1
|
Ueyama-Toba Y, Tong Y, Yokota J, Murai K, Hikita H, Eguchi H, Takehara T, Mizuguchi H. Development of a hepatic differentiation method in 2D culture from primary human hepatocyte-derived organoids for pharmaceutical research. iScience 2024; 27:110778. [PMID: 39280628 PMCID: PMC11401167 DOI: 10.1016/j.isci.2024.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Human liver organoids derived from primary human hepatocytes (PHHs) are expected to be a hepatocyte source for preclinical in vitro studies of drug metabolism and disposition. Because hepatic functions of these organoids remain low, it is necessary to enhance the hepatic functions. Here, we develop a novel method for two dimensional (2D)-cultured hepatic differentiation from PHH-derived organoids by screening several compounds, cytokines, and growth factors. Hepatic gene expressions in the hepatocyte-like cells differentiated from PHH-derived organoids (Org-HEPs) were greatly increased, compared to those in PHH-derived organoids. The metabolic activities of cytochrome P450 (CYP) 1A2, CYP2C8, CYP2C19, CYP2E1, and CYP3A4 were at levels comparable to those in PHHs. The cell viability of Org-HEPs treated with hepatotoxic drugs was almost the same as that of PHHs. Thus, PHH-derived organoids could be differentiated into highly functional hepatocytes in 2D culture. Thus, Org-HEPs will be useful for pharmaceutical research, including hepatotoxicity tests.
Collapse
Affiliation(s)
- Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yanran Tong
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hayato Hikita
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
3
|
Jadalannagari S, Ewart L. Beyond the hype and toward application: liver complex in vitro models in preclinical drug safety. Expert Opin Drug Metab Toxicol 2024; 20:607-619. [PMID: 38465923 DOI: 10.1080/17425255.2024.2328794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Drug induced Liver-Injury (DILI) is a leading cause of drug attrition and complex in vitro models (CIVMs), including three dimensional (3D) spheroids, 3D bio printed tissues and flow-based systems, could improve preclinical prediction. Although CIVMs have demonstrated good sensitivity and specificity in DILI detection their adoption remains limited. AREAS COVERED This article describes DILI, the challenges with its prediction and the current strategies and models that are being used. It reviews data from industry-FDA collaborations and strategic partnerships and finishes with an outlook of CIVMs in preclinical toxicity testing. Literature searches were performed using PubMed and Google Scholar while product information was collected from manufacturer websites. EXPERT OPINION Liver CIVMs are promising models for predicting DILI although, a decade after their introduction, routine use by the pharmaceutical industry is limited. To accelerate their adoption, several industry-regulator-developer partnerships or consortia have been established to guide the development and qualification. Beyond this, liver CIVMs should continue evolving to capture greater immunological mimicry while partnering with computational approaches to deliver systems that change the paradigm of predicting DILI.
Collapse
Affiliation(s)
| | - Lorna Ewart
- Department of Bioinnovations, Emulate Inc, Boston, MA, USA
| |
Collapse
|
4
|
Wu L, Vllasaliu D, Cui Q, Raimi-Abraham BT. In Situ Self-Assembling Liver Spheroids with Synthetic Nanoscaffolds for Preclinical Drug Screening Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25610-25621. [PMID: 38741479 PMCID: PMC11129140 DOI: 10.1021/acsami.3c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most common reasons for acute liver failure and a major reason for the withdrawal of medications from the market. There is a growing need for advanced in vitro liver models that can effectively recapitulate hepatic function, offering a robust platform for preclinical drug screening applications. Here, we explore the potential of self-assembling liver spheroids in the presence of electrospun and cryomilled poly(caprolactone) (PCL) nanoscaffolds for use as a new preclinical drug screening tool. This study investigated the extent to which nanoscaffold concentration may have on spheroid size and viability and liver-specific biofunctionality. The efficacy of our model was further validated using a comprehensive dose-dependent acetaminophen toxicity protocol. Our findings show the strong potential of PCL-based nanoscaffolds to facilitate in situ self-assembly of liver spheroids with sizes under 350 μm. The presence of the PCL-based nanoscaffolds (0.005 and 0.01% w/v) improved spheroid viability and the secretion of critical liver-specific biomarkers, namely, albumin and urea. Liver spheroids with nanoscaffolds showed improved drug-metabolizing enzyme activity and greater sensitivity to acetaminophen compared to two-dimensional monolayer cultures and scaffold-free liver spheroids. These promising findings highlight the potential of our nanoscaffold-based liver spheroids as an in vitro liver model for drug-induced hepatotoxicity and drug screening.
Collapse
Affiliation(s)
- Lina Wu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Driton Vllasaliu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Qi Cui
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Bahijja Tolulope Raimi-Abraham
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| |
Collapse
|
5
|
Preiss LC, Georgi K, Lauschke VM, Petersson C. Comparison of Human Long-Term Liver Models for Clearance Prediction of Slowly Metabolized Compounds. Drug Metab Dispos 2024; 52:539-547. [PMID: 38604730 DOI: 10.1124/dmd.123.001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The accurate prediction of human clearance is an important task during drug development. The proportion of low clearance compounds has increased in drug development pipelines across the industry since such compounds may be dosed in lower amounts and at lower frequency. These type of compounds present new challenges to in vitro systems used for clearance extrapolation. In this study, we compared the accuracy of clearance predictions of suspension culture to four different long-term stable in vitro liver models, including HepaRG sandwich culture, the Hµrel stochastic co-culture, the Hepatopac micropatterned co-culture (MPCC), and a micro-array spheroid culture. Hepatocytes in long-term stable systems remained viable and active over several days of incubation. Although intrinsic clearance values were generally high in suspension culture, clearance of low turnover compounds could frequently not be determined using this method. Metabolic activity and intrinsic clearance values from HepaRG cultures were low and, consequently, many compounds with low turnover did not show significant decline despite long incubation times. Similarly, stochastic co-cultures occasionally failed to show significant turnover for multiple low and medium turnover compounds. Among the different methods, MPCCs and spheroids provided the most consistent measurements. Notably, all culture methods resulted in underprediction of clearance; this could, however, be compensated for by regression correction. Combined, the results indicate that spheroid culture as well as the MPCC system provide adequate in vitro tools for human extrapolation for compounds with low metabolic turnover. SIGNIFICANCE STATEMENT: In this study, we compared suspension cultures, HepaRG sandwich cultures, the Hµrel liver stochastic co-cultures, the Hepatopac micropatterned co-cultures (MPCC), and micro-array spheroid cultures for low clearance determination and prediction. Overall, HepaRG and suspension cultures showed modest value for the low determination and prediction of clearance compounds. The micro-array spheroid culture resulted in the most robust clearance measurements, whereas using the MPCC resulted in the most accurate prediction for low clearance compounds.
Collapse
Affiliation(s)
- Lena C Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| | - Katrin Georgi
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| | - Carl Petersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| |
Collapse
|
6
|
Guo X, Xu H, Seo JE. Application of HepaRG cells for genotoxicity assessment: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:214-237. [PMID: 38566478 DOI: 10.1080/26896583.2024.2331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There has been growing interest in the use of human-derived metabolically competent cells for genotoxicity testing. The HepaRG cell line is considered one of the most promising cell models because it is TP53-proficient and retains many characteristics of primary human hepatocytes. In recent years, HepaRG cells, cultured in both a traditional two-dimensional (2D) format and as more advanced in-vivo-like 3D spheroids, have been employed in assays that measure different types of genetic toxicity endpoints, including DNA damage, mutations, and chromosomal damage. This review summarizes published studies that have used HepaRG cells for genotoxicity assessment, including cell model evaluation studies and risk assessment for various compounds. Both 2D and 3D HepaRG models can be adapted to several high-throughput genotoxicity assays, generating a large number of data points that facilitate quantitative benchmark concentration modeling. With further validation, HepaRG cells could serve as a unique, human-based new alternative methodology for in vitro genotoxicity testing.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
7
|
Jabri A, Khan J, Taftafa B, Alsharif M, Mhannayeh A, Chinnappan R, Alzhrani A, Kazmi S, Mir MS, Alsaud AW, Yaqinuddin A, Assiri AM, AlKattan K, Vashist YK, Broering DC, Mir TA. Bioengineered Organoids Offer New Possibilities for Liver Cancer Studies: A Review of Key Milestones and Challenges. Bioengineering (Basel) 2024; 11:346. [PMID: 38671768 PMCID: PMC11048289 DOI: 10.3390/bioengineering11040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatic cancer is widely regarded as the leading cause of cancer-related mortality worldwide. Despite recent advances in treatment options, the prognosis of liver cancer remains poor. Therefore, there is an urgent need to develop more representative in vitro models of liver cancer for pathophysiology and drug screening studies. Fortunately, an exciting new development for generating liver models in recent years has been the advent of organoid technology. Organoid models hold huge potential as an in vitro research tool because they can recapitulate the spatial architecture of primary liver cancers and maintain the molecular and functional variations of the native tissue counterparts during long-term culture in vitro. This review provides a comprehensive overview and discussion of the establishment and application of liver organoid models in vitro. Bioengineering strategies used to construct organoid models are also discussed. In addition, the clinical potential and other relevant applications of liver organoid models in different functional states are explored. In the end, this review discusses current limitations and future prospects to encourage further development.
Collapse
Affiliation(s)
- Abdullah Jabri
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Jibran Khan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Bader Taftafa
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Mohamed Alsharif
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Abdulaziz Mhannayeh
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Alaa Alzhrani
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21423, Saudi Arabia
| | - Shadab Kazmi
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Pathology and laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh 147301, Punjab, India;
| | - Aljohara Waleed Alsaud
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Abdullah M. Assiri
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yogesh K. Vashist
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
8
|
Kemas AM, Zandi Shafagh R, Taebnia N, Michel M, Preiss L, Hofmann U, Lauschke VM. Compound Absorption in Polymer Devices Impairs the Translatability of Preclinical Safety Assessments. Adv Healthc Mater 2024; 13:e2303561. [PMID: 38053301 PMCID: PMC11469150 DOI: 10.1002/adhm.202303561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Organotypic and microphysiological systems (MPS) that can emulate the molecular phenotype and function of human tissues, such as liver, are increasingly used in preclinical drug development. However, despite their improved predictivity, drug development success rates have remained low with most compounds failing in clinical phases despite promising preclinical data. Here, it is tested whether absorption of small molecules to polymers commonly used for MPS fabrication can impact preclinical pharmacological and toxicological assessments and contribute to the high clinical failure rates. To this end, identical devices are fabricated from eight different MPS polymers and absorption of prototypic compounds with different physicochemical properties are analyzed. It is found that overall absorption is primarily driven by compound hydrophobicity and the number of rotatable bonds. However, absorption can differ by >1000-fold between polymers with polydimethyl siloxane (PDMS) being most absorptive, whereas polytetrafluoroethylene (PTFE) and thiol-ene epoxy (TEE) absorbed the least. Strikingly, organotypic primary human liver cultures successfully flagged hydrophobic hepatotoxins in lowly absorbing TEE devices at therapeutically relevant concentrations, whereas isogenic cultures in PDMS devices are resistant, resulting in false negative safety signals. Combined, these results can guide the selection of MPS materials and facilitate the development of preclinical assays with improved translatability.
