1
|
Pan XH, Shi CX, Hou YP, Wang LF, Niu RQ, Guo L. anti-Selective Carboacylation of Alkynes via Photoredox/Nickel Dual Catalysis. Org Lett 2024. [PMID: 39479895 DOI: 10.1021/acs.orglett.4c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Here, we report an intermolecular carboacylation of terminal alkynes with tertiary and secondary alkyltrifluoroborates as well as acyl chlorides via photoredox/nickel dual catalysis, affording a varity of stereodefined trisubstituted enones in good to excellent yields and E stereoselectivity, through a radical relay process. This redox-neutral protocol exhibits excellent functional group tolerance, exclusive regio- and stereoselectivity, and broad compatibility with various acyl chlorides and alkyltrifluoroborates.
Collapse
Affiliation(s)
- Xian-Hua Pan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chang-Xin Shi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Ya-Ping Hou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Li-Fang Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Rui-Qi Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Lei Guo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
2
|
Zhang Y, Wang J, He X, Peng S, Yuan L, Huang G, Guo Y, Lu X. Organophotocatalyst Enabled Deoxycyclopropanation of Alcohols. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411788. [PMID: 39470106 DOI: 10.1002/advs.202411788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Cyclopropane fragments, which widely exist in marketed drugs and natural products, can confer special pharmacological properties to small-molecule drugs. Therefore, developing methods to construct cyclopropanes is of great significance. Nevertheless, the introduction of cyclopropane primarily relies on already-formed cyclopropyl groups, which significantly restricts the diversity of cyclopropane skeletons. Late-stage direct cyclopropanation is still a challenging task. Herein, a photo-induced intermolecular deoxycyclopropanation reaction that employs alcohols as substrates, and 1 mol.% of 2,3,5,6-tetrakis(carbazol-9-yl)-1,4-dicyanobenzene (4CzTPN) as organophotocatalyst is reported. This method proceeds with high transformation efficiency (up to 98% yield) and exhibits broad functional group tolerance, such as primary, secondary, and tertiary alcohols as well as various activated β-halogenated alkenes. This process is mild, easy to operate, and has low equipment requirements. The power of this technology is demonstrated by the late-stage functionalization of five marketed drugs and five natural products.
Collapse
Affiliation(s)
- Yongsheng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, P. R. China
| | - Jincheng Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xiaoyan He
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, P. R. China
| | - Shilin Peng
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, P. R. China
| | - Lei Yuan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, P. R. China
| | - Yongjin Guo
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, P. R. China
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, P. R. China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, P. R. China
| |
Collapse
|
3
|
Lamb MC, Steiniger KA, Trigoura LK, Wu J, Kundu G, Huang H, Lambert TH. Electrophotocatalysis for Organic Synthesis. Chem Rev 2024. [PMID: 39441982 DOI: 10.1021/acs.chemrev.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Electrocatalysis and photocatalysis have been the focus of extensive research efforts in organic synthesis in recent decades, and these powerful strategies have provided a wealth of new methods to construct complex molecules. Despite these intense efforts, only recently has there been a significant focus on the combined use of these two modalities. Nevertheless, the past five years have witnessed rapidly growing interest in the area of electrophotocatalysis. This hybrid strategy capitalizes on the enormous benefits of using photons as reagents while also employing an electric potential as a convenient and tunable source or sink of electrons. Research on this topic has led to a number of methods for C-H functionalization, reductive cross-coupling, and olefin addition among others. This field has also seen the use of a broad range of catalyst types, including both metal and organocatalysts. Of particular note has been work with open-shell photocatalysts, which tend to have comparatively large redox potentials. Electrochemistry provides a convenient means to generate such species, making electrophotocatalysis particularly amenable to this intriguing class of redox catalyst. This review surveys methods in the area of electrophotocatalysis as applied to organic synthesis, organized broadly into oxidative, reductive, and redox neutral transformations.
Collapse
Affiliation(s)
- Matthew C Lamb
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Keri A Steiniger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Leslie K Trigoura
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jason Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gourab Kundu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - He Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Wu Y, Wang X, Wang Z, Chen C. Redox-neutral decarboxylative coupling of fluoroalkyl carboxylic acids via dual metal photoelectrocatalysis. Chem Sci 2024:d4sc06057a. [PMID: 39430939 PMCID: PMC11485129 DOI: 10.1039/d4sc06057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Given the importance and beneficial characteristics of aliphatic CF3 chiral compounds in modern chemistry, efficient strategies for their synthesis are highly sought after. While α-CF3 carboxylic acid is an emerging and easily accessible CF3-containing synthon, its use as a source of fluoroalkyl is highly challenging due to its high oxidation potential. Herein, we disclose a photoelectrocatalytic method for the direct and enantioselective decarboxylative cross-coupling of α-CF3 carboxylic acids. Key to our approach is the strategic integration of the LMCT-induced decarboxylative process with classical nickel catalysis. This strategy enables the efficient synthesis of aliphatic chiral CF3 compounds with a broad range of substrates.
Collapse
Affiliation(s)
- Yaxing Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University China
| | - Xiuling Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University China
| | - Zhenyu Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University China
| | - Chao Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University China
| |
Collapse
|
5
|
Tu JL, Huang B. Direct C(sp 3)-H functionalization with aryl and alkyl radicals as intermolecular hydrogen atom transfer (HAT) agents. Chem Commun (Camb) 2024; 60:11450-11465. [PMID: 39268687 DOI: 10.1039/d4cc03383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Recent years have witnessed the emergence of direct intermolecular C(sp3)-H bond functionalization using in situ generated aryl/alkyl radicals as a unique class of hydrogen atom transfer (HAT) agents. A variety of precursors have been exploited to produce these radical HAT agents under photocatalytic, electrochemical or thermal conditions. To date, viable aryl radical precursors have included aryl diazonium salts or aryl azosulfones, diaryliodonium salts, O-benzoyl oximes, aryl sulfonium salts, aryl thioesters, and aryl halides; and applicable alkyl radical sources have included tetrahalogenated methanes (e.g., CCl3Br, CBr4 and CF3I), N-hydroxyphthalimide esters, alkyl bromides, and acetic acid. This review summarizes the current advances in direct intermolecular C(sp3)-H functionalization through key HAT events with in situ generated aryl/alkyl radicals and categorizes the procedures by the specific radical precursors applied. With an emphasis on the reaction conditions, mechanisms and representative substrate scopes of these protocols, this review aims to demonstrate the current trends and future challenges of this emerging field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
6
|
Gao Y, Li Y, Yan W, Zhang K, Cai L. Photoinduced Deconstructive Alkylation Approach Enabled by Oxy-Radicals from Alcohols. J Org Chem 2024; 89:14436-14446. [PMID: 39270043 DOI: 10.1021/acs.joc.4c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Alcohols are the most commercially abundant, synthetically versatile and operationally convenient functional groups in organic chemistry. Therefore, a strategy that utilizes hydroxy-containing compounds to develop novel bond disconnection and formation process would achieve molecular diversity. Herein, a deconstructive strategy for the generation of quinoxalin-2(1H)-one derivatives has been developed from alcohol precursors via oxy-radical-induced β-fragmentation. Additionally, 1,5-HAT and deoxygenation by P(III) along with oxy-radical were demonstrated as alternative pathways for this transformation. Furthermore, with the deep-seated reorganization of a few terpenes carbon framework, a unique activity with inhibition against the growth of pathogenic fungi was observed.
