1
|
Chen MT, Zhou JJ, Han RT, Ma QW, Wu ZJ, Fu P, Ma AJ, Feng N. Melatonin derivative 6a protects Caenorhabditis elegans from formaldehyde neurotoxicity via ADH5. Free Radic Biol Med 2024; 223:357-368. [PMID: 39127141 DOI: 10.1016/j.freeradbiomed.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Formaldehyde (FA) is a carcinogen that is not only widespread in the environment, but is also produced endogenously by metabolic processes. In organisms, FA is converted to formic acid in a glutathione (GSH)-dependent manner by alcohol dehydrogenase 5 (ADH5). The abnormal accumulation of FA in the body can cause a variety of diseases, especially cognitive impairment leading to Alzheimer's disease (AD). In this study, melatonin derivative 6a (MD6a) markedly improved the survival and chemotactic performance of wild-type Caenorhabditis elegans exposed to high concentrations of FA. MD6a lowered FA levels in the nematodes by enhancing the release of covalently-bound GSH from S-hydroxymethyl-GSH in an adh-5-dependent manner. In addition, MD6a protected against mitochondrial dysfunction and cognitive impairment in beta-amyloid protein (Aβ) transgenic nematodes by lowering endogenous FA levels and reducing Aβ aggregation in an adh-5-dependent manner. Our findings suggest that MD6a detoxifies FA via ADH5 and protects against Aβ toxicity by reducing endogenous FA levels in the C. elegans AD models. Thus, ADH5 might be a potential therapeutic target for FA toxicity and AD.
Collapse
Affiliation(s)
- Meng-Ting Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Jun-Jie Zhou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Rui-Ting Han
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Qing-Wei Ma
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Zi-Jie Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ai-Jun Ma
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Na Feng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China.
| |
Collapse
|
2
|
Elehinafe FB, Aondoakaa EA, Akinyemi AF, Agboola O, Okedere OB. Separation processes for the treatment of industrial flue gases - Effective methods for global industrial air pollution control. Heliyon 2024; 10:e32428. [PMID: 38933980 PMCID: PMC11200353 DOI: 10.1016/j.heliyon.2024.e32428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The treatment of flue gases has become a crucial area of interest with the increasing air emissions into the atmosphere from industries involved in combustion of fossil fuels in their operations. In essence, there is a critical need for effective methods of treatment more than ever. Treatment and separation are now a demand for the overall industrial operations to control the rate of flue gas emissions. The major culprit in this wise is power generating industry. The major associated air pollutants are carbon dioxide, sulfur oxides, trace metals, volatile organic compounds, particulate matters, and nitrogen oxides. However, the choice of technologies to be utilized requires more than just knowledge of the separation process, but also a good understanding of the properties of the pollutants. This review explored and evaluated the various separation processes and technologies for the treatment of industrial flue gases for the control of the associated air pollutants. It also analyzed the performance with references to cost and efficiency, the advantages and disadvantages, principles for selection, research direction, and/or potential opportunities in existing separation processes and technologies.
Collapse
Affiliation(s)
- Francis B. Elehinafe
- Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria
| | - Ephraim A. Aondoakaa
- Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria
| | - Akinnike F. Akinyemi
- Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria
| | - Oluranti Agboola
- Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria
| | - Oyetunji B. Okedere
- Department of Chemical Engineering, Faculty of Engineering, Osun State University, Osogbo, Ogun State, Nigeria
| |
Collapse
|
3
|
Zhang Y, Du Y, Liao K, Peng T. Modular development of organelle-targeting fluorescent probes for imaging formaldehyde in live cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3646-3653. [PMID: 38738568 DOI: 10.1039/d4ay00360h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Formaldehyde (FA) is endogenously generated via fundamental biological processes in living systems. Aberrant FA homeostasis in subcellular microenvironments is implicated in numerous pathological conditions. Fluorescent probes for detecting FA in specific organelles are thus of great research interest. Herein, we present a modular strategy to construct diverse organelle-targeting FA probes by incorporating selective organelle-targeting moieties into the scaffold of a 1,8-naphthalimide-derived FA fluorescent probe. These probes react with FA through the 2-aza-Cope arrangement and exhibit highly selective fluorescence increases for detecting FA in aqueous solutions. Moreover, these organelle-targeting probes, i.e., FFP551-Nuc, FFP551-ER, FFP551-Mito, and FFP551-Lyso, allow selective localization and imaging of FA in the nucleus, endoplasmic reticulum, mitochondria, and lysosomes of live mammalian cells, respectively. Furthermore, FFP551-Nuc has been successfully employed to monitor changes of endogenous FA levels in the nucleus of live mammalian cells. Overall, these probes should represent new imaging tools for studying the biology and pathology associated with FA in different intracellular compartments.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yimeng Du
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kongke Liao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
4
|
Chen J, Chen W, Zhang J, Zhao H, Cui J, Wu J, Shi A. Dual effects of endogenous formaldehyde on the organism and drugs for its removal. J Appl Toxicol 2024; 44:798-817. [PMID: 37766419 DOI: 10.1002/jat.4546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Endogenous formaldehyde (FA) is produced in the human body via various mechanisms to preserve healthy energy metabolism and safeguard the organism. However, endogenous FA can have several negative effects on the body through epigenetic alterations, including cancer growth promotion; neuronal, hippocampal and endothelial damages; atherosclerosis acceleration; haemopoietic stem cell destruction and haemopoietic cell production reduction. Certain medications with antioxidant effects, such as glutathione, vitamin E, resveratrol, alpha lipoic acid and polyphenols, lessen the detrimental effects of endogenous FA by reducing oxidative stress, directly scavenging endogenous FA or promoting its degradation. This study offers fresh perspectives for managing illnesses associated with endogenous FA exposure.