Collapse
Affiliation(s)
- Aurino M. Kemas
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
| | - Reza Zandi Shafagh
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology70376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
- Division of Micro‐ and NanosystemsKTH Royal Institute of TechnologyStockholm10044Sweden
| | - Nayere Taebnia
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
| | - Maurice Michel
- Department of Oncology and PathologyScience for Life LaboratoryKarolinska InstitutetStockholm17165Sweden
| | - Lena Preiss
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
- Department of Drug Metabolism and Pharmacokinetics (DMPK)Merck KGaA64293DarmstadtGermany
| | - Ute Hofmann
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology70376StuttgartGermany
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm17177Sweden
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology70376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
| |
Collapse
|
9
|
Gandhi N, Wills L, Akers K, Su Y, Niccum P, Murali TM, Rajagopalan P. Comparative transcriptomic and phenotypic analysis of induced pluripotent stem cell hepatocyte-like cells and primary human hepatocytes. Cell Tissue Res 2024; 396:119-139. [PMID: 38369646 DOI: 10.1007/s00441-024-03868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Primary human hepatocytes (PHHs) are used extensively for in vitro liver cultures to study hepatic functions. However, limited availability and invasive retrieval prevent their widespread use. Induced pluripotent stem cells exhibit significant potential since they can be obtained non-invasively and differentiated into hepatic lineages, such as hepatocyte-like cells (iHLCs). However, there are concerns about their fetal phenotypic characteristics and their hepatic functions compared to PHHs in culture. Therefore, we performed an RNA-sequencing (RNA-seq) analysis to understand pathways that are either up- or downregulated in each cell type. Analysis of the RNA-seq data showed an upregulation in the bile secretion pathway where genes such as AQP9 and UGT1A1 were higher expressed in PHHs compared to iHLCs by 455- and 15-fold, respectively. Upon immunostaining, bile canaliculi were shown to be present in PHHs. The TCA cycle in PHHs was upregulated compared to iHLCs. Cellular analysis showed a 2-2.5-fold increase in normalized urea production in PHHs compared to iHLCs. In addition, drug metabolism pathways, including cytochrome P450 (CYP450) and UDP-glucuronosyltransferase enzymes, were upregulated in PHHs compared to iHLCs. Of note, CYP2E1 gene expression was significantly higher (21,810-fold) in PHHs. Acetaminophen and ethanol were administered to PHH and iHLC cultures to investigate differences in biotransformation. CYP450 activity of baseline and toxicant-treated samples was significantly higher in PHHs compared to iHLCs. Our analysis revealed that iHLCs have substantial differences from PHHs in critical hepatic functions. These results have highlighted the differences in gene expression and hepatic functions between PHHs and iHLCs to motivate future investigation.
Collapse
Affiliation(s)
- Neeti Gandhi
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA
| | - Lauren Wills
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA
| | - Kyle Akers
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - Yiqi Su
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Parker Niccum
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
10
|
Huang Q, Yang T, Song Y, Sun W, Xu J, Cheng Y, Yin R, Zhu L, Zhang M, Ma L, Li H, Zhang H. A three-dimensional (3D) liver-kidney on a chip with a biomimicking circulating system for drug safety evaluation. LAB ON A CHIP 2024; 24:1715-1726. [PMID: 38328873 DOI: 10.1039/d3lc00980g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The liver and kidney are the major detoxifying organs in the human body and play an important role in pharmacokinetics. Drug-induced hepatotoxicity and nephrotoxicity can cause irreversible damage to the liver and kidney and are a major cause of drug failure in later stages. Both animal models and conventional cell culture have a number of limitations, such as animal ethics and gene mismatching and there is an urgent need to develop a new drug toxicity evaluation approach. In this paper, a 3D liver-kidney on a chip with a biomimicking circulating system (LKOCBCS) was constructed to obtain kidney and liver models in vitro for drug safety evaluation. LKOCBCS, which has a parallel circulating system mimicking biological circulation, consists of 3D biomimetic tissue of liver lobules similar to that of the human liver constructed by 3D bioprinting and renal proximal tubule barriers fabricated by ultrafast laser assisted etching. The proposed LKOCBCS facilitates the communication between the liver and the kidney, including the exchange of nutrients, compounds, and metabolites. The results revealed that the glucose concentration and cell metabolism stabilized after 7 days. A dynamically repeated low-dose administration of cyclosporine A (CsA) was fed to the system, and hepatotoxicity and nephrotoxicity were observed on day 3 according to the changes in toxicity markers. The high levels of drug induced biomarkers expressed in LKOCBCS indicate that this system is more sensitive than the monoculture liver chip and it is highly potential in replacing animal models for effective drug toxicity screening.
Collapse
Affiliation(s)
- Qihong Huang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Tianhao Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yunpeng Song
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Wenxuan Sun
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jian Xu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Ya Cheng
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lili Zhu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengting Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Ma
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Liu Y, Ge Y, Wu Y, Feng Y, Liu H, Cao W, Xie J, Zhang J. High-Voltage Electrostatic Field Hydrogel Microsphere 3D Culture System Improves Viability and Liver-like Properties of HepG2 Cells. Int J Mol Sci 2024; 25:1081. [PMID: 38256154 PMCID: PMC10816196 DOI: 10.3390/ijms25021081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Three-dimensional (3D) hepatocyte models have become a research hotspot for evaluating drug metabolism and hepatotoxicity. Compared to two-dimensional (2D) cultures, 3D cultures are better at mimicking the morphology and microenvironment of hepatocytes in vivo. However, commonly used 3D culture techniques are not suitable for high-throughput drug screening (HTS) due to their high cost, complex handling, and inability to simulate cell-extracellular matrix (ECM) interactions. This article describes a method for rapid and reproducible 3D cell cultures with ECM-cell interactions based on 3D culture instrumentation to provide more efficient HTS. We developed a microsphere preparation based on a high-voltage electrostatic (HVE) field and used sodium alginate- and collagen-based hydrogels as scaffolds for 3D cultures of HepG2 cells. The microsphere-generating device enables the rapid and reproducible preparation of bioactive hydrogel microspheres. This 3D culture system exhibited better cell viability, heterogeneity, and drug-metabolizing activity than 2D and other 3D culture models, and the long-term culture characteristics of this system make it suitable for predicting long-term liver toxicity. This system improves the overall applicability of HepG2 spheroids in safety assessment studies, and this simple and controllable high-throughput-compatible method shows potential for use in drug toxicity screening assays and mechanistic studies.
Collapse
Affiliation(s)
- Yi Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Y.L.); (Y.W.)
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.G.); (Y.F.); (H.L.); (W.C.); (J.X.)
| | - Yang Ge
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.G.); (Y.F.); (H.L.); (W.C.); (J.X.)
| | - Yanfan Wu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Y.L.); (Y.W.)
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.G.); (Y.F.); (H.L.); (W.C.); (J.X.)
| | - Yongtong Feng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.G.); (Y.F.); (H.L.); (W.C.); (J.X.)
| | - Han Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.G.); (Y.F.); (H.L.); (W.C.); (J.X.)
| | - Wei Cao
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.G.); (Y.F.); (H.L.); (W.C.); (J.X.)
| | - Jinsong Xie
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.G.); (Y.F.); (H.L.); (W.C.); (J.X.)
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Y.L.); (Y.W.)
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.G.); (Y.F.); (H.L.); (W.C.); (J.X.)
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
12
|
Tonooka Y, Takaku T, Toyoshima M, Takahashi Y, Kitamoto S. Suppression of the Epithelial-Mesenchymal Transition and Maintenance of the Liver Functions in Primary Hepatocytes through Dispersion Culture within a Dome-Shaped Collagen Matrix. Biol Pharm Bull 2024; 47:1241-1247. [PMID: 38945897 DOI: 10.1248/bpb.b24-00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Primary hepatocytes are valuable for studying liver diseases, drug-induced liver injury, and drug metabolism. However, when cultured in a two-dimensional (2D) environment, primary hepatocytes undergo rapid dedifferentiation via an epithelial-mesenchymal transition (EMT) and lose their liver-specific functions. On the other hand, a three-dimensional (3D) culture of primary hepatocyte organoids presents challenges for analyzing cellular functions and molecular behaviors due to strong cell-cell adhesion among heterogeneous cells. In this study, we developed a novel dispersion culture method of hepatocytes within a dome-shaped collagen matrix, overcoming conventional limitations. The expression levels of EMT-related genes were lower in rat primary hepatocytes cultured using this method for 4 d than in cells cultured using the 2D method. Furthermore, albumin production, a marker of liver function, declined sharply in rat primary hepatocytes cultured in two dimensions from 6.40 µg/mL/48 h on day 4 to 1.35 µg/mL/48 h on day 8, and declined gradually from 4.92 µg/mL/48 h on day 8 to 3.89 µg/mL/48 h on day 14 in rat primary hepatocytes cultured using our new method. These findings indicate that the newly developed culture method can suppress EMT and maintain liver functions for 14 d in rat primary hepatocytes, potentially expanding the utility of primary hepatocyte cultured by using conventional 3D methods.
