1
|
Dhanapala BD, Maglich DL, Anderson ME. Impact of Surface Functionalization and Deposition Method on Cu-BDC surMOF Formation, Morphology, Crystallinity, and Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12196-12205. [PMID: 37585655 PMCID: PMC10469448 DOI: 10.1021/acs.langmuir.3c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/01/2023] [Indexed: 08/18/2023]
Abstract
For direct integration into device architectures, surface-anchored metal-organic framework (surMOF) thin films are attractive systems for a wide variety of electronic, photonic, sensing, and gas storage applications. This research systematically investigates the effect of deposition method and surface functionalization on the film formation of a copper paddle-wheel-based surMOF. Solution-phase layer-by-layer (LBL) immersion and LBL spray deposition methods are employed to deposit copper benzene-1,4-dicarboxylate (Cu-BDC) on gold substrates functionalized with carboxyl- and hydroxyl-terminated alkanethiol self-assembled monolayers (SAMs). A difference in crystal orientation is observed by atomic force microscopy and X-ray diffractometry based on surface functionalization for films deposited by the LBL immersion method but not for spray-deposited films. Cu-BDC crystallites with a strong preferred orientation perpendicular to the substrate were observed for the films deposited by the LBL immersion method on carboxyl-terminated SAMs. These crystals could be removed upon testing adhesive properties, whereas all other Cu-BDC surMOF film structures demonstrated excellent adhesive properties. Additionally, film stability upon exposure to water or heat was investigated. Ellipsometric data provide insight into film formation elucidating 7 and 14 Å average thicknesses per deposition cycle for films deposited by the immersion method on 11-mercapto-1-undecanol (MUD) and 16-mercaptohexadecanoic acid (MHDA), respectively. In contrast, the films deposited by the spray method are thicker with the same average thickness per deposition cycle (21 Å) for both SAMs. While the spray method takes less time to grow thicker films, it produces similar crystallite structures, regardless of the surface functionalization. This research is fundamental to understanding the impact of deposition method and surface functionalization on surMOF film growth and to provide strategies for the preparation of high-quality surMOFs.
Collapse
Affiliation(s)
- B. Dulani Dhanapala
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Dayton L. Maglich
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Mary E. Anderson
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
2
|
Xu T, Liu Z, Huang L, Jing J, Liu X. Modulating the tumor immune microenvironment with nanoparticles: A sword for improving the efficiency of ovarian cancer immunotherapy. Front Immunol 2022; 13:1057850. [PMID: 36532066 PMCID: PMC9751906 DOI: 10.3389/fimmu.2022.1057850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
With encouraging antitumor effects, immunotherapy represented by immune checkpoint blockade has developed into a mainstream cancer therapeutic modality. However, only a minority of ovarian cancer (OC) patients could benefit from immunotherapy. The main reason is that most OC harbor a suppressive tumor immune microenvironment (TIME). Emerging studies suggest that M2 tumor-associated macrophages (TAMs), T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSCs), and cancer-associated fibroblasts (CAFs) are enriched in OC. Thus, reversing the suppressive TIME is considered an ideal candidate for improving the efficiency of immunotherapy. Nanoparticles encapsulating immunoregulatory agents can regulate immunocytes and improve the TIME to boost the antitumor immune response. In addition, some nanoparticle-mediated photodynamic and photothermal therapy can directly kill tumor cells and induce tumor immunogenic cell death to activate antigen-presenting cells and promote T cell infiltration. These advantages make nanoparticles promising candidates for modulating the TIME and improving OC immunotherapy. In this review, we analyzed the composition and function of the TIME in OC and summarized the current clinical progress of OC immunotherapy. Then, we expounded on the promising advances in nanomaterial-mediated immunotherapy for modulating the TIME in OC. Finally, we discussed the obstacles and challenges in the clinical translation of this novel combination treatment regimen. We believe this resourceful strategy will open the door to effective immunotherapy of OC and benefit numerous patients.
