1
|
Rohr P, Karen S, Francisco LFV, Oliveira MA, dos Santos Neto MF, Silveira HCS. Epigenetic processes involved in response to pesticide exposure in human populations: a systematic review and meta-analysis. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae005. [PMID: 38779494 PMCID: PMC11110075 DOI: 10.1093/eep/dvae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
In recent decades, the use of pesticides in agriculture has increased dramatically. This has resulted in these substances being widely dispersed in the environment, contaminating both exposed workers and communities living near agricultural areas and via contaminated foodstuffs. In addition to acute poisoning, chronic exposure to pesticides can lead to molecular changes that are becoming better understood. Therefore, the aim of this study was to assess, through a systematic review of the literature, what epigenetic alterations are associated with pesticide exposure. We performed a systematic review and meta-analysis including case-control, cohort and cross-sectional observational epidemiological studies to verify the epigenetic changes, such as DNA methylation, histone modification and differential microRNA expression, in humans who had been exposed to any type of pesticide. Articles published between the years 2005 and 2020 were collected. Two different reviewers performed a blind selection of the studies using the Rayyan QCRI software. Post-completion, the data of selected articles were extracted and analyzed. Most of the 28 articles included evaluated global DNA methylation levels, and the most commonly reported epigenetic modification in response to pesticide exposure was global DNA hypomethylation. Meta-analysis revealed a significant negative correlation between Alu methylation levels and β-hexachlorocyclohexane, p,p'-dichlorodiphenyldichloroethane and p,p'-dichlorodiphenylethylene levels. In addition, some specific genes were reported to be hypermethylated in promoter regions, such as CDKN2AIGF2, WRAP53α and CDH1, while CDKN2B and H19 were hypomethylated due to pesticide exposure. The expression of microRNAs was also altered in response to pesticides, as miR-223, miR-518d-3p, miR-597, miR-517b and miR-133b that are associated with many human diseases. Therefore, this study provides evidence that pesticide exposure could lead to epigenetic modifications, possibly altering global and gene-specific methylation levels, epigenome-wide methylation and microRNA differential expression.
Collapse
Affiliation(s)
- Paula Rohr
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Shimoyama Karen
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Luiza Flávia Veiga Francisco
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Marco Antônio Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Martins Fidelis dos Santos Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
- Campus São Paulo, University of Anhanguera, São Paulo, SP 04119-901, Brazil
| |
Collapse
|
2
|
Neves AP, Rosa ACS, Larentis AL, da Silva Rodrigues Vidal PJ, Gonçalves ES, da Silveira GR, Dos Santos MVC, de Carvalho LVB, Alves SR. Urinary dialkylphosphate metabolites in the assessment of exposure to organophosphate pesticides: from 2000 to 2022. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:10. [PMID: 38049584 DOI: 10.1007/s10661-023-12184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
The general population and workers are exposed to organophosphate insecticides, one of the leading chemical classes of pesticides used in rural and urban areas, in the control of arboviruses and agriculture. These pesticides cause environmental/occupational exposure and associated risks to human and environmental health. The objective of this study was to carry out an integrative review of epidemiological studies that identified and quantified dialkylphosphate metabolites in the urine of exposed populations, focusing on the vector control workers, discussing the application and the results found. Searches utilized the Pubmed, Scielo, and the Brazilian Digital Library of Theses and Dissertations (BDTD) databases between 2000 and 2021. From the 194 selected studies, 75 (39%) were with children/adolescents, 48 (24%) with rural workers, 36 (19%) with the general population, 27 (14%) with pregnant women, and 9 (4%) with vector control workers. The total dialkylphosphate concentrations found in the occupationally exposed population were higher than in the general population. Studies demonstrate that dialkylphosphates are sensitive and representative exposure biomarkers for environmental and occupational organophosphate exposure. The work revealed a lack of studies with vector control workers and a lack of studies in developing countries.
Collapse
Affiliation(s)
- Ana Paula Neves
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil.
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH) - Rua Leopoldo Bulhões, nº. 1480 - Manguinhos, Rio de Janeiro, RJ, 21041-210, Brasil.