Collapse
Affiliation(s)
- Yoshino Tonooka
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Tomoyuki Takaku
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Manabu Toyoshima
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | | | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| |
Collapse
|
13
|
Kumar BS. Recent developments and applications of ambient mass spectrometry imaging in pharmaceutical research: an overview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:8-32. [PMID: 38088775 DOI: 10.1039/d3ay01267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The application of ambient mass spectrometry imaging "MSI" is expanding in the areas of fundamental research on drug delivery and multiple phases of the process of identifying and developing drugs. Precise monitoring of a drug's pharmacological workflows, such as intake, distribution, metabolism, and discharge, is made easier by MSI's ability to determine the concentrations of the initiating drug and its metabolites across dosed samples without losing spatial data. Lipids, glycans, and proteins are just a few of the many phenotypes that MSI may be used to concurrently examine. Each of these substances has a particular distribution pattern and biological function throughout the body. MSI offers the perfect analytical tool for examining a drug's pharmacological features, especially in vitro and in vivo effectiveness, security, probable toxic effects, and putative molecular pathways, because of its high responsiveness in chemical and physical environments. The utilization of MSI in the field of pharmacy has further extended from the traditional tissue examination to the early stages of drug discovery and development, including examining the structure-function connection, high-throughput capabilities in vitro examination, and ex vivo research on individual cells or tumor spheroids. Additionally, an enormous array of endogenous substances that may function as tissue diagnostics can be scanned simultaneously, giving the specimen a highly thorough characterization. Ambient MSI techniques are soft enough to allow for easy examination of the native sample to gather data on exterior chemical compositions. This paper provides a scientific and methodological overview of ambient MSI utilization in research on pharmaceuticals.
Collapse
Affiliation(s)
- Bharath Sampath Kumar
- Independent researcher, 21, B2, 27th Street, Lakshmi Flats, Nanganallur, Chennai 600061, India.
| |
Collapse
|
14
|
Pelkonen O, Abass K, Parra Morte JM, Panzarea M, Testai E, Rudaz S, Louisse J, Gundert-Remy U, Wolterink G, Jean-Lou CM D, Coecke S, Bernasconi C. Metabolites in the regulatory risk assessment of pesticides in the EU. FRONTIERS IN TOXICOLOGY 2023; 5:1304885. [PMID: 38188093 PMCID: PMC10770266 DOI: 10.3389/ftox.2023.1304885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
A large majority of chemicals is converted into metabolites through xenobiotic-metabolising enzymes. Metabolites may present a spectrum of characteristics varying from similar to vastly different compared with the parent compound in terms of both toxicokinetics and toxicodynamics. In the pesticide arena, the role of metabolism and metabolites is increasingly recognised as a significant factor particularly for the design and interpretation of mammalian toxicological studies and in the toxicity assessment of pesticide/metabolite-associated issues for hazard characterization and risk assessment purposes, including the role of metabolites as parts in various residues in ecotoxicological adversities. This is of particular relevance to pesticide metabolites that are unique to humans in comparison with metabolites found in in vitro or in vivo animal studies, but also to disproportionate metabolites (quantitative differences) between humans and mammalian species. Presence of unique or disproportionate metabolites may underlie potential toxicological concerns. This review aims to present the current state-of-the-art of comparative metabolism and metabolites in pesticide research for hazard and risk assessment, including One Health perspectives, and future research needs based on the experiences gained at the European Food Safety Authority.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | | | - Emanuela Testai
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
| | - Jochem Louisse
- EFSA, European Food Safety Authority, Parma, Italy
- Wageningen Food Safety Research (WFSR), Wageningen, Netherlands
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerrit Wolterink
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
15
|
Wesseler MF, Taebnia N, Harrison S, Youhanna S, Preiss LC, Kemas AM, Vegvari A, Mokry J, Sullivan GJ, Lauschke VM, Larsen NB. 3D microperfusion of mesoscale human microphysiological liver models improves functionality and recapitulates hepatic zonation. Acta Biomater 2023; 171:336-349. [PMID: 37734628 DOI: 10.1016/j.actbio.2023.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/26/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Hepatic in vitro models that accurately replicate phenotypes and functionality of the human liver are needed for applications in toxicology, pharmacology and biomedicine. Notably, it has become clear that liver function can only be sustained in 3D culture systems at physiologically relevant cell densities. Additionally, drug metabolism and drug-induced cellular toxicity often follow distinct spatial micropatterns of the metabolic zones in the liver acinus, calling for models that capture this zonation. We demonstrate the manufacture of accurate liver microphysiological systems (MPS) via engineering of 3D stereolithography printed hydrogel chips with arrays of diffusion open synthetic vasculature channels at spacings approaching in vivo capillary distances. Chip designs are compatible with seeding of cell suspensions or preformed liver cell spheroids. Importantly, primary human hepatocytes (PHH) and hiPSC-derived hepatocyte-like cells remain viable, exhibit improved molecular phenotypes compared to isogenic monolayer and static spheroid cultures and form interconnected tissue structures over the course of multiple weeks in perfused culture. 3D optical oxygen mapping of embedded sensor beads shows that the liver MPS recapitulates oxygen gradients found in the acini, which translates into zone-specific acet-ami-no-phen toxicity patterns. Zonation, here naturally generated by high cell densities and associated oxygen and nutrient utilization along the flow path, is also documented by spatial proteomics showing increased concentration of periportal- versus perivenous-associated proteins at the inlet region and vice versa at the outlet region. The presented microperfused liver MPS provides a promising platform for the mesoscale culture of human liver cells at phenotypically relevant densities and oxygen exposures. STATEMENT OF SIGNIFICANCE: A full 3D tissue culture platform is presented, enabled by massively parallel arrays of high-resolution 3D printed microperfusion hydrogel channels that functionally mimics tissue vasculature. The platform supports long-term culture of liver models with dimensions of several millimeters at physiologically relevant cell densities, which is difficult to achieve with other methods. Human liver models are generated from seeded primary human hepatocytes (PHHs) cultured for two weeks, and from seeded spheroids of hiPSC-derived human liver-like cells cultured for two months. Both model types show improved functionality over state-of-the-art 3D spheroid suspensions cultured in parallel. The platform can generate physiologically relevant oxygen gradients driven by consumption rather than supply, which was validated by visualization of embedded oxygen-sensitive microbeads, which is exploited to demonstrate zonation-specific toxicity in PHH liver models.
Collapse
Affiliation(s)
- Milan Finn Wesseler
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Nayere Taebnia
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Sean Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lena C Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Drug Metabolism and Pharmacokinetics (DMPK), the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Akos Vegvari
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jaroslav Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, Hradec, Králové, Czech Republic
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway.
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany.
| | - Niels B Larsen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Kgs, Lyngby, Denmark.
| |
Collapse
|
16
|
Mir TA, Alzhrani A, Nakamura M, Iwanaga S, Wani SI, Altuhami A, Kazmi S, Arai K, Shamma T, Obeid DA, Assiri AM, Broering DC. Whole Liver Derived Acellular Extracellular Matrix for Bioengineering of Liver Constructs: An Updated Review. Bioengineering (Basel) 2023; 10:1126. [PMID: 37892856 PMCID: PMC10604736 DOI: 10.3390/bioengineering10101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Biomaterial templates play a critical role in establishing and bioinstructing three-dimensional cellular growth, proliferation and spatial morphogenetic processes that culminate in the development of physiologically relevant in vitro liver models. Various natural and synthetic polymeric biomaterials are currently available to construct biomimetic cell culture environments to investigate hepatic cell-matrix interactions, drug response assessment, toxicity, and disease mechanisms. One specific class of natural biomaterials consists of the decellularized liver extracellular matrix (dECM) derived from xenogeneic or allogeneic sources, which is rich in bioconstituents essential for the ultrastructural stability, function, repair, and regeneration of tissues/organs. Considering the significance of the key design blueprints of organ-specific acellular substrates for physiologically active graft reconstruction, herein we showcased the latest updates in the field of liver decellularization-recellularization technologies. Overall, this review highlights the potential of acellular matrix as a promising biomaterial in light of recent advances in the preparation of liver-specific whole organ scaffolds. The review concludes with a discussion of the challenges and future prospects of liver-specific decellularized materials in the direction of translational research.
Collapse
Affiliation(s)
- Tanveer Ahmed Mir
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Alaa Alzhrani
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21423, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Makoto Nakamura
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Shintaroh Iwanaga
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Shadil Ibrahim Wani
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Abdullah Altuhami
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Shadab Kazmi
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Kenchi Arai
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Talal Shamma
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Dalia A. Obeid
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Abdullah M. Assiri
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
17
|
Strupp C, Corvaro M, Cohen SM, Corton JC, Ogawa K, Richert L, Jacobs MN. Increased Cell Proliferation as a Key Event in Chemical Carcinogenesis: Application in an Integrated Approach for the Testing and Assessment of Non-Genotoxic Carcinogenesis. Int J Mol Sci 2023; 24:13246. [PMID: 37686053 PMCID: PMC10488128 DOI: 10.3390/ijms241713246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
In contrast to genotoxic carcinogens, there are currently no internationally agreed upon regulatory tools for identifying non-genotoxic carcinogens of human relevance. The rodent cancer bioassay is only used in certain regulatory sectors and is criticized for its limited predictive power for human cancer risk. Cancer is due to genetic errors occurring in single cells. The risk of cancer is higher when there is an increase in the number of errors per replication (genotoxic agents) or in the number of replications (cell proliferation-inducing agents). The default regulatory approach for genotoxic agents whereby no threshold is set is reasonably conservative. However, non-genotoxic carcinogens cannot be regulated in the same way since increased cell proliferation has a clear threshold. An integrated approach for the testing and assessment (IATA) of non-genotoxic carcinogens is under development at the OECD, considering learnings from the regulatory assessment of data-rich substances such as agrochemicals. The aim is to achieve an endorsed IATA that predicts human cancer better than the rodent cancer bioassay, using methodologies that equally or better protect human health and are superior from the view of animal welfare/efficiency. This paper describes the technical opportunities available to assess cell proliferation as the central gateway of an IATA for non-genotoxic carcinogenicity.