Collapse
Affiliation(s)
- Jiaxin Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinjia Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Ji Cui
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Anhua Shi
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
5
|
Tan TH, Li SW, Chang CW, Chen YC, Liu YH, Ma JT, Chang CP, Liao PC. Rat Hair Metabolomics Analysis Reveals Perturbations of Unsaturated Fatty Acid Biosynthesis, Phenylalanine, and Arachidonic Acid Metabolism Pathways Are Associated with Amyloid-β-Induced Cognitive Deficits. Mol Neurobiol 2023; 60:4373-4395. [PMID: 37095368 PMCID: PMC10293421 DOI: 10.1007/s12035-023-03343-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Hair is a noninvasive valuable biospecimen for the long-term assessment of endogenous metabolic disturbance. Whether the hair is suitable for identifying biomarkers of the Alzheimer's disease (AD) process remains unknown. We aim to investigate the metabolism changes in hair after β-amyloid (Aβ1-42) exposure in rats using ultra-high-performance liquid chromatography-high-resolution mass spectrometry-based untargeted and targeted methods. Thirty-five days after Aβ1-42 induction, rats displayed significant cognitive deficits, and forty metabolites were changed, of which twenty belonged to three perturbed pathways: (1) phenylalanine metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis-L-phenylalanine, phenylpyruvate, ortho-hydroxyphenylacetic acid, and phenyllactic acid are up-regulated; (2) arachidonic acid (ARA) metabolism-leukotriene B4 (LTB4), arachidonyl carnitine, and 5(S)-HPETE are upregulation, but ARA, 14,15-DiHETrE, 5(S)-HETE, and PGB2 are opposite; and (3) unsaturated fatty acid biosynthesis- eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), FA 18:3 + 1O, and FA 18:3 + 2O are downregulated. Linoleic acid metabolism belonging to the biosynthesis of unsaturated fatty acid includes the upregulation of 8-hydroxy-9,10-epoxystearic acid, 13-oxoODE, and FA 18:2 + 4O, and downregulation of 9(S)-HPODE and dihomo-γ-linolenic acid. In addition, cortisone and dehydroepiandrosterone belonging to steroid hormone biosynthesis are upregulated. These three perturbed metabolic pathways also correlate with cognitive impairment after Aβ1-42 stimulation. Furthermore, ARA, DHA, EPA, L-phenylalanine, and cortisone have been previously implicated in the cerebrospinal fluid of AD patients and show a similar changing trend in Aβ1-42 rats' hair. These data suggest hair can be a useful biospecimen that well reflects the expression of non-polar molecules under Aβ1-42 stimulation, and the five metabolites have the potential to serve as novel AD biomarkers.
Collapse
Affiliation(s)
- Tian-Hoe Tan
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Senior Services, Southern Taiwan University of Science and Technology, No.1, Nantai St., Yungkang Dist., Tainan, 710, Taiwan
| | - Shih-Wen Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yu-Hsuan Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Jui-Ti Ma
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan, 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan, 710, Taiwan.
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
6
|
Lee S, Kim M, Ahn BJ, Jang Y. Odorant-responsive biological receptors and electronic noses for volatile organic compounds with aldehyde for human health and diseases: A perspective review. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131555. [PMID: 37156042 DOI: 10.1016/j.jhazmat.2023.131555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Volatile organic compounds (VOCs) are gaseous chemicals found in ambient air and exhaled breath. In particular, highly reactive aldehydes are frequently found in polluted air and have been linked to various diseases. Thus, extensive studies have been carried out to elucidate disease-specific aldehydes released from the body to develop potential biomarkers for diagnostic purposes. Mammals possess innate sensory systems, such as receptors and ion channels, to detect these VOCs and maintain physiological homeostasis. Recently, electronic biosensors such as the electronic nose have been developed for disease diagnosis. This review aims to present an overview of natural sensory receptors that can detect reactive aldehydes, as well as electronic noses that have the potential to diagnose certain diseases. In this regard, this review focuses on eight aldehydes that are well-defined as biomarkers in human health and disease. It offers insights into the biological aspects and technological advances in detecting aldehyde-containing VOCs. Therefore, this review will aid in understanding the role of aldehyde-containing VOCs in human health and disease and the technological advances for improved diagnosis.
Collapse
Affiliation(s)
- Solpa Lee
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea; Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea.
| |
Collapse
|
7
|
Liang F, Huang W, Wu L, Wu Y, Zhang T, He X, Wang Z, Yu X, Li Y, Qian S. A NIR fluorescent probe for dual imaging of mitochondrial viscosity and FA in living cells and zebrafish. Analyst 2023; 148:1437-1441. [PMID: 36919562 DOI: 10.1039/d2an01628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Formaldehyde (FA) and viscosity play multiple roles in human health and diseases, and viscosity has great regional differences due to the diversity of subcellular organelles. However, it is challenging to achieve dual detection of viscosity and FA in subcellular organelles. Herein, we developed a near infrared (NIR) fluorescent probe FA-Cy, which can simultaneously monitor the viscosity and FA concentration of mitochondria in living cells. The probe could detect mitochondrial viscosity and exogenous and endogenous FA in living cells and zebrafish.
Collapse
Affiliation(s)
- Feng Liang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Wanyun Huang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Lei Wu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Yihong Wu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu 610091, China
| | - Xiaolong He
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| | - Zhouyu Wang
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| | - Xiaoqi Yu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu 610091, China
| | - Shan Qian
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| |
Collapse
|
8
|
Liu L, Zhang D, Li M, Shi J, Guo F, Guo J, Wang T. A mitochondria-targeted fluorescent probe for reversible recognition of sulfur dioxide/formaldehyde and its application in cell imaging. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Pei X, Wang T, Liu C, Liu Z. A Ratiometric Fluorescent Nanoprobe for Ultrafast Detection of Formaldehyde in Wood and Food Samples. ChemistrySelect 2023. [DOI: 10.1002/slct.202203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaojuan Pei
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Tianzhu Wang
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Chaozheng Liu
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Zhipeng Liu
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Institution Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| |
Collapse
|
10
|
Tian S, Liu R, Wu Z, Zhang K. A Novel Strategy Based on Permanent Protein Modifications Induced by Formaldehyde for Food Safety Analysis. Anal Chem 2022; 94:17365-17369. [PMID: 36458654 DOI: 10.1021/acs.analchem.2c04069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The illegal additions of chemicals in food products are serious incidents threatening current public safety. To date, ideal methods to determine permanent traces of prohibited chemicals in foods are still lacking. For example, formaldehyde (FA) can be added illegally as a food preservative. However, most current methods that are dependent on the direct detection of FA are not able to determine if FA has ever been added once food products are rinsed completely. Herein, we present a novel approach relying upon protein modifications induced by FA (PMIF) to examine FA in foods. We reveal the entire catalog of PMIFs in food products by combining mass spectrometry analysis with unrestrictive identification of protein modifications. Consequently, four obvious PMIFs were identified and confirmed as markers to discriminate the addition of FA in foods. Our study demonstrates that the approach based on PMIFs enables detecting the imprinted trace of FA even if the food products have been washed thoroughly. Our work presents a novel strategy for analysis of chemical additives, offering broad potential applications in protein analysis and food safety.
