1
|
Chao MR, Chang YJ, Cooke MS, Hu CW. Multi-adductomics: Advancing mass spectrometry techniques for comprehensive exposome characterization. Trends Analyt Chem 2024; 180:117900. [PMID: 39246549 PMCID: PMC11375889 DOI: 10.1016/j.trac.2024.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Adductomics, an emerging field within the 'omics sciences, focuses on the formation and prevalence of DNA, RNA, and protein adducts induced by endogenous and exogenous agents in biological systems. These modifications often result from exposure to environmental pollutants, dietary components, and xenobiotics, impacting cellular functions and potentially leading to diseases such as cancer. This review highlights advances in mass spectrometry (MS) that enhance the detection of these critical modifications and discusses current and emerging trends in adductomics, including developments in MS instrument use, screening techniques, and the study of various biomolecular modifications from mono-adducts to complex hybrid crosslinks between different types of biomolecules. The review also considers challenges, including the need for specialized MS spectra databases and multi-omics integration, while emphasizing techniques to distinguish between exogenous and endogenous modifications. The future of adductomics possesses significant potential for enhancing our understanding of health in relation to environmental exposures and precision medicine.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
2
|
Wendt CH, Bowler RP, Demorest C, Hastie A, Labaki WW, Chen M, Carmella SG, Hecht SS. Levels of Urinary Mercapturic Acids of Acrolein, Methacrolein, Crotonaldehyde, and Methyl Vinyl Ketone in Relationship to Chronic Obstructive Pulmonary Disease in Cigarette Smokers of the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS). Chem Res Toxicol 2023. [PMID: 37725788 DOI: 10.1021/acs.chemrestox.3c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Cigarette smoking is an established cause of chronic obstructive pulmonary disease (COPD). Numerous studies implicate acrolein, which occurs in relatively high concentrations in cigarette smoke and reacts readily with proteins, as one causative factor for COPD in smokers. Far less is known about the possible roles in COPD of the related α,β-unsaturated carbonyl compounds of cigarette smoke crotonaldehyde, methacrolein, and methyl vinyl ketone. In the study reported here, we analyzed mercapturic acids of these α,β-unsaturated compounds in the urine of 413 confirmed cigarette smokers in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS)─202 with COPD and 211 without COPD. The mercapturic acids analyzed were 3-hydroxypropyl mercapturic acid (3-HPMA) from acrolein, 3-hydroxy-1-methylpropyl mercapturic acid (HMPMA-1) from crotonaldehyde, 3-hydroxy-2-methylpropyl mercapturic acid (HMPMA-2) from methacrolein, and 3-hydroxy-3-methylpropyl mercapturic acid (HMPMA-3) from methyl vinyl ketone. In models adjusting for age, sex, race, pack years of tobacco use, and BMI, all four mercapturic acids were increased in individuals with COPD but not significantly. Stratified by the GOLD status, there were increased levels of the metabolites associated with GOLD 3-4 compared to that with GOLD 0, with the methacrolein metabolite HMPMA-2 reaching statistical significance (adjusted odds ratio 1.23 [95% CI: 1.00-1.53]). These results highlight the possible role of methacrolein, which has previously received little attention in this regard, as a causative factor in COPD in cigarette smokers.
Collapse
Affiliation(s)
- Chris H Wendt
- University of Minnesota, Minneapolis, Minnesota 55455, United States
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota 55417, United States
| | | | - Connor Demorest
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Annette Hastie
- Wake Forest University School of Medicine, Winston Salem, North Carolina 27101-4135, United States
| | - Wassim W Labaki
- University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - Menglan Chen
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven G Carmella
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
4
|
The Tobacco Smoke Component, Acrolein, as a Major Culprit in Lung Diseases and Respiratory Cancers: Molecular Mechanisms of Acrolein Cytotoxic Activity. Cells 2023; 12:cells12060879. [PMID: 36980220 PMCID: PMC10047238 DOI: 10.3390/cells12060879] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer’s disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke’s most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.
