1
|
Axelsson O, Yousefpour N, Björnberg O, Ekengard E, Lekmeechai S. Size-dependent renal filtration model explains human pharmacokinetics of a functional nanoparticle: The SPAGOPIX-01 clinical trial. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102774. [PMID: 39029886 DOI: 10.1016/j.nano.2024.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
The pharmacokinetics in patients dosed with the nanoparticle-based MRI contrast agent SN132D is explained by a size dependent clearance mechanism and this behavior was modeled numerically. Blood samples from 14 patients were analyzed for silicon (a component of the nanoparticle) by ICP-OES. The pharmacokinetic model has only one free parameter and relies on a measured size distribution of the contrast agent and well-established properties of the renal and cardiovascular systems. The model fits well (R2 = 0.9910) with experimental data from samples taken from ten minutes to two weeks after start of infusion. These results support that the cut-off diameter for human renal filtration is 5.5 nm. The agreement between experiment and model implies that there is little or no plasma protein binding to the nanoparticles.
Collapse
Affiliation(s)
- Oskar Axelsson
- Spago Nanomedical AB, Scheelevägen 22, SE-223 63 Lund, Sweden.
| | | | - Olof Björnberg
- Spago Nanomedical AB, Scheelevägen 22, SE-223 63 Lund, Sweden
| | - Erik Ekengard
- Spago Nanomedical AB, Scheelevägen 22, SE-223 63 Lund, Sweden
| | | |
Collapse
|
2
|
Tanaka Y, Okuyama H, Nishikawa M, Ikushiro SI, Ikeda M, Ishima Y, Ukawa Y, Oe K, Terao J, Mukai R. 8-Prenylnaringenin tissue distribution and pharmacokinetics in mice and its binding to human serum albumin and cellular uptake in human embryonic kidney cells. Food Sci Nutr 2022; 10:1070-1080. [PMID: 35432956 PMCID: PMC9007292 DOI: 10.1002/fsn3.2733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022] Open
Abstract
8-Prenylnaringenin (8-PN), a hop flavonoid, is a promising food substance with health benefits. Compared with nonprenylated naringenin, 8-PN exhibits stronger estrogenic activity and prevents muscle atrophy. Moreover, 8-PN prevents hot flushes and bone loss. Considering that prenylation reportedly improves the bioavailability of flavonoids, we compared the parameters related to the bioavailability [pharmacokinetics and tissue distribution in C57/BL6 mice, binding affinity to human serum albumin (HSA), and cellular uptake in HEK293 cells] of 8-PN and its mother (non-prenylated) compound naringenin. C57/BL6 mice were fed an 8-PN or naringenin mixed diet for 22 days. The amount of 8-PN (nmol/g tissue) in the kidneys (16.8 ± 9.20), liver (14.8 ± 2.58), muscles (3.33 ± 0.60), lungs (2.07 ± 0.68), pancreas (1.80 ± 0.38), heart (1.71 ± 0.27), spleen (1.36 ± 0.29), and brain (0.31 ± 0.09) was higher than that of naringenin. A pharmacokinetic study in mice demonstrated that the C max of 8-PN (50 mg/kg body weight) was lower than that of naringenin; however, the plasma concentration of 8-PN 8 h after ingestion was higher than that of naringenin. The binding affinity of 8-PN to HSA and cellular uptake in HEK293 cells were higher than those of naringenin. 8-PN bioavailability features assessed in mouse or human model experiments were obviously different from those of naringenin.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Food Science Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Hitomi Okuyama
- Department of Food Science Graduate School of Technology, Industrial and Social Sciences Tokushima University Tokushima Japan
| | - Miyu Nishikawa
- Department of Biotechnology Faculty of Engineering Toyama Prefectural University Toyama Japan
| | - Shin-Ichi Ikushiro
- Department of Biotechnology Faculty of Engineering Toyama Prefectural University Toyama Japan
| | - Mayumi Ikeda
- Department of Pharmacokinetics and Biopharmaceutics Institute of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics Institute of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yuichi Ukawa
- Healthcare SBU Business Strategy Business Planning Daicel Corporation Tokyo Japan
| | - Kenichi Oe
- Healthcare SBU Business Strategy, R&D Daicel Corporation Niigata Japan
| | - Junji Terao
- Faculty of Clinical Nutrition and Dietetics Konan Women's University Hyogo Japan