Collapse
Affiliation(s)
| | | | - Samuel M. Cohen
- Department of Pathology and Microbiology and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency (US EPA), Research Triangle Park, NC 27711, USA;
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | | | - Miriam N. Jacobs
- United Kingdom Health Security Agency (UK HSA), Radiation, Chemicals and Environmental Hazards, Harwell Innovation Campus, Dicot OX11 0RQ, UK
| |
Collapse
|
18
|
Zeng M, Chen L, Li Y, Mi Y, Xu L. Problems and Challenges Associated with Renaming Non-alcoholic Fatty Liver Disease to Metabolic Associated Fatty Liver Disease. Medicine (Baltimore) 2023; 3. [PMCID: PMC10368226 DOI: 10.1097/id9.0000000000000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 10/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the world’s largest chronic liver disease in the 21st century, affecting 20%–30% of the world’s population. As the epidemiology, etiology, and pathogenesis of NAFLD have been studied in-depth, it has been gradually recognized that most patients with NAFLD have one or more combined metabolic abnormalities known as metabolic syndrome. In 2020, the international expert group changed the name of NAFLD to metabolic-associated fatty liver disease (MAFLD) and proposed new diagnostic criteria for MAFLD and MAFLD-related liver cirrhosis, as well as the conceptual framework of other cause-related fatty liver diseases to avoid diagnosis based on the exclusion of other causes and better reflect its pathogenesis. However, there are still many ambiguities in the term, and changing the name does not address the unmet key needs in the field. The change from NAFLD to MAFLD was not just a change of definition. The problems and challenges are summarized as follows: epidemiology, children, rationality of “metabolism,” diagnostic criteria, double/multiple causes, drug discovery, clinical trials, and awareness raising. Metabolic-associated fatty liver disease has complex disease characteristics, and there are still some problems that need to be solved.
Collapse
Affiliation(s)
- Minghui Zeng
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Lin Chen
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Yuqin Li
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Yuqiang Mi
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
- Tianjin Research Institute of Liver Diseases, Tianjin 300192, China
| | - Liang Xu
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
- Tianjin Research Institute of Liver Diseases, Tianjin 300192, China
| |
Collapse
|
19
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
20
|
Li L, Zang Q, Li X, Zhu Y, Wen S, He J, Zhang R, Abliz Z. Spatiotemporal pharmacometabolomics based on ambient mass spectrometry imaging to evaluate the metabolism and hepatotoxicity of amiodarone in HepG2 spheroids. J Pharm Anal 2023; 13:483-493. [PMID: 37305784 PMCID: PMC10257197 DOI: 10.1016/j.jpha.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 06/13/2023] Open
Abstract
Three-dimensional (3D) cell spheroid models combined with mass spectrometry imaging (MSI) enables innovative investigation of in vivo-like biological processes under different physiological and pathological conditions. Herein, airflow-assisted desorption electrospray ionization-MSI (AFADESI-MSI) was coupled with 3D HepG2 spheroids to assess the metabolism and hepatotoxicity of amiodarone (AMI). High-coverage imaging of >1100 endogenous metabolites in hepatocyte spheroids was achieved using AFADESI-MSI. Following AMI treatment at different times, 15 metabolites of AMI involved in N-desethylation, hydroxylation, deiodination, and desaturation metabolic reactions were identified, and according to their spatiotemporal dynamics features, the metabolic pathways of AMI were proposed. Subsequently, the temporal and spatial changes in metabolic disturbance within spheroids caused by drug exposure were obtained via metabolomic analysis. The main dysregulated metabolic pathways included arachidonic acid and glycerophospholipid metabolism, providing considerable evidence for the mechanism of AMI hepatotoxicity. In addition, a biomarker group of eight fatty acids was selected that provided improved indication of cell viability and could characterize the hepatotoxicity of AMI. The combination of AFADESI-MSI and HepG2 spheroids can simultaneously obtain spatiotemporal information for drugs, drug metabolites, and endogenous metabolites after AMI treatment, providing an effective tool for in vitro drug hepatotoxicity evaluation.
Collapse
Affiliation(s)
- Limei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinzhu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shanjing Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
21
|
Yasuhiko O, Takeuchi K. In-silico clearing approach for deep refractive index tomography by partial reconstruction and wave-backpropagation. LIGHT, SCIENCE & APPLICATIONS 2023; 12:101. [PMID: 37105955 PMCID: PMC10140380 DOI: 10.1038/s41377-023-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Refractive index (RI) is considered to be a fundamental physical and biophysical parameter in biological imaging, as it governs light-matter interactions and light propagation while reflecting cellular properties. RI tomography enables volumetric visualization of RI distribution, allowing biologically relevant analysis of a sample. However, multiple scattering (MS) and sample-induced aberration (SIA) caused by the inhomogeneity in RI distribution of a thick sample make its visualization challenging. This paper proposes a deep RI tomographic approach to overcome MS and SIA and allow the enhanced reconstruction of thick samples compared to that enabled by conventional linear-model-based RI tomography. The proposed approach consists of partial RI reconstruction using multiple holograms acquired with angular diversity and their backpropagation using the reconstructed partial RI map, which unambiguously reconstructs the next partial volume. Repeating this operation efficiently reconstructs the entire RI tomogram while suppressing MS and SIA. We visualized a multicellular spheroid of diameter 140 µm within minutes of reconstruction, thereby demonstrating the enhanced deep visualization capability and computational efficiency of the proposed method compared to those of conventional RI tomography. Furthermore, we quantified the high-RI structures and morphological changes inside multicellular spheroids, indicating that the proposed method can retrieve biologically relevant information from the RI distribution. Benefitting from the excellent biological interpretability of RI distributions, the label-free deep visualization capability of the proposed method facilitates a noninvasive understanding of the architecture and time-course morphological changes of thick multicellular specimens.
Collapse
Affiliation(s)
- Osamu Yasuhiko
- Central Research Laboratory, Hamamatsu Photonics K.K, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Shizuoka, Japan.
| | - Kozo Takeuchi
- Central Research Laboratory, Hamamatsu Photonics K.K, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Shizuoka, Japan.
| |
Collapse
|
22
|
Gögele C, Vogt J, Hahn J, Breier A, Bernhardt R, Meyer M, Schröpfer M, Schäfer-Eckart K, Schulze-Tanzil G. Co-Culture of Mesenchymal Stem Cells and Ligamentocytes on Triphasic Embroidered Poly(L-lactide-co-ε-caprolactone) and Polylactic Acid Scaffolds for Anterior Cruciate Ligament Enthesis Tissue Engineering. Int J Mol Sci 2023; 24:ijms24076714. [PMID: 37047686 PMCID: PMC10095212 DOI: 10.3390/ijms24076714] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Successful anterior cruciate ligament (ACL) reconstructions strive for a firm bone-ligament integration. With the aim to establish an enthesis-like construct, embroidered functionalized scaffolds were colonized with spheroids of osteogenically differentiated human mesenchymal stem cells (hMSCs) and lapine (l) ACL fibroblasts in this study. These triphasic poly(L-lactide-co-ε-caprolactone) and polylactic acid (P(LA-CL)/PLA) scaffolds with a bone-, a fibrocartilage transition- and a ligament zone were colonized with spheroids directly after assembly (DC) or with 14-day pre-cultured lACL fibroblast and 14-day osteogenically differentiated hMSCs spheroids (=longer pre-cultivation, LC). The scaffolds with co-cultures were cultured for 14 days. Cell vitality, DNA and sulfated glycosaminoglycan (sGAG) contents were determined. The relative gene expressions of collagen types I and X, Mohawk, Tenascin C and runt-related protein (RUNX) 2 were analyzed. Compared to the lACL spheroids, those with hMSCs adhered more rapidly. Vimentin and collagen type I immunoreactivity were mainly detected in the hMSCs colonizing the bone zone. The DNA content was higher in the DC than in LC whereas the sGAG content was higher in LC. The gene expression of ECM components and transcription factors depended on cell type and pre-culturing condition. Zonal colonization of triphasic scaffolds using spheroids is possible, offering a novel approach for enthesis tissue engineering.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Julia Vogt
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Judith Hahn
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Annette Breier
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Ricardo Bernhardt
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Michael Meyer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany
| | - Michaela Schröpfer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany
| | - Kerstin Schäfer-Eckart
- Bone Marrow Transplantation Unit, Medizinische Klinik 5, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
23
|
Jiang Z, Xu Y, Fu M, Zhu D, Li N, Yang G. Genetically modified cell spheroids for tissue engineering and regenerative medicine. J Control Release 2023; 354:588-605. [PMID: 36657601 DOI: 10.1016/j.jconrel.2023.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Cell spheroids offer cell-to-cell interactions and show advantages in survival rate and paracrine effect to solve clinical and biomedical inquiries ranging from tissue engineering and regenerative medicine to disease pathophysiology. Therefore, cell spheroids are ideal vehicles for gene delivery. Genetically modified spheroids can enhance specific gene expression to promote tissue regeneration. Gene deliveries to cell spheroids are via viral vectors or non-viral vectors. Some new technologies like CRISPR/Cas9 also have been used in genetically modified methods to deliver exogenous gene to the host chromosome. It has been shown that genetically modified cell spheroids had the potential to differentiate into bone, cartilage, vascular, nerve, cardiomyocytes, skin, and skeletal muscle as well as organs like the liver to replace the diseased organ in the animal and pre-clinical trials. This article reviews the recent articles about genetically modified spheroid cells and explains the fabrication, applications, development timeline, limitations, and future directions of genetically modified cell spheroid.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
24
|
Proença S, van Sabben N, Legler J, Kamstra JH, Kramer NI. The effects of hexabromocyclododecane on the transcriptome and hepatic enzyme activity in three human HepaRG-based models. Toxicology 2023; 485:153411. [PMID: 36572169 DOI: 10.1016/j.tox.2022.153411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The disruption of thyroid hormone homeostasis by hexabromocyclododecane (HBCD) in rodents is hypothesized to be due to HBCD increasing the hepatic clearance of thyroxine (T4). The extent to which these effects are relevant to humans is unclear. To evaluate HBCD effects on humans, the activation of key hepatic nuclear receptors and the consequent disruption of thyroid hormone homeostasis were studied in different human hepatic cell models. The hepatoma cell line, HepaRG, cultured as two-dimensional (2D), sandwich (SW) and spheroid (3D) cultures, and primary human hepatocytes (PHH) cultured as sandwich were exposed to 1 and 10 µM HBCD and characterized for their transcriptome changes. Pathway enrichment analysis showed that 3D models, followed by SW, had a stronger transcriptome response to HBCD, which is explained by the higher expression of hepatic nuclear receptors but also greater accumulation of HBCD measured inside cells in these models. The Pregnane X receptor pathway is one of the pathways most upregulated across the three hepatic models, followed by the constitutive androstane receptor and general hepatic nuclear receptors pathways. Lipid metabolism pathways had a downregulation tendency in all exposures and in both PHH and the three cultivation modes of HepaRG. The activity of enzymes related to PXR/CAR induction and T4 metabolism were evaluated in the three different types of HepaRG cultures exposed to HBCD for 48 h. Reference inducers, rifampicin and PCB-153 did affect 2D and SW HepaRG cultures' enzymatic activity but not 3D. HBCD did not induce the activity of any of the studied enzymes in any of the cell models and culture methods. This study illustrates that for nuclear receptor-mediated T4 disruption, transcriptome changes might not be indicative of an actual adverse effect. Clarification of the reasons for the lack of translation is essential to evaluate new chemicals' potential to be thyroid hormone disruptors by altering thyroid hormone metabolism.