Collapse
|
5
|
Chen HJC. Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example. Chem Res Toxicol 2023; 36:132-140. [PMID: 36626705 DOI: 10.1021/acs.chemrestox.2c00354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acrolein is a major component in cigarette smoke and a product of endogenous lipid peroxidation. It is difficult to distinguish human exposure to acrolein from exogenous sources versus endogenous causes, as components in cigarette smoke can stimulate lipid peroxidation in vivo. Therefore, analysis of acrolein-induced DNA and protein adducts by the highly accurate, sensitive, and specific mass spectrometry-based methods is vital to estimate the degree of damage by this IARC Group 2A carcinogen. This Perspective reviews the analyses of acrolein-induced DNA and protein adducts in humans by mass spectrometry focusing on samples accessible for biomonitoring, including DNA from leukocytes and oral cells and abundant proteins from blood, i.e., hemoglobin and serum albumin.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| |
Collapse
|
6
|
von Weymarn LB, Lu X, Thomson NM, LeMarchand L, Park SL, Murphy SE. Quantitation of Ten Urinary Nicotine Metabolites, Including 4-Hydroxy-4-(3-pyridyl) Butanoic Acid, a Product of Nicotine 2'-Oxidation, and CYP2A6 Activity in Japanese Americans, Native Hawaiians, and Whites. Chem Res Toxicol 2023; 36:313-321. [PMID: 36735658 PMCID: PMC10042446 DOI: 10.1021/acs.chemrestox.2c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Smoking intensity varies across smokers and is influenced by individual variability in the metabolism of nicotine, the major addictive agent in tobacco. Therefore, lung cancer risk, which varies by racial ethnic group, is influenced by the primary catalyst of nicotine metabolism, cytochrome P450 2A6 (CYP2A6). In smokers, CYP2A6 catalyzes nicotine 5'-oxidation. In vitro, CYP2A6 also catalyzes, to a much lower extent, 2'-oxidation, which leads to the formation of 4-hydroxy-4-(3-pyridyl) butanoic acid (hydroxy acid). The urinary concentration of hydroxy acid has been quantified in only a few small studies of White smokers. To quantitatively assess the importance of nicotine 2'-oxidation in smokers, an LC-MS/MS-based method was developed for the analysis of nicotine and ten metabolites in urine. The concentrations of nicotine and these metabolites were measured in 303 smokers (99 Whites, 99 Native Hawaiians, and 105 Japanese Americans), and the relative metabolism of nicotine by four pathways was determined. Metabolism by these pathways was also compared across quartiles of CYP2A6 activity (measured as the plasma ratio of 3-hydroxycotinine to cotinine). As reported previously and consistent with their average CYP2A6 activity, nicotine 5'-oxidation was highest in Whites and lowest in Japanese Americans. Nicotine N-glucuronidation and N-oxidation increased with decreasing CYP2A6 activity. However, the relative urinary concentration of hydroxy acid (mean, 2.3%; 95% CI, 2.2-2.4%) did not vary by ethnic group or by CYP2A6 activity. In summary, CYP2A6 is not an important catalyst of nicotine 2'-oxidation in smokers, nor does nicotine 2'-oxidation compensate for decreased CYP2A6 activity.