Collapse
Affiliation(s)
- Yiman Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenxuan Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kui Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Langschwager T, Storch G. Flavin-Catalyzed, Photochemical Conversion of Dehydroalanine into 4,5-Dihydroxynorvaline. Angew Chem Int Ed Engl 2024:e202414679. [PMID: 39305229 DOI: 10.1002/anie.202414679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 11/06/2024]
Abstract
The chemical synthesis of unnatural amino acids (UAA) is a key strategy for preparing designed peptides, including pharmaceutically active compounds. Alterations of existing amino acid residues such as dehydroalanine (Dha) are particularly important since selected positions can be addressed without the necessity of a complete de novo synthesis. The intriguing UAA 4,5-dihydroxynorvaline (Dnv) is found in a variety of naturally occurring peptides and biologically active compounds. However, no method is currently available to modify an existing peptide with this residue. We report the use of flavin catalysts and visible light irradiation for this challenge, which serves as a versatile strategy for converting Dha into Dnv. Our study shows that excited flavins are competent hydrogen atom abstraction catalysts for ethers and acetals, which allows masked 1,2-dihydroxyethylene functionalization from 2,2-dimethyl-1,3-dioxolane. The masked diol was successfully coupled to Dha residues, and a series of Dnv-containing products is reported. A mild and orthogonal protocol for deprotection of the acetal group was also identified, allowing free Dnv-modified peptides to be obtained. This method provides a straightforward strategy for Dnv functionalization, which is envisioned to be crucial for accessing natural products and synthetic analogues with pharmaceutical activity.
Collapse
Affiliation(s)
- Tim Langschwager
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Golo Storch
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
8
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
9
|
Satheesh V, Deng Y. Recent Advances in Synthetic Methods by Photocatalytic Single-Electron Transfer Chemistry of Pyridine N-Oxides. J Org Chem 2024; 89:11864-11874. [PMID: 39121338 PMCID: PMC11415123 DOI: 10.1021/acs.joc.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
By adoption of the enabling technology of modern photoredox catalysis and photochemistry, the generation of reactive and versatile pyridine N-oxy radicals can be facilely achieved from single-electron oxidation of pyridine N-oxides. This Synopsis highlights recent methodologies mediated by pyridine N-oxy radicals in developing (1) pyridine N-oxide-based hydrogen atom transfer catalysts for C(sp3)-H functionalizations and (2) β-oxyvinyl radical-mediated cascade reactions. In addition, recent research revealed that direct photoexcitation of pyridine N-oxides allowed for the generation of alkyl carbon radicals from alkylboronic acids.
Collapse
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
10
|
Capaldo L, Wan T, Mulder R, Djossou J, Noël T. Visible light-induced halogen-atom transfer by N-heterocyclic carbene-ligated boryl radicals for diastereoselective C(sp 3)-C(sp 2) bond formation. Chem Sci 2024:d4sc02962c. [PMID: 39184300 PMCID: PMC11340342 DOI: 10.1039/d4sc02962c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
Photoinduced halogen-atom transfer (XAT) has rapidly emerged as a programmable approach to generate carbon-centered radical intermediates, mainly relying on silyl and α-aminoalkyl radicals as halogen abstractors. More recently, ligated boryl radicals have also been proposed as effective halogen abstractors under visible-light irradiation. In this study, we describe the use of this approach to enable C(sp3)-C(sp2) bond formation via radical addition of carbon-centered radicals generated via XAT onto chloroalkynes. Our mechanistic investigation reveals a complex interplay of highly reactive radical intermediates which, under optimized conditions, delivered the targeted vinyl chlorides in excellent yields and Z : E ratios. Finally, we demonstrated the synthetic value of these products in transition metal-based cross-coupling reactions.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Department of Chemistry, SynCat Lab, Life Sciences and Environmental Sustainability, University of Parma 43124 Parma Italy
| | - Ting Wan
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Robin Mulder
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jonas Djossou
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
11
|
Holovach S, Poroshyn I, Melnykov KP, Liashuk OS, Pariiska OO, Kolotilov SV, Rozhenko AB, Volochnyuk DM, Grygorenko OO. Parallel Minisci Reaction of gem-Difluorocycloalkyl Building Blocks. ACS ORGANIC & INORGANIC AU 2024; 4:424-431. [PMID: 39132014 PMCID: PMC11311045 DOI: 10.1021/acsorginorgau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 08/13/2024]
Abstract
Parallel Minisci reactions of nonfluorinated and gem-difluorinated C4-C7 cycloalkyl building blocks (trifluoroborates and carboxylic acids) with a series of electron-deficient heterocycles were studied. A comparison of the reaction's outcome revealed better product yields in the case of carboxylic acids as the radical precursors in most cases, albeit these reagents were used with three-fold excess under optimized conditions. The nature of the heterocyclic core was found to be important for successful incorporation of the cycloalkyl fragment. The impact of the CF2 moiety on the oxidation potential of fluorinated cycloalkyl trifluoroborates and the reaction outcome, in general, was also evaluated.
Collapse
Affiliation(s)
- Serhii Holovach
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
| | - Illia Poroshyn
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Kostiantyn P. Melnykov
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr S. Liashuk
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Olena O. Pariiska
- L.
V. Pisarzhevskii Institute of Physical Chemistry of National Academy
of Sciences of Ukraine, Nauky Avenue 31, Kyïv 03028, Ukraine
| | - Sergey V. Kolotilov
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- L.
V. Pisarzhevskii Institute of Physical Chemistry of National Academy
of Sciences of Ukraine, Nauky Avenue 31, Kyïv 03028, Ukraine
| | - Alexander B. Rozhenko
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Dmytro M. Volochnyuk
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr O. Grygorenko
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
| |
Collapse
|
12
|
Sharma AK, Maseras F. The Subtle Mechanism of Nickel-Photocatalyzed C(sp 3)-H Cross-Coupling. Inorg Chem 2024; 63:13801-13806. [PMID: 39018463 DOI: 10.1021/acs.inorgchem.4c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This computational study revises and reformulates the mechanism for the cross-coupling reaction between chlorobenzene and tetrahydrofuran catalyzed by a Ni complex with the assistance of an Ir photocatalyst. This is a representative process of transition-metal photocatalysis, and variations of it have been reported by different experimental authors. It has been also the subject of previous computational studies, which we revise and extend. Density functional theory (DFT) calculations and microkinetic modeling indicate that the most efficient mechanism takes place through an energy-transfer step and involves a NiIII complex.
Collapse
Affiliation(s)
- Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, Tarragona 43007, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, Tarragona 43007, Spain
| |
Collapse
|
13
|
Feng LM, Liu S, Tu YH, Rui PX, Hu XG. Radical Deoxygenative Three-Component Reaction of Alcohols, Aryl Alkenes, and Cyanopyridines. Org Lett 2024; 26:6225-6229. [PMID: 39004828 DOI: 10.1021/acs.orglett.4c02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We report herein a deoxygenative radical multicomponent reaction involving alcohols, aryl alkenes, and cyanopyridine under photoredox conditions. This method is photoredox-neutral, suitable for late-stage modification, and compatible with a wide array of alcohols as alkyl radical sources, including primary, secondary, and tertiary alcohols. This reaction comprises a radical relay mechanism encompassing the Giese addition of aryl alkenes by alkyl radicals, followed by the decyanative pyridination of benzyl radicals.
