1
|
Liu M, Wu N, Li X, Zhang S, Sharma VK, Ajarem JS, Allam AA, Qu R. Insights into manganese(VII) enhanced oxidation of benzophenone-8 by ferrate(VI): Mechanism and transformation products. WATER RESEARCH 2023; 238:120034. [PMID: 37150061 DOI: 10.1016/j.watres.2023.120034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Benzophenones (BPs) are commonly used as UV filters in cosmetics and plastics products and are potentially toxic to the environment. This paper presents kinetics and products of BPs oxidation by ferrate(VI) (FeO42-, Fe(VI)) promoted by permanganate (Mn(VII)) . Degradation of 10.0 µM 2,2'-dihydroxy-4-methoxybenzophenone (BP-8)were determined under different experimental conditions ([Mn(VII)] = 0.5-1.5 µM, [Fe(VI)] = 50-150 µM, and pH = 7.0-10.0). The addition of Mn(VII) traces to Fe(VI)-BP-8 solution enhanced kinetics and efficiency of the removal. Similar enhanced removals were also seen for other BPs (BP-1, BP-3, and BP-4) under optimized conditions. The second-order rate constants (k, M-1s-1) of the degradation of BPs showed positive relationship with the energy of the highest occupied orbital (EHOMO). The possible interaction between Mn(VII) and BP-8 and the enhanced generation of Fe(V)/Fe(IV) and •OH was proposed to facilitate the oxidation of the target benzophenone, supported by in-situ electrochemical measurements, theoretical calculations and reactive species quenching experiments. Thirteen oxidation products of BP-8 suggested hydroxylation, bond breaking, polymerization and carboxylation steps in the oxidation. Toxicity assessments by ECOSAR program showed that the oxidized intermediate products posed a tapering ecological risk during the degradation process. Overall, the addition of Mn(VII) could improve the oxidation efficiency of Fe(VI).
Collapse
Affiliation(s)
- Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Xiaoyu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - ShengNan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, United States.
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China.
| |
Collapse
|
2
|
Tamarit L, El Ouardi M, Lence E, Andreu I, González-Bello C, Vayá I, Miranda MA. Switching from ultrafast electron transfer to proton transfer in excited drug–protein complexes upon biotransformation. Chem Sci 2022; 13:9644-9654. [PMID: 36091919 PMCID: PMC9400592 DOI: 10.1039/d2sc03257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Photosensitization by drugs is directly related with the excited species and the photoinduced processes arising from interaction with UVA light. In this context, the ability of gefitinib (GFT), a tyrosine kinase inhibitor (TKI) used for the treatment of a variety of cancers, to induce phototoxicity and photooxidation of proteins has recently been demonstrated. In principle, photodamage can be generated not only by a given drug but also by its photoactive metabolites that maintain the relevant chromophore. In the present work, a complete study of O-desmorpholinopropyl gefitinib (GFT-MB) has been performed by means of fluorescence and ultrafast transient absorption spectroscopies, in addition to molecular dynamics (MD) simulations. The photobehavior of the GFT-MB metabolite in solution is similar to that of GFT. However, when the drug or its metabolite are in a constrained environment, i.e. within a protein, their behavior and the photoinduced processes that arise from their interaction with UVA light are completely different. For GFT in complex with human serum albumin (HSA), locally excited (LE) singlet states are mainly formed; these species undergo photoinduced electron transfer with Tyr and Trp. By contrast, since GFT-MB is a phenol, excited state proton transfer (ESPT) to form phenolate-like excited species might become an alternative deactivation pathway. As a matter of fact, the protein-bound metabolite exhibits higher fluorescence yields and longer emission wavelengths and lifetimes than GFT@HSA. Ultrafast transient absorption measurements support direct ESPT deprotonation of LE states (rather than ICT), to form phenolate-like species. This is explained by MD simulations, which reveal a close interaction between the phenolic OH group of GFT-MB and Val116 within site 3 (subdomain IB) of HSA. The reported findings are relevant to understand the photosensitizing properties of TKIs and the role of biotransformation in this type of adverse side effects. The photoinduced processes from the protein-bound GFT result in electron transfer, while those related with the photoactive metabolite GFT-MB induce excited state proton transfer to form phenolate-like excited species.![]()