| | - Ana Cristina Simões Rosa
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
| | - Ariane Leites Larentis
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
| | - Priscila Jeronimo da Silva Rodrigues Vidal
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil
| | - Eline Simões Gonçalves
- Postgraduate Program in Geochemistry, Institute of Chemistry, Federal Fluminense University (UFF), Niterói, Brazil
| | - Gabriel Rodrigues da Silveira
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil
| | - Marcus Vinicius Corrêa Dos Santos
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil
| | - Leandro Vargas Barreto de Carvalho
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
| | - Sergio Rabello Alves
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
- General Superintendence of Technical and Scientific Police/Department of Civilian Police of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
González-Moscoso M, Meza-Figueroa D, Martínez-Villegas NV, Pedroza-Montero MR. GLYPHOSATE IMPACT on human health and the environment: Sustainable alternatives to replace it in Mexico. CHEMOSPHERE 2023; 340:139810. [PMID: 37598951 DOI: 10.1016/j.chemosphere.2023.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Glyphosate is a broad-spectrum, non-selective herbicide used to control weeds and protect agricultural crops, and it is classified as potentially carcinogenic by the International Agency for Research on Cancer. In Mexico, the use of pesticides is a common practice, including glyphosate. However, on December 31st, 2020, the Mexican government decreed the prohibition of this herbicide as of January 2024. In this review, we investigate the association between glyphosate and cancer risk and found that most of the studies focused using animals showing negative effects such as genotoxicity, cytotoxicity and neurotoxicity, some studies used cancer cell lines showing proliferative effects due to glyphosate exposure. To our knowledge, in Mexico, there are no scientific reports on the association of glyphosate with any type of cancer. In addition, we reviewed the toxicological effects of the herbicide glyphosate, and the specific case of the current situation of the use and environmental damage of this herbicide in Mexico. We found that few studies have been published on glyphosate, and that the largest number of publications are from the International Agency for Research on Cancer classification to date. Additionally, we provide data on glyphosate stimulation at low doses as a biostimulant in crops and analytical monitoring techniques for the detection of glyphosates in different matrices. Finally, we have tried to summarize the actions of the Mexican government to seek sustainable alternatives and replace the use of glyphosate, to obtain food free of this herbicide and take care of the health of the population and the environment.
Collapse
Affiliation(s)
- Magín González-Moscoso
- Departamento de Nanotecnología, Universidad Politécnica de Chiapas (UPChiapas), Carretera Tuxtla Gutierrez.-Portillo Zaragoza Km 21+500, Col. Las Brisas, Suchiapa, 29150, Chiapas, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| | | | - Martín Rafael Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| |
Collapse
|
4
|
Zúñiga-Venegas LA, Hyland C, Muñoz-Quezada MT, Quirós-Alcalá L, Butinof M, Buralli R, Cardenas A, Fernandez RA, Foerster C, Gouveia N, Gutiérrez Jara JP, Lucero BA, Muñoz MP, Ramírez-Santana M, Smith AR, Tirado N, van Wendel de Joode B, Calaf GM, Handal AJ, Soares da Silva A, Cortés S, Mora AM. Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:96002. [PMID: 36173136 PMCID: PMC9521041 DOI: 10.1289/ehp9934] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Multiple epidemiological studies have shown that exposure to pesticides is associated with adverse health outcomes. However, the literature on pesticide-related health effects in the Latin American and the Caribbean (LAC) region, an area of intensive agricultural and residential pesticide use, is sparse. We conducted a scoping review to describe the current state of research on the health effects of pesticide exposure in LAC populations with the goal of identifying knowledge gaps and research capacity building needs. METHODS We searched PubMed and SciELO for epidemiological studies on pesticide exposure and human health in LAC populations published between January 2007 and December 2021. We identified 233 publications from 16 countries that met our inclusion criteria and grouped them by health outcome (genotoxicity, neurobehavioral outcomes, placental outcomes and teratogenicity, cancer, thyroid function, reproductive outcomes, birth outcomes and child growth, and others). RESULTS Most published studies were conducted in Brazil (37%, n = 88 ) and Mexico (20%, n = 46 ), were cross-sectional in design (72%, n = 167 ), and focused on farmworkers (45%, n = 105 ) or children (21%, n = 48 ). The most frequently studied health effects included genotoxicity (24%, n = 62 ) and neurobehavioral outcomes (21%, n = 54 ), and organophosphate (OP) pesticides were the most frequently examined (26%, n = 81 ). Forty-seven percent (n = 112 ) of the studies relied only on indirect pesticide exposure assessment methods. Exposure to OP pesticides, carbamates, or to multiple pesticide classes was consistently associated with markers of genotoxicity and adverse neurobehavioral outcomes, particularly among children and farmworkers. DISCUSSION Our scoping review provides some evidence that exposure to pesticides may adversely impact the health of LAC populations, but methodological limitations and inconsistencies undermine the strength of the conclusions. It is critical to increase capacity building, integrate research initiatives, and conduct more rigorous epidemiological studies in the region to address these limitations, better inform public health surveillance systems, and maximize the impact of research on public policies. https://doi.org/10.1289/EHP9934.