Collapse
Affiliation(s)
- Linda B von Weymarn
- Department of Biochemistry Molecular Biology and Biophysics and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaotong Lu
- Department of Biochemistry Molecular Biology and Biophysics and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicole M Thomson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Loic LeMarchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Sungshim L Park
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Sharon E Murphy
- Department of Biochemistry Molecular Biology and Biophysics and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Cheng G, Guo J, Wang R, Yuan JM, Balbo S, Hecht SS. Quantitation by Liquid Chromatography-Nanoelectrospray Ionization-High-Resolution Tandem Mass Spectrometry of Multiple DNA Adducts Related to Cigarette Smoking in Oral Cells in the Shanghai Cohort Study. Chem Res Toxicol 2023; 36:305-312. [PMID: 36719849 PMCID: PMC10148603 DOI: 10.1021/acs.chemrestox.2c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We developed a liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry (LC-NSI-HRMS/MS) method for simultaneous quantitative analysis of 5 oral cell DNA adducts associated with cigarette smoking: (8R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo, 1) from acrolein; (6S,8S and 6R,8R)-3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxy-6-methylpyrimido[1,2-a]purine-10(3H)-one [(6S,8S)γ-OH-Cro-dGuo, 2; and (6R,8R)γ-OH-Cro-dGuo, 3] from crotonaldehyde; 1,N6-etheno-dAdo (4) from acrylonitrile, vinyl chloride, lipid peroxidation, and inflammation; and 8-oxo-dGuo (5) from oxidative damage. Oral cell DNA was isolated in the presence of glutathione to prevent artifact formation. Clear LC-NSI-HRMS/MS chromatograms were obtained allowing quantitation of each adduct using the appropriately labeled internal standards. The accuracy and precision of the method were validated, and the assay limit of quantitation was 5 fmol/μmol dGuo for adducts 1-4 and 20 fmol/μmol for adduct 5. The assay was applied to 80 buccal cell samples selected from those collected in the Shanghai Cohort Study: 40 from current smokers and 40 from never smokers. Significant differences were found in all adduct levels between smokers and nonsmokers. Levels of 8-oxo-dGuo (5) were at least 3000 times greater than those of the other adducts in both smokers and nonsmokers, and the difference between amounts of this adduct in smokers versus nonsmokers, while significant (P = 0.013), was not as great as the differences of the other DNA adducts between smokers and nonsmokers (P-values all less than 0.001). No significant relationship of adduct levels to risk of lung cancer incidence was found. This study provides a new LC-NSI-HRMS/MS methodology for the quantitation of diverse DNA adducts resulting from exposure to the α,β-unsaturated aldehydes acrolein and crotonaldehyde, inflammation, and oxidative damage which are all associated with carcinogenesis. We anticipate application of this assay in ongoing studies of the molecular epidemiology of cancers of the lung and oral cavity related to cigarette smoking.
Collapse
Affiliation(s)
- Guang Cheng
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiehong Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renwei Wang
- UPMC Hillman Cancer Center and Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
| | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Lockridge O. Overview of Adductomics in Toxicology. Curr Protoc 2023; 3:e672. [PMID: 36799690 PMCID: PMC9942099 DOI: 10.1002/cpz1.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Adductomics is epidemiology at the molecular level. Untargeted adductomics compares levels of chemical adducts on albumin, hemoglobin, and DNA between healthy and exposed individuals. The goal is to determine a cause-and-effect relationship between chemical exposure and illness. Chemical exposures are not necessarily due to synthetic chemicals but are often due to oxidation products of naturally occurring lipids, for example, 4-hydroxynonenal and acrolein produced by lipid peroxidation of arachidonic and linoleic acids. The preferred method used in adductomics is ultra-high pressure liquid chromatography coupled to with nanoelectrospray tandem mass spectrometry. The mass of the adduct indicates its structure and identifies the chemical. The advantages of molecular epidemiology include information about the many toxicants to which a person is exposed over a period of weeks or months and the relative exposure levels. The disadvantage is the absence of information about the mechanism of toxicity. Untargeted adductomics examines albumin and hemoglobin adducts, which serve as biomarkers of exposure but do not identify the proteins and genes responsible for the toxicity. Targeted adductomics is used when the origin of the toxicity is known. This can be either an adducted protein, such as the butyrylcholinesterase protein modified by nerve agents, or a toxicant, such as acetaminophen. Untargeted adductomics methods have identified potential protein adduct biomarkers of breast cancer, colorectal cancer, childhood leukemia, and lung cancer. Adductomics is a new research area that offers structural insights into chemical exposures and a platform for the discovery of disease biomarkers. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
|
9
|
Sturla SJ, Shuck S, Knutson CG, Kalgutkar AS, Wang Y. Dedication of 35-year Chemical Research in Toxicology Anniversary to Founding Editor Larry Marnett. Chem Res Toxicol 2022. [PMID: 36245255 DOI: 10.1021/acs.chemrestox.2c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shana J Sturla
- Professor of Toxicology, ETH Zurich, Zurich 8092, Switzerland
| | - Sarah Shuck
- Beckman Research Institute at City of Hope, Duarte, California 91010, United States
| | - Charles G Knutson
- Novartis Institutes for BioMedical Research, Pharmacokinetics Sciences 220 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Pfizer Worldwide Research, Development, and Medical Medicine Design 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Yinsheng Wang
- Professor of Chemistry, University of California Riverside, Riverside, California 92521, United States
| |
Collapse
|