| | - Rie Mukai
- Department of Food Science Graduate School of Biomedical Sciences Tokushima University Tokushima Japan.,Department of Food Science Graduate School of Technology, Industrial and Social Sciences Tokushima University Tokushima Japan
| |
Collapse
|
3
|
Young and Undamaged rMSA Improves the Healthspan and Lifespan of Mice. Biomolecules 2021; 11:biom11081191. [PMID: 34439857 PMCID: PMC8394218 DOI: 10.3390/biom11081191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/09/2021] [Indexed: 02/01/2023] Open
Abstract
Improvement of longevity is an eternal dream of human beings. The accumulation of protein damages is considered as a major cause of aging. Here, we report that the injection of exogenous recombinant mouse serum albumin (rMSA) reduced the total damages of serum albumin in C57BL/6N mice, with higher level of free-thiols, lower levels of carbonyls and advanced glycation end-products as well as homocysteines in rMSA-treated mice. The healthspan and lifespan of C57BL/6N mice were significantly improved by rMSA. The grip strength of rMSA-treated female and male mice increased by 29.6% and 17.4%, respectively. Meanwhile, the percentage of successful escape increased 23.0% in rMSA-treated male mice using the Barnes Maze test. Moreover, the median lifespan extensions were 17.6% for female and 20.3% for male, respectively. The rMSA used in this study is young and almost undamaged. We define the concept “young and undamaged” to any protein without any unnecessary modifications by four parameters: intact free thiol (if any), no carbonylation, no advanced glycation end-product, and no homocysteinylation. Here, “young and undamaged” exogenous rMSA used in the present study is much younger and less damaged than the endogenous serum albumin purified from young mice at 1.5 months of age. We predict that undamaged proteins altogether can further improve the healthspan and lifespan of mice.
Collapse
|
4
|
Bellamri M, Walmsley SJ, Turesky RJ. Metabolism and biomarkers of heterocyclic aromatic amines in humans. Genes Environ 2021; 43:29. [PMID: 34271992 PMCID: PMC8284014 DOI: 10.1186/s41021-021-00200-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
Heterocyclic aromatic amines (HAAs) form during the high-temperature cooking of meats, poultry, and fish. Some HAAs also arise during the combustion of tobacco. HAAs are multisite carcinogens in rodents, inducing cancer of the liver, gastrointestinal tract, pancreas, mammary, and prostate glands. HAAs undergo metabolic activation by N-hydroxylation of the exocyclic amine groups to produce the proposed reactive intermediate, the heteroaryl nitrenium ion, which is the critical metabolite implicated in DNA damage and genotoxicity. Humans efficiently convert HAAs to these reactive intermediates, resulting in HAA protein and DNA adduct formation. Some epidemiologic studies have reported an association between frequent consumption of well-done cooked meats and elevated cancer risk of the colorectum, pancreas, and prostate. However, other studies have reported no associations between cooked meat and these cancer sites. A significant limitation in epidemiology studies assessing the role of HAAs and cooked meat in cancer risk is their reliance on food frequency questionnaires (FFQ) to gauge HAA exposure. FFQs are problematic because of limitations in self-reported dietary history accuracy, and estimating HAA intake formed in cooked meats at the parts-per-billion level is challenging. There is a critical need to establish long-lived biomarkers of HAAs for implementation in molecular epidemiology studies designed to assess the role of HAAs in health risk. This review article highlights the mechanisms of HAA formation, mutagenesis and carcinogenesis, the metabolism of several prominent HAAs, and the impact of critical xenobiotic-metabolizing enzymes on biological effects. The analytical approaches that have successfully biomonitored HAAs and their biomarkers for molecular epidemiology studies are presented.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Scott J Walmsley