Collapse
Affiliation(s)
- Liliana A. Zúñiga-Venegas
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Carly Hyland
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- School of Public Health and Population Science, Boise State University, Boise, Idaho, USA
| | - María Teresa Muñoz-Quezada
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, USA
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Mariana Butinof
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rafael Buralli
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brasil
| | - Andres Cardenas
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ricardo A. Fernandez
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Foerster
- Instituto de Ciencias de la Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando, Chile
| | - Nelson Gouveia
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Juan P. Gutiérrez Jara
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Boris A. Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - María Pía Muñoz
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Muriel Ramírez-Santana
- Departamento de Salud Pública, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Anna R. Smith
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Noemi Tirado
- Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, Louisiana Paz, Bolivia
| | - Berna van Wendel de Joode
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
- Columbia University Medical Center, New York, New York, USA
| | - Alexis J. Handal
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | - Sandra Cortés
- Centro Avanzado de Enfermedades Crónicas (ACCDiS), Centro de Desarrollo Urbano Sustentable, Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana M. Mora
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
5
|
Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, Dewali S, Yadav M, Kumari R, Singh S, Mohapatra A, Pandey V, Rana N, Cunill JM. Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Front Microbiol 2022; 13:962619. [PMID: 36060785 PMCID: PMC9428564 DOI: 10.3389/fmicb.2022.962619] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Pesticides are either natural or chemically synthesized compounds that are used to control a variety of pests. These chemical compounds are used in a variety of sectors like food, forestry, agriculture and aquaculture. Pesticides shows their toxicity into the living systems. The World Health Organization (WHO) categorizes them based on their detrimental effects, emphasizing the relevance of public health. The usage can be minimized to a least level by using them sparingly with a complete grasp of their categorization, which is beneficial to both human health and the environment. In this review, we have discussed pesticides with respect to their global scenarios, such as worldwide distribution and environmental impacts. Major literature focused on potential uses of pesticides, classification according to their properties and toxicity and their adverse effect on natural system (soil and aquatic), water, plants (growth, metabolism, genotypic and phenotypic changes and impact on plants defense system), human health (genetic alteration, cancer, allergies, and asthma), and preserve food products. We have also described eco-friendly management strategies for pesticides as a green solution, including bacterial degradation, myco-remediation, phytoremediation, and microalgae-based bioremediation. The microbes, using catabolic enzymes for degradation of pesticides and clean-up from the environment. This review shows the importance of finding potent microbes, novel genes, and biotechnological applications for pesticide waste management to create a sustainable environment.
Collapse
Affiliation(s)
| | - Vijay K. Verma
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Balwant Singh Rawat
- Department of Pharmaceutical Sciences, Gurukul Kangri Deemed to be University, Haridwar, India
| | - Baljinder Kaur
- Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Sudhowala, India
| | - Akansha Sharma
- Allergy and Immunology Section, CSIR-IGIB, New Delhi, India
| | - Seeta Dewali
- Laboratory of Alternative Protocols in Zoology and Biotechnology Research Laboratory, Department of Zoology, Kumaun University, Nainital, India
| | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Reshma Kumari
- Department of Botany & Microbiology, Gurukul Kangri Deemed to be University, Haridwar, India
| | - Sevaram Singh
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Asutosh Mohapatra
- Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Varsha Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Newai Tonk, India
| | - Nitika Rana
- Department of Environmental Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, India
| | - Jose Maria Cunill
- Biotechnology Engineering, Universidad Politécnica Metropolitana de Puebla, Mexico, Mexico
| |
Collapse
|
6
|
Mesnage R, Ibragim M, Mandrioli D, Falcioni L, Tibaldi E, Belpoggi F, Brandsma I, Bourne E, Savage E, Mein CA, Antoniou MN. Comparative Toxicogenomics of Glyphosate and Roundup Herbicides by Mammalian Stem Cell-Based Genotoxicity Assays and Molecular Profiling in Sprague-Dawley Rats. Toxicol Sci 2022; 186:83-101. [PMID: 34850229 PMCID: PMC8883356 DOI: 10.1093/toxsci/kfab143] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Whether glyphosate-based herbicides (GBHs) are more potent than glyphosate alone at activating cellular mechanisms, which drive carcinogenesis remain controversial. As GBHs are more cytotoxic than glyphosate, we reasoned they may also be more capable of activating carcinogenic pathways. We tested this hypothesis by comparing the effects of glyphosate with Roundup GBHs both in vitro and in vivo. First, glyphosate was compared with representative GBHs, namely MON 52276 (European Union), MON 76473 (United Kingdom), and MON 76207 (United States) using the mammalian stem cell-based ToxTracker system. Here, MON 52276 and MON 76473, but not glyphosate and MON 76207, activated oxidative stress and unfolded protein responses. Second, molecular profiling of liver was performed in female Sprague-Dawley rats exposed to glyphosate or MON 52276 (at 0.5, 50, and 175 mg/kg bw/day glyphosate) for 90 days. MON 52276 but not glyphosate increased hepatic steatosis and necrosis. MON 52276 and glyphosate altered the expression of genes in liver reflecting TP53 activation by DNA damage and circadian rhythm regulation. Genes most affected in liver were similarly altered in kidneys. Small RNA profiling in liver showed decreased amounts of miR-22 and miR-17 from MON 52276 ingestion. Glyphosate decreased miR-30, whereas miR-10 levels were increased. DNA methylation profiling of liver revealed 5727 and 4496 differentially methylated CpG sites between the control and glyphosate and MON 52276 exposed animals, respectively. Apurinic/apyrimidinic DNA damage formation in liver was increased with glyphosate exposure. Altogether, our results show that Roundup formulations cause more biological changes linked with carcinogenesis than glyphosate.