Collapse
Affiliation(s)
- Susana Proença
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Toxicology Division, Wageningen University, Wageningen, the Netherlands.
| | - Nick van Sabben
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jorke H Kamstra
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Nynke I Kramer
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Toxicology Division, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
25
|
Cell Dome as an Evaluation Platform for Organized HepG2 Cells. Cells 2022; 12:cells12010069. [PMID: 36611862 PMCID: PMC9818560 DOI: 10.3390/cells12010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Human-hepatoblastoma-derived cell line, HepG2, has been widely used in liver and liver cancer studies. HepG2 spheroids produced in a three-dimensional (3D) culture system provide a better biological model than cells cultured in a two-dimensional (2D) culture system. Since cells at the center of spheroids exhibit specific behaviors attributed to hypoxic conditions, a 3D cell culture system that allows the observation of such cells using conventional optical or fluorescence microscopes would be useful. In this study, HepG2 cells were cultured in "Cell Dome", a micro-dome in which cells are enclosed in a cavity consisting of a hemispherical hydrogel shell. HepG2 cells formed hemispherical cell aggregates which filled the cavity of Cell Domes on 18 days of culture and the cells could continue to be cultured for 29 days. The cells at the center of hemispherical cell aggregates were observed using a fluorescence microscope. The cells grew in Cell Domes for 18 days exhibited higher Pi-class Glutathione S-Transferase enzymatic activity, hypoxia inducible factor-1α gene expression, and higher tolerance to mitomycin C than those cultured in 2D on tissue culture dishes (* p < 0.05). These results indicate that the center of the glass adhesive surface of hemispherical cell aggregates which is expected to have the similar environment as the center of the spheroids can be directly observed through glass plates. In conclusion, Cell Dome would be useful as an evaluation platform for organized HepG2 cells.
Collapse
|
26
|
Llewellyn SV, Kermanizadeh A, Ude V, Jacobsen NR, Conway GE, Shah UK, Niemeijer M, Moné MJ, van de Water B, Roy S, Moritz W, Stone V, Jenkins GJS, Doak SH. Assessing the transferability and reproducibility of 3D in vitro liver models from primary human multi-cellular microtissues to cell-line based HepG2 spheroids. Toxicol In Vitro 2022; 85:105473. [PMID: 36108805 DOI: 10.1016/j.tiv.2022.105473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
To reduce, replace, and refine in vivo testing, there is increasing emphasis on the development of more physiologically relevant in vitro test systems to improve the reliability of non-animal-based methods for hazard assessment. When developing new approach methodologies, it is important to standardize the protocols and demonstrate the methods can be reproduced by multiple laboratories. The aim of this study was to assess the transferability and reproducibility of two advanced in vitro liver models, the Primary Human multicellular microtissue liver model (PHH) and the 3D HepG2 Spheroid Model, for nanomaterial (NM) and chemical hazard assessment purposes. The PHH model inter-laboratory trial showed strong consistency across the testing sites. All laboratories evaluated cytokine release and cytotoxicity following exposure to titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles. No significant difference was observed in cytotoxicity or IL-8 release for the test materials. The data were reproducible with all three laboratories with control readouts within a similar range. The PHH model ZnO induced the greatest cytotoxicity response at 50.0 μg/mL and a dose-dependent increase in IL-8 release. For the 3D HepG2 spheroid model, all test sites were able to construct the model and demonstrated good concordance in IL-8 cytokine release and genotoxicity data. This trial demonstrates the successful transfer of new approach methodologies across multiple laboratories, with good reproducibility for several hazard endpoints.
Collapse
Affiliation(s)
- Samantha V Llewellyn
- In vitro Toxicology Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Ali Kermanizadeh
- University of Derby, School of Human Sciences, Derby DE22 1GB, UK
| | - Victor Ude
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, UK
| | - Nicklas Raun Jacobsen
- National Research Centre for the Working Environment (NRCWE), Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Gillian E Conway
- In vitro Toxicology Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Ume-Kulsoom Shah
- In vitro Toxicology Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Marije Niemeijer
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Martijn J Moné
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Shambhu Roy
- MilliporeSigma, 14920 Broschart Road, Rockville, MD 20850, USA
| | | | - Vicki Stone
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, UK
| | - Gareth J S Jenkins
- In vitro Toxicology Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Shareen H Doak
- In vitro Toxicology Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
27
|
Ishida-Ishihara S, Takada R, Furusawa K, Ishihara S, Haga H. Improvement of the cell viability of hepatocytes cultured in three-dimensional collagen gels using pump-free perfusion driven by water level difference. Sci Rep 2022; 12:20269. [PMID: 36434099 PMCID: PMC9700666 DOI: 10.1038/s41598-022-24423-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Cell-containing collagen gels are one of the materials employed in tissue engineering and drug testing. A collagen gel is a useful three-dimensional (3D) scaffold that improves various cell functions compared to traditional two-dimensional plastic substrates. However, owing to poor nutrient availability, cells are not viable in thick collagen gels. Perfusion is an effective method for supplying nutrients to the gel. In this study, we maintained hepatocytes embedded in a 3D collagen gel using a simple pump-free perfusion cell culture system with ordinary cell culture products. Flow was generated by the difference in water level in the culture medium. Hepatocytes were found to be viable in a collagen gel of thickness 3.26 (± 0.16 S.E.)-mm for 3 days. In addition, hepatocytes had improved proliferation and gene expression related to liver function in a 3D collagen gel compared to a 2D culture dish. These findings indicate that our perfusion method is useful for investigating the cellular functions of 3D hydrogels.
Collapse
Affiliation(s)
- Sumire Ishida-Ishihara
- grid.39158.360000 0001 2173 7691Department of Functional Life Sciences, Faculty of Advanced Life Science, Hokkaido University, N21-W11, Kita-Ku, Sapporo, 001-0021 Japan
| | - Ryota Takada
- grid.39158.360000 0001 2173 7691Division of Life Science, Graduate School of Life Science, Hokkaido University, N10-W8, Kita-Ku, Sapporo, 060-0810 Japan
| | - Kazuya Furusawa
- grid.440871.e0000 0000 9829 078XFaculty of Environmental and Information Sciences, Fukui University of Technology, Gakuen 3-6-1, Fukui, 910-8505 Japan
| | - Seiichiro Ishihara
- grid.39158.360000 0001 2173 7691Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-Ku, Sapporo, 060-0810 Japan ,grid.39158.360000 0001 2173 7691Soft Matter GI-CoRE, Hokkaido University, N21-W11, Kita-Ku, Sapporo, 001-0021 Japan ,grid.39158.360000 0001 2173 7691Hokkaido University, Room 2-602, Science Bld., N10-W8, Kita-Ku, Sapporo, 060-0810 Japan
| | - Hisashi Haga
- grid.39158.360000 0001 2173 7691Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-Ku, Sapporo, 060-0810 Japan ,grid.39158.360000 0001 2173 7691Soft Matter GI-CoRE, Hokkaido University, N21-W11, Kita-Ku, Sapporo, 001-0021 Japan ,grid.39158.360000 0001 2173 7691Hokkaido University, Room 2-612, Science Bld., N10-W8, Kita-Ku, Sapporo, 060-0810 Japan
| |
Collapse
|
28
|
Fabrication of Cell Spheroids for 3D Cell Culture and Biomedical Applications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00086-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Hefler J, Hatami S, Thiesen A, Olafson C, Durand K, Acker J, Karvellas CJ, Bigam DL, Freed DH, Shapiro AMJ. Model of Acute Liver Failure in an Isolated Perfused Porcine Liver-Challenges and Lessons Learned. Biomedicines 2022; 10:biomedicines10102496. [PMID: 36289758 PMCID: PMC9598959 DOI: 10.3390/biomedicines10102496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acute liver failure (ALF) is a rare but devastating disease associated with substantial morbidity and a mortality rate of almost 45%. Medical treatments, apart from supportive care, are limited and liver transplantation may be the only rescue option. Large animal models, which most closely represent human disease, can be logistically and technically cumbersome, expensive and pose ethical challenges. The development of isolated organ perfusion technologies, originally intended for preservation before transplantation, offers a new platform for experimental models of liver disease, such as ALF. In this study, female domestic swine underwent hepatectomy, followed by perfusion of the isolated liver on a normothermic machine perfusion device. Five control livers were perfused for 24 h at 37 °C, while receiving supplemental oxygen and nutrition. Six livers received toxic doses of acetaminophen given over 12 h, titrated to methemoglobin levels. Perfusate was sampled every 4 h for measurement of biochemical markers of injury (e.g., aspartate aminotransferase [AST], alanine aminotransferase [ALT]). Liver biopsies were taken at the beginning, middle, and end of perfusion for histological assessment. Acetaminophen-treated livers received a median dose of 8.93 g (8.21–9.75 g) of acetaminophen, achieving a peak acetaminophen level of 3780 µmol/L (3189–3913 µmol/L). Peak values of ALT (76 vs. 105 U/L; p = 0.429) and AST (3576 vs. 4712 U/L; p = 0.429) were not significantly different between groups. However, by the end of perfusion, histology scores were significantly worse in the acetaminophen treated group (p = 0.016). All acetaminophen treated livers developed significant methemoglobinemia, with a peak methemoglobin level of 19.3%, compared to 2.0% for control livers (p = 0.004). The development of a model of ALF in the ex vivo setting was confounded by the development of toxic methemoglobinemia. Further attempts using alternative agents or dosing strategies may be warranted to explore this setting as a model of liver disease.