Collapse
Affiliation(s)
- Lorena Tamarit
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Meryem El Ouardi
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Inmaculada Andreu
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Miguel A. Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
3
|
Kowalska J, Rok J, Rzepka Z, Wrześniok D. Drug-Induced Photosensitivity-From Light and Chemistry to Biological Reactions and Clinical Symptoms. Pharmaceuticals (Basel) 2021; 14:723. [PMID: 34451820 PMCID: PMC8401619 DOI: 10.3390/ph14080723] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023] Open
Abstract
Photosensitivity is one of the most common cutaneous adverse drug reactions. There are two types of drug-induced photosensitivity: photoallergy and phototoxicity. Currently, the number of photosensitization cases is constantly increasing due to excessive exposure to sunlight, the aesthetic value of a tan, and the increasing number of photosensitizing substances in food, dietary supplements, and pharmaceutical and cosmetic products. The risk of photosensitivity reactions relates to several hundred externally and systemically administered drugs, including nonsteroidal anti-inflammatory, cardiovascular, psychotropic, antimicrobial, antihyperlipidemic, and antineoplastic drugs. Photosensitivity reactions often lead to hospitalization, additional treatment, medical management, decrease in patient's comfort, and the limitations of drug usage. Mechanisms of drug-induced photosensitivity are complex and are observed at a cellular, molecular, and biochemical level. Photoexcitation and photoconversion of drugs trigger multidirectional biological reactions, including oxidative stress, inflammation, and changes in melanin synthesis. These effects contribute to the appearance of the following symptoms: erythema, swelling, blisters, exudation, peeling, burning, itching, and hyperpigmentation of the skin. This article reviews in detail the chemical and biological basis of drug-induced photosensitivity. The following factors are considered: the chemical properties, the influence of individual ranges of sunlight, the presence of melanin biopolymers, and the defense mechanisms of particular types of tested cells.
Collapse
Affiliation(s)
| | | | | | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.K.); (J.R.); (Z.R.)
| |
Collapse
|
4
|
Andreu I, Lence E, González-Bello C, Mayorga C, Cuquerella MC, Vayá I, Miranda MA. Protein Binding of Lapatinib and Its N- and O-Dealkylated Metabolites Interrogated by Fluorescence, Ultrafast Spectroscopy and Molecular Dynamics Simulations. Front Pharmacol 2020; 11:576495. [PMID: 33192518 PMCID: PMC7662899 DOI: 10.3389/fphar.2020.576495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023] Open
Abstract
Lapatinib (LAP) is an anticancer drug generally used to treat breast and lung cancer. It exhibits hypersensitivity reactions in addition to dermatological adverse effects and photosensitivity. Moreover, LAP binds to serum proteins and is readily biotransformed in humans, giving rise to several metabolites, such as N- and O-dealkylated products (N-LAP and O-LAP, respectively). In this context, the aim of the present work is to obtain key information on drug@protein complexation, the first step involved in a number of hypersensitivity reactions, by a combination of fluorescence, femtosecond transient absorption spectroscopy and molecular dynamics (MD) simulations. Following this approach, the behavior of LAP and its metabolites has been investigated in the presence of serum proteins, such as albumins and α1-acid glycoproteins (SAs and AGs, respectively) from human and bovine origin. Fluorescence results pointed to a higher affinity of LAP and its metabolites to human proteins; the highest one was found for LAP@HSA. This is associated to the coplanar orientation adopted by the furan and quinazoline rings of LAP, which favors emission from long-lived (up to the ns time-scale) locally-excited (LE) states, disfavoring population of intramolecular charge transfer (ICT) states. Moreover, the highly constrained environment provided by subdomain IB of HSA resulted in a frozen conformation of the ligand, contributing to fluorescence enhancement. Computational studies were clearly in line with the experimental observations, providing valuable insight into the nature of the binding sites and the conformational arrangement of the ligands inside the protein cavities. Besides, a good correlation was found between the calculated binding energies for each ligand@protein complex and the relative affinities observed in competition experiments.