Collapse
Affiliation(s)
- Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Ranran Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhiyue Wu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.,Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300070, China.,Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
11
|
Yu MY, Xu LH, Zhang Z, Qiao Z, Su P, Wang P, Xie TZ. An Imidazole-Based Triangular Macrocycle for Visual Detection of Formaldehyde. Inorg Chem 2022; 61:20200-20205. [DOI: 10.1021/acs.inorgchem.2c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Min-Ya Yu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Liang-Huan Xu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Zhike Zhang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Peiyang Su
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
12
|
Li YS, Tseng WL, Lu CY. Determination of formaldehyde in the daily living environment using membrane-enhanced water plug coupled extraction following peptide-based greener reaction derivatization. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Ferreira I, Rauter AP, Bandarra NM. Marine Sources of DHA-Rich Phospholipids with Anti-Alzheimer Effect. Mar Drugs 2022; 20:662. [PMID: 36354985 PMCID: PMC9695993 DOI: 10.3390/md20110662] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is a complex and progressive disease, which affects millions of people around the world. Despite the many efforts over the years to find efficient therapeutics, there is no cure yet. Nonetheless, many compounds have been proven to decrease Alzheimer's symptoms. After a short overview of the hypotheses considered in AD drug development and the drugs approved for AD treatment, which lead to symptom release, we focus on the valorization of natural marine sources that decrease AD symptoms, particularly on docosahexaenoic acid (DHA), an important component in membrane phospholipids and the most abundant n-3 polyunsaturated fatty acids (PUFA) found in gray matter of the brain and in retina and on the DHA-containing phospholipids (DHA-PLs) present in marine sources, namely fish, krill, mollusks and in fisheries and aquaculture by-products. DHA-PLs' bioactivities are presented, namely their properties in anti-neurodegeneration, neuroinflammation, as anticancer agents, as well as their benefits to obesity and visual problems. Fisheries and aquaculture by-products are also highlighted as they have a high content of DHA and DHA-rich phospholipids, can be extracted by green methodologies and should be considered in a circular economy for a healthy sustainable future.
Collapse
Affiliation(s)
- Inês Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, 1495-165 Lisboa, Portugal
| | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, 1495-165 Lisboa, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal
| |
Collapse
|
14
|
Ding N, Li Z, Hao Y, Zhang C. Design of a New Hydrazine Moiety-Based Near-Infrared Fluorescence Probe for Detection and Imaging of Endogenous Formaldehyde In Vivo. Anal Chem 2022; 94:12120-12126. [PMID: 36005545 DOI: 10.1021/acs.analchem.2c02166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formaldehyde (FA), the smallest molecular aldehyde with strong reducing properties, could regulate body homeostasis endogenously during physiological and pathological processes. The effective near-infrared (NIR) fluorescent probe is needed as a visualizer of FA in biologic organisms. In this work, a novel NIR fluorescent Probe-NHNH2 was designed on the basis of Probe-NH2 via introducing a strong nucleophilic hydrazine group, which can be used as a quenching and recognizing moiety for the detection of FA. With the treatment of FA, the hydrazine group of Probe-NHNH2 undergoes condensation and achieves a turn-on NIR fluorescence signal at a wavelength of 706 nm. The spectroscopic performance of Probe-NHNH2 for FA was evaluated, and it exhibited high sensitivity and selectivity for the detection of FA in solution. Moreover, compared to the amine moiety-based Probe-NH2, which our group reported, we found that hydrazine moiety-based Probe-NHNH2, exhibited a better reaction time of within 10 min and a lower detection limit of 0.68 μM, reflecting that the reaction of FA with hydrazine moiety is faster and more sensitive than that of FA with the amino group. More importantly, Probe-NHNH2 was successfully applied to real-time imaging of endogenous FA by reacting with effective stimulant tetrahydrofolate and scavenger sodium bisulfite in zebrafish and mice. It is expected that we can provide a new rapid, sensitive NIR fluorescence theoretical basis for FA detection and in vivo imaging applications.
Collapse
Affiliation(s)
- Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
15
|
Zhou L, Zhang X, Dong Y, Pan Y, Li J, Zang Y, Li X. A Tandemly Activated Fluorescence Probe for Detecting Senescent Cells with Improved Selectivity by Targeting a Biomarker Combination. ACS Sens 2022; 7:1958-1966. [PMID: 35771145 DOI: 10.1021/acssensors.2c00719] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The heterogeneous and complex phenotypes of cellular senescence necessitate a biomarker combination for the accurate detection of senescent cells from others. However, this raises the challenge of detecting multiple senescent biomarkers in the same live cell simultaneously. Herein we reported the strategy of biomarker combination triggered tandem activation for designing senescence-specific fluorogenic probes, which resulted in the development of the probe PGal-FA. The fluorescence of PGal-FA can only be activated by the sequential stimulation by the senescent biomarker combination of β-galactosidase (βGal) and formaldehyde (FA), with βGal activating the sensing ability of the probe toward FA. Facilitated by probe PGal-FA, the simultaneous detection of a biomarker combination in the same live cell was realized. We have demonstrated the improved selectivity of probe PGal-FA toward senescent cells compared to the traditional single-biomarker-based probe. Probe PGal-FA was also successfully used to detect senescent cells in bleomycin-induced pulmonary fibrosis tissues. We expect probe PGal-FA to be a reliable tool for the study on cellular senescence and envision that this probe design strategy may be expanded to other biological events to improve accuracy.
Collapse
Affiliation(s)
- Lei Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
16
|
Liu J, Li K, Xue P, Xu J. Cell-permeable fluorescent indicator for imaging formaldehyde activity in living systems. Anal Biochem 2022; 652:114749. [PMID: 35636460 DOI: 10.1016/j.ab.2022.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
Formaldehyde (FA), as a reactive signaling molecule, plays an important role in living systems through a diverse array of cellular pathways. However, no systematic investigation for detection and imaging of FA by rendering cells transiently permeable has been reported yet. Specifically, we developed a new cell-permeable fluorescence probe functionality that was enhanced cellular entry efficiency and well retained intracellularly after activation for visualizing endogenous FA changes. Moreover, a smart "multi-lock system -key-and-lock" strategy,which have provoked a starting point for the use of probe and related biochemical tools to monitor FA in lysosomes. The versatile "latent" fluorophore that can undergo a subsequent self-immolative spacer for interrogating the roles and functions of FA in living systems as well as related biomedical applications.