Collapse
Affiliation(s)
- Li-Min Feng
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Shuai Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuan-Hong Tu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Pei-Xin Rui
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
14
|
Kato N, Seki Y, Nanjo T, Takemoto Y. Bulky Alkyl Substituents Enhance the Photocatalytic Activity of Pyridine-Based Donor-Acceptor Molecules in the Direct Reductive Cleavage of the C-Br Bond of Aliphatic Bromides. Org Lett 2024; 26:5883-5887. [PMID: 38967316 DOI: 10.1021/acs.orglett.4c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
We report new pyridine-based donor-acceptor (D-A) molecules that enable the direct reductive transformation of a variety of secondary and tertiary aliphatic bromides. A series of experimental and theoretical results suggested that the D-A molecules promote direct C-Br bond cleavage triggered by the excitation of the complex between the catalyst and the aliphatic bromide and that the alkyl groups significantly contribute to the stabilization of the complex, which improves the efficiency of its excitation.
Collapse
Affiliation(s)
- Natsuki Kato
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuta Seki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Xu W, Xu T. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Couplings: Just a Change of the Reduction System? Acc Chem Res 2024; 57:1997-2011. [PMID: 38961540 DOI: 10.1021/acs.accounts.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
ConspectusIn recent years, nickel-catalyzed asymmetric coupling reactions have emerged as efficient methods for constructing chiral C(sp3) carbon centers. Numerous novel approaches have been reported to rapidly construct chiral carbon-carbon bonds through nickel-catalyzed asymmetric couplings between electrophiles and nucleophiles or asymmetric reductive cross-couplings of two different electrophiles. Building upon these advances, our group has been devoted to interrogating dual nickel- and photoredox-catalyzed asymmetric reductive cross-coupling reactions.In our endeavors over the past few years, we have successfully developed several dual Ni-/photoredox-catalyzed asymmetric reductive cross-coupling reactions involving organohalides. While some probably think that this system is just a change of the reduction system from traditional metal reductants to a photocatalysis system, a question that we also pondered at the beginning of our studies, both the achievable reaction types and mechanisms suggest a different conclusion: that this dual catalysis system has its own advantages in the chiral carbon-carbon bond formation. Even in certain asymmetric reactions where the photocatalysis regime functions only as a reducing system, the robust reducing capability of photocatalysts can effectively accelerate the regeneration of low-valent nickel species, thus expanding the selectable scope of chiral ligands. More importantly, in many transformations, besides reducing nickel catalysts, the photocatalysis system can also undertake the responsibility of alkyl radical formation, thereby establishing two coordinated, yet independent catalytic cycles. This catalytic mode has been proven to play a crucial role in achieving diverse asymmetric coupling reactions with great challenges.In this Account, we elucidate our understanding of this system based on our experience and findings. In the Introduction, we provide an overview of the main distinctions between this system and traditional Ni-catalyzed asymmetric reductive cross-couplings with metal reductants and the potential opportunities arising from these differences. Subsequently, we outline various chiral carbon-carbon bond-forming types obtained by this dual Ni/photoredox catalysis system and their mechanisms. In terms of chiral C(sp3)-C(sp2) bond formation, extensive discussion focuses on the asymmetric arylations of α-chloroboronates, α-trifluoromethyl alkyl bromides, α-bromophosphonates, and so on. In the realm of chiral C(sp3)-C(sp) bond formation, asymmetric alkynylations of α-bromophosphonates and α-trifluoromethyl alkyl bromides have been presented herein. Regarding C(sp3)-C(sp3) bond formation, we take the asymmetric alkylation of α-chloroboronates as a compelling example to illustrate the great efficiency of this dual catalysis system. This summary would enable a better grasp of the advantages of this dual catalysis system and clarify how the photocatalysis regime facilitates enantioselective transformations. We anticipate that this Account will offer valuable insights and contribute to the development of new methodologies in this field.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
16
|
Wan T, Ciszewski ŁW, Ravelli D, Capaldo L. Photoinduced Intermolecular Radical Hydroalkylation of Olefins via Ligated Boryl Radicals-Mediated Halogen Atom Transfer. Org Lett 2024; 26:5839-5843. [PMID: 38950385 PMCID: PMC11250028 DOI: 10.1021/acs.orglett.4c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Light-mediated Halogen-Atom Transfer (XAT) has become a significant methodology in contemporary synthesis. Unlike α-aminoalkyl and silyl radicals, ligated boryl radicals (LBRs) have not been extensively explored as halogen atom abstractors. In this study, we introduce NHC-ligated boranes as optimal radical chain carriers for the intermolecular reductive radical hydroalkylation and hydroarylation of electron-deficient olefins by using direct UV-A light irradiation. DFT analysis allowed us to rationalize the critical role of the NHC ligand in facilitating efficient chain propagation.
Collapse
Affiliation(s)
- Ting Wan
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- The
Research Center of Chiral Drugs, Innovation Research Institute of
Traditional Chinese Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
| | - Łukasz W. Ciszewski
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, 27100 Pavia, Italy
| | - Luca Capaldo
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- SynCat
Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
17
|
Hanumanthu R, Weaver JD. Cooperative Catalytic Coupling of Benzyl Chlorides and Bromides with Electron-Deficient Alkenes. Org Lett 2024; 26:5248-5252. [PMID: 38896786 PMCID: PMC11217938 DOI: 10.1021/acs.orglett.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Benzyl radicals are an important class of intermediate. The use of visible light to generate them directly from their respective halides is an ideal synthetic strategy. The central impediment associated with their direct single-electron reduction (photo- or electro-) lies in their highly variable and structurally dependent reduction potential, which combine to make the identification of a general set of conditions difficult. Herein, we have employed a strategy of nucleophilic cooperative catalysis in which catalytic lutidine undergoes halide substitution, which decreases and levels the reduction potential. This allows a general set of photocatalytic conditions to transform a broad range of benzyl halides into radicals that can be used in the synthesis of more complex molecules, exemplified here by Giese coupling with electron-deficient alkenes.
Collapse
Affiliation(s)
- Roshini Hanumanthu
- 107 Physical Science, Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jimmie D. Weaver
- 107 Physical Science, Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
18
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
19
|
Tsuchiya N, Oku A, Nishikata T. Catalytic tert-alkylation of enamides via C-C bond cleavage under photoredox conditions. Chem Commun (Camb) 2024; 60:6623-6626. [PMID: 38847605 DOI: 10.1039/d4cc01643b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Efficient C-C bond cleavage is recognized as a persistent challenge in the field of synthetic methodology. In this study, we found that tertiary alkyl radicals are smoothly formed from tertiary alkylated dienones (BHT adducts) via SET, using PDI as a photocatalyst. Resulting tert-alkyl radicals could be applied to the tert-alkylation of enamides. The driving force of this C-C bond cleavage reaction is the mesolytic cleavage of the BHT adducts. The mechanistic study revealed that PDI anion radical is the key active species during the catalytic cycle.
Collapse
Affiliation(s)
- Naoki Tsuchiya
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Ayane Oku
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| |
Collapse
|
20
|
Roy M, Sardar B, Mallick I, Srimani D. Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C-O bonds in organic transformations. Beilstein J Org Chem 2024; 20:1348-1375. [PMID: 38887583 PMCID: PMC11181251 DOI: 10.3762/bjoc.20.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Alkyl and acyl radicals play a critical role in the advancement of chemical synthesis. The generation of acyl and alkyl radicals by activation of C-O bonds using visible-light photoredox catalysis offers a mild and environmentally benign approach to useful chemical transformations. Alcohols, carboxylic acids, anhydrides, xanthates, oxalates, N-phthalimides, and thiocarbonates are some examples of alkyl and acyl precursors that can produce reactive radicals by homolysis of the C-O bond. These radicals can then go through a variety of transformations that are beneficial for the construction of synthetic materials that are otherwise difficult to access. This study summarizes current developments in the use of organic photocatalysts, transition-metal photoredox catalysts, and metallaphotocatalysts to produce acyl and alkyl radicals driven by visible light.
