1
|
Reddy AP, Paul N, Abouelkomsan A, Fu L. Non-Abelian Fractionalization in Topological Minibands. PHYSICAL REVIEW LETTERS 2024; 133:166503. [PMID: 39485960 DOI: 10.1103/physrevlett.133.166503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/29/2024] [Indexed: 11/03/2024]
Abstract
Motivated by the recent discovery of fractional quantum anomalous Hall states in moiré systems, we consider the possibility of realizing non-Abelian phases in topological minibands. We study a family of moiré systems, skyrmion Chern band models, which can be realized in two-dimensional semiconductor-magnet heterostructures and also capture the essence of twisted transition metal dichalcogenide homobilayers. We show using many-body exact diagonalization that, in spite of strong Berry curvature variations in momentum space, the non-Abelian Moore-Read state can be realized at half filling of the second miniband. These results demonstrate the feasibility of non-Abelian fractionalization in moiré systems without Landau levels and shed light on the desirable conditions for their realization. In particular, we highlight the prospect of realizing the Moore-Read state in twisted semiconductor bilayers.
Collapse
|
2
|
Ariga K. Interface-Interactive Nanoarchitectonics: Solid and/or Liquid. Chemphyschem 2024; 25:e202400596. [PMID: 38965042 DOI: 10.1002/cphc.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The methodology of nanoarchitectonics is to construct functional materials using nanounits such as atoms, molecules, and nanoobjects, just like architecting buildings. Nanoarchitectonics pursues the ultimate concept of materials science through the integration of related fields. In this review paper, under the title of interface-interactive nanoarchitectonics, several examples of structure fabrication and function development at interfaces will be discussed, highlighting the importance of architecting materials with nanoscale considerations. Two sections provide some examples at the solid and liquid surfaces. In solid interfacial environments, molecular structures can be precisely observed and analyzed with theoretical calculations. Solid surfaces are a prime site for nanoarchitectonics at the molecular level. Nanoarchitectonics of solid surfaces has the potential to pave the way for cutting-edge functionality and science based on advanced observation and analysis. Liquid surfaces are more kinetic and dynamic than solid interfaces, and their high fluidity offers many possibilities for structure fabrications by nanoarchitectonics. The latter feature has advantages in terms of freedom of interaction and diversity of components, therefore, liquid surfaces may be more suitable environments for the development of functionalities. The final section then discusses what is needed for the future of material creation in nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, 277-8561, Japan
| |
Collapse
|
3
|
Marchiori E, Romagnoli G, Schneider L, Gross B, Sahafi P, Jordan A, Budakian R, Baral PR, Magrez A, White JS, Poggio M. Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu 2OSeO 3. COMMUNICATIONS MATERIALS 2024; 5:202. [PMID: 39351280 PMCID: PMC11438600 DOI: 10.1038/s43246-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Surfaces - by breaking bulk symmetries, introducing roughness, or hosting defects - can significantly influence magnetic order in magnetic materials. Determining their effect on the complex nanometer-scale phases present in certain non-centrosymmetric magnets is an outstanding problem requiring high-resolution magnetic microscopy. Here, we use scanning SQUID microscopy to image the surface of bulk Cu2OSeO3 at low temperature and in a magnetic field applied along100 . Real-space maps measured as a function of applied field reveal the microscopic structure of the magnetic phases and their transitions. In low applied field, we observe a magnetic texture consistent with an in-plane stripe phase, pointing to the existence of a distinct surface state. In the low-temperature skyrmion phase, the surface is populated by clusters of disordered skyrmions, which emerge from rupturing domains of the tilted spiral phase. Furthermore, we displace individual skyrmions from their pinning sites by applying an electric potential to the scanning probe, thereby demonstrating local skyrmion control at the surface of a magnetoelectric insulator.
