1
|
Chen M, Carmella SG, Zhao Y, Hecht SS. Faster liquid chromatography-tandem mass spectrometry method for analysis of isomeric urinary mercapturic acid metabolites of crotonaldehyde, methacrolein, and methyl vinyl ketone. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124324. [PMID: 39342819 DOI: 10.1016/j.jchromb.2024.124324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
We report a significantly more rapid method for quantitation of the urinary mercapturic acids of the isomeric toxicants crotonaldehyde, methacrolein, and methyl vinyl ketone. The major innovation of this novel method is detection by liquid chromatography-negative atmospheric pressure chemical ionization-tandem mass spectrometry-selected reaction monitoring as opposed to detection by negative electrospray ionization in our previously reported method. The new method also uses an improved Raptor Biphenyl HPLC column. The total chromatographic analysis time was reduced to about 8 min compared to 35 min in our previously published method. Accuracy, precision, and ruggedness of the new method were established, and its suitability for the analysis of urine samples from 2500 cigarette smokers and non-smokers was confirmed. The improved method is practical for quantitation of these important toxicants in clinical studies requiring analysis of thousands of urine samples.
Collapse
Affiliation(s)
- Menglan Chen
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-148 CCRB, Minneapolis, MN 55455, USA
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-148 CCRB, Minneapolis, MN 55455, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-148 CCRB, Minneapolis, MN 55455, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-148 CCRB, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Pan G, Au CK, Ham YH, Yu JZ, Cai Z, Chan W. Urinary Thioproline and Thioprolinyl Glycine as Specific Biomarkers of Formaldehyde Exposure in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16368-16375. [PMID: 39223712 DOI: 10.1021/acs.est.4c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Assessment of personal formaldehyde (FA) exposure is most commonly carried out using formate as a biomarker, as it is the major product from FA metabolism. However, formate could also have originated from the metabolism of other endogenous and exogenous substances or from dietary intake, which may give rise to overestimated results with regard to FA exposure. We have developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with an isotope-dilution method for rigorous quantitation of two major urinary FA conjugation products: thioproline (SPro) and thioprolinyl glycine (SPro-Gly), formed in the reaction between FA and endogenous cysteine or cysteinyl glycine, respectively, as marker molecules to assess personal FA exposure. Using this newly developed method, we measured the FA exposure levels in cigarette smokers, occupants of a chemistry research laboratory and typical domestic household, and visitors to a Chinese temple with a Pearson correlation coefficient greater than 0.94, showing a strong linear correlation between urinary adduct levels and the airborne FA level. It is believed that quantitation of urinary SPro and SPro-Gly may represent a noninvasive, interference-free method for assessing personal FA exposure.
Collapse
Affiliation(s)
- Guanrui Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Jian Zhen Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon , Hong Kong SAR, China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon , Hong Kong SAR, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon , Hong Kong SAR, China
| |
Collapse
|
3
|
Morimoto A, Takasugi N, Pan Y, Kubota S, Dohmae N, Abiko Y, Uchida K, Kumagai Y, Uehara T. Methyl vinyl ketone and its analogs covalently modify PI3K and alter physiological functions by inhibiting PI3K signaling. J Biol Chem 2024; 300:105679. [PMID: 38272219 PMCID: PMC10881440 DOI: 10.1016/j.jbc.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K-Akt signaling by MVK reversed epidermal growth factor-induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.