Collapse
Affiliation(s)
- Mithu Roy
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Bitan Sardar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Itu Mallick
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
21
|
McGhie L, Marotta A, Loftus PO, Seeberger PH, Funes-Ardoiz I, Molloy JJ. Photogeneration of α-Bimetalloid Radicals via Selective Activation of Multifunctional C1 Units. J Am Chem Soc 2024; 146:15850-15859. [PMID: 38805091 PMCID: PMC11177267 DOI: 10.1021/jacs.4c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Light-driven strategies that enable the chemoselective activation of a specific bond in multifunctional systems are comparatively underexplored in comparison to transition-metal-based technologies, yet desirable when considering the controlled exploration of chemical space. With the current drive to discover next-generation therapeutics, reaction design that enables the strategic incorporation of an sp3 carbon center, containing multiple synthetic handles for the subsequent exploration of chemical space would be highly enabling. Here, we describe the photoactivation of ambiphilic C1 units to generate α-bimetalloid radicals using only a Lewis base and light source to directly activate the C-I bond. Interception of these transient radicals with various SOMOphiles enables the rapid synthesis of organic scaffolds containing synthetic handles (B, Si, and Ge) for subsequent orthogonal activation. In-depth theoretical and mechanistic studies reveal the prominent role of 2,6-lutidine in forming a photoactive charge transfer complex and in stabilizing in situ generated iodine radicals, as well as the influential role of the boron p-orbital in the activation/weakening of the C-I bond. This simple and efficient methodology enabled expedient access to functionalized 3D frameworks that can be further derivatized using available technologies for C-B and C-Si bond activation.
Collapse
Affiliation(s)
- Lewis McGhie
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, Potsdam 14476, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Alessandro Marotta
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, Potsdam 14476, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Patrick O. Loftus
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, Potsdam 14476, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, Potsdam 14476, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Ignacio Funes-Ardoiz
- Department
of Chemistry, Instituto de Investigación Química de
la Universidad de La Rioja (IQUR), Universidad
de La Rioja Madre de Dios 53, Logroño 26004, Spain
| | - John J. Molloy
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
22
|
Pillitteri S, Walia R, Van der Eycken EV, Sharma UK. Hydroalkylation of styrenes enabled by boryl radical mediated halogen atom transfer. Chem Sci 2024; 15:8813-8819. [PMID: 38873058 PMCID: PMC11168110 DOI: 10.1039/d4sc01731e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
In this study, we present an inexpensive, stable, and easily available boryl radical source (BPh4Na) employed in a Halogen Atom Transfer (XAT) methodology. This mild and convenient strategy unlocks the use of not only alkyl iodides as radical precursors but also of the more challenging alkyl and aryl bromides to generate C-centered radicals. The generated radicals were further engaged in the anti-Markovnikov hydroalkylation of electronically diverse styrenes, therefore achieving the formation of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds. A series of experimental and computational studies revealed the prominent role of BPh4Na in the halogen abstraction step.
Collapse
Affiliation(s)
- Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Rajat Walia
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 117198 Moscow Russia
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
23
|
Grunshaw T, Wood SH, Sproules S, Parrott A, Nordon A, Shapland PDP, Wheelhouse KMP, Tomkinson NCO. A Mechanistic Investigation of the N-Hydroxyphthalimide Catalyzed Benzylic Oxidation Mediated by Sodium Chlorite. J Org Chem 2024; 89:7933-7945. [PMID: 38748510 PMCID: PMC11165572 DOI: 10.1021/acs.joc.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
A detailed investigation into the mechanistic course of N-hydroxyphthalimide catalyzed oxidation of benzylic centers using sodium chlorite as the stoichiometric oxidant is reported. Through a combination of experimental, spectroscopic, and computational techniques, the transformation is interrogated, providing improved reaction conditions and an enhanced understanding of the mechanism. Performing the transformation in the presence of acetic acid or a pH 4.5 buffer leads to extended reaction times but improves the catalyst lifetime, leading to the complete consumption of the starting material. Chlorine dioxide is identified as the active oxidant that is able to oxidize the N-hydroxyphthalimide anion to the phthalimide-N-oxyl radical, the proposed catalytically active species, which is able to abstract a hydrogen atom from the substrate. A second molecule of chlorine dioxide reacts with the resultant radical and, after loss of hypochlorous acid, leads to the observed product. Through a broad variety of techniques including UV/vis, EPR and Raman spectroscopy, isotopic labeling, and the use of radical traps, evidence for the mechanism is presented that is supported through electronic structural calculations.
Collapse
Affiliation(s)
- Thomas Grunshaw
- Department
Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow G1 1XL, U.K.
- GlaxoSmithKline
R&D, Gunnels Wood
Road, Stevenage SG1 2NY, U.K.
| | - Susanna H. Wood
- Department
Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Stephen Sproules
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Andrew Parrott
- Department
Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Alison Nordon
- Department
Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow G1 1XL, U.K.
| | | | | | - Nicholas C. O. Tomkinson
- Department
Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
24
|
Das A, Justin Thomas KR. Generation and Application of Aryl Radicals Under Photoinduced Conditions. Chemistry 2024; 30:e202400193. [PMID: 38546345 DOI: 10.1002/chem.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Indexed: 04/26/2024]
Abstract
Photoinduced aryl radical generation is a powerful strategy in organic synthesis that facilitates the formation of diverse carbon-carbon and carbon-heteroatom bonds. The synthetic applications of photoinduced aryl radical formation in the synthesis of complex organic compounds, including natural products, physiologically significant molecules, and functional materials, have received immense attention. An overview of current developments in photoinduced aryl radical production methods and their uses in organic synthesis is given in this article. A generalized idea of how to choose the reagents and approach for the generation of aryl radicals is described, along with photoinduced techniques and associated mechanistic insights. Overall, this article offers a critical assessment of the mechanistic results as well as the selection of reaction parameters for specific reagents in the context of radical cascades, cross-coupling reactions, aryl radical functionalization, and selective C-H functionalization of aryl substrates.
Collapse
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
25
|
Piedra HF, Plaza M. Advancements in visible-light-induced reactions via alkenyl radical intermediates. Photochem Photobiol Sci 2024; 23:1217-1228. [PMID: 38700648 DOI: 10.1007/s43630-024-00580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 06/18/2024]
Abstract
In recent years, visible-light-induced organic transformations have taken a central role driving forward the progress of modern organic synthesis. These processes typically involve the transient generation of highly reactive radical intermediates, facilitating a diverse array of chemical reactions. Despite the abundance of synthetic strategies enabling the access of aryl and alkyl-centered radicals, the exploitation of photochemistry to generate highly reactive alkenyl radicals has remained notably underdeveloped. In this review, we present recent advancements in visible-light-induced transformations that proceed through the generation of alkenyl radicals from alkenyl-containing precursors, predominantly alkenyl halides, showcasing their application in various organic transformations.