Collapse
Affiliation(s)
- Jun Liu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China.
| | - Kaipeng Li
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China
| | - Peng Xue
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China
| | - Jinyi Xu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China
| |
Collapse
|
17
|
Analysis of Differentially Expressed Proteins and Modifications Induced by Formaldehyde Using LC-MS/MS. SEPARATIONS 2022. [DOI: 10.3390/separations9050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Formaldehyde (FA) is a toxic compound that is considered to have a carcinogenic effect due to its damage to biological macromolecules. However, the influence of FA at the protein level remains to be explored. Here, we used LC-MS/MS to identify the differentially expressed proteins and modifications to proteins between FA-treated and untreated HeLa cells. Among 2021 proteins identified, 196 proteins were significantly down-regulated and 152 up-regulated. The differentially expressed proteins were further analyzed using bioinformatics tools for annotating the characterization of their localizations and functions. To evaluate the interaction of FA with proteins, we performed proteomic analysis for a mass shift of 12 Da on the side chains of lysine, cysteine and tryptophan, which are induced by FA as noticeable signals. We identified the modified proteins and sites, suggesting direct interaction between FA and proteins. Motif analysis further showed the characterization of amino acid sequences that react with FA. Cluster analysis of the modified proteins indicated that the FA-interacting networks are mostly enriched in the nuclei, ribosomes and metabolism. Our study presents the influence of FA on proteomes and modifications, offering a new insight into the mechanisms underlying FA-induced biological effects.
Collapse
|
18
|
Wang P, Cheng X, Xiong J, Mao Z, Liu Z. Revealing Formaldehyde Fluxes in Alzheimer's Disease Brain by an Activity‐based Fluorescence Probe. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pengzhan Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Xianhua Cheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Jianhua Xiong
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Zhiqiang Mao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Zhihong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
19
|
Wang Y, Pan F, Xie F, He R, Guo Q. Correlation Between Urine Formaldehyde and Cognitive Abilities in the Clinical Spectrum of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:820385. [PMID: 35221998 PMCID: PMC8873387 DOI: 10.3389/fnagi.2022.820385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022] Open
Abstract
Urine-based formaldehyde has been reported to be a potential biomarker for Alzheimer’s disease (AD). However, there is a lack of research about the correlation between urine formaldehyde and cognitive abilities in the clinical spectrum of AD, especially the preclinical period. The relationship of urine formaldehyde with APOE genotype, brain Aβ status and plasma pathological markers in AD are also not clear. This study intends to explore the correlation between urine formaldehyde and cognitive abilities throughout the AD continuum, to evaluate the role of APOE genotype and Aβ accumulation on urine formaldehyde, and further to clarify the relationship between urine formaldehyde level and AD plasma pathological markers. We recruited 72 cognitively normal controls (NC), 110 subjective cognitive decline (SCD), 140 objectively defined subtle cognitive decline (Obj-SCD), 171 mild cognitive impairment (MCI) and 136 AD dementia participants. Next, we collected the data of clinical materials, neuropsychological examination, APOE genotyping, urine formaldehyde concentration, 18F-florbetapir PET imaging and plasma biomarkers. Compared with NC, Obj-SCD and MCI groups, the level of urine formaldehyde was found to be significantly upregulated in SCD group. In addition, the level of urine formaldehyde was significantly higher in AD group compared to both NC and MCI groups. Further subgroup analysis showed that, the level of urine formaldehyde was higher in APOE ε4+ subgroup compared to APOE ε4– subgroup in both NC and AD groups. There was no difference in urine formaldehyde level between the brain Aβ+ subgroup and Aβ– subgroup in each group. In addition, regression analysis showed urine formaldehyde level was correlated with gender, plasma Aβ42 and p-Tau181/T-tau. The dynamic change of urine formaldehyde in the AD continuum could be used as a potential biomarker, and combined with comprehensive cognitive evaluation could become a useful method to distinguish SCD from NC and Obj-SCD, and to distinguish MCI from AD.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Rongqiao He,
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Qihao Guo,
| |
Collapse
|
20
|
Zhang N, Ding C, Zuo Y, Peng Y, Zuo L. N6-methyladenosine and Neurological Diseases. Mol Neurobiol 2022; 59:1925-1937. [PMID: 35032318 DOI: 10.1007/s12035-022-02739-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
Abstract
N6-methyladenosine (m6A) is a dynamic reversible methylation modification of the adenosine N6 position and is the most common chemical epigenetic modification among mRNA post-transcriptional modifications, including methylation, demethylation, and recognition. Post-transcriptional modification involves multiple protein molecules, including METTL3, METTL14, WTAP, KIAA1429, ALKBH5, YTHDF1/2/3, and YTHDC1/2. m6A-related proteins are expressed in almost all cells. However, the abnormal expression of m6A-related proteins may occur in the nervous system, thereby affecting neuritogenesis, brain volume, learning and memory, memory formation and consolidation, etc., and is implicated in the development of diseases, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, depression, epilepsy, and brain tumors. This review focuses on the functions of m6A in the development of central nervous system diseases, thus contributing to a deeper understanding of disease pathogenesis and providing potential clinical therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Chunhong Ding
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yuxin Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yu Peng
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Lielian Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
21
|
Piechocka J, Litwicka N, Głowacki R. Identification and Determination of 1,3-Thiazinane-4-carboxylic Acid in Human Urine-Chromatographic Studies. Int J Mol Sci 2022; 23:598. [PMID: 35054809 PMCID: PMC8776240 DOI: 10.3390/ijms23020598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
It is well established that homocysteine (Hcy) and its thiolactone (HTL) are reactive towards aldehydes in an aqueous environment, forming substituted thiazinane carboxylic acids. This report provides evidence that Hcy/HTL and formaldehyde (FA) adduct, namely 1,3-thiazinane-4-carboxylic acid (TCA) is formed in vivo in humans. In order to provide definitive proof, a gas chromatography-mass spectrometry (GC-MS) based method was elaborated to identify and quantify TCA in human urine. The GC-MS assay involves chemical derivatization with isobutyl chloroformate (IBCF) in the presence of pyridine as a catalyst, followed by an ethyl acetate extraction of the obtained isobutyl derivative of TCA (TCA-IBCF). The validity of the method has been demonstrated based upon United States Food and Drug Administration recommendations. The assay linearity was observed within a 1-50 µmol L-1 range for TCA in urine, while the lowest concentration on the calibration curve was recognized as the limit of quantification (LOQ). Importantly, the method was successfully applied to urine samples delivered by apparently healthy volunteers (n = 15). The GC-MS assay may provide a new analytical tool for routine clinical analysis of the role of TCA in living systems in the near future.