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Institute of Health Informatics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA. .,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Chen Y, Li R, Zhang L, Gan L, Ding J. Treatment of α-1 antitrypsin deficiency using hepatic-specified cells derived from human-induced pluripotent stem cells. Am J Transl Res 2021; 13:2710-2716. [PMID: 34017432 PMCID: PMC8129336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE α-1 antitrypsin deficiency (AATD) is an inherited liver disease characterized by the "Z" mutations, which can cause pulmonary emphysema and liver fibrosis. Transplantation of the organ (i.e., the lung/liver) is the best treatment method, however, the scarcity of suitable donors limits its application. The cell transplantation technique poses an alternative way of combating liver failure. METHODS Hepatic specific differentiation of the human induced pluripotent stem cells (iPSCs) was initiated with 100 ng/mL activin A, followed by 20 ng/mL of BMP-4 and 10 ng/mL of FGF-2. The cells were transplanted into the livers of AATD transgenic mice using intra-splenic injections. FK506 was used as an immunosuppressor. At 1, 3, and 6 months post-transplantation, the human serum albumin (HSA) levels and its DNA contents, and the mice serum and liver tissues were measured using enzyme-linked immunosorbent assays (ELISA), polymerase chain reactions (PCR), and immunohistochemistry to estimate the repopulation of the hepatic-specified cells. RESULTS Post transplantation, the hepatic-specified cells were found to be successfully and progressively repopulated in the transgenic mice livers. Additionally, the hepatic-specified cells did not display any carcinogenicity, as confirmed by the absence of any tumors on the animals. CONCLUSION We provide a time saving and low cost method of transplanting hepatic-specified cells into the livers of AATD mice without any risk of carcinogenicity, a method that may be a potential option for the treatment of AATD.
Collapse
Affiliation(s)
- Yingqiang Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Guizhou Medical UniversityDuyun, Guizhou Province, China
| | - Ruoqing Li
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical CenterChongqing, China
| | - Lin Zhang
- The Center Laboratory, The Third Affiliated Hospital of Guizhou Medical UniversityDuyun, Guizhou Province, China
| | - Linlin Gan
- Department of Infectious Diseases, The Third Affiliated Hospital of Guizhou Medical UniversityDuyun, Guizhou Province, China
| | - Jianqiang Ding
- Department of Infectious Diseases, The Third Affiliated Hospital of Guizhou Medical UniversityDuyun, Guizhou Province, China
| |
Collapse
|
6
|
Xie W, Gong XT, Cheng X, Cao J, Zhao J, Zhang HL, Zhang S. LIMPID: a versatile method for visualization of brain vascular networks. Biomater Sci 2021; 9:2658-2669. [PMID: 33595547 DOI: 10.1039/d0bm01817a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visualization of cerebrovascular networks is crucial for understanding the pathogenesis of many neurological diseases. Recently developed optical clearing techniques offer opportunities in deep tissue imaging, and have been successfully applied in many research studies. The development of nanotechnology enables the labeling of brain vessels with functionalized micro/nanoparticles embedded with fluorescent dyes. We herein report an efficient method, named LIMPID (Labeled and Interlinked Micro/nanoparticles for Imaging and Delipidation), specific for the precise fluorescence imaging of vascular networks in clearing-treated tissues. This robust vessel labeling technique replaces conventional fluorescence dyes with functionalized polymer micro/nanoparticles that are able to cross-link with polyacrylamide to form dense hydrogels in vessels. LIMPID shows high-robustness during the clearing process without sacrificing fluorescence signals and clearing performance. LIMPID enables three dimension (3D) visualization of elaborate vascular networks in mouse brains and is compatible with other fluorescence-labeling techniques. We have successfully applied this method to acquire cortical vasculature images simultaneously with the neurons or microglia, as well as to evaluate vascular damage in a mouse model of stroke. The LIMPID method provides a novel tool for the precise analysis of vascular dysfunction and vascular diseases.