Collapse
Affiliation(s)
- Joshua Hefler
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sanaz Hatami
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Canadian Donation & Transplantation Research Program, Edmonton, AB T6G 2R3, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Carly Olafson
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Canadian Blood Services, Edmonton, AB T6G 2R3, Canada
| | - Kiarra Durand
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Canadian Blood Services, Edmonton, AB T6G 2R3, Canada
| | - Jason Acker
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Canadian Blood Services, Edmonton, AB T6G 2R3, Canada
| | - Constantine J. Karvellas
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - David L. Bigam
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Darren H. Freed
- Canadian Donation & Transplantation Research Program, Edmonton, AB T6G 2R3, Canada
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew Mark James Shapiro
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Canadian Donation & Transplantation Research Program, Edmonton, AB T6G 2R3, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
30
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
31
|
Messelmani T, Le Goff A, Souguir Z, Maes V, Roudaut M, Vandenhaute E, Maubon N, Legallais C, Leclerc E, Jellali R. Development of Liver-on-Chip Integrating a Hydroscaffold Mimicking the Liver’s Extracellular Matrix. Bioengineering (Basel) 2022; 9:bioengineering9090443. [PMID: 36134989 PMCID: PMC9495334 DOI: 10.3390/bioengineering9090443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
The 3Rs guidelines recommend replacing animal testing with alternative models. One of the solutions proposed is organ-on-chip technology in which liver-on-chip is one of the most promising alternatives for drug screening and toxicological assays. The main challenge is to achieve the relevant in vivo-like functionalities of the liver tissue in an optimized cellular microenvironment. Here, we investigated the development of hepatic cells under dynamic conditions inside a 3D hydroscaffold embedded in a microfluidic device. The hydroscaffold is made of hyaluronic acid and composed of liver extracellular matrix components (galactosamine, collagen I/IV) with RGDS (Arg-Gly-Asp-Ser) sites for cell adhesion. The HepG2/C3A cell line was cultured under a flow rate of 10 µL/min for 21 days. After seeding, the cells formed aggregates and proliferated, forming 3D spheroids. The cell viability, functionality, and spheroid integrity were investigated and compared to static cultures. The results showed a 3D aggregate organization of the cells up to large spheroid formations, high viability and albumin production, and an enhancement of HepG2 cell functionalities. Overall, these results highlighted the role of the liver-on-chip model coupled with a hydroscaffold in the enhancement of cell functions and its potential for engineering a relevant liver model for drug screening and disease study.
Collapse
Affiliation(s)
- Taha Messelmani
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Anne Le Goff
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (A.L.G.); (R.J.)
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Victoria Maes
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Méryl Roudaut
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Elodie Vandenhaute
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Cécile Legallais
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Eric Leclerc
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (A.L.G.); (R.J.)
| |
Collapse
|
32
|
Sugiura S, Satoh T, Shin K, Onuki-Nagasaki R, Kanamori T. Perfusion culture of multi-layered HepG2 hepatocellular carcinoma cells in a pressure-driven microphysiological system. J Biosci Bioeng 2022; 134:348-355. [PMID: 35963667 DOI: 10.1016/j.jbiosc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Here we report the perfusion culture of a multi-layered tissue composed of HepG2 cells (a human hepatoma line) in a pressure-driven microphysiological system (PD-MPS), which we developed previously as a multi-throughput perfusion culture platform. The perfusion culture of multi-layered tissue model was constructed by inserting a modified commercially available permeable membrane insert into the PD-MPS. HepG2 cells were layered on the membrane, and culture medium was perfused both through and below the membrane. The seeded density (number of cells/cm2) of the culture model is 70 times that of static culture in a conventional 35-mm culture dish. Pressure-driven circulation of the medium in our compact device (8.6 × 7.0 × 4.5 cm3), which comprised two perfusion-culture modules and a pneumatic connection port, enabled perfusion culture of two multi-layered tissues (initially 1 × 105 cells). To obtain insight into the basic functionality of the multi-layered tissues as hepatocytes, we compared albumin production and urea synthesis between perfusion cultures and static cultures. The HepG2 cells grew and secreted increasing amounts of albumin throughout 20 days of perfusion culture, whereas albumin secretion did not increase under static culture conditions. In addition, on day 20, the amount of albumin secreted by the HepG2 cells in the microfluidic device was 68% of that in the conventional culture dish, which was seeded with the same number of cells but had a 70 times larger culture area. These features of high-density culture of functioning cells in a compact device support the application of PD-MPS in single- and multi-organ MPS.
Collapse
Affiliation(s)
- Shinji Sugiura
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Taku Satoh
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Stem Cell Evaluation Technology Research Association, Astellas Pharma, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kazumi Shin
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Reiko Onuki-Nagasaki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Stem Cell Evaluation Technology Research Association, Astellas Pharma, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Toshiyuki Kanamori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
33
|
Zhang P, Li X, Chen JY, Abate A. Controlled fabrication of functional liver spheroids with microfluidic flow cytometric printing. Biofabrication 2022; 14. [PMID: 35917810 DOI: 10.1088/1758-5090/ac8622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Multicellular liver spheroids are 3D culture models useful in the development of therapies for liver fibrosis. While these models can recapitulate fibrotic disease, current methods for generating them via random aggregation are uncontrolled, yielding spheroids of variable size, function, and utility. Here, we report fabrication of precision liver spheroids with microfluidic flow cytometric printing. Our approach fabricates spheroids cell-by-cell, yielding structures with exact numbers of different cell types. Because spheroid function depends on composition, our precision spheroids have superior functional uniformity, allowing more accurate and statistically significant screens compared to randomly generated spheroids. The approach produces thousands of spheroids per hour, and thus affords a scalable platform by which to manufacture single-cell precision spheroids for disease modeling and high throughput drug testing.
Collapse
Affiliation(s)
- Pengfei Zhang
- University of California San Francisco, 1700 4th St, San Francisco, California, 94143, UNITED STATES
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1700 4th St, San Francisco, 94143, UNITED STATES
| | - Jennifer Y Chen
- Department of Medicine, University of California San Francisco, 555 Mission Bay Blvd South, San Francisco, 94143, UNITED STATES
| | - Adam Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1700 4th St, San Francisco, San Francisco, California, 94158, UNITED STATES
| |
Collapse
|
34
|
High-content imaging of human hepatic spheroids for researching the mechanism of duloxetine-induced hepatotoxicity. Cell Death Dis 2022; 13:669. [PMID: 35915074 PMCID: PMC9343405 DOI: 10.1038/s41419-022-05042-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Duloxetine (DLX) has been approved for the successful treatment of psychiatric diseases, including major depressive disorder, diabetic neuropathy, fibromyalgia and generalized anxiety disorder. However, since the usage of DLX carries a manufacturer warning of hepatotoxicity given its implication in numerous cases of drug-induced liver injuries (DILI), it is not recommended for patients with chronic liver diseases. In our previous study, we developed an enhanced human-simulated hepatic spheroid (EHS) imaging model system for performing drug hepatotoxicity evaluation using the human hepatoma cell line HepaRG and the support of a pulverized liver biomatrix scaffold, which demonstrated much improved hepatic-specific functions. In the current study, we were able to use this robust model to demonstrate that the DLX-DILI is a human CYP450 specific, metabolism-dependent, oxidative stress triggered complex hepatic injury. High-content imaging analysis (HCA) of organoids exposed to DLX showed that the potential toxicophore, naphthyl ring in DLX initiated oxidative stress which ultimately led to mitochondrial dysfunction in the hepatic organoids, and vice versa. Furthermore, DLX-induced hepatic steatosis and cholestasis was also detected in the exposed EHSs. We also discovered that a novel compound S-071031B, which replaced DLX's naphthyl ring with benzodioxole, showed dramatically lower hepatotoxicities through reducing oxidative stress. Thus, we conclusively present the human-relevant EHS model as an ideal, highly competent system for evaluating DLX induced hepatotoxicity and exploring related mechanisms in vitro. Moreover, HCA use on functional hepatic organoids has promising application prospects for guiding compound structural modifications and optimization in order to improve drug development by reducing hepatotoxicity.
Collapse
|
35
|
Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. LAB ON A CHIP 2022; 22:2423-2450. [PMID: 35694831 DOI: 10.1039/d2lc00307d] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver is a key organ that plays a pivotal role in metabolism and ensures a variety of functions in the body, including homeostasis, synthesis of essential components, nutrient storage, and detoxification. As the centre of metabolism for exogenous molecules, the liver is continuously exposed to a wide range of compounds, such as drugs, pesticides, and environmental pollutants. Most of these compounds can cause hepatotoxicity and lead to severe and irreversible liver damage. To study the effects of chemicals and drugs on the liver, most commonly, animal models or in vitro 2D cell cultures are used. However, data obtained from animal models lose their relevance when extrapolated to the human metabolic situation and pose ethical concerns, while 2D static cultures are poorly predictive of human in vivo metabolism and toxicity. As a result, there is a widespread need to develop relevant in vitro liver models for toxicology studies. In recent years, progress in tissue engineering, biomaterials, microfabrication, and cell biology has created opportunities for more relevant in vitro models for toxicology studies. Of these models, the liver organ-on-chip (OoC) has shown promising results by reproducing the in vivo behaviour of the cell/organ or a group of organs, the controlled physiological micro-environment, and in vivo cellular metabolic responses. In this review, we discuss the development of liver organ-on-chip technology and its use in toxicity studies. First, we introduce the physiology of the liver and summarize the traditional experimental models for toxicity studies. We then present liver OoC technology, including the general concept, materials used, cell sources, and different approaches. We review the prominent liver OoC and multi-OoC integrating the liver for drug and chemical toxicity studies. Finally, we conclude with the future challenges and directions for developing or improving liver OoC models.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
36
|
Liu J, Li T, Li R, Wang J, Li P, Niu M, Zhang L, Li C, Wang T, Xiao X, Wang JB, Wang Y. Hepatic Organoid-Based High-Content Imaging Boosts Evaluation of Stereoisomerism-Dependent Hepatotoxicity of Stilbenes in Herbal Medicines. Front Pharmacol 2022; 13:862830. [PMID: 35656304 PMCID: PMC9152290 DOI: 10.3389/fphar.2022.862830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The complexity of chemical components of herbal medicines often causes great barriers to toxicity research. In our previous study, we have found the critical divergent hepatotoxic potential of a pair of stilbene isomers in a famous traditional Chinese herb, Polygonum multiflorum (Heshouwu in Chinese). However, the high-throughput in vitro evaluation for such stereoisomerism-dependent hepatotoxicity is a critical challenge. In this study, we used a hepatic organoids–based in vitro hepatotoxic evaluation system in conjunction with using high content imaging to differentiate in vivo organ hepatotoxicity of the 2,3,5,4′-tetrahydroxy-trans-stilbene-2-O-β-glucoside (trans-SG) and its cis-isomer (cis-SG). By using such an organoid platform, we successfully differentiated the two stereoisomers’ hepatotoxic potentials, which were in accordance with their differences in rodents and humans. The lesion mechanism of the toxic isomer (cis-SG) was further found as the mitochondrial injury by high-content imaging, and its hepatotoxicity could be dose-dependently inhibited by the mitochondrial protective agent. These results demonstrated the utility of the organoids-based high-content imaging approach in evaluating and predicting organ toxicity of natural products in a low-cost and high-throughput way. It also suggested the rationale to use long-term cultured organoids as an alternative toxicology platform to identify early and cautiously the hepatotoxic new drug candidates in the preclinical phase.
