1
|
Harris T. Physical and Chemical Characterization of Aerosols Produced from Experimentally Designed Nicotine Salt-Based E-Liquids. Chem Res Toxicol 2024; 37:1315-1328. [PMID: 39078024 PMCID: PMC11337207 DOI: 10.1021/acs.chemrestox.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Nicotine salt-based e-liquids deliver nicotine more rapidly and efficiently to electronic nicotine delivery system (ENDS) users than freebase nicotine formulations. Nicotine salt-based products represent a substantial majority of the United States ENDS market. Despite the popularity of nicotine salt formulations, the chemical and physical characteristics of aerosols produced by nicotine salt e-liquids are still not well understood. To address this, this study reports the harmful and potentially harmful constituents (HPHCs) and particle sizes of aerosols produced by laboratory-made freebase nicotine and nicotine salt e-liquids. The nicotine salt e-liquids were formulated with benzoic acid, citric acid, lactic acid, malic acid, or oxalic acid. The nicotine salt aerosols had different HPHC profiles than the freebase nicotine aerosols, indicating that the carboxylic acids were not innocent bystanders. The polycarboxylic acid e-liquids containing citric acid, malic acid, or oxalic acid produced higher acrolein yields than the monocarboxylic acid e-liquids containing benzoic acid or lactic acid. Across most PG:VG ratios, nicotine benzoate or nicotine lactate aerosols contained the highest nicotine quantities (in %) and the highest nicotine yields (per milligram of aerosol). Additionally, the nicotine benzoate and nicotine lactate e-liquids produced the highest carboxylic acid yields under all tested conditions. The lower acid yields of the citric, malic, and oxalic acid formulations are potentially due to a combination of factors such as lower transfer efficiencies, lower thermostabilities, and greater susceptibility to side reactions because of their additional carboxyl groups serving as new sites for reactivity. For all nicotine formulations, the particle size characteristics were primarily controlled by the e-liquid solvent ratios, and there were no clear trends between nicotine salt and freebase nicotine aerosols that indicated nicotine protonation affected particle size. The carboxylic acids impacted aerosol output, nicotine delivery, and HPHC yields in distinct ways such that interchanging them in ENDS can potentially cause downstream effects.
Collapse
Affiliation(s)
- Trevor Harris
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| |
Collapse
|
2
|
Cui T, Lu R, Liu C, Wu Z, Jiang X, Liu Y, Pan S, Li Y. Characteristics of second-hand exposure to aerosols from e-cigarettes: A literature review since 2010. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171829. [PMID: 38537812 DOI: 10.1016/j.scitotenv.2024.171829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
In recent years, the use of electronic vaping products (also named e-cigarettes) has increased due to their appealing flavors and nicotine delivery without the combustion of tobacco. Although the hazardous substances emitted by e-cigarettes are largely found to be much lower than combustible cigarettes, second-hand exposure to e-cigarette aerosols is not completely benign for bystanders. This work reviewed and synthesized findings on the second-hand exposure of aerosols from e-cigarettes and compared the results with those of the combustible cigarettes. In this review, different results were integrated based upon sampling locations such as residences, vehicles, offices, public places, and experimental exposure chambers. In addition, the factors that influence the second-hand exposure levels were identified by objectively reviewing and integrating the impacts of combustible cigarettes and e-cigarettes on the environment. It is a challenge to compare the literature data directly to assess the effect of smoking/vaping on the indoor environment. The room volume, indoor air exchange rate, puffing duration, and puffing numbers should be considered, which are important factors in determining the degree of pollution. Therefore, it is necessary to calculate the "emission rate" to normalize the concentration of pollutants emitted under various experimental conditions and make the results comparable. This review aims to increase the awareness regarding the harmful effects of the second-hand exposure to aerosols coming from the use of cigarettes and e-cigarettes, identify knowledge gaps, and provide a scientific basis for future policy interventions with regard to the regulation of smoking and vaping.
Collapse
Affiliation(s)
- Tong Cui
- School of Civil Engineering, Chang'an University, Xi'an 710054, China; School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology Effects in Arid Region, Ministry of Education, Xi'an 710054, China
| | - Rui Lu
- RELX Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China.
| | - Chuan Liu
- RELX Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China
| | - Zehong Wu
- RELX Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China
| | - Xingtao Jiang
- RELX Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China
| | - Yiqiao Liu
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Song Pan
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
| | - Yanpeng Li
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology Effects in Arid Region, Ministry of Education, Xi'an 710054, China.