Collapse
Affiliation(s)
| | | | - Lukas Schneider
- Department of Physics, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Boris Gross
- Department of Physics, University of Basel, Basel, Switzerland
| | - Pardis Sahafi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
- Present Address: National Research Council, Ottawa, Canada
| | - Andrew Jordan
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Raffi Budakian
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Priya R. Baral
- Laboratory for Neutron Scattering and Imaging, PSI Center for Neutron and Muon Sciences, Paul Scherrer Institute, Villigen PSI, Switzerland
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Applied Physics and Quantum-Phase Electronics Center, University of Tokyo, Tokyo, Japan
| | - Arnaud Magrez
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jonathan S. White
- Laboratory for Neutron Scattering and Imaging, PSI Center for Neutron and Muon Sciences, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Martino Poggio
- Department of Physics, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Araki T, Takagi R, Kurumaji T, Tokura Y, Mochizuki M, Seki S. Exotic Spin Excitations in a Polar Magnet VOSe_{2}O_{5}. PHYSICAL REVIEW LETTERS 2024; 133:136702. [PMID: 39392995 DOI: 10.1103/physrevlett.133.136702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 10/13/2024]
Abstract
Magnetic resonance dynamics has been studied for a polar magnet VOSe_{2}O_{5}, which hosts several nontrivial magnetic phases including Néel-type skyrmion lattice (SkL). In both cycloidal and SkL spin states, two excitation modes active to oscillating magnetic field B_{ν}⊥c and one mode active to B_{ν}∥c are identified. The subsequent micromagnetic simulations well reproduce the observed selection rules and relative resonance frequencies, which allows the unambiguous assignment of the spin oscillation manner for each mode. Interestingly, the IC-2 phase with a potential double-q character was found to host similar excitation modes as the SkL state. We also discovered the existence of the novel B' phase with four modes active to B_{ν}⊥c. The present results provide a fundamental basis for the comprehensive understanding of resonant spin dynamics in polar magnets, and highlight VOSe_{2}O_{5} as a unique material platform to host a rich variety of nontrivial spin excitations.
Collapse
|
5
|
Shi H, Zhang J, Xi Y, Li H, Chen J, Ahmed I, Ma Z, Cheng N, Zhou X, Jin H, Zhou X, Liu J, Sun Y, Wang J, Li J, Yu T, Hao W, Zhang S, Du Y. Dynamic Behavior of Above-Room-Temperature Robust Skyrmions in 2D Van der Waals Magnet. NANO LETTERS 2024; 24:11246-11254. [PMID: 39207036 DOI: 10.1021/acs.nanolett.4c02835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Magnetic skyrmions are swirl-like spin configurations that present topological properties, which have great potential as information carriers for future high-density and low-energy-consumption devices. The optimization of skyrmion-hosting materials that can be integrated with semiconductor-based circuits is the primary challenge for their industrialization. Two-dimensional van der Waals ferromagnets are emerging materials that have excellent carrier mobility and compatibility with integrated circuits, making them an ideal candidate for spintronic devices. Here, we report the realization of skyrmions at above room temperature in the 2D ferromagnet Fe3GaTe2. The thickness tunability of their skyrmion size and the formation of the skyrmion lattice are revealed. Furthermore, we demonstrate that the skyrmions can be moved by a low-density current at room temperature, together with an apparent skyrmion Hall effect, which is consistent with our quantitative micromagnetic simulation. Our work offers a promising 2D material platform for harnessing magnetic skyrmions in practical device applications.
Collapse
Affiliation(s)
- Hanqing Shi
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Jingwei Zhang
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | | | - Heping Li
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Jingyi Chen
- School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China
| | - Iftikhar Ahmed
- School of Physical and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhijie Ma
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Zhou
- School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China
| | - Haonan Jin
- School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China
| | - Xinyi Zhou
- School of Physical and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiaqi Liu
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Ying Sun
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Jianfeng Wang
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Jun Li
- School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China
| | - Ting Yu
- School of Physical and Technology, Wuhan University, Wuhan, Hubei 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- Key Laboratory of Artificial Micro- and Nano- structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Weichang Hao
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Shilei Zhang
- School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China
| | - Yi Du
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| |
Collapse
|
6
|
Guang Y, Zhang X, Liu Y, Peng L, Yasin FS, Karube K, Nakamura D, Nagaosa N, Taguchi Y, Mochizuki M, Tokura Y, Yu X. Confined antiskyrmion motion driven by electric current excitations. Nat Commun 2024; 