Collapse
Affiliation(s)
- Atsushi Morimoto
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuexuan Pan
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sho Kubota
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yumi Abiko
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Koji Uchida
- Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshito Kumagai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
4
|
Wendt CH, Bowler RP, Demorest C, Hastie A, Labaki WW, Chen M, Carmella SG, Hecht SS. Levels of Urinary Mercapturic Acids of Acrolein, Methacrolein, Crotonaldehyde, and Methyl Vinyl Ketone in Relationship to Chronic Obstructive Pulmonary Disease in Cigarette Smokers of the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS). Chem Res Toxicol 2023. [PMID: 37725788 DOI: 10.1021/acs.chemrestox.3c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Cigarette smoking is an established cause of chronic obstructive pulmonary disease (COPD). Numerous studies implicate acrolein, which occurs in relatively high concentrations in cigarette smoke and reacts readily with proteins, as one causative factor for COPD in smokers. Far less is known about the possible roles in COPD of the related α,β-unsaturated carbonyl compounds of cigarette smoke crotonaldehyde, methacrolein, and methyl vinyl ketone. In the study reported here, we analyzed mercapturic acids of these α,β-unsaturated compounds in the urine of 413 confirmed cigarette smokers in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS)─202 with COPD and 211 without COPD. The mercapturic acids analyzed were 3-hydroxypropyl mercapturic acid (3-HPMA) from acrolein, 3-hydroxy-1-methylpropyl mercapturic acid (HMPMA-1) from crotonaldehyde, 3-hydroxy-2-methylpropyl mercapturic acid (HMPMA-2) from methacrolein, and 3-hydroxy-3-methylpropyl mercapturic acid (HMPMA-3) from methyl vinyl ketone. In models adjusting for age, sex, race, pack years of tobacco use, and BMI, all four mercapturic acids were increased in individuals with COPD but not significantly. Stratified by the GOLD status, there were increased levels of the metabolites associated with GOLD 3-4 compared to that with GOLD 0, with the methacrolein metabolite HMPMA-2 reaching statistical significance (adjusted odds ratio 1.23 [95% CI: 1.00-1.53]). These results highlight the possible role of methacrolein, which has previously received little attention in this regard, as a causative factor in COPD in cigarette smokers.
Collapse
Affiliation(s)
- Chris H Wendt
- University of Minnesota, Minneapolis, Minnesota 55455, United States
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota 55417, United States
| | | | - Connor Demorest
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Annette Hastie
- Wake Forest University School of Medicine, Winston Salem, North Carolina 27101-4135, United States
| | - Wassim W Labaki
- University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - Menglan Chen
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven G Carmella
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Song W, Bian L, Xiong M, Duan Y, Wang Y, Zhang X, Li B, Dai Y, Lu J, Li M, Liu Z, Liu S, Zhang L, Yao H, Shao R, Li G, Li L. Association of genetic polymorphisms with mercapturic acids in the urine of young healthy subjects before and after exposure to outdoor air pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:936-948. [PMID: 35469493 DOI: 10.1080/09603123.2022.2066068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
We aimed to identify the relationship between variations in metabolic genes and human urinary changes in mercapturic acids (MAs), including CEMA, HMPMA, SPMA, HPMA and HEMA, before and after air pollution exposure. Genotype detection for 47 relevant single nucleotide polymorphisms (SNPs) collected by literature research was performed. Five MAs expression levels in the urinary samples of 50 young healthy individuals with short-term exposure to clean, polluted and purified air at five time points were detected by targeted online solid-phase extraction liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS), followed with associations of SNPs with MAs changes. Difference in MAs between polluted and clean/purified air was significantly associated with 21 SNPs mapped into 9 genes. Five SNPs in GSTP1 showed the most prominent association with the changes in SPMA expression, indicating that those SNPs in GSTP1 and SPMA might serve as biomarkers for susceptibility and the prognosis of lung cancer.
Collapse
Affiliation(s)
- Wenping Song
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lingjie Bian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengran Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Duan
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Zhang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Biao Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yulong Dai
- Department of Bioinformatics Analysis & Technical Support, Shanghai Lu Ming Biological Technology Co. Ltd, Shanghai, China
| | - Jiawei Lu
- Department of Bioinformatics Analysis & Technical Support, Shanghai Lu Ming Biological Technology Co. Ltd, Shanghai, China
| | - Meng Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiguo Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shigang Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Li Zhang
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hongjuan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Guangxi Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
6
|
Sato RY, Kotake K, Zhang Y, Onishi H, Matsui F, Norimoto H, Zhou Z. Methyl vinyl ketone impairs spatial memory and activates hippocampal glial cells in mice. PLoS One 2023; 18:e0289714. [PMID: 37651419 PMCID: PMC10470879 DOI: 10.1371/journal.pone.0289714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Memory is a fundamental brain function that can be affected by a variety of external factors including environmental pollutants. One of these pollutants is methyl vinyl ketone (MVK), a hazardous substance found in cigarettes, industrial wastes, and car exhaust. Humans can be exposed to MVK under many circumstances; however, it is unclear whether MVK affects higher-order brain functions such as memory. Here, we examined the memory performances of mice receiving systemic MVK administration. We found that 1 mg/kg of MVK impaired spatial memory. We also showed that 1 mg/kg MVK activated glial cells and altered glial functions in several subregions of the hippocampus, a brain region involved in learning and memory. These results suggest that MVK induces memory deficits and activates glial cells in hippocampal subregions.