| |
Collapse
|
3
|
Ye S, Wen Z, Xie K, Gu X, Wang J, Tang X, Zhang W. Online quantification of nicotine in e-cigarette aerosols by vacuum ultraviolet photoionization mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2732-2739. [PMID: 38632935 DOI: 10.1039/d4ay00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The growing popularity of e-cigarettes and the associated risks of nicotine addiction present a new challenge to global public health security. Measuring the nicotine levels in e-cigarette aerosols is essential to assess the safety of e-cigarettes. In this study, a rapid in situ method was developed for online quantification of nicotine in e-cigarette aerosols by using a homemade vacuum ultraviolet photoionization aerosol mass spectrometer (VUV-AMS). E-cigarette liquids with different nicotine concentrations were prepared to generate aerosols containing different levels of nicotine, which were employed as the calibration sources for nicotine quantification by VUV-AMS. The results showed that the mass concentration of nicotine in e-cigarette aerosols has a good linear relationship with its signal intensity in the mass spectrum, and the limits of detection and quantitation of nicotine by VUV-AMS were found to be 2.0 and 6.2 μg per puff respectively. Then the online method was utilized to measure five commercial e-cigarettes, and their nicotine yields were determined to be between 31 and 188 μg per puff with the nicotine fluxes from 7.7 to 70 μg s-1, agreeing with the results of the gas chromatography with a flame ionization detector (GC-FID). This study demonstrated the feasibility and advantages of VUV-AMS for quick quantification of nicotine in e-cigarette aerosols within seconds.
Collapse
Affiliation(s)
- Shaoxin Ye
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Zuoying Wen
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Kai Xie
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Xuejun Gu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jian Wang
- Key Laboratory of Combustion and Pyrolysis, China Tobacco Anhui Industrial Co, Ltd, Hefei 230088, China.
| | - Xiaofeng Tang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
4
|
Mori A, Ito S, Sekine T. A revision of the multiple-path particle dosimetry model focusing on tobacco product aerosol dynamics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3796. [PMID: 38185887 DOI: 10.1002/cnm.3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/15/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
To assess the health impact of inhaled aerosols, it is necessary to understand aerosol dynamics and the associated dosimetry in the human respiratory tract. Although several studies have measured or simulated the dosimetry of aerosol constituents, the respiratory tract focus areas have been limited. In particular, the aerosols generated from tobacco products are complex composites and simulating their dynamics in the respiratory tract is challenging. To assess the dosimetry of the aerosol constituents of tobacco products, we developed a revised version of the Multiple-Path Particle Dosimetry (MPPD) model, which employs (1) new geometry based on CT-scanned human respiratory tract data, (2) convective mixing in the oral cavity and deep lung, and (3) constituent partitioning between the tissue and air, and clearance. The sensitivity analysis was conducted using aerosols composed of four major constituents of electronic cigarette (EC) aerosols to investigate the parameters that have a significant impact on the results. In addition, the revised model was run with 4 and 10 constituents in ECs and conventional cigarettes (CCs), respectively. Sensitivity analysis revealed that the new modeling and the physicochemical properties of constituents had a considerable impact on the simulated aerosol concentration and dosimetry. The simulations could be carried out within 3 min even when 10 constituents of CC aerosols were analyzed simultaneously. The revised model based on MPPD is an efficient and easy-to-use tool for understanding the aerosol dynamics of CC and EC constituents and their effect on the human body.
Collapse
Affiliation(s)
- Akina Mori
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Japan
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Japan
| | - Takashi Sekine
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Japan
| |
Collapse
|
5
|
El Hajj Moussa F, Hayeck N, Hajir S, El Hage R, Salman R, Karaoghlanian N, Saliba NA. Enhancement of Benzene Emissions in Special Combinations of Electronic Nicotine Delivery System Liquid Mixtures. Chem Res Toxicol 2024; 37:227-233. [PMID: 38241642 PMCID: PMC10880085 DOI: 10.1021/acs.chemrestox.3c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Electronic nicotine delivery systems (ENDS) are battery-powered devices introduced to the market as safer alternatives to combustible cigarettes. Upon heating the electronic liquid (e-liquid), aerosols are released, including several toxicants, such as volatile organic compounds (VOCs). Benzene has been given great attention as a major component of the VOCs group as it increases cancer risk upon inhalation. In this study, several basic e-liquids were tested for benzene emissions. The Aerosol Lab Vaping Instrument was used to generate aerosols from ENDS composed of different e-liquid combinations: vegetable glycerin (VG), propylene glycol (PG), nicotine (nic), and benzoic acid (BA). The tested mixtures included PG, PG + nic + BA, VG, VG + nic + BA, 30/70 PG/VG, and 30/70 PG/VG + nic + BA. A carboxen polydimethylsiloxane fiber for a solid-phase microextraction was placed in a gas cell to trap benzene emitted from a Sub-Ohm Minibox C device. Benzene was adsorbed on the fiber during the puffing process and for an extra 15 min until it reached equilibrium, and then it was determined using gas chromatography-mass spectrometry. Benzene was quantified in VG but not in PG or the 30/70 PG/VG mixtures. However, benzene concentration increased in all tested mixtures upon the addition of nicotine benzoate salt. Interestingly, benzene was emitted at the highest concentration when BA was added to PG. However, lower concentrations were found in the 30/70 PG/VG and VG mixtures with BA. Both VG and BA are sources of benzene. Enhanced emissions, however, are mostly noticeable when BA is mixed with PG and not VG.