Collapse
Affiliation(s)
| | | | | | - Jing Jing
- *Correspondence: Xiaowei Liu, ; Jing Jing,
| | | |
Collapse
|
3
|
Zheng R, Fu Z, Deng W, Wen Y, Wu A, Ye X, Xu G. The Growth Mechanism of a Conductive MOF Thin Film in Spray‐based Layer‐by‐layer Liquid Phase Epitaxy. Angew Chem Int Ed Engl 2022; 61:e202212797. [DOI: 10.1002/anie.202212797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Zheng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Hua Fu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wei‐Hua Deng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yingyi Wen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ai‐Qian Wu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xiao‐Liang Ye
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
4
|
Zheng R, Fu ZH, Deng WH, Wen Y, Wu AQ, Ye XL, Xu G. The Growth Mechanism of a Conductive MOF Thin Film in Spray‐based Layer‐by‐layer Liquid Phase Epitaxy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | | | - Gang Xu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Chinese Academy of Science 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
5
|
Xu LT, Chen M, Weng YH, Xie KX, Wang J, Cao SH, Li YQ. Label-Free Fluorescent Nanofilm Sensor Based on Surface Plasmon Coupled Emission: In Situ Monitoring the Growth of Metal-Organic Frameworks. Anal Chem 2022; 94:6430-6435. [PMID: 35446014 DOI: 10.1021/acs.analchem.1c05349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have proposed a universal label-free fluorescent nanofilm sensor based on surface plasmon coupled emission (SPCE). A metal-dye-dielectric (MDD) structure was fabricated to mediate the label-free monitoring based on SPCE. The nonfluorescent dielectric film smartly borrowed the fluorescence signal from the bottom dye layer and led to a new SPCE response through the adjacent metal film. The fluorescence emission angle and polarization strongly depended on the thickness of the nonfluorescent dielectric film on the MDD structure. As a demonstration, the growth of a two-dimensional zeolitic imidazolate framework film (ZIF-L) was in situ monitored in the liquid phase by MDD-SPCE for the first time. The label-free fluorescent sensors are facilely prepared by a spin coating technique, with the potential to be widely spread for in situ studies, especially toward nanomaterial growth processes.
Collapse
Affiliation(s)
- Lin-Tao Xu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Min Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yu-Hua Weng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai-Xin Xie
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| | - Jin Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.,Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
6
|
Ma X, Qian K, Ejeromedoghene O, Kandawa-Schulz M, Song W, Wang Y. p-Co-BDC/AuNPs-based multiple signal amplification for ultra-sensitive electrochemical determination of miRNAs. Anal Chim Acta 2021; 1183:338979. [PMID: 34627529 DOI: 10.1016/j.aca.2021.338979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
In this work, we report AuNPs-decorated pyrolyzed Co-BDC nanosheets (p-Co-BDC/AuNPs) as high-performance electrocatalyst for developing an electrochemical platform. p-Co-BDC/AuNPs as a new electrocatalyst showed superior electrocatalytic activity towards the electrochemical oxidation of methylene blue (MB). Besides, magnetic p-Co-BDC/AuNPs can be well immobilized on the magnetic glassy carbon electrode without further assistance. The oxidation of MB can be reduced by ascorbic acid. Inspired by this phenomenon, an electrochemical biosensor was constructed based on multiple signal amplification for the diagnosis of miRNAs. Firstly, p-Co-BDC/AuNPs enhanced the electrochemical oxidation of MB. Then, strand displacement amplification reaction can form lots of double helix structure DNA to embed more MB molecules. Finally, ascorbic acid in the electrolyte was utilized to reduce the oxidation of MB and improve the electrochemical signal of MB electro-oxidation. The linear detection range for the detection of miRNAs is 100 aM to 10 nM, and the limit of detection is 86 aM. Furthermore, the constructed biosensor also displayed satisfactory selectivity, good reproducibility, and excellent recovery in the detection of real samples. We are convinced that our proposed multiple signal amplification strategy will provide more promising methods for the diagnosis of cancer.
Collapse
Affiliation(s)
- Xiangyu Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Kun Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | | | - Wei Song
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek, Namibia
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
8
|
Cheung KM, Stemer DM, Zhao C, Young TD, Belling JN, Andrews AM, Weiss PS. Chemical Lift-Off Lithography of Metal and Semiconductor Surfaces. ACS MATERIALS LETTERS 2020; 2:76-83. [PMID: 32405626 PMCID: PMC7220117 DOI: 10.1021/acsmaterialslett.9b00438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemical lift-off lithography (CLL) is a subtractive soft-lithographic technique that uses polydimethylsiloxane (PDMS) stamps to pattern self-assembled monolayers of functional molecules for applications ranging from biomolecule patterning to transistor fabrication. A hallmark of CLL is preferential cleavage of Au-Au bonds, as opposed to bonds connecting the molecular layer to the substrate, i.e., Au-S bonds. Herein, we show that CLL can be used more broadly as a technique to pattern a variety of substrates composed of coinage metals (Pt, Pd, Ag, Cu), transition and reactive metals (Ni, Ti, Al), and a semiconductor (Ge) using straightforward alkanethiolate self-assembly chemistry. We demonstrate high-fidelity patterning in terms of precise features over large areas on all surfaces investigated. We use patterned monolayers as chemical resists for wet etching to generate metal microstructures. Substrate atoms, along with alkanethiolates, were removed as a result of lift-off, as previously observed for Au. We demonstrate the formation of PDMS-stamp-supported bimetallic monolayers by performing CLL on two different metal surfaces using the same PDMS stamp. By expanding the scope of the surfaces compatible with CLL, we advance and generalize CLL as a method to pattern a wide range of substrates, as well as to produce supported metal monolayers, both with broad applications in surface and materials science.
Collapse
Affiliation(s)
- Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dominik M. Stemer
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Thomas D. Young
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jason N. Belling
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|