Collapse
Affiliation(s)
- Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Tingting Li
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ruihong Li
- Stem Cells and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jie Wang
- Stem Cells and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Pengyan Li
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Le Zhang
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chunyu Li
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Tao Wang
- Nephrology Combined with Traditional Chinese and Western Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohe Xiao
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
37
|
Liao FC, Wang YK, Cheng MY, Tu TY. A Preliminary Investigation of Embedding In Vitro HepaRG Spheroids into Recombinant Human Collagen Type I for the Promotion of Liver Differentiation. Polymers (Basel) 2022; 14:polym14091923. [PMID: 35567092 PMCID: PMC9103061 DOI: 10.3390/polym14091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background: In vitro three-dimensional (3D) hepatic spheroid culture has shown great promise in toxicity testing because it better mimics the cell–cell and cell–matrix interactions found in in vivo conditions than that of the traditional two-dimensional (2D) culture. Despite embedding HepaRG spheroids with collagen type I (collagen I) extracellular matrix (ECM) revealed a much better differentiation capability, almost all the collagen utilized in in vitro hepatocytes cultures is animal-derived collagen that may limit its use in human toxicity testing. Method: Here, a preliminary investigation of HepaRG cells cultured in different dimensionalities and with the addition of ECM was performed. Comparisons of conventional 2D culture with 3D spheroid culture were performed based on their functional or structural differences over 7 days. Rat tail collagen (rtCollagen) I and recombinant human collagen (rhCollagen) I were investigated for their ability in promoting HepaRG spheroid differentiation. Results: An immunofluorescence analysis of the hepatocyte-specific functional protein albumin suggested that HepaRG spheroids demonstrated better hepatic function than spheroids from 2D culture, and the function of HepaRG spheroids improved in a time-dependent manner. The fluorescence intensities per unit area of spheroids formed by 1000 cells on days 7 and 10 were 25.41 and 45.38, respectively, whereas almost undetectable fluorescence was obtained with 2D cells. In addition, the embedding of HepaRG spheroids into rtCollagen and rhCollagen I showed that HepaRG differentiation can be accelerated relative to the differentiation of spheroids grown in suspension, demonstrating the great promise of HepaRG spheroids. Conclusions: The culture conditions established in this study provide a potentially novel alternative for promoting the differentiation of HepaRG spheroids into mature hepatocytes through a collagen-embedded in vitro liver spheroid model. This culture method is envisioned to provide insights for future drug toxicology.
Collapse
Affiliation(s)
- Fang-Chun Liao
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (F.-C.L.); (M.-Y.C.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Ming-Yang Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (F.-C.L.); (M.-Y.C.)
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (F.-C.L.); (M.-Y.C.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence:
| |
Collapse
|
38
|
Kemas AM, Youhanna S, Lauschke VM. Non-alcoholic fatty liver disease - opportunities for personalized treatment and drug development. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2053285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aurino M. Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
39
|
Preiss LC, Lauschke VM, Georgi K, Petersson C. Multi-Well Array Culture of Primary Human Hepatocyte Spheroids for Clearance Extrapolation of Slowly Metabolized Compounds. AAPS J 2022; 24:41. [PMID: 35277751 DOI: 10.1208/s12248-022-00689-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Accurate prediction of human pharmacokinetics using in vitro tools is an important task during drug development. Albeit, currently used in vitro systems for clearance extrapolation such as microsomes and primary human hepatocytes in suspension culture show reproducible turnover, the utility of these systems is limited by a rapid decline of activity of drug metabolizing enzymes. In this study, a multi-well array culture of primary human hepatocyte spheroids was compared to suspension and single spheroid cultures from the same donor. Multi-well spheroids remained viable and functional over the incubation time of 3 days, showing physiological excretion of albumin and α-AGP. Their metabolic activity was similar compared to suspension and single spheroid cultures. This physiological activity, the high cell concentration, and the prolonged incubation time resulted in significant turnover of all tested low clearance compounds (n = 8). In stark contrast, only one or none of the compounds showed significant turnover when single spheroid or suspension cultures were used. Using multi-well spheroids and a regression offset approach (log(CLint) = 1.1 × + 0.85), clearance was predicted within 3-fold for 93% (13/14) of the tested compounds. Thus, multi-well spheroids represent a novel and valuable addition to the ADME in vitro tool kit for the determination of low clearance and overall clearance prediction. Graphical Abstract.
Collapse
Affiliation(s)
- Lena C Preiss
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Katrin Georgi
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Carl Petersson
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.
| |
Collapse
|
40
|
Komori K, Usui M, Hatano K, Hori Y, Hirono K, Zhu D, Tokito F, Nishikawa M, Sakai Y, Kimura H. In vitro enzymatic electrochemical monitoring of glucose metabolism and production in rat primary hepatocytes on highly O 2 permeable plates. Bioelectrochemistry 2022; 143:107972. [PMID: 34666223 DOI: 10.1016/j.bioelechem.2021.107972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
In situ continuous glucose monitoring under physiological culture conditions is imperative in understanding the dynamics of cell and tissue behaviors and their physiological responses since glucose plays an important role in principal source of biological energy. We therefore examined physiologically relevant dynamic changes in glucose levels based on glucose metabolism and production during aerobic culture (10% O2) of rat primary hepatocytes stimulated with insulin or glucagon on a highly O2 permeable plate, which can maintain the oxygen concentration close to the periportal zone of the liver. As glucose monitoring devices, we used oxygen-independent glucose dehydrogenase-modified single-walled carbon nanotube electrodes placed close to the surface of the hepatocytes. The current response of glucose oxidation slightly decreased after the addition of insulin in the presence of glucose due to the acceleration of glucose uptake by the hepatocytes, whereas that significantly increased after the addition of glucagon and fructose even in the absence of glucose due to the conversion of fructose to glucose based on gluconeogenesis. These phenomena might be consistent relatively with the physiological behaviors of hepatocytes in the periportal region. The present monitoring system would be useful for the studies of glucose homeostasis and diabetes in vitro.
Collapse
Affiliation(s)
- Kikuo Komori
- Department of Biotechnology and Chemistry, Kindai University, Takaya-Umenobe, Higashi-Hiroshima 739-2116, Japan; Department of Chemical System Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Masataka Usui
- Department of Chemical System Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Hatano
- Department of Chemical System Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuma Hori
- Department of Biotechnology and Chemistry, Kindai University, Takaya-Umenobe, Higashi-Hiroshima 739-2116, Japan
| | - Keita Hirono
- Department of Chemical System Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Dongchen Zhu
- Department of Chemical System Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, Tokai University, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
41
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
42
|
Gatzios A, Rombaut M, Buyl K, De Kock J, Rodrigues RM, Rogiers V, Vanhaecke T, Boeckmans J. From NAFLD to MAFLD: Aligning Translational In Vitro Research to Clinical Insights. Biomedicines 2022; 10:biomedicines10010161. [PMID: 35052840 PMCID: PMC8773802 DOI: 10.3390/biomedicines10010161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Although most same-stage non-alcoholic fatty liver disease (NAFLD) patients exhibit similar histologic sequelae, the underlying mechanisms appear to be highly heterogeneous. Therefore, it was recently proposed to redefine NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) in which other known causes of liver disease such as alcohol consumption or viral hepatitis do not need to be excluded. Revised nomenclature envisions speeding up and facilitating anti-MAFLD drug development by means of patient stratification whereby each subgroup would benefit from distinct pharmacological interventions. As human-based in vitro research fulfils an irrefutable step in drug development, action should be taken as well in this stadium of the translational path. Indeed, most established in vitro NAFLD models rely on short-term exposure to fatty acids and use lipid accumulation as a phenotypic benchmark. This general approach to a seemingly ambiguous disease such as NAFLD therefore no longer seems applicable. Human-based in vitro models that accurately reflect distinct disease subgroups of MAFLD should thus be adopted in early preclinical disease modeling and drug testing. In this review article, we outline considerations for setting up translational in vitro experiments in the MAFLD era and allude to potential strategies to implement MAFLD heterogeneity into an in vitro setting so as to better align early drug development with future clinical trial designs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joost Boeckmans
- Correspondence: (A.G.); (J.B.); Tel.: +32-(0)-2-477-45-94 (A.G.)
| |
Collapse
|
43
|
Masui A, Hirai T, Gotoh S. Perspectives of future lung toxicology studies using human pluripotent stem cells. Arch Toxicol 2022; 96:389-402. [PMID: 34973109 PMCID: PMC8720162 DOI: 10.1007/s00204-021-03188-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
The absence of in vitro platforms for human pulmonary toxicology studies is becoming an increasingly serious concern. The respiratory system has a dynamic mechanical structure that extends from the airways to the alveolar region. In addition, the epithelial, endothelial, stromal, and immune cells are highly organized in each region and interact with each other to function synergistically. These cells of varied lineage, particularly epithelial cells, have been difficult to use for long-term culture in vitro, thus limiting the development of useful experimental tools. This limitation has set a large distance between the bench and the bedside for analyzing the pathogenic mechanisms, the efficacy of candidate therapeutic agents, and the toxicity of compounds. Several researchers have proposed solutions to these problems by reporting on methods for generating human lung epithelial cells derived from pluripotent stem cells (PSCs). Moreover, the use of organoid culture, organ-on-a-chip, and material-based techniques have enabled the maintenance of functional PSC-derived lung epithelial cells as well as primary cells. The aforementioned technological advances have facilitated the in vitro recapitulation of genetic lung diseases and the detection of ameliorating or worsening effects of genetic and chemical interventions, thus indicating the future possibility of more sophisticated preclinical compound assessments in vitro. In this review, we will update the recent advances in lung cell culture methods, principally focusing on human PSC-derived lung epithelial organoid culture systems with the hope of their future application in toxicology studies.