Collapse
Affiliation(s)
- Justyna Piechocka
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Str., 90-236 Łódź, Poland;
| | | | - Rafał Głowacki
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Str., 90-236 Łódź, Poland;
| |
Collapse
|
22
|
Gao X, Chen Q, Yao H, Tan J, Liu Z, Zhou Y, Zou Z. Epigenetics in Alzheimer's Disease. Front Aging Neurosci 2022; 14:911635. [PMID: 35813941 PMCID: PMC9260511 DOI: 10.3389/fnagi.2022.911635] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with unknown pathogenesis and complex pathological manifestations. At present, a large number of studies on targeted drugs for the typical pathological phenomenon of AD (Aβ) have ended in failure. Although there are some drugs on the market that indirectly act on AD, their efficacy is very low and the side effects are substantial, so there is an urgent need to develop a new strategy for the treatment of AD. An increasing number of studies have confirmed epigenetic changes in AD. Although it is not clear whether these epigenetic changes are the cause or result of AD, they provide a new avenue of treatment for medical researchers worldwide. This article summarizes various epigenetic changes in AD, including DNA methylation, histone modification and miRNA, and concludes that epigenetics has great potential as a new target for the treatment of AD.
Collapse
Affiliation(s)
- Xiaodie Gao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Qiang Chen
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Hua Yao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Zheng Liu
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- *Correspondence: Zheng Liu,
| | - Yan Zhou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Yan Zhou,
| | - Zhenyou Zou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
- Zhenyou Zou,
| |
Collapse
|
23
|
Quan T, Liang Z, Pang H, Zeng G, Chen T. A ratiometric ESIPT probe based on 2-aza-Cope rearrangement for rapid and selective detection of formaldehyde in living cells. Analyst 2021; 147:252-261. [PMID: 34931639 DOI: 10.1039/d1an01722e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formaldehyde (FA) is a crucial reactive signaling molecule participating in epigenetic and metabolic pathways. However, abnormally elevated levels of FA are implicated in various diseases spanning from tumors to neurodegenerative disorders. Despite being highly selective for FA, current 2-aza-Cope-based fluorescent probes leave room for improvement because their relatively slow reaction kinetics (1-9 hours response time) hinder their capability to track transient biological FA. Herein, we present a ratiometric fluorescent probe, FormAFP, based on excited state intramolecular photon transfer (ESIPT) for rapid (within 10 min), selective (above 70-fold over other RCS) and sensitive (240-times fluorescence enhancement with 66 nM detection limit) detection of FA via 2-aza-Cope rearrangement. The probe also displayed a fast response (<20 min) to both exogenous and endogenous FA in living cells. Besides, FormAFP was capable of monitoring FA released by folate degradation in living MCF7 cells. More importantly, FormAFP successfully detected fluctuations of endogenous FA levels in oxidative stress stimulation, demonstrating its potential as an ideal tool to explore FA biology.
Collapse
Affiliation(s)
- Tingting Quan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhenhao Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huaiting Pang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Guanling Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd, Qingyuan 511517, China
| |
Collapse
|
24
|
Du Y, Zhang Y, Huang M, Wang S, Wang J, Liao K, Wu X, Zhou Q, Zhang X, Wu YD, Peng T. Systematic investigation of the aza-Cope reaction for fluorescence imaging of formaldehyde in vitro and in vivo. Chem Sci 2021; 12:13857-13869. [PMID: 34760171 PMCID: PMC8549814 DOI: 10.1039/d1sc04387k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence has highlighted the endogenous production of formaldehyde (FA) in a variety of fundamental biological processes and its involvement in many disease conditions ranging from cancer to neurodegeneration. To examine the physiological and pathological relevance and functions of FA, fluorescent probes for FA imaging in live biological samples are of great significance. Herein we report a systematic investigation of 2-aza-Cope reactions between homoallylamines and FA for identification of a highly efficient 2-aza-Cope reaction moiety and development of fluorescent probes for imaging FA in living systems. By screening a set of N-substituted homoallylamines and comparing them to previously reported homoallylamine structures for reaction with FA, we found that N-p-methoxybenzyl homoallylamine exhibited an optimal 2-aza-Cope reactivity to FA. Theoretical calculations were then performed to demonstrate that the N-substituent on homoallylamine greatly affects the condensation with FA, which is more likely the rate-determining step. Moreover, the newly identified optimal N-p-methoxybenzyl homoallylamine moiety with a self-immolative β-elimination linker was generally utilized to construct a series of fluorescent probes with varying excitation/emission wavelengths for sensitive and selective detection of FA in aqueous solutions and live cells. Among these probes, the near-infrared probe FFP706 has been well demonstrated to enable direct fluorescence visualization of steady-state endogenous FA in live mouse brain tissues and elevated FA levels in a mouse model of breast cancer. This study provides the optimal aza-Cope reaction moiety for FA probe development and new chemical tools for fluorescence imaging and biological investigation of FA in living systems.