Collapse
Affiliation(s)
- Helena F Piedra
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain.
| |
Collapse
|
26
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
27
|
Cai Q, McWhinnie IM, Dow NW, Chan AY, MacMillan DWC. Engaging Alkenes in Metallaphotoredox: A Triple Catalytic, Radical Sorting Approach to Olefin-Alcohol Cross-Coupling. J Am Chem Soc 2024; 146:12300-12309. [PMID: 38657210 PMCID: PMC11493080 DOI: 10.1021/jacs.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metallaphotoredox cross-coupling is a well-established strategy for generating clinically privileged aliphatic scaffolds via single-electron reactivity. Correspondingly, expanding metallaphotoredox to encompass new C(sp3)-coupling partners could provide entry to a novel, medicinally relevant chemical space. In particular, alkenes are abundant, bench-stable, and capable of versatile C(sp3)-radical reactivity via metal-hydride hydrogen atom transfer (MHAT), although metallaphotoredox methodologies invoking this strategy remain underdeveloped. Importantly, merging MHAT activation with metallaphotoredox could enable the cross-coupling of olefins with feedstock partners such as alcohols, which undergo facile open-shell activation via photocatalysis. Herein, we report the first C(sp3)-C(sp3) coupling of MHAT-activated alkenes with alcohols by performing deoxygenative hydroalkylation via triple cocatalysis. Through synergistic Ir photoredox, Mn MHAT, and Ni radical sorting pathways, this branch-selective protocol pairs diverse olefins and methanol or primary alcohols with remarkable functional group tolerance to enable the rapid construction of complex aliphatic frameworks.
Collapse
Affiliation(s)
- Qinyan Cai
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Iona M. McWhinnie
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Nathan W. Dow
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Amy Y. Chan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
28
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
29
|
Das S, Mondal PP, Dhibar A, Ruth A, Sahoo B. Unifying N-Sulfinylamines with Alkyltrifluoroborates by Organophotoredox Catalysis: Access to Functionalized Alkylsulfinamides and High-Valent S(VI) Analogues. Org Lett 2024; 26:3679-3684. [PMID: 38647677 DOI: 10.1021/acs.orglett.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We describe an organophotoredox-catalyzed sp3 C-S coupling of N-sulfinylamines with bench-stable alkyltrifluoroborates as a latent nucleophilic counterpart en route to alkylsulfinamides in high efficiency. In contrast to the two-electron reactivity of traditional organometallic reagents, this catalytic method reports the single-electron process of an organometallic reagent with N-sulfinylamines in C-S coupling. This mild and scalable protocol offers operational simplicity and exceptional functional group compatibility, including ketone, ester, amide, nitrile, and halides, that is vulnerable to organolithium or Grignard reagents. Additionally, the sulfinamides are conveniently converted to a variety of important S(VI) compounds, like sulfonamides, sulfonimidamides, and sulfonimidates, among others.
Collapse
Affiliation(s)
- Subham Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Pinku Prasad Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Amit Dhibar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Aan Ruth
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
30
|
Xu W, Fan C, Hu X, Xu T. Deoxygenative Transformation of Alcohols via Phosphoranyl Radical from Exogenous Radical Addition. Angew Chem Int Ed Engl 2024; 63:e202401575. [PMID: 38357753 DOI: 10.1002/anie.202401575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/16/2024]
Abstract
A general approach to the direct deoxygenative transformation of primary, secondary, and tertiary alcohols has been developed. It undergoes through phosphoranyl radical intermediates generated by the addition of exogenous iodine radical to trivalent alkoxylphosphanes. Since these alkoxylphosphanes are readily in situ obtained from alcohols and commercially available, inexpensive chlorodiphenylphosphine, a diverse range of alcohols with various functional groups can be utilized to proceed deoxygenative cross-couplings with alkenes or aryl iodides. The selective transformation of polyhydroxy substrates and the rapid synthesis of complex organic molecules are also demonstrated with this method.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustain-ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. China
| | - Chao Fan
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustain-ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. China
| |
Collapse
|
31
|
Hu Y, Hervieu C, Merino E, Nevado C. Asymmetric, Remote C(sp 3)-H Arylation via Sulfinyl-Smiles Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202319158. [PMID: 38506603 DOI: 10.1002/anie.202319158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 03/21/2024]
Abstract
An efficient asymmetric remote arylation of C(sp3)-H bonds under photoredox conditions is described here. The reaction features the addition radicals to a double bond followed by a site-selective radical translocation (1,n-hydrogen atom transfer) as well as a stereocontrolled aryl migration via sulfinyl-Smiles rearrangement furnishing a wide range of chiral α-arylated amides with up to >99 : 1 er. Mechanistic studies indicate that the sulfinamide group governs the stereochemistry of the product with the aryl migration being the rate determining step preceded by a kinetically favored 1,n-HAT process.
Collapse
Affiliation(s)
- Yawen Hu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | - Cédric Hervieu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | - Estíbaliz Merino
- Departamento de Química Orgánica y Química Inorgánica Instituto de Investigación Química "Andrés M. del Río" (IQAR). Facultad de Farmacia, Universidad de Alcalá Alcalá de Henares, 28805, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, Km. 9.100, 28034, Madrid, Spain
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| |
Collapse
|
32
|
Cui J, Niu KK, Zhang RZ, Liu H, Yu S, Xing LB. Photocatalytic selective oxidation of toluene under encapsulated air conditions. Chem Commun (Camb) 2024; 60:4310-4313. [PMID: 38533635 DOI: 10.1039/d4cc00915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Benzaldehydes are indispensable building blocks in chemistry. However, the selective oxidation of toluene to benzaldehyde remains an ongoing challenge due to the low oxidation potential of benzaldehyde compared to toluene. We report herein a mild protocol that combines hydrogen atom transfer (HAT) with encapsulated air conditions and suitable catalyst loading for selective oxidation of toluene with high selectivity as well as good functional-group tolerance and a broad substrate scope for the synthesis of various high-value aromatic aldehydes. Moreover, the compatibility of this reaction with toluene derivatives of bioactive molecules further demonstrated the practicality of this approach. Mechanism studies have demonstrated that the collaboration between the oxygen quantity and the HAT catalytic system has a major impact on the high selectivity of the reaction. This study not only showcases the effectiveness of HAT strategies toward selective oxidation of toluene to benzaldehyde, but also provides an approach to controlling the selectivity of HAT reactions.
Collapse
Affiliation(s)
- Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
33
|
Cai Y, Gaurav G, Ritter T. 1,4-Aminoarylation of Butadienes via Photoinduced Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311250. [PMID: 38334292 DOI: 10.1002/anie.202311250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
A visible-light-induced, three-component palladium-catalyzed 1,4-aminoarylation of butadienes with readily available aryl halides and aliphatic amines has been developed, affording allylamines with excellent E-selectivity. The reaction exhibits exceptional control over chemo-, regio-, and stereoselectivity, a broad substrate scope, and high functional group compatibility, as demonstrated by the late-stage functionalization of bioactive molecules. Mechanistic investigations are consistent with a photoinduced radical Pd(0)-Pd(I)-Pd(II)-Pd(0) Heck-Tsuji-Trost allylation cascade.