Collapse
Affiliation(s)
- Ren Y. Sato
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koki Kotake
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yumin Zhang
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiraku Onishi
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Futaba Matsui
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Norimoto
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Zhiwen Zhou
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Park SL, Le Marchand L, Cheng G, Balbo S, Chen M, Carmella SG, Thomson NM, Lee Y, Patel YM, Stram DO, Jensen J, Hatsukami DK, Murphy SE, Hecht SS. Quantitation of DNA Adducts Resulting from Acrolein Exposure and Lipid Peroxidation in Oral Cells of Cigarette Smokers from Three Racial/Ethnic Groups with Differing Risks for Lung Cancer. Chem Res Toxicol 2022; 35:1914-1922. [PMID: 35998368 PMCID: PMC10019528 DOI: 10.1021/acs.chemrestox.2c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Multiethnic Cohort Study has demonstrated that the risk for lung cancer in cigarette smokers among three ethnic groups is highest in Native Hawaiians, intermediate in Whites, and lowest in Japanese Americans. We hypothesized that differences in levels of DNA adducts in oral cells of cigarette smokers would be related to these differing risks of lung cancer. Therefore, we used liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry to quantify the acrolein-DNA adduct (8R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo, 1) and the lipid peroxidation-related DNA adduct 1,N6-etheno-dAdo (εdAdo, 2) in DNA obtained by oral rinse from 101 Native Hawaiians, 101 Whites, and 79 Japanese Americans. Levels of urinary biomarkers of nicotine, acrolein, acrylonitrile, and a mixture of crotonaldehyde, methyl vinyl ketone, and methacrolein were also quantified. Whites had significantly higher levels of γ-OH-Acr-dGuo than Japanese Americans and Native Hawaiians after adjusting for age and sex. There was no significant difference in levels of this DNA adduct between Japanese Americans and Native Hawaiians, which is not consistent with the high lung cancer risk of Native Hawaiians. Levels of εdAdo were modestly higher in Whites and Native Hawaiians than in Japanese Americans. The lower level of DNA adducts in the oral cells of Japanese American cigarette smokers than Whites is consistent with their lower risk for lung cancer. The higher levels of εdAdo, but not γ-OH-Acr-dGuo, in Native Hawaiian versus Japanese American cigarette smokers suggest that lipid peroxidation and related processes may be involved in their high risk for lung cancer, but further studies are required.
Collapse
Affiliation(s)
- Sungshim L Park
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Guang Cheng
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Menglan Chen
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicole M Thomson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Younghan Lee
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Yesha M Patel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Joni Jensen
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Sugawara H, Norimoto H, Zhou Z. Methyl vinyl ketone disrupts neuronal survival and axonal morphogenesis. J Toxicol Sci 2022; 47:375-380. [PMID: 36047111 DOI: 10.2131/jts.47.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methyl vinyl ketone (MVK) is an environmental hazardous substrate which is mainly present in cigarette smoke, industrial waste, and exhaust gas. Despite many chances to be exposed to MVK, the cellular toxicity of MVK is largely unknown. Neurons are the main component of the brain, which is one the most vital organs to human beings. Nevertheless, the influence of MVK to neurons has not been investigated. Here, we determined whether MVK treatment negatively affects neuronal survival and axonal morphogenesis using primary hippocampal neuronal cultures. We treated hippocampal neurons with 0.1 μM to 3.0 μM MVK and observed a concentration-dependent increase of neuronal death rate. We also demonstrated that the treatment with a low concentration of MVK 0.1 μM or 0.3 μM inhibited axonal branching specifically without affecting axon outgrowth. Our results suggest that MVK is highly toxic to neurons.