Collapse
Affiliation(s)
- Inmaculada Andreu
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristobalina Mayorga
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga and Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - M Consuelo Cuquerella
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| |
Collapse
|
5
|
Vayá I, Andreu I, Lence E, González-Bello C, Consuelo Cuquerella M, Navarrete-Miguel M, Roca-Sanjuán D, Miranda MA. Characterization of Locally Excited and Charge-Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies. Chemistry 2020; 26:15922-15930. [PMID: 32585059 DOI: 10.1002/chem.202001336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 12/24/2022]
Abstract
Lapatinib (LAP) is an anticancer drug, which is metabolized to the N- and O-dealkylated products (N-LAP and O-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP, N-LAP and O-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (λmax =550 nm) to ICT states (λmax =480 nm) in solution, whereas within HSA the LE species become stabilized and live much longer (up to the ns scale). Interestingly, molecular dynamics simulation studies confirm that the coplanar orientation is preferred for LAP (or to a lesser extent N-LAP) within HSA, explaining the experimental results.
Collapse
Affiliation(s)
- Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS), La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Inmaculada Andreu
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS), La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago, de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago, de Compostela, Spain
| | - M Consuelo Cuquerella
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS), La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Miriam Navarrete-Miguel
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, València, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, València, Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS), La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
6
|
Zhang YN, Zhou Y, Qu J, Chen J, Zhao J, Lu Y, Li C, Xie Q, Peijnenburg WJGM. Unveiling the important roles of coexisting contaminants on photochemical transformations of pharmaceuticals: Fibrate drugs as a case study. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:216-221. [PMID: 29990809 DOI: 10.1016/j.jhazmat.2018.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals are a group of ubiquitous emerging pollutants, many of which have been shown to undergo efficient photolysis in the environment. Photochemically produced reactive intermediates (PPRIs) sensitized by the pharmaceuticals in sunlit natural waters may induce photodegradation of coexisting compounds. In this study, the roles of coexisting contaminants on the phototransformation of pharmaceuticals were unveiled with the fibrate drugs gemfibrozil (GMF), fenofibrate (FNF), and fenofibric acid (FNFA) as model compounds. GMF undergoes initial concentration dependent photodegradation due to the involvement of singlet oxygen (1O2) initiated self-sensitized photolysis, and undergoes pH dependent photodegradation due to dissociation and hydroxyl radical (OH) generation. The decarboxylated intermediates of GMF and coexisting FNFA significantly accelerated the photodegradation of GMF. The promotional effects of the decarboxylated intermediates are attributed to generation of PPRIs, e.g. 1O2, superoxide (O2-), that subsequently react with GMF. Besides, FNFA can also promote the photodegradation of GMF through the electron transfer reaction from ground state GMF to excited state FNFA, leading to the formation of decarboxylated intermediates. The formed intermediates can subsequently also facilitate GMF photodegradation. The results presented here provided valuable novel insights into the effects of coexisting contaminants on the photodegradation of pharmaceuticals in polluted waters.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yangjian Zhou
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jianchen Zhao
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ying Lu
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chao Li
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands; National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
7
|
Molins-Molina O, Bresolí-Obach R, Garcia-Lainez G, Andreu I, Nonell S, Miranda MA, Jiménez MC. Singlet oxygen production and in vitro
phototoxicity studies on fenofibrate, mycophenolate mofetil, trifusal, and their active metabolites. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Oscar Molins-Molina
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC; Universitat Politècnica de València; Valencia Spain
| | | | - Guillermo Garcia-Lainez
- Instituto de Investigación Sanitaria La Fe; Hospital Universitari i Politècnic La Fe; Valencia Spain
| | - Inmaculada Andreu
- Instituto de Investigación Sanitaria La Fe; Hospital Universitari i Politècnic La Fe; Valencia Spain
| | - Santi Nonell
- Institut Químic de Sarrià; Universitat Ramon Llull; Barcelona Spain
| | - Miguel A. Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC; Universitat Politècnica de València; Valencia Spain
| | - M. Consuelo Jiménez
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC; Universitat Politècnica de València; Valencia Spain
| |
Collapse
|
8
|
Vayá I, Gustavsson T, Markovitsi D, Miranda MA, Jiménez MC. Influence of the spacer on the photoreactivity of flurbiprofen-tyrosine dyads. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|