Collapse
Affiliation(s)
- Yuan Cai
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Gaurav Gaurav
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
34
|
Niu KK, Cui J, Dong RZ, Yu S, Liu H, Xing LB. Visible-light-mediated direct C3 alkylation of quinoxalin-2(1 H)-ones using alkanes. Chem Commun (Camb) 2024; 60:2409-2412. [PMID: 38323602 DOI: 10.1039/d3cc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Due to the high C-H bond dissociation energy of alkanes, the utilization of alkanes as alkyl radical precursors for C-H functionalization of heteroarenes is synthetically captivating but practically challenging, especially under metal- and photocatalyst-free conditions. We report herein a mild and practical visible-light-mediated method for C-H alkylation of quinoxalin-2(1H)-ones using trifluoroacetic acid as a hydrogen atom transfer reagent and air as an oxidant. This mild protocol was performed under metal- and photocatalyst-free circumstances and presented good functional-group tolerance as well as a broad substrate scope.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
35
|
Azpilcueta-Nicolas CR, Lumb JP. Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters. Beilstein J Org Chem 2024; 20:346-378. [PMID: 38410775 PMCID: PMC10896223 DOI: 10.3762/bjoc.20.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Due to their ease of preparation, stability, and diverse reactivity, N-hydroxyphthalimide (NHPI) esters have found many applications as radical precursors. Mechanistically, NHPI esters undergo a reductive decarboxylative fragmentation to provide a substrate radical capable of engaging in diverse transformations. Their reduction via single-electron transfer (SET) can occur under thermal, photochemical, or electrochemical conditions and can be influenced by a number of factors, including the nature of the electron donor, the use of Brønsted and Lewis acids, and the possibility of forming charge-transfer complexes. Such versatility creates many opportunities to influence the reaction conditions, providing a number of parameters with which to control reactivity. In this perspective, we provide an overview of the different mechanisms for radical reactions involving NHPI esters, with an emphasis on recent applications in radical additions, cyclizations and decarboxylative cross-coupling reactions. Within these reaction classes, we discuss the utility of the NHPI esters, with an eye towards their continued development in complexity-generating transformations.
Collapse
Affiliation(s)
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
36
|
Majhi J, Matsuo B, Oh H, Kim S, Sharique M, Molander GA. Photochemical Deoxygenative Hydroalkylation of Unactivated Alkenes Promoted by a Nucleophilic Organocatalyst. Angew Chem Int Ed Engl 2024; 63:e202317190. [PMID: 38109703 DOI: 10.1002/anie.202317190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/20/2023]
Abstract
The direct utilization of simple and abundant feedstocks in carbon-carbon bond-forming reactions to embellish sp3 -enriched chemical space is highly desirable. Herein, we report a novel photochemical deoxygenative hydroalkylation of unactivated alkenes with readily available carboxylic acid derivatives. The reaction displays broad functional group tolerance, accommodating carboxylic acid-, alcohol-, ester-, ketone-, amide-, silane-, and boronic ester groups, as well as nitrile-containing substrates. The reaction is operationally simple, mild, and water-tolerant, and can be carried out on multigram-scale, which highlights the utility of the method to prepare value-added compounds in a practical and scalable manner. The synthetic application of the developed method is further exemplified through the synthesis of suberanilic acid, a precursor of vorinostat, a drug used for the treatment of cutaneous T-cell lymphoma. A novel mechanistic approach was identified using thiol as a nucleophilic catalyst, which forms a key intermediate for this transformation. Furthermore, electrochemical studies, quantum yield, and mechanistic experiments were conducted to support a proposed catalytic cycle for the transformation.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Hyunjung Oh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Saegun Kim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| |
Collapse
|
37
|
Zhang M, Liu L, Tan Y, Jing Y, Liu Y, Wang Z, Wang Q. Decarboxylative Radical Sulfilimination via Photoredox, Copper, and Brønsted Base Catalysis. Angew Chem Int Ed Engl 2024; 63:e202318344. [PMID: 38126567 DOI: 10.1002/anie.202318344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Sulfilimines, the aza-variants of sulfoxides, are key structural motifs in natural products, pharmaceuticals, and agrochemicals; and sulfilimine synthesis is therefore important in organic chemistry. However, methods for radical sulfilimination remain elusive, and as a result, the structural diversity of currently available sulfilimines is limited. Herein, we report the first protocol for decarboxylative radical sulfilimination reactions between sulfenamides and N-hydroxyphthalimide esters of primary, secondary, and tertiary alkyl carboxylic acids, which were achieved via a combination of photoredox, copper, and Brønsted base catalysis. This novel protocol provided a wide variety of sulfilimines, in addition to serving as an efficient route for the synthesis of S-alkyl/S-aryl homocysteine sulfilimines and S-(4-methylphenyl) homocysteine sulfoximine. Moreover, it could be used for late-stage introduction of a sulfilimine group into structurally complex molecules, thereby avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. A mechanism involving photocatalytic substrate transformation and copper-mediated C(sp3 )-S bond formation is proposed.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lixia Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuhao Tan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yue Jing
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300071, P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
38
|
Shi Q, Kang XW, Liu Z, Sakthivel P, Aman H, Chang R, Yan X, Pang Y, Dai S, Ding B, Ye J. Single-Electron Oxidation-Initiated Enantioselective Hydrosulfonylation of Olefins Enabled by Photoenzymatic Catalysis. J Am Chem Soc 2024; 146:2748-2756. [PMID: 38214454 DOI: 10.1021/jacs.3c12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Controlling the enantioselectivity of hydrogen atom transfer (HAT) reactions has been a long-standing synthetic challenge. While recent advances on photoenzymatic catalysis have demonstrated the great potential of non-natural photoenzymes, all of the transformations are initiated by single-electron reduction of the substrate, with only one notable exception. Herein, we report an oxidation-initiated photoenzymatic enantioselective hydrosulfonylation of olefins using a novel mutant of gluconobacter ene-reductase (GluER-W100F-W342F). Compared to known photoenzymatic systems, our approach does not rely on the formation of an electron donor-acceptor complex between the substrates and enzyme cofactor and simplifies the reaction system by obviating the addition of a cofactor regeneration mixture. More importantly, the GluER variant exhibits high reactivity and enantioselectivity and a broad substrate scope. Mechanistic studies support the proposed oxidation-initiated mechanism and reveal that a tyrosine-mediated HAT process is involved.
Collapse
Affiliation(s)
- Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiu-Wen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pandaram Sakthivel
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hasil Aman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
39
|
Chatgilialoglu C, Barata-Vallejo S, Gimisis T. Radical Reactions in Organic Synthesis: Exploring in-, on-, and with-Water Methods. Molecules 2024; 29:569. [PMID: 38338314 PMCID: PMC10856544 DOI: 10.3390/molecules29030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Radical reactions in water or aqueous media are important for organic synthesis, realizing high-yielding processes under non-toxic and environmentally friendly conditions. This overview includes (i) a general introduction to organic chemistry in water and aqueous media, (ii) synthetic approaches in, on, and with water as well as in heterogeneous phases, (iii) reactions of carbon-centered radicals with water (or deuterium oxide) activated through coordination with various Lewis acids, (iv) photocatalysis in water and aqueous media, and (v) synthetic applications bioinspired by naturally occurring processes. A wide range of chemical processes and synthetic strategies under different experimental conditions have been reviewed that lead to important functional group translocation and transformation reactions, leading to the preparation of complex molecules. These results reveal how water as a solvent/medium/reagent in radical chemistry has matured over the last two decades, with further discoveries anticipated in the near future.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
- Center of Advanced Technologies, Adam Mickiewicz University, 61-712 Poznan, Poland
| | - Sebastian Barata-Vallejo
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
- Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Universidad de Buenos Aires, Junin 954, Buenos Aires CP 1113, Argentina
| | - Thanasis Gimisis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
40
|
Kennedy-Ellis JJ, Kelleher AD, Sayeed JA, Burde AS, Chemler SR. Enantioenriched Allylesters via a Copper-Catalyzed Diene Carboesterification with Alkyltrifluoroborates and Carboxylic Acids. J Org Chem 2024; 89:1256-1263. [PMID: 38194284 PMCID: PMC11097674 DOI: 10.1021/acs.joc.3c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The rapid synthesis of a range of enantioenriched allylic esters is enabled by a new 3-component catalytic enantioselective 1,2-carboesterification of readily available dienes with carboxylic acids and potassium alkyltrifluoroborates. The chiral copper catalyst, formed in situ from Cu(OTf)2 and (4S,4'S)-2,2'-(cyclopentane-1,1-diyl)bis(4-phenyl-4,5-dihydrooxazole), is implicated in both the generation of alkyl radicals from the alkyltrifluoroborates as well as the enantioselective formation of C-O bonds. Potassium salts of primary and secondary alkyltrifluoroborates as well as several benzylic trifluoroborates, tert-butyltrifluoroborate, and phenyltrifluoroborate participate in the reaction. The regioselectivity and enantioselectivity are strongly impacted by variations in all of the reaction components, which in turn are thought to impact the C-O bond-forming reductive elimination from a [Cu(III)] intermediate.