Collapse
Affiliation(s)
| | | | - Zhiwen Zhou
- Graduate School of Medicine, Hokkaido University
| |
Collapse
|
9
|
Chen M, Carmella SG, Lindgren BR, Luo X, Ikuemonisan J, Niesen B, Thomson NM, Murphy SE, Hatsukami DK, Hecht SS. Increased Levels of the Acrolein Metabolite 3-Hydroxypropyl Mercapturic Acid in the Urine of e-Cigarette Users. Chem Res Toxicol 2022; 36:583-588. [PMID: 35858275 PMCID: PMC9852357 DOI: 10.1021/acs.chemrestox.2c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Carcinogen and toxicant uptake by e-cigarette users have not been fully evaluated. In the study reported here, we recruited 30 e-cigarette users, 63 nonsmokers, and 33 cigarette smokers who gave monthly urine samples over a period of 4-6 months. Their product use status was confirmed by measurements of exhaled CO, urinary total nicotine equivalents, cyanoethyl mercapturic acid (CEMA), and total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Urinary biomarkers of exposure to the carcinogens acrolein (3-hydroxypropyl mercapturic acid, 3-HPMA), benzene (S-phenyl mercapturic acid, SPMA), acrylonitrile (CEMA), and a combination of crotonaldehyde, methyl vinyl ketone, and methacrolein (3-hydroxy-1-methylpropyl mercapturic acid, HMPMA) were quantified at each visit. Data from subject visits with CEMA > 27 pmol/mL were excluded from the statistical analysis of the results because of possible unreported exposures to volatile combustion products such as secondhand cigarette smoke or marijuana smoke exposure; this left 22 e-cigarette users with 4 or more monthly visits and all 63 nonsmokers. Geometric mean levels of 3-HPMA (1249 versus 679.3 pmol/mL urine) were significantly higher (P = 0.003) in e-cigarette users than in nonsmokers, whereas levels of SPMA, CEMA, and HMPMA did not differ between these two groups. All analytes were significantly higher in cigarette smokers than in either e-cigarette users or nonsmokers. The results of this unique multimonth longitudinal study demonstrate consistent significantly higher uptake of the carcinogen acrolein in e-cigarette users versus nonsmokers, presenting a warning signal regarding e-cigarette use.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Stephen S. Hecht
- To whom correspondence should be addressed: Masonic Cancer Center, University of Minnesota, 2231 6th Street SE - 2-148 CCRB, Minneapolis, MN 55455, USA. phone: (612) 624-7604; fax: (612) 624-3869;
| |
Collapse
|
10
|
Volatilomic Signatures of AGS and SNU-1 Gastric Cancer Cell Lines. Molecules 2022; 27:molecules27134012. [PMID: 35807254 PMCID: PMC9268292 DOI: 10.3390/molecules27134012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
In vitro studies can help reveal the biochemical pathways underlying the origin of volatile indicators of numerous diseases. The key objective of this study is to identify the potential biomarkers of gastric cancer. For this purpose, the volatilomic signatures of two human gastric cancer cell lines, AGS (human gastric adenocarcinoma) and SNU-1 (human gastric carcinoma), and one normal gastric mucosa cell line (GES-1) were investigated. More specifically, gas chromatography mass spectrometry has been applied to pinpoint changes in cell metabolism triggered by cancer. In total, ten volatiles were found to be metabolized, and thirty-five were produced by cells under study. The volatiles consumed were mainly six aldehydes and two heterocyclics, whereas the volatiles released embraced twelve ketones, eight alcohols, six hydrocarbons, three esters, three ethers, and three aromatic compounds. The SNU-1 cell line was found to have significantly altered metabolism in comparison to normal GES-1 cells. This was manifested by the decreased production of alcohols and ketones and the upregulated emission of esters. The AGS cells exhibited the increased production of methyl ketones containing an odd number of carbons, namely 2-tridecanone, 2-pentadecanone, and 2-heptadecanone. This study provides evidence that the cancer state modifies the volatilome of human cells.