Collapse
Affiliation(s)
- Wenguang Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Development of Glypican-3 Targeting Immunotoxins for the Treatment of Liver Cancer: An Update. Biomolecules 2020; 10:biom10060934. [PMID: 32575752 PMCID: PMC7356171 DOI: 10.3390/biom10060934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for most liver cancers and represents one of the deadliest cancers in the world. Despite the global demand for liver cancer treatments, there remain few options available. The U.S. Food and Drug Administration (FDA) recently approved Lumoxiti, a CD22-targeting immunotoxin, as a treatment for patients with hairy cell leukemia. This approval helps to demonstrate the potential role that immunotoxins can play in the cancer therapeutics pipeline. However, concerns have been raised about the use of immunotoxins, including their high immunogenicity and short half-life, in particular for treating solid tumors such as liver cancer. This review provides an overview of recent efforts to develop a glypican-3 (GPC3) targeting immunotoxin for treating HCC, including strategies to deimmunize immunotoxins by removing B- or T-cell epitopes on the bacterial toxin and to improve the serum half-life of immunotoxins by incorporating an albumin binding domain.
Collapse
|
8
|
Fleming BD, Urban DJ, Hall M, Longerich T, Greten T, Pastan I, Ho M. Engineered Anti-GPC3 Immunotoxin, HN3-ABD-T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention. Hepatology 2020; 71:1696-1711. [PMID: 31520528 PMCID: PMC7069773 DOI: 10.1002/hep.30949] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Treatment of hepatocellular carcinomas using our glypican-3 (GPC3)-targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down-regulating the Wnt signaling pathway. However, immunogenicity and a short serum half-life may limit the ability of immunotoxins to transition to the clinic. APPROACH AND RESULTS To address these concerns, we engineered HN3-based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3-T20, which was modified to remove T-cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B-cell deimmunized immunotoxin (HN3-mPE24) and our original HN3-immunotoxin with a wild-type PE domain (HN3-PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3-T20 having a KD value of 7.4 nM. HN3-T20 retained 73% enzymatic activity when compared with the wild-type immunotoxin in an adenosine diphosphate-ribosylation assay. Interestingly, a real-time cell growth inhibition assay demonstrated that a single dose of HN3-T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10-day experiment. To enhance HN3-T20's serum retention, we tested the effect of adding a streptococcal albumin-binding domain (ABD) and a llama single-domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme-linked immunosorbent assay and found that HN3-ABD-T20 had a 45-fold higher serum half-life than HN3-T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3-ABD-T20-mediated tumor regression at 1 mg/kg. CONCLUSION These data indicate that ABD-containing deimmunized HN3-T20 immunotoxins are high-potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer.
Collapse
Affiliation(s)
- Bryan D. Fleming
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, 20892
| | - Daniel J. Urban
- Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, Maryland, 20850
| | - Matthew Hall
- Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, Maryland, 20850
| | - Thomas Longerich
- Institute of Pathology, University Hospital, Heidelberg, Germany, 69120
| | - Tim Greten
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, Maryland, 20892
| | - Ira Pastan
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, 20892
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, 20892
| |
Collapse
|
9
|
Bellamri M, Wang Y, Yonemori K, White KK, Wilkens LR, Le Marchand L, Turesky RJ. Biomonitoring an albumin adduct of the cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in humans. Carcinogenesis 2019; 39:1455-1462. [PMID: 30247550 DOI: 10.1093/carcin/bgy125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/18/2018] [Indexed: 01/12/2023] Open
Abstract