Collapse
Affiliation(s)
- Jonathan J Kennedy-Ellis
- Chemistry Department, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Alexis D Kelleher
- Chemistry Department, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Jaffer A Sayeed
- Chemistry Department, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Ameya S Burde
- Chemistry Department, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Sherry R Chemler
- Chemistry Department, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
41
|
Xu J, Lan Y, Liu B. Activation of Aryl and Alkyl Halides Enabled by Strong Photoreduction Potentials of a Hantzsch Ester/Cs 2CO 3 System. J Org Chem 2024; 89:599-604. [PMID: 38113916 DOI: 10.1021/acs.joc.3c02320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We disclose herein a light-induced Hantzsch ester-initiated aryl and alkyl radical generation protocol from aryl halides (Br and Cl) and alkyl iodides. This method provides access to a wide range of benzo-fused heterocycles and C(sp3)-C(sp3) coupling products. The reductive detosylation reaction has also been demonstrated using the same reaction conditions. Initial mechanism studies provide evidence of the formation of an alkyl radical.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yingjun Lan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
42
|
Abstract
Tosyl cyanide is a commonly used reagent for cyanation and sulfonylation in organic synthesis and pharmaceutical chemistry. The photocatalytic transformations of tosyl cyanide are generally conducted under mild conditions. This minireview summarizes the recent progress of radical-involved transformations of tosyl cyanide via photo-induced cyanation or sulfonylcyanation.
Collapse
Affiliation(s)
- Ya Liu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
43
|
Lipilin DL, Zubkov MO, Kosobokov MD, Dilman AD. Direct conversion of carboxylic acids to free thiols via radical relay acridine photocatalysis enabled by N-O bond cleavage. Chem Sci 2024; 15:644-650. [PMID: 38179514 PMCID: PMC10762721 DOI: 10.1039/d3sc05513b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Carboxylic acids and thiols are basic chemical compounds with diverse utility and widespread reactivity. However, the direct conversion of unprotected acids to thiols is hampered due to a fundamental problem - free thiols are incompatible with the alkyl radicals formed on decarboxylation of carboxylic acids. Herein, we describe a concept for the direct photocatalytic thiolation of unprotected acids allowing unprotected thiols and their derivatives to be obtained. The method is based on the application of a thionocarbonate reagent featuring the N-O bond. The reagent serves both for the rapid trapping of alkyl radicals and for the facile regeneration of the acridine-type photocatalyst.
Collapse
Affiliation(s)
- Dmitry L Lipilin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Mikhail D Kosobokov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
44
|
Wang B, Singh J, Deng Y. Photoredox-Catalyzed Divergent Radical Cascade Annulations of 1,6-Enynes via Pyridine N-Oxide-Promoted Vinyl Radical Generation. Org Lett 2023; 25:9219-9224. [PMID: 38112553 PMCID: PMC10842598 DOI: 10.1021/acs.orglett.3c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The divergent organophotoredox-catalyzed radical cascade annulation reactions of 1,6-enynes were developed. A series of cyclopropane-fused hetero- and carbo-bicyclic, tricyclic, and spiro-tetracyclic compounds were facilely synthesized from a broad scope of 1,6-enynes and 2,6-lutidine N-oxide under mild and metal-free conditions with blue light-emitting diode light irradiation. The cascade annulation reaction occurs with the intermediacy of a β-oxyvinyl radical, which is produced from photocatalytically generated pyridine N-oxy radical addition to the carbon-carbon triple bond.
Collapse
Affiliation(s)
- Ban Wang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Jujhar Singh
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
45
|
Dawson G, Spielvogel EH, Diao T. Nickel-Catalyzed Radical Mechanisms: Informing Cross-Coupling for Synthesizing Non-Canonical Biomolecules. Acc Chem Res 2023; 56:3640-3653. [PMID: 38033206 PMCID: PMC10734253 DOI: 10.1021/acs.accounts.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Nickel excels at facilitating selective radical chemistry, playing a pivotal role in metalloenzyme catalysis and modern cross-coupling reactions. Radicals, being nonpolar and neutral, exhibit orthogonal reactivity to nucleophilic and basic functional groups commonly present in biomolecules. Harnessing this compatibility, we delve into the application of nickel-catalyzed radical pathways in the synthesis of noncanonical peptides and carbohydrates, critical for chemical biology studies and drug discovery.We previously characterized a sequential reduction mechanism that accounts for chemoselectivity in cross-electrophile coupling reactions. This catalytic cycle begins with nickel(I)-mediated radical generation from alkyl halides, followed by carbon radical capture by nickel(II) complexes, and concludes with reductive elimination. These steps resonate with mechanistic proposals in nickel-catalyzed cross-coupling, photoredox, and electrocatalytic reactions. Herein, we present our insights into each step involving radicals, including initiation, propagation, termination, and the nuances of kinetics, origins of selectivity, and ligand effects.Radical generation from C(sp3) electrophiles via one-electron oxidative addition with low-valent nickel radical intermediates provides the basis for stereoconvergent and cross-electrophile couplings. Our electroanalytical studies elucidate a concerted halogen atom abstraction mechanism, where electron transfer is coupled with halide dissociation. Using this pathway, we have developed a nickel-catalyzed stereoselective radical addition to dehydroalanine, facilitating the synthesis of noncanonical peptides. In this application, chiral ligands modulate the stereochemical outcome through the asymmetric protonation of a nickel-enolate intermediate.The capture of the alkyl radical by nickel(II) expands the scope of cross-coupling, promotes reductive elimination through the formation of high-valent nickel(III) species, and governs chemo- and stereoselectivity. We discovered that nickel(II)-aryl efficiently traps radicals with a barrier ranging from 7 to 9 kcal/mol, followed by fast reductive elimination. In contrast, nickel(II)-alkyl captures radicals to form a nickel(III) species, which was characterized by EPR spectroscopy. However, the subsequent slow reductive elimination resulted in minimal product formation. The observed high diastereoselectivity of radical capture inspired investigations into C-aryl and C-acyl glycosylation reactions. We developed a redox auxiliary that readily couples with natural carbohydrates and produces glycosyl radicals upon photoredox activation. Nickel-catalyzed cross-coupling of the glycosyl radical with bromoarenes and carboxylic acids leads to diverse non-natural glycosides that can facilitate drug discovery.Stoichiometric studies on well-defined d8-nickel complexes have showcased means to promote reductive elimination, including ligand association, oxidation, and oxidative addition.In the final section, we address the influence of auxiliary ligands on the electronic structure and redox activity of organonickel intermediates. Synthesis of a series of low-valent nickel radical complexes and characterization of their electronic structures led us to a postulate that ligand redox activity correlates with coordination geometry. Our data reveal that a change in ligand redox activity can shift the redox potentials of reaction intermediates, potentially altering the mechanism of catalytic reactions. Moreover, coordinating additives and solvents may stabilize nickel radicals during catalysis by adjusting ligand redox activity, which is consistent with known catalytic conditions.