Collapse
|
11
|
Song W, Han Q, Wan Y, Qian X, Wei M, Jiang Y, Wang Q. Repeated measurements of 21 urinary metabolites of volatile organic compounds and their associations with three selected oxidative stress biomarkers in 0-7-year-old healthy children from south and central China. CHEMOSPHERE 2022; 287:132065. [PMID: 34496338 DOI: 10.1016/j.chemosphere.2021.132065] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Human beings are extensively and concurrently exposed to multiple volatile organic compounds (VOCs, including some Class I human carcinogens), which may induce oxidative stress in human body. Data on urinary metabolites of VOCs (mVOCs) among young children are limited. No studies have examined their inter-day variability of mVOCs and their associations with oxidative stress biomarkers (OSBs) using repeated urine samples from children. In this study, we measured twenty one mVOCs and three OSBs [8-hydroxy-2'-deoxyguanosine (8-OHdG; for DNA), 8-hydroxyguanosine (8-OHG; for RNA], and 4-hydroxy nonenal mercapturic acid (HNEMA; for lipid)] in 390 urine samples of 130 children (three samples on three consecutive days provided by each participant) aged 0-7 years from September 2018 to January 2019 in Shenzhen, south China, and Wuhan, central China. HPMMA (3-hydroxypropyl-1-methyl mercapturic acid/N-Acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine), 3HPMA (3-hydroxypropyl mercapturic acid/N-Acetyl-S-(3-hydroxypropyl)-l-cysteine), and ATCA (2-aminothiazoline-4-carboxylic acid) had higher specific gravity-adjusted median concentrations (1 383, 286, and 273 μg/L, respectively) than the others. Intraclass correlation coefficients of mVOCs ranged from 0.29 to 0.71. After false-discovery rate (FDR, defined as FDR q-value < 0.05) adjustment, linear mixed-effects models revealed that 14 mVOCs were positively associated with 8-OHdG (β range: 0.09-0.37), 11 mVOCs were positively associated with 8-OHG (β range: 0.08-0.30), and 11 mVOCs were positively associated with HNEMA (β range: 0.21-0.70) in urine. Considering the weight of the mVOC index accounted for the associations, based on the weighted quantile sum regression model, parent compounds of DHBMA (3,4-dihydroxybutyl mercapturic acid/N-Acetyl-S-(3,4-dihydroxybutyl)-l-cysteine) and t,t-MA (trans,trans-muconic acid) should be listed as priority VOCs for management to mitigate health risks. For the first time, this study characterized the inter-day variability of urinary mVOCs and their associations with selected OSBs (8-OHdG, 8-OHG, and NHEMA) in young, healthy Chinese children.
Collapse
Affiliation(s)
- Wenjing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Qing Han
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Ying Jiang
- Nanshan District Centers for Disease Control and Prevention, Shenzhen, Guangdong, 518054, PR China.
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
12
|
Qian X, Wan Y, Wang A, Xia W, Yang Z, He Z, Xu S. Urinary metabolites of multiple volatile organic compounds among general population in Wuhan, central China: Inter-day reproducibility, seasonal difference, and their associations with oxidative stress biomarkers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117913. [PMID: 34426205 DOI: 10.1016/j.envpol.2021.117913] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
General population are concurrently and extensively exposed to many volatile organic compounds (VOCs), including some Group 1 human carcinogens, such as 1,3-butadiene. However, only a few studies assessed internal exposure levels of VOCs; particularly, very limited studies have examined associations between the urinary concentrations of multiple VOC metabolites (mVOCs) and oxidative stress biomarkers (OSBs) among the general population. In this study, 21 mVOCs and three OSBs including 8-hydroxy-2'-deoxyguanosine (8-OHdG; for DNA), 8-hydroxyguanosine (8-OHG; for RNA), and 4-hydroxy nonenal mercapturic acid (HNEMA; for lipid) were measured in 406 urine samples collected from 128 healthy adults during autumn and winter of 2018 in Wuhan, central China, including repeated samples taken in 3 d from 75 volunteers. Inter-day reproducibility for most mVOCs was good to excellent; urinary concentrations of mVOCs in winter were generally higher than those in autumn. Risk assessment was conducted by calculating hazard quotients for the parent compounds, and the results suggested that acrolein, 1,3-butadiene, and cyanide should be considered as high-priority hazardous ones for management. After false-discovery adjustment, 16 of the studied mVOCs were positively associated with 8-OHdG and 8-OHG (β values ranged from 0.04 to 0.48), and four mVOCs were positively associated with HNEMA (β values ranged from 0.21 to 0.78). Weighted quantile sum regression analyses were used to assess associations of mVOC mixture and OSBs, and we found significantly positive associations between the mixture index and OSBs, among which the strongest mVOC contributors for the associations were 2-methylhippuric acid for both DNA (20%) and RNA (17%) oxidative damage, and trans,trans-muconic acid (50%) for lipid peroxidation. This study firstly reported good to excellent short-term reproducibility, seasonal difference in autumn and winter, and possible health risk in urinary concentrations of multiple mVOCs among the general population.