Collapse
Affiliation(s)
- Fatima El Hajj Moussa
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
| | - Nathalie Hayeck
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Department
of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Salwa Hajir
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rachel El Hage
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
| | - Rola Salman
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
- Mechanical
Engineering Department, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nareg Karaoghlanian
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
- Mechanical
Engineering Department, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Najat Aoun Saliba
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
| |
Collapse
|
6
|
Pinkston R, Penn AL, Noël A. Increased oxidative stress responses in murine macrophages exposed at the air-liquid interface to third- and fourth-generation electronic nicotine delivery system (ENDS) aerosols. Toxicol Rep 2023; 11:40-57. [PMID: 37405056 PMCID: PMC10315815 DOI: 10.1016/j.toxrep.2023.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Background New fourth generation electronic nicotine delivery system (ENDS) devices contain high levels of nicotine salt (up to 60 mg/mL), whose cellular and molecular effects on immune cells are currently unknown. Here, we used a physiologically-relevant in vitro air-liquid interface (ALI) exposure model to assess the toxicity of distinct ENDS, a 3rd-generation electronic-cigarette (e-cig) and two 4th-generation ENDS devices (JUUL and Posh Plus). Methods Murine macrophages (RAW 264.7) were exposed at the ALI to either air, Menthol or Crème Brûlée-flavored ENDS aerosols generated from those devices for 1-hour per day for 1 or 3 consecutive days. Cellular and molecular toxicity was evaluated 24 h post-exposure. Results 1-day of Menthol-flavored JUUL aerosol exposure significantly decreased cell viability and significantly increased lactate dehydrogenase (LDH) levels compared to air controls. Further, JUUL Menthol elicited significantly increased reactive oxygen species (ROS) and nitric oxide (NO) production compared to air controls. Posh Crème Brûlée-flavored aerosols displayed significant cytotoxicity - decreased cell viability and increased LDH levels -after 1- and 3-day exposures, while the Crème Brûlée-flavored aerosol produced by the 3rd-generation e-cig device only displayed significant cytotoxicity after 3 days compared to air controls. Further, both Posh and third-generation e-cig Crème Brûlée flavored-aerosols elicited significantly increased ROS plus high levels of 8-isoprostane after 1 and 3 days compared to air controls, indicating increased oxidative stress. Posh and third-generation e-cig Crème Brûlée flavored-aerosols elicited reduction in NO levels after one day, but elicited increase in NO after 3 days. Genes in common dysregulated by both devices after 1 day included α7nAChR, Cyp1a1, Ahr, Mmp12, and iNos. Conclusion Our results suggest that ENDS Menthol and Crème Brûlée-flavored aerosol exposures from both 3rd- and 4th-generation ENDS devices are cytotoxic to macrophages and cause oxidative stress. This can translate into macrophage dysfunction. Although 4th-generation disposable ENDS devices have no adjustable operational settings and are considered low-powered ENDS devices, their aerosols can induce cellular toxicity compared to air-exposed control cells. This study provides scientific evidence for regulation of nicotine salt-based disposable ENDS products.
Collapse
Affiliation(s)
- Rakeysha Pinkston
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Arthur L. Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Shehata SA, Toraih EA, Ismail EA, Hagras AM, Elmorsy E, Fawzy MS. Vaping, Environmental Toxicants Exposure, and Lung Cancer Risk. Cancers (Basel) 2023; 15:4525. [PMID: 37760496 PMCID: PMC10526315 DOI: 10.3390/cancers15184525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer (LC) is the second-most prevalent tumor worldwide. According to the most recent GLOBOCAN data, over 2.2 million LC cases were reported in 2020, with an estimated new death incident of 1,796,144 lung cancer cases. Genetic, lifestyle, and environmental exposure play an important role as risk factors for LC. E-cigarette, or vaping, products (EVPs) use has been dramatically increasing world-wide. There is growing concern that EVPs consumption may increase the risk of LC because EVPs contain several proven carcinogenic compounds. However, the relationship between EVPs and LC is not well established. E-cigarette contains nicotine derivatives (e.g., nitrosnornicotine, nitrosamine ketone), heavy metals (including organometal compounds), polycyclic aromatic hydrocarbons, and flavorings (aldehydes and complex organics). Several environmental toxicants have been proven to contribute to LC. Proven and plausible environmental carcinogens could be physical (ionizing and non-ionizing radiation), chemicals (such as asbestos, formaldehyde, and dioxins), and heavy metals (such as cobalt, arsenic, cadmium, chromium, and nickel). Air pollution, especially particulate matter (PM) emitted from vehicles and industrial exhausts, is linked with LC. Although extensive environmental exposure prevention policies and smoking reduction strategies have been adopted globally, the dangers remain. Combined, both EVPs and toxic environmental exposures may demonstrate significant synergistic oncogenicity. This review aims to analyze the current publications on the importance of the relationship between EVPs consumption and environmental toxicants in the pathogenesis of LC.
Collapse
Affiliation(s)
- Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (S.A.S.); (A.M.H.)
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ezzat A. Ismail
- Department of Urology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Abeer M. Hagras
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (S.A.S.); (A.M.H.)
| | - Ekramy Elmorsy
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia;
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|