage: compressed storage, hydrogen liquefaction, chemical absorption, and physical adsorption. Currently, high-pressure compressed tanks are used in the industry; however, certain limitations such as high costs, safety concerns, undesirable amounts of occupied space, and low storage capacities are still challenges. Physical hydrogen adsorption is one of the most promising techniques; it uses porous adsorbents, which have material benefits such as low costs, high storage densities, and fast charging–discharging kinetics. During adsorption on material surfaces, hydrogen molecules weakly adsorb at the surface of adsorbents via long-range dispersion forces. The largest challenge in the hydrogen era is the development of progressive materials for efficient hydrogen storage. In designing efficient adsorbents, understanding interfacial interactions between hydrogen molecules and porous material surfaces is important. In this review, we briefly summarize a hydrogen storage technique based on US DOE classifications and examine hydrogen storage targets for feasible commercialization. We also address recent trends in the development of hydrogen storage materials. Lastly, we propose spillover mechanisms for efficient hydrogen storage using solid-state adsorbents.
Collapse
|
43
|
|
44
|
Lu W, Huang H, Hejin Z, Yanjiao C, Xiangyu G, Fan Y, Zhong C. Efficient separation of 1,3‐butadiene from
C4
hydrocarbons by flexible metal–organic framework with gate‐opening effect. AIChE J 2022. [DOI: 10.1002/aic.17568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wang Lu
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P. R. China
- School of Textile Science and Engineering Tiangong University Tianjin P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P. R. China
- School of Chemical Engineering Tiangong University Tianjin P. R. China
| | - Zhu Hejin
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P. R. China
- School of Textile Science and Engineering Tiangong University Tianjin P. R. China
| | - Chang Yanjiao
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P. R. China
- School of Chemical Engineering Tiangong University Tianjin P. R. China
| | - Guo Xiangyu
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P. R. China
- School of Chemical Engineering Tiangong University Tianjin P. R. China
| | - Yang Fan
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P. R. China
- School of Chemical Engineering Tiangong University Tianjin P. R. China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P. R. China
- School of Chemical Engineering Tiangong University Tianjin P. R. China
| |
Collapse
|
45
|
Zhao D, Wang X, Yue L, He Y, Chen B. Porous Metal-Organic Frameworks for Hydrogen Storage. Chem Commun (Camb) 2022; 58:11059-11078. [DOI: 10.1039/d2cc04036k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high gravimetric energy density and environmental benefit place hydrogen as a promising alternative to the widely used fossil fuel, which is however impeded by the lack of safe, energy-saving...
Collapse
|
46
|
Klein RA, Shulda S, Parilla PA, Le Magueres P, Richardson RK, Morris W, Brown CM, McGuirk CM. Structural resolution and mechanistic insight into hydrogen adsorption in flexible ZIF-7. Chem Sci 2021; 12:15620-15631. [PMID: 35003592 PMCID: PMC8654044 DOI: 10.1039/d1sc04618g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022] Open
Abstract
Flexible metal-organic frameworks offer a route towards high useable hydrogen storage capacities with minimal swings in pressure and temperature via step-shaped adsorption and desorption profiles. Yet, the understanding of hydrogen-induced flexibility in candidate storage materials remains incomplete. Here, we investigate the hydrogen storage properties of a quintessential flexible metal-organic framework, ZIF-7. We use high-pressure isothermal hydrogen adsorption measurements to identify the pressure-temperature conditions of the hydrogen-induced structural transition in ZIF-7. The material displays narrow hysteresis and has a shallow adsorption slope between 100 K and 125 K. To gain mechanistic insight into the cause of the phase transition correlating with stepped adsorption and desorption, we conduct powder neutron diffraction measurements of the D2 gas-dosed structures at conditions across the phase change. Rietveld refinements of the powder neutron diffraction patterns yield the structures of activated ZIF-7 and of the gas-dosed material in the dense and open phases. The structure of the activated phase of ZIF-7 is corroborated by the structure of the activated phase of the Cd congener, CdIF-13, which we report here for the first time based on single crystal X-ray diffraction measurements. Subsequent Rietveld refinements of the powder patterns for the gas-dosed structure reveal that the primary D2 adsorption sites in the dense phase form D2-arene interactions between adjacent ligands in a sandwich-like adsorption motif. These sites are prevalent in both the dense and the open structure for ZIF-7, and we hypothesize that they play an important role in templating the structure of the open phase. We discuss the implications of our findings for future approaches to rationally tune step-shaped adsorption in ZIF-7, its congeners, and flexible porous adsorbents in general. Lastly, important to the application of flexible frameworks, we show that pelletization of ZIF-7 produces minimal variation in performance.