Collapse
Affiliation(s)
- Xi Qian
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | | | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
13
|
Wang N, Wei F, Sun J, Wei B, Mei Q, An Z, Li M, Qiu Z, Bo X, Xie J, Zhan J, He M. Atmospheric ozonolysis of crotonaldehyde in the absence and presence of hydroxylated silica oligomer cluster adsorption. CHEMOSPHERE 2021; 281:130996. [PMID: 34289634 DOI: 10.1016/j.chemosphere.2021.130996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
As one of the main components of combustion of tobacco products occurs (CARB), crotonaldehyde has an acute toxicity and widely exists in the atmosphere, which is harmful to human health. The removal efficiency of VOCs by ozonation can reach 80-90%. Based on the theory of quantum chemistry, the degradation mechanism, kinetics and toxicity of crotonaldehyde by ozonation in gas phase and heterogeneous phase were studied. Ozone was added to the olefins unsaturated double bond to form a five-membered ring primary ozonide, which was further fractured due to its unstable structure to form a Criegee intermediate and an aldehyde compound. The reaction rate constant of crotonaldehyde with ozone was 1.24 × 10-17 cm3 molecule-1 s-1 at 298 K and 1 atm, which was an order of magnitude higher than the experimental value. From toxicity assessment, it was found that the ozonation of crotonaldehyde is beneficial to the removal of toxicity. Mineral dust aerosol exists in the atmosphere in large quantities, and SiO2 is the most abundant component. VOCs are transformed into particle state on their surface through homogeneous nucleation and heterogeneous nucleation. Referring to the crystal structure of SiO2, five hydroxylated silica oligomer cluster structures were simulated and the adsorption configurations of crotonaldehyde on their surface were simulated. The adsorption of crotonaldehyde on the surface of the clusters was achieved by forming hydrogen bonds and had good adsorption effects. The adsorption of hydroxylated silica oligomer clusters didn't change the ozonation mechanism of crotonldehyde, but had a certain effect on the reaction rate.
Collapse
Affiliation(s)
- Naixian Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Fenghua Wei
- Assets and Laboratory Management Office, Shandong University, Qingdao, 266237, PR China
| | - Jianfei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, PR China
| | - Bo Wei
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Qiong Mei
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Zhaoxu Qiu
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Xiaofei Bo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan, 250100, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
14
|
Tevis DS, Flores SR, Kenwood BM, Bhandari D, Jacob P, Liu J, Lorkiewicz PK, Conklin DJ, Hecht SS, Goniewicz ML, Blount BC, De Jesús VR. Harmonization of acronyms for volatile organic compound metabolites using a standardized naming system. Int J Hyg Environ Health 2021; 235:113749. [PMID: 33962120 DOI: 10.1016/j.ijheh.2021.113749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Increased interest in volatile organic compound (VOC) exposure has led to an increased need for consistent, systematic, and informative naming of VOC metabolites. As analytical methods have expanded to include many metabolites in a single assay, the number of acronyms in use for a single metabolite has expanded in an unplanned and inconsistent manner due to a lack of guidance or group consensus. Even though the measurement of VOC metabolites is a well-established means to investigate exposure to VOCs, a formal attempt to harmonize acronyms amongst investigators has not been published. The aim of this work is to establish a system of acronym naming that provides consistency in current acronym usage and a foundation for creating acronyms for future VOC metabolites.
Collapse
Affiliation(s)
- Denise S Tevis
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sharon R Flores
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brandon M Kenwood
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Deepak Bhandari
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Peyton Jacob
- Department of Medicine, University of California San Francisco, Division of Cardiology, Clinical Pharmacology Program, San Francisco General Hospital Medical Center, University of California at San Francisco, San Francisco, CA, USA
| | - Jia Liu
- Department of Medicine, University of California San Francisco, Division of Cardiology, Clinical Pharmacology Program, San Francisco General Hospital Medical Center, University of California at San Francisco, San Francisco, CA, USA
| | - Pawel K Lorkiewicz
- American Heart Association - Tobacco Regulation and Addiction Center, Superfund Research Center, Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- American Heart Association - Tobacco Regulation and Addiction Center, Superfund Research Center, Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Maciej L Goniewicz
- Nicotine and Tobacco Product Assessment Resource, Department of Health Behavior, Division of Cancer Prevention and Population Studies, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Víctor R De Jesús
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|