Collapse
Affiliation(s)
- Yimeng Du
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Meirong Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jianzheng Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Kongke Liao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xinhao Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
25
|
Hu Y, Wu L, Yang SQ, Wei HJ, Wang CY, Kang X, Jiang JM, Zhang P, Tang XQ. Formaldehyde induces ferritinophagy to damage hippocampal neuronal cells. Toxicol Ind Health 2021; 37:685-694. [PMID: 34644200 DOI: 10.1177/07482337211048582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Formaldehyde (FA) causes neurotoxicity and contributes to the occurrence of neurodegenerative diseases. However, the mechanism of FA-induced neurotoxicity has not been fully elucidated. Ferritinophagy, an autophagy process of ferritin mediated by the nuclear receptor coactivator 4 (NCOA4), is a potential mechanism of neurotoxicity. In this study, we explored whether ferritinophagy is associated with the neurotoxicity of FA. Our results showed that FA (50, 100, 200 μM; 24 h) exposure upregulated ferritinophagy in the mouse hippocampal neuronal HT22 cells, which was evidenced by the upregulated autophagic flux, the increased colocalizations of NCOA4 with ferritin heavy chain (FTH1) and NCOA4 with microtubule-associated protein 1 light chain-3B (LC3B), the augmented expression of NCOA4, and the reduced content of FTH1. We also found that FA (0.1, 1, and 10 μmol, i.c.v., 7d) administration boosted ferritinophagy in the hippocampus of Sprague-Dawley (SD) rats, which was demonstrated by the accumulated autophagosomes, the increased expressions of LC3II/I and NCOA4, and the decreased contents of p62 and FTH1 in the hippocampus. Further, we confirmed that inhibition of ferritinophagy by silencing the expression of NCOA4 decreased FA-induced toxic damage in HT22 cells. These results indicated that FA induces neurotoxicity by promoting ferritinophagy. Our findings suggest a potential mechanism insight into the FA-induced neurotoxicity, which in turn provides a new thought for the treatment of FA-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Hu
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, 574417University of South China, Hengyang, P. R. China
| | - Lei Wu
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, 574417University of South China, Hengyang, P. R. China
| | - San-Qiao Yang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, 574417University of South China, Hengyang, P. R. China.,Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Hai-Jun Wei
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Chun-Yan Wang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Xuan Kang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, 574417University of South China, Hengyang, P. R. China
| | - Jia-Mei Jiang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, 574417University of South China, Hengyang, P. R. China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Xiao-Qing Tang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, 574417University of South China, Hengyang, P. R. China
| |
Collapse
|
26
|
Fei X, Zhang Y, Mei Y, Yue X, Jiang W, Ai L, Yu Y, Luo H, Li H, Luo W, Yang X, Lyv J, He R, Song W, Tong Z. Degradation of FA reduces Aβ neurotoxicity and Alzheimer-related phenotypes. Mol Psychiatry 2021; 26:5578-5591. [PMID: 33328587 DOI: 10.1038/s41380-020-00929-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023]
Abstract
Dysregulation of formaldehyde (FA) has been implicated in the development of Alzheimer's Disease (AD). Elevated FA levels in Alzheimer's patients and animal models are associated with impaired cognitive functions. However, the exact role of FA in AD remains unknown. We now identified that oxidative demethylation at serine8/26 of amyloid-beta protein (Aβ) induced FA generation and FA cross-linked with the lysine28 residue in the β-turn of Aβ monomer to form Aβ dimers, and then accelerated Aβ oligomerization and fibrillogenesis in vitro. However, Aβ42 mutation in serine8/26, lysine28 abolished Aβ self-aggregation. Furthermore, Aβ inhibited the activity of formaldehyde dehydrogenase (FDH), the enzyme for FA degradation, resulting in FA accumulation. In turn, excess of FA stimulated Aβ aggregation both in vitro and in vivo by increasing the formation of Aβ oligomers and fibrils. We found that degradation of FA by formaldehyde scavenger-NaHSO3 or coenzyme Q10 reduced Aβ aggregation and ameliorated the neurotoxicity, and improved the cognitive performance in APP/PS1 mice. Our study provides evidence that endogenous FA is essential for Aβ self-aggregation and scavenging FA could be an effective strategy for treating AD.
Collapse
Affiliation(s)
- Xuechao Fei
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Yun Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yufei Mei
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangpei Yue
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Wenjing Jiang
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
- Center for Cognitive Disorders, Beijing Geriatric Hospital, 100095, Beijing, China
| | - Li Ai
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Yan Yu
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, 100068, Beijing, China
| | - Hongjun Luo
- Central Laboratory, Shantou University Medical College, Guangdong, 515041, China
| | - Hui Li
- Central Laboratory, Shantou University Medical College, Guangdong, 515041, China
| | - Wenhong Luo
- Central Laboratory, Shantou University Medical College, Guangdong, 515041, China
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jihui Lyv
- Center for Cognitive Disorders, Beijing Geriatric Hospital, 100095, Beijing, China
| | - Rongqiao He
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
- State Key Lab of Brain and Cognitive Science and Key Lab of Mental Health, IBP, UCAS, Beijing, China
| | - Weihong Song
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Zhiqian Tong
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
27
|
Li YW, Ma WL. Photocatalytic oxidation technology for indoor air pollutants elimination: A review. CHEMOSPHERE 2021; 280:130667. [PMID: 34162075 DOI: 10.1016/j.chemosphere.2021.130667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
As more people are spending the majority of their daily lives indoors, indoor air quality has been acknowledged as an important factor influencing human health, with increasing research attention in recent decades. Indoor air pollutants (IAPs), such as volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), can cause acute irritation and chronic diseases. Photocatalytic oxidation (PCO) technology is an efficient approach for eliminating IAPs. In this review, the development of PCO technology was explained and discussed to promote future development of PCO technology for IAP elimination. First, the health effects and the measured concentrations of typical VOCs and SVOCs in indoor environments worldwide were briefly introduced. Subsequently, the development and limitations of some typical photocatalytic reactors (including packed-bed reactors, monolithic reactors, optical fiber reactors, and microreactors) were summarized and compared. Then, the influences of operating parameters (including initial concentration of contaminants, relative humidity, space velocity, light source and intensity, catalyst support materials, and immobilization method) and the degradation pathways as well as intermediates of PCO technology were elucidated. Finally, the possible challenges and future development directions regarding PCO technology for IAP elimination were critically proposed and addressed.