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is formed in cooked meats and may be linked to dietary-associated colorectal, prostate and mammary cancers. Genotoxic N-oxidized metabolites of PhIP react with the Cys34 of albumin (Alb) to form a sulfinamide adduct, a biomarker of the biologically effective dose. We examined the kinetics of PhIP-Alb adduct formation in plasma of volunteers on a 4-week semicontrolled diet of cooked meat containing known quantities of PhIP. The adduct was below the limit of detection (LOD) (10 femtograms PhIP/mg Alb) in most subjects before the meat feeding but increased by up to 560-fold at week 4 in subjects who ate meat containing 8.0 to 11.7 μg of PhIP per 150-200 g serving. In contrast, the adduct remained below the LOD in subjects who ingested 1.2 or 3.0 μg PhIP per serving. Correlations were not seen between PhIP-Alb adduct levels and PhIP intake levels (P = 0.76), the amount of PhIP accrued in hair (P = 0.13), the amounts of N-oxidized urinary metabolites of PhIP (P = 0.66) or caffeine CYP1A2 activity (P = 0.55), a key enzyme involved in the bioactivation of PhIP. The half-life of the PhIP-Alb adduct was <2 weeks, signifying that the adduct was not stable. PhIP-Alb adduct formation is direct evidence of bioactivation of PhIP in vivo. However, the PhIP hair biomarker is a longer lived and more sensitive biomarker to assess exposure to this potential human carcinogen.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Yi Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.,Department of Medicinal Chemistry, Medical Science Building, University of Florida, Gainesville, FL, USA
| | - Kim Yonemori
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Kami K White
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Shahabadi N, Hashempour S, Taherpour A(A, Mohsenzadeh F. Synthesis, characterization, HSA interaction, and antibacterial activity of a new water-soluble Pt(II) complex containing the drug cephalexin. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1525488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shokoufeh Hashempour
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Avat (Arman) Taherpour
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Organic Chemistry Department, Chemistry Faculty, Razi University, Kermanshah, Iran
| | - Fariba Mohsenzadeh
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
11
|
Hyun H, Park J, Willis K, Park JE, Lyle LT, Lee W, Yeo Y. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials 2018; 180:206-224. [PMID: 30048910 PMCID: PMC6076859 DOI: 10.1016/j.biomaterials.2018.07.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023]
Abstract
Albumin is a promising surface modifier of nanoparticulate drug delivery systems. Serving as a dysopsonin, albumin can protect circulating nanoparticles (NPs) from the recognition and clearance by the mononuclear phagocytic system (MPS). Albumin may also help transport the NPs to solid tumors based on the increased consumption by cancer cells and interactions with the tumor microenvironment. Several studies have explored the benefits of surface-bound albumin to enhance NP delivery to tumors. However, it remains unknown how the surface modification process affects the conformation of albumin and the performance of the albumin-modified NPs. We use three different surface modification methods including two prevalent approaches (physisorption and interfacial embedding) and a new method based on dopamine polymerization to modify the surface of poly(lactic-co-glycolic acid) NPs with albumin and compare the extent of albumin binding, conformation of the surface-bound albumin, and biological performances of the albumin-coated NPs. We find that the dopamine polymerization method preserves the albumin structure, forming a surface layer that facilitates NP transport and drug delivery into tumors via the interaction with albumin-binding proteins. In contrast, the interfacial embedding method creates NPs with denatured albumin that offers no particular benefit to the interaction with cancer cells but rather promotes the MPS uptake via direct and indirect interactions with scavenger receptor A. This study demonstrates that the surface-bound albumin can bring distinct effects according to the way they interact with NP surface and thus needs to be controlled in order to achieve favorable therapeutic outcomes.
Collapse
Affiliation(s)
- Hyesun Hyun
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Joonyoung Park
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Kiela Willis
- School of Chemical Engineering, Purdue University, 480 West Stadium Avenue, West Lafayette, IN, 47907, USA
| | - Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - L Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Sabbioni G, Turesky RJ. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future. Chem Res Toxicol 2017; 30:332-366. [PMID: 27989119 PMCID: PMC5241710 DOI: 10.1021/acs.chemrestox.6b00366] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
- Alpine Institute of Chemistry and Toxicology, CH-6718 Olivone, Switzerland
- Walther-Straub-Institut für Pharmakologie
und Toxikologie, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Robert J. Turesky
- Masonic Cancer Center and Department of
Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|