Collapse
Affiliation(s)
- Gregory
A. Dawson
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Ethan H. Spielvogel
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
46
|
Galan NJ, Cobbold BE, Cromer CE, Brantley JN. Macromolecular Photoediting Using Single-Electron Logic. ACS Macro Lett 2023; 12:1623-1628. [PMID: 37962989 DOI: 10.1021/acsmacrolett.3c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Accessing the chemistry of reactive intermediates under mild conditions has significantly expanded the available chemical space for molecular transformations. Nowhere is this more apparent than in the context of photoredox catalysis. Despite abundant literature precedents for using this powerful methodology to build complex targets, there are comparatively few reports that leverage photoredox catalysis for macromolecular editing. Here, we report a mild photoredox approach that enables both the functionalization and degradation of polyalkenamers to valuable feedstocks. Irradiation with visible light (including natural sunlight) in the presence of a pyrillium photoredox catalyst promoted facile chain scission in a variety of substrates. This metal-free approach transformed high molar mass materials (>300 kDa) to low molar mass species (<15 kDa) within 10 min. Moreover, we could completely degrade macromolecules into a range of useful targets (C16-C29 species) within 96 h. Mechanistic and kinetic experiments were carried out to understand this reactivity, which could be coupled with hydrofunctionalizations to create tailored products.
Collapse
Affiliation(s)
- Nicholas J Galan
- The Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Boris E Cobbold
- The Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Chase E Cromer
- The Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Johnathan N Brantley
- The Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
47
|
Fernández-García S, Chantzakou VO, Juliá-Hernández F. Direct Decarboxylation of Trifluoroacetates Enabled by Iron Photocatalysis. Angew Chem Int Ed Engl 2023:e202311984. [PMID: 38088503 DOI: 10.1002/anie.202311984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 12/30/2023]
Abstract
Trifluoroacetates are the most abundant and accessible sources of trifluoromethyl groups, which are key components in pharmaceuticals and agrochemicals. The generation of trifluoromethyl reactive radicals from trifluoroacetates requires their decarboxylation, which is hampered by their high oxidation potential. This constitutes a major challenge for redox-based methods, because of the need to pair the redox potentials with trifluoroacetate. Here we report a strategy based on iron photocatalysis to promote the direct photodecarboxylation of trifluoroacetates that displays reactivity features that escape from redox limitations. Our synthetic design has enabled the use of trifluoroacetates for the trifluoromethylation of more easily oxidizable organic substrates, offering new opportunities for late-stage derivatization campaigns using chemical feedstocks, Earth-abundant catalysts, and visible-light.
Collapse
Affiliation(s)
- Sara Fernández-García
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Veronika O Chantzakou
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Francisco Juliá-Hernández
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
48
|
Johnston B, Loh DM, Nocera DG. Substrate-Mediator Duality of 1,4-Dicyanobenzene in Electrochemical C(sp 2 )-C(sp 3 ) Bond Formation with Alkyl Bromides. Angew Chem Int Ed Engl 2023; 62:e202312128. [PMID: 37857567 DOI: 10.1002/anie.202312128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Electrochemical approaches to form C(sp2 )-C(sp3 ) bonds have focused on coupling C(sp3 ) electrophiles that form stabilized carbon-centered radicals upon reduction or oxidation. Whereas alkyl bromides are desirable C(sp3 ) coupling partners owing to their availability and cost-effectiveness, their tendency to undergo radical-radical homocoupling makes them challenging substrates for electroreductive cross-coupling. Herein, we disclose a metal-free regioselective cross-coupling of 1,4-dicyanobenzene, a useful precursor to aromatic nitriles, and alkyl bromides. Alkyl bromide reduction is mediated directly by 1,4-dicyanobenzene radical anions, leading to negligible homocoupling and high cross-selectivity to form 1,4-alkyl cyanobenzenes. The cross-coupling scheme is compatible with oxidatively sensitive and acidic functional groups such as amines and alcohols, which have proven difficult to incorporate in alternative electrochemical approaches using carboxylic acids as C(sp3 ) precursors.
Collapse
Affiliation(s)
- Brandon Johnston
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel M Loh
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
49
|
Mörsdorf JM, Ballmann J. Coordination-Induced Radical Generation: Selective Hydrogen Atom Abstraction via Controlled Ti-C σ-Bond Homolysis. J Am Chem Soc 2023; 145:23452-23460. [PMID: 37861658 DOI: 10.1021/jacs.3c05748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A method for the generation of transient alkyl radicals via homolytic Ti-C bond cleavage was developed by employing a tailor-made organotitanium half-cage complex. In contrast to established metal-mediated radical initiation protocols via thermal or photochemical M-C σ-bond homolysis, radical formation is triggered solely by coordination of a solvent molecule (thf) to a titanium(IV) center. During the reaction, the nonstabilized alkyl radical is formed along with a persistent titanium(III) metalloradical, thus taming the former transient radical (persistent radical effect). Radical coupling and hydrogen atom abstraction (HAT) reactions have been explored not only experimentally but also computationally and by means of kinetic analysis. Exploiting these findings led to the development of selective HAT transformations, for example, with 9,10-dihydroanthracene. Deuterium labeling studies using selectively deuterated alkyls and 9,10-dihydroanthracene-d4 confirmed a radical pathway, which was underpinned by developing a radical-radical cross-coupling reaction for transferring the alkyl radical to a stable Sn-centered radical. To set the stage for an application in organic synthesis, a 5-endo-trig radical cyclization based on our methodology was established, and a dihydroxylated sesquiterpene was thus prepared in high diastereomeric excess.
Collapse
Affiliation(s)
- Jean-Marc Mörsdorf
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| |
Collapse
|
50
|
Sun X, Zheng K. Electrochemical halogen-atom transfer alkylation via α-aminoalkyl radical activation of alkyl iodides. Nat Commun 2023; 14:6825. [PMID: 37884528 PMCID: PMC10603137 DOI: 10.1038/s41467-023-42566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Alkyl halides, widely recognized as important building blocks and reagents in organic synthesis, can serve as versatile alkyl radical precursors in radical-based transformations. However, generating alkyl radicals directly from unactivated alkyl halides under mild conditions remains a challenge due to their extremely low reduction potentials. To address this issue, α-aminoalkyl radicals were employed as efficient halogen-atom transfer (XAT) reagents in the photoredox activation of unactivated alkyl halides. Here, we report an effective electrooxidation strategy for generating alkyl radicals from unactivated alkyl iodides via an electrochemical halogen-atom transfer (e-XAT) process under mild conditions. The α-aminoalkyl radicals generated by anodic oxidation are demonstrated to be efficient XAT reagents in these transformations. This facile electricity-driven strategy obviates the need for sacrificial anodes and external chemical oxidants. The method successfully applies to a wide variety of alkyl iodides, including primary, secondary, and tertiary, as well as structurally diverse olefins, exhibiting excellent functional group tolerance. Moreover, we further demonstrate the utility of this strategy by rapidly functionalizing complex molecules and biomolecules.
Collapse
Affiliation(s)
- Xiang Sun
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|