Collapse
Affiliation(s)
- Yu-Wei Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
28
|
ZHU S, ZHAO XE, LIU H. [Recent advances in chemical derivatization-based chromatography-mass spectrometry methods for analysis of aldehyde biomarkers]. Se Pu 2021; 39:845-854. [PMID: 34212585 PMCID: PMC9404091 DOI: 10.3724/sp.j.1123.2021.02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Human exposure to chemical pollutants in the environment can cause a variety of diseases, including cancer, diabetes, cardiovascular disease, and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, etc.). Exogenous and environmental pollutant exposure-induced endogenous aldehydes are highly reactive electrophilic compounds that can form covalently modified products with a variety of important biological molecules in the human body, thus inducing toxic effects. Exposome research has become a hotspot since it was first proposed in 2005. Exposure studies can map the complex relationships between biomarkers and disease risk. Therefore, the measurable and characteristic changes of all biomarkers together constitute a key basis for exposome research. Aldehydes are among the main components of chemical exposure. Because of the physical and chemical properties of aldehydes and the existence of multiple matrix interferences in the samples, it is particularly difficult to analyze and characterize them. The analysis and detection methods for aldehydes mainly include sensing analysis, electrochemical methods, fluorescence imaging, chromatography, mass spectrometry (MS), and chromatography-MS. Analytical techniques based on gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) have emerged as the main methods for chemical exposome research. Chemical derivatization, especially stable isotope labeling derivatization (also known as chemical isotope labeling) combined with LC-MS analytical techniques, can help circumvent the problems encountered in targeted and non-targeted metabolome and exposome analysis. The combination of chemical derivatization with chromatography-MS is one of the most important solutions for the accurate analysis of aldehydes in complex samples. Over the past five years, the development and application of chromatography-MS analytical methods based on chemical derivatization have become key topics in aldehyde analysis. This paper summarizes and reviews the latest progress in GC-MS and LC-MS methods based on chemical derivatization (2015-2020). The review focuses on analytical method development for aldehyde exposure biomarkers in bio-matrices (blood, urine, saliva, biological tissue, etc.). Various derivatization reagents for labeling small-molecule aldehydes, qualitative/quantitative analytical methods and their application value, advantages/disadvantages of different analytical methods for aldehyde exposure biomarkers, and future development trends are also included. The manuscript contents may aid the integrated development of exposome, metabolomics, and lipidomics, as well as research on the environment, ecology, and health. To clarify the complex actions of exogenous and endogenous aldehydes in physiological and pathological events, it is necessary to improve the analysis and characterization techniques and tools for studying the "aldehydome." With the development and application of sophisticated mass spectrometers, advances in high-performance chromatographic separation and bioinformatics, and advent of single-cell analysis and MS imaging, future aldehyde exposome analytical methods will have higher sensitivity and throughput. This in turn would be more useful for screening and identifying unknown aldehyde compounds and discovering new exposome biomarkers.
Collapse
|
29
|
Li T, Wei Y, Qu M, Mou L, Miao J, Xi M, Liu Y, He R. Formaldehyde and De/Methylation in Age-Related Cognitive Impairment. Genes (Basel) 2021; 12:genes12060913. [PMID: 34199279 PMCID: PMC8231798 DOI: 10.3390/genes12060913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Formaldehyde (FA) is a highly reactive substance that is ubiquitous in the environment and is usually considered as a pollutant. In the human body, FA is a product of various metabolic pathways and participates in one-carbon cycle, which provides carbon for the synthesis and modification of bio-compounds, such as DNA, RNA, and amino acids. Endogenous FA plays a role in epigenetic regulation, especially in the methylation and demethylation of DNA, histones, and RNA. Recently, epigenetic alterations associated with FA dysmetabolism have been considered as one of the important features in age-related cognitive impairment (ARCI), suggesting the potential of using FA as a diagnostic biomarker of ARCI. Notably, FA plays multifaceted roles, and, at certain concentrations, it promotes cell proliferation, enhances memory formation, and elongates life span, effects that could also be involved in the aetiology of ARCI. Further investigation of and the regulation of the epigenetics landscape may provide new insights about the aetiology of ARCI and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Ting Li
- Bayannur Hospital, Bayannur 015000, China;
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (Y.W.); (L.M.); (J.M.)
| | - Meihua Qu
- Translational Medical Center, Weifang Second People’s Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang 261041, China;
| | - Lixian Mou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (Y.W.); (L.M.); (J.M.)
| | - Junye Miao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (Y.W.); (L.M.); (J.M.)
| | - Mengqi Xi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (M.X.); (Y.L.)
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (M.X.); (Y.L.)
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (Y.W.); (L.M.); (J.M.)
- Correspondence:
| |
Collapse
|
30
|
Yue X, Ma NL, Sonne C, Guan R, Lam SS, Van Le Q, Chen X, Yang Y, Gu H, Rinklebe J, Peng W. Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124138. [PMID: 33092884 DOI: 10.1016/j.jhazmat.2020.124138] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Indoor air pollution with toxic volatile organic compounds (VOCs) and fine particulate matter (PM2.5) is a threat to human health, causing cancer, leukemia, fetal malformation, and abortion. Therefore, the development of technologies to mitigate indoor air pollution is important to avoid adverse effects. Adsorption and photocatalytic oxidation are the current approaches for the removal of VOCs and PM2.5 with high efficiency. In this review we focus on the recent development of indoor air pollution mitigation materials based on adsorption and photocatalytic decomposition. First, we review on the primary indoor air pollutants including formaldehyde, benzene compounds, PM2.5, flame retardants, and plasticizer: Next, the recent advances in the use of adsorption materials including traditional biochar and MOF (metal-organic frameworks) as the new emerging porous materials for VOCs absorption is reviewed. We review the mechanism for mitigation of VOCs using biochar (noncarbonized organic matter partition and adsorption) and MOF together with parameters that affect indoor air pollution removal efficiency based on current mitigation approaches including the mitigation of VOCs using photocatalytic oxidation. Finally, we bring forward perspectives and directions for the development of indoor air mitigation technologies.
Collapse
Affiliation(s)
- Xiaochen Yue
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Nyuk Ling Ma
- Universiti Malaysia Terengganu, Fac Sci & Marine Environm, Terengganu 21030, Malaysia
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ruirui Guan
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Xiangmeng Chen
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Yafeng Yang
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiping Gu
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
31
|
Li ZH, He XP, Li H, He RQ, Hu XT. Age-associated changes in amyloid-β and formaldehyde concentrations in cerebrospinal fluid of rhesus monkeys. Zool Res 2020; 41:444-448. [PMID: 32543791 PMCID: PMC7340526 DOI: 10.24272/j.issn.2095-8137.2020.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zhen-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xia-Ping He
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Hao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Rong-Qiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai 200031, China.,Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
32
|
Schuller A, Montrose L. Influence of Woodsmoke Exposure on Molecular Mechanisms Underlying Alzheimer's Disease: Existing Literature and Gaps in Our Understanding. Epigenet Insights 2020; 13:2516865720954873. [PMID: 32974607 PMCID: PMC7493275 DOI: 10.1177/2516865720954873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022] Open
Abstract
Woodsmoke poses a significant health risk as a growing component of ambient air pollution in the United States. While there is a long history of association between woodsmoke exposure and diseases of the respiratory, circulatory, and cardiovascular systems, recent evidence has linked woodsmoke exposure to cognitive dysfunction, including Alzheimer’s disease dementia. Alzheimer’s disease is a progressive neurodegenerative disorder with largely idiopathic origins and no known cure. Here, we explore the growing body of literature which relates woodsmoke-generated and ambient air pollution particulate matter exposure to Alzheimer’s disease (AD) onset or exacerbation, in the context of an inflammation-centric view of AD. Epigenetic modifications, specifically changes in DNA methylation patterns, are well documented following woodsmoke exposure and have been shown to influence disease-favoring inflammatory cascades, induce oxidative stress, and modulate the immune response in vitro, in vivo, and in humans following exposure to air pollution. Though the current status of the literature does not allow us to draw definitive conclusions linking these events, this review highlights the need for additional work to fill gaps in our understanding of the directionality, causality, and susceptibility throughout the life course.