Collapse
Affiliation(s)
- Atsushi Masui
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Nogi, Tochigi, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
44
|
Pelechá M, Villanueva-Bádenas E, Timor-López E, Donato MT, Tolosa L. Cell Models and Omics Techniques for the Study of Nonalcoholic Fatty Liver Disease: Focusing on Stem Cell-Derived Cell Models. Antioxidants (Basel) 2021; 11:86. [PMID: 35052590 PMCID: PMC8772881 DOI: 10.3390/antiox11010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease in western countries. The molecular mechanisms leading to NAFLD are only partially understood, and effective therapeutic interventions are clearly needed. Therefore, preclinical research is required to improve knowledge about NAFLD physiopathology and to identify new therapeutic targets. Primary human hepatocytes, human hepatic cell lines, and human stem cell-derived hepatocyte-like cells exhibit different hepatic phenotypes and have been widely used for studying NAFLD pathogenesis. In this paper, apart from employing the different in vitro cell models for the in vitro assessment of NAFLD, we also reviewed other approaches (metabolomics, transcriptomics, and high-content screening). We aimed to summarize the characteristics of different cell types and methods and to discuss their major advantages and disadvantages for NAFLD modeling.
Collapse
Affiliation(s)
- María Pelechá
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
| | - Estela Villanueva-Bádenas
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - Enrique Timor-López
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
45
|
Zhang Y, Liu L, Li N, Wang Y, Yue X. 3D scaffold fabricated with composite material for cell culture and its derived platform for safety evaluation of drugs. Toxicology 2021; 466:153066. [PMID: 34919984 DOI: 10.1016/j.tox.2021.153066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022]
Abstract
In order to overcome the weakness of conventional approaches for cell culture, and provide cells with more in vivo-like microenvironment for studying hepatotoxicity of drugs, "multiple-in-one" strategy was adopted to fabricate a 3D scaffold of silk fibroin/hydroxyapatite/poly lacticco-glycolic acid (SF/HA/PLGA), where HepG2 cells were cultivated and the toxicity of drugs to the cells was investigated. The prepared 3D scaffold proves to bear proper porosity, excellent mechanical property, steady pH environment and good biocompatibility for cell culture. Furthermore, the validity of the developed 3D-SF/HA/PLGA-scaffold based platform was verified by probing the toxicity of a known drug-induced liver injury (DILI) concern acetaminophen (APAP) to HepG2 cells. Eventually, an application of the platform to dioscin (a medicinal plant extract) reveals the hepatotoxicity of dioscin, which involves the inhibition of the expression of CYP3A4 mRNA in the cells. The developed 3D-SF/HA/PLGA-scaffold platform may become a universal avenue for safety evaluation of drugs.
Collapse
Affiliation(s)
- Yanni Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| | - Le Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Na Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Yihua Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Xuanfeng Yue
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering of Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| |
Collapse
|
46
|
Xie Y, Yao J, Jin W, Ren L, Li X. Induction and Maturation of Hepatocyte-Like Cells In Vitro: Focus on Technological Advances and Challenges. Front Cell Dev Biol 2021; 9:765980. [PMID: 34901010 PMCID: PMC8662991 DOI: 10.3389/fcell.2021.765980] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Limited by the poor proliferation and restricted sources of adult hepatocytes, there is an urgent need to find substitutes for proliferation and cultivation of mature hepatocytes in vitro for use in disease treatment, drug approval, and toxicity testing. Hepatocyte-like cells (HLCs), which originate from undifferentiated stem cells or modified adult cells, are considered good candidates because of their advantages in terms of cell source and in vitro expansion ability. However, the majority of induced HLCs are in an immature state, and their degree of differentiation is heterogeneous, diminishing their usability in basic research and limiting their clinical application. Therefore, various methods have been developed to promote the maturation of HLCs, including chemical approaches, alteration of cell culture systems, and genetic manipulation, to meet the needs of in vivo transplantation and in vitro model establishment. This review proposes different cell types for the induction of HLCs, and provide a comprehensive overview of various techniques to promote the generation and maturation of HLCs in vitro.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Weilin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, China
| |
Collapse
|
47
|
Hernandez‐Jerez AF, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Focks A, Marinovich M, Millet M, Pelkonen O, Pieper S, Tiktak A, Topping CJ, Widenfalk A, Wilks M, Wolterink G, Gundert‐Remy U, Louisse J, Rudaz S, Testai E, Lostia A, Dorne J, Parra Morte JM. Scientific Opinion of the Scientific Panel on Plant Protection Products and their Residues (PPR Panel) on testing and interpretation of comparative in vitro metabolism studies. EFSA J 2021; 19:e06970. [PMID: 34987623 PMCID: PMC8696562 DOI: 10.2903/j.efsa.2021.6970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
EFSA asked the Panel on Plant Protection Products and their residues to deliver a Scientific Opinion on testing and interpretation of comparative in vitro metabolism studies for both new active substances and existing ones. The main aim of comparative in vitro metabolism studies of pesticide active substances is to evaluate whether all significant metabolites formed in the human in vitro test system, as a surrogate of the in vivo situation, are also present at comparable level in animal species tested in toxicological studies and, therefore, if their potential toxicity has been appropriately covered by animal studies. The studies may also help to decide which animal model, with regard to a particular compound, is the most relevant for humans. In the experimental strategy, primary hepatocytes in suspension or culture are recommended since hepatocytes are considered the most representative in vitro system for prediction of in vivo metabolites. The experimental design of 3 × 3 × 3 (concentrations, time points, technical replicates, on pooled hepatocytes) will maximise the chance to identify unique (UHM) and disproportionate (DHM) human metabolites. When DHM and UHM are being assessed, test item-related radioactivity recovery and metabolite profile are the most important parameters. Subsequently, structural characterisation of the assigned metabolites is performed with appropriate analytical techniques. In toxicological assessment of metabolites, the uncertainty factor approach is the first alternative to testing option, followed by new approach methodologies (QSAR, read-across, in vitro methods), and only if these fail, in vivo animal toxicity studies may be performed. Knowledge of in vitro metabolites in human and animal hepatocytes would enable toxicological evaluation of all metabolites of concern, and, furthermore, add useful pieces of information for detection and evaluation of metabolites in different matrices (crops, livestock, environment), improve biomonitoring efforts via better toxicokinetic understanding, and ultimately, develop regulatory schemes employing physiologically based or physiology-mimicking in silico and/or in vitro test systems to anticipate the exposure of humans to potentially hazardous substances in plant protection products.
Collapse
|
48
|
60Coγ induction improves the protective effect of Acetobacter pasteurianus against ionizing radiation in mice. Appl Microbiol Biotechnol 2021; 105:9285-9295. [PMID: 34778911 DOI: 10.1007/s00253-021-11664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Exposure to ionizing radiation (IR) tends to cause serious health concerns. Thus, radioprotective agents are vital for the population exposed to radiation. As microorganisms have the advantages of fast reproduction and no geographical restrictions, direct microbe-based and environmental induction compounds are thriving radioprotectants resources. Oxidative system and oxidase in Acetobacter pasteurianus are unique and intriguing, the radioprotective effect of the cell-free extract from A. pasteurianus (APE) and 60Coγ-treated extract (IRE) were comparatively investigated in the present study. The survival rate of A. pasteurianus with IRE addition was 149.1% in H2O2 damage test, while that with APE was only 10.4%. The viability of 60Coγ-treated AML-12 cells was increased by 18.8% with IRE addition, yet APE showed no significant radioprotective effect. Moreover, in 60Coγ-treated mice, IRE could significantly protect the white blood cell, improve the liver index, and attenuate the injuries of immune organs in mice. Administration of IRE significantly raised the activities of superoxide dismutase (SOD) and reduced the products of lipid peroxidation. These results clarified that gavage with APE and IRE presented notable antioxidant and radioprotective efficacy. A. pasteurianus showed appealing potential to be novel radioprotective bioagents and 60Coγ treatment on microbe could be a new method for the development of better radioprotectant. KEY POINTS: • 60Coγ induction could improve the radioprotective effect of APE. • IRE protected white blood cell in mice under IR. • IRE products have broad application prospects in radioprotection based on microbes.
Collapse
|
49
|
Primary Human Hepatocyte Spheroids as Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int J Mol Sci 2021; 22:ijms222011005. [PMID: 34681664 PMCID: PMC8537720 DOI: 10.3390/ijms222011005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Drug-induced liver injury, including cholestasis, is an important clinical issue and economic burden for pharmaceutical industry and healthcare systems. However, human-relevant in vitro information on the ability of other types of chemicals to induce cholestatic hepatotoxicity is lacking. This work aimed at investigating the cholestatic potential of non-pharmaceutical chemicals using primary human hepatocytes cultured in 3D spheroids. Spheroid cultures were repeatedly (co-) exposed to drugs (cyclosporine-A, bosentan, macitentan) or non-pharmaceutical chemicals (paraquat, tartrazine, triclosan) and a concentrated mixture of bile acids for 4 weeks. Cell viability (adenosine triphosphate content) was checked every week and used to calculate the cholestatic index, an indicator of cholestatic liability. Microarray analysis was performed at specific time-points to verify the deregulation of genes related to cholestasis, steatosis and fibrosis. Despite the evident inter-donor variability, shorter exposures to cyclosporine-A consistently produced cholestatic index values below 0.80 with transcriptomic data partially supporting its cholestatic burden. Bosentan confirmed to be hepatotoxic, while macitentan was not toxic in the tested concentrations. Prolonged exposure to paraquat suggested fibrotic potential, while triclosan markedly deregulated genes involved in different types of hepatotoxicity. These results support the applicability of primary human hepatocyte spheroids to study hepatotoxicity of non-pharmaceutical chemicals in vitro.
Collapse
|
50
|
Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal GP, Lucena MI, Andrade RJ, Fromenty B, Kranendonk M, Cubero FJ, Nelson LJ. Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J Hepatol 2021; 75:935-959. [PMID: 34171436 DOI: 10.1016/j.jhep.2021.06.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.
Collapse
Affiliation(s)
- Jose C Fernandez-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033.
| | - Pierre Bagnaninchi
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK
| | - Hui Ye
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Pau Sancho-Bru
- Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Falcon-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48015, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Joana Miranda
- Research Institute for iMedicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Gareth J Sullivan
- University of Oslo and the Oslo University Hospital, Oslo, Norway; Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hosptial, Oslo, Norway
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación, Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Leonard J Nelson
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK; Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH12 2AS, Scotland, UK.
| |
Collapse
|