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Mariam Ibragim
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | - Laura Falcioni
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | - Eva Tibaldi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | | | - Emma Bourne
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London E1 2AT, UK
| | - Emanuel Savage
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London E1 2AT, UK
| | - Charles A Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London E1 2AT, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| |
Collapse
|
7
|
Paredes-Céspedes DM, Bernal-Hernández YY, Herrera-Moreno JF, Rojas-García AE, Medina-Díaz IM, González-Arias CA, Barrón-Vivanco BS. Methylation patterns of the CDKN2B and CDKN2A genes in an indigenous population exposed to pesticides. Hum Exp Toxicol 2022; 41:9603271211063161. [DOI: 10.1177/09603271211063161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The INK4 -ARF locus includes the CDKN2B and CDKN2A genes and is functionally relevant in the regulation of both cell proliferation and senescence. Studies have reported modifications of DNA methylation in this locus by exposure to environmental contaminants including pesticides; however, until now, specific methylation profiles have not been reported in genetically conserved populations exposed to occupational pesticides. The aim of this study was to determine the methylation profiles of the CDKN2B and CDKN2A genes in a genetically conserved population exposed to pesticides. A cross-sectional and analytical study was carried out in 190 Huichol indigenous persons. Information related to pesticide exposure, diet and other variables were obtained through the use of a structured questionnaire. Blood and urine samples were collected for methylation test and dialkylphosphates (DAP) determination, respectively. DNA methylation was measured by the pyrosequencing of bisulfite-treated DNA and DAP concentrations by gas chromatography-tandem mass spectrometry (GC/MS). The most frequent metabolite in the population was dimethylthiophosphate. The farmer group presented a higher methylation percentage of CDKN2B than the non-farmer group, but no differences in CDKN2A were observed between groups. A positive correlation between methylation of CpG site 3 of CDKN2B and time working in the field was observed in the farmer group. An association between methylation percentage of CDKN2B and age was also observed in the non-farmer group. These results suggest that pesticide exposure and exposure time in Huichol indigenous individuals could modify the methylation pattern of the CDKN2B gene.
Collapse
Affiliation(s)
- Diana M Paredes-Céspedes
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - José Francisco Herrera-Moreno
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Cyndia A González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| |
Collapse
|
8
|
Paredes-Céspedes DM, Rojas-García AE, Medina-Díaz IM, Ramos KS, Herrera-Moreno JF, Barrón-Vivanco BS, González-Arias CA, Bernal-Hernández YY. Environmental and socio-cultural impacts on global DNA methylation in the indigenous Huichol population of Nayarit, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4472-4487. [PMID: 32940839 DOI: 10.1007/s11356-020-10804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Alterations of global DNA methylation have been evaluated in several studies worldwide; however, Long Interspersed Nuclear Elements-1 (LINE-1) methylation in genetically conserved populations such as indigenous communities have not, to our knowledge, been reported. The aim of this study was to evaluate the relationship between LINE-1 methylation patterns and factors such as pesticide exposure and socio-cultural characteristics in the Indigenous Huichol Population of Nayarit, Mexico. A cross-sectional study was conducted in 140 Huichol indigenous individuals. A structured questionnaire was used to determine general and anthropometric characteristics, diet, harmful habits, and pesticide exposure. DNA methylation was determined by pyrosequencing of bisulfite-treated DNA. A lower level of LINE-1 methylation was found in the indigenous population when compared to a Mestizo population previously studied by our group. This difference might be due to the influence of the genetic admixture and differing dietary and lifestyle habits. The males in the indigenous population exhibited increased LINE-1 methylation in comparison to the females. Sex and alcohol consumption showed positive associations with LINE-1 methylation, while weight, current work in the field, current pesticide usage, and folate intake exhibited negative associations with LINE-1 methylation. The results suggest that ethnicity, as well as other internal and environmental factors, might influence LINE-1 methylation.
Collapse
Affiliation(s)
- Diana Marcela Paredes-Céspedes
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, México
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Kenneth S Ramos
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, 121 W. Holcombe Blvd, Houston, TX, 77030 m EE,UU, USA
| | - José Francisco Herrera-Moreno
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, México
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México.
| |
Collapse
|