Collapse
Affiliation(s)
- Adam Schuller
- Department of Community and Environmental Health, Boise State University, Boise, Idaho, USA
| | - Luke Montrose
- Department of Community and Environmental Health, Boise State University, Boise, Idaho, USA
| |
Collapse
|
33
|
Huang N, Yao D, Jiang W, Wei C, Li M, Li W, Mu H, Gao M, Ma Z, Lyu J, Tong Z. Safety and Efficacy of 630-nm Red Light on Cognitive Function in Older Adults With Mild to Moderate Alzheimer's Disease: Protocol for a Randomized Controlled Study. Front Aging Neurosci 2020; 12:143. [PMID: 32528273 PMCID: PMC7253693 DOI: 10.3389/fnagi.2020.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/28/2020] [Indexed: 11/15/2022] Open
Abstract
Introduction: Studies have shown that excess formaldehyde accumulation in the brain accelerates cognitive decline in people with Alzheimer’s disease (AD). Recently, reports from our research team revealed that red light treatment (RLT) improved memory in AD mice by activating formaldehyde dehydrogenase (FDH) and thus reducing formaldehyde levels. Here, we developed a medical RLT device to investigate the safety and efficacy of this device in older adults with mild to moderate AD. Methods: This will be a randomized controlled trial (RCT) that will include 60 participants who will be recruited and randomly divided into an RLT group and a control group. The RLT group will receive RLT intervention 5 days a week for 30 min each time for 24 weeks while the control group will continue their routine treatments without RLT. All participants will undergo neuropsychological and functional assessments including the Mini-Mental State Examination, the AD assessment scale-cognitive subscale (ADAS-cog), the Geriatric Depression Scale (GDS), the Neuropsychiatric Inventory (NPI) and the Barthel Index at baseline, 12 weeks and 24 weeks. All participants will undergo functional magnetic resonance imaging (fMRI) scanning and blood/urine biomarkers tests at baseline and 24 weeks. The primary outcome will be the ADAS-cog score while the secondary outcomes will be the GDS and NPI scores. Adverse events will be recorded and treated when necessary. Both an intention-to-treat analysis and a per-protocol analysis will be performed to evaluate the safety and efficacy of RLT. Discussion: This protocol outlines the objectives of the study and explained the RLT device developed by the research team. The study is designed as an RCT to evaluate the safety and effects of the RLT device on older adults with mild to moderate AD. This study will provide evidence for the clinical use of RLT on treatment for AD. Clinical Trial Registration:www.ClinicalTrials.gov, ChiCTR1800020163; Pre-results.
Collapse
Affiliation(s)
- Nayan Huang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Dandan Yao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Wenjing Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Mo Li
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Wenjie Li
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Haiyan Mu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Maolong Gao
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, China
| | - Zongjuan Ma
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Jihui Lyu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Zhiqian Tong
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Ohata J, Bruemmer KJ, Chang CJ. Activity-Based Sensing Methods for Monitoring the Reactive Carbon Species Carbon Monoxide and Formaldehyde in Living Systems. Acc Chem Res 2019; 52:2841-2848. [PMID: 31487154 PMCID: PMC7081942 DOI: 10.1021/acs.accounts.9b00386] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon is central to the chemistry of life, and in addition to its fundamental roles as a static component of all major biomolecules spanning proteins, nucleic acids, sugars, and lipids, emerging evidence shows that small and transient carbon-based metabolites, termed reactive carbon species (RCS), are dynamic signaling/stress agents that can influence a variety of biological pathways. Recent examples include the identification of carbon monoxide (CO) as an ion channel blocker and endogenous formaldehyde (FA) as a one-carbon metabolic unit formed from the spontaneous degradation of dietary folate metabolites. These findings motivate the development of analytical tools for transient carbon species that can achieve high specificity and sensitivity to further investigate RCS signaling and stress pathways at the cell, tissue, and whole-organism levels. This Account summarizes work from our laboratory on the development of new chemical tools to monitor two important one-carbon RCS, CO and FA, through activity-based sensing (ABS), where we leverage the unique chemical reactivities of these small and transient analytes, rather than lock-and-key binding considerations, for selective detection. Classic inorganic/organometallic and organic transformations form the basis for this approach. For example, to distinguish CO from other biological diatomics of similar shape and size (e.g., nitric oxide and oxygen), we exploit palladium-mediated carbonylation as a synthetic method for CO sensing. The high selectivity of this carbonylation approach successfully enables imaging of dynamic changes in intracellular CO levels in live cells. Likewise, we apply the aza-Cope reaction for FA detection to provide high selectivity for this one-carbon unit over other larger biological aldehydes that are reactive electrophiles, such as acetaldehyde and methylglyoxal. By relying on an activity-based trigger as a design principle for small-molecule detection, this approach can be generalized to create a toolbox of selective FA imaging reagents, as illustrated by a broad range of FA probes spanning turn-on and ratiometric fluorescence imaging, positron emission tomography imaging, and chemiluminescence imaging modalities. Moreover, these chemical tools have revealed new one-carbon biology through the identification of folate as a dietary source of FA and alcohol dehydrogenase 5 as a target for FA metabolism. Indeed, these selective RCS detection methods have been expanded to a wider array of imaging platforms, such as metal-complex-based time-gated luminescence and materials-based imaging scaffolds (e.g., nanotubes, nanoparticles, and carbon dots), with modalities extending to Raman and Rayleigh scattering readouts. This pursuit of leveraging selective chemical reactivity to develop highly specific ABS probes for imaging of RCS provides not only practical tools for deciphering RCS-dependent biology but also a general design platform for developing ABS probes for a broader range of biological analytes encompassing elements across the periodic table.
Collapse
Affiliation(s)
- Jun Ohata
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kevin J. Bruemmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|