Collapse
Affiliation(s)
- Ryan A Klein
- Material, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory Golden Colorado 80401 USA
- Center for Neutron Research, National Institute of Standards and Technology Gaithersburg Maryland 20899 USA
| | - Sarah Shulda
- Material, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory Golden Colorado 80401 USA
| | - Philip A Parilla
- Material, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory Golden Colorado 80401 USA
| | - Pierre Le Magueres
- Rigaku Americas Corporation 9009 New Trails Drive The Woodlands TX 77381 USA
| | | | - William Morris
- NuMat Technologies 8025 Lamon Avenue Skokie Illinois 60077 USA
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology Gaithersburg Maryland 20899 USA
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| | - C Michael McGuirk
- Department of Chemistry, Colorado School of Mines Golden Colorado 80401 USA
| |
Collapse
|
47
|
Wang H, Yin Y, Li B, Bai JQ, Wang M. High-Throughput Screening of Metal-Organic Frameworks for the Impure Hydrogen Storage Supplying to a Fuel Cell Vehicle. Transp Porous Media 2021. [DOI: 10.1007/s11242-020-01527-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. Der derzeitige Stand von MOF‐ und COF‐Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ralph Freund
- Institut für Physik Universität Augsburg Deutschland
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | | | | | | | - Ulrich Lächelt
- Department für Pharmazie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Evelyn Ploetz
- Department Chemie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| |
Collapse
|
49
|
Oppenheim JJ, Mancuso JL, Wright AM, Rieth AJ, Hendon CH, Dincǎ M. Divergent Adsorption Behavior Controlled by Primary Coordination Sphere Anions in the Metal-Organic Framework Ni 2X 2BTDD. J Am Chem Soc 2021; 143:16343-16347. [PMID: 34596390 DOI: 10.1021/jacs.1c07449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CO, ethylene, and H2 demonstrate divergent adsorption enthalpies upon interaction with a series of anion-exchanged Ni2X2BTDD materials (X = OH, F, Cl, Br; H2BTDD = bis(1H-1,2,3-triazolo[4,5-b][4',5'-i])dibenzo[1,4]dioxin)). The dissimilar responses of these conventional π-acceptor gaseous ligands are in contrast with the typical behavior that may be expected for gas sorption in metal-organic frameworks (MOFs), which generally follows similar periodic trends for a given set of systematic changes to the host MOF structure. A combination of computational and spectroscopic data reveals that the divergent behavior, especially between CO and ethylene, stems from a predominantly σ-donor interaction between the former and Ni2+ and a π-acceptor interaction for the latter. These findings will facilitate further deliberate postsynthetic modifications of MOFs with open metal sites to control the equilibrium selectivity of gas sorption.
Collapse
Affiliation(s)
- Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, United States
| | - Jenna L Mancuso
- Materials Science Institute, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Ashley M Wright
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, United States
| | - Adam J Rieth
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, United States
| | - Christopher H Hendon
- Materials Science Institute, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Mircea Dincǎ
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Lefton JB, Pekar KB, Haris U, Zick ME, Milner PJ, Lippert AR, Pejov L, Runčevski T. Defects Formation and Amorphization of Zn-MOF-74 Crystals by Post-Synthetic Interactions with Bidentate Adsorbates. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 35:19698-19704. [PMID: 34721878 PMCID: PMC8552995 DOI: 10.1039/d0ta10613e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The controlled introduction of defects into MOFs is a powerful strategy to induce new physiochemical properties and improve their performance for target applications. Herein, we present a new strategy for defect formation and amorphization of the canonical MOF-74 frameworks based on fine-tuning of adsorbate-framework interactions in the metal congener, hence introducing structural defects. Specifically, we demonstrate that controlled interactions between the MOF and bidentate ligands adsorbed in the pores initiates defect formation and eventual amorphization of the crystal. These structural features unlock properties that are otherwise absent in the ordered framework, such as broad-band fluorescence. The ability to introduce defects by adsorbate-framework interactions, coupled with the inherent tunability and modularity of these structures, provides a new route for the synthesis of diverse heterogeneous and hybrid materials.
Collapse
Affiliation(s)
- Jonathan B Lefton
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| | - Kyle B Pekar
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| | - Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| | - Mary E Zick
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853 (USA)
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853 (USA)
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| | - Ljupčo Pejov
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, 4036 (Norway)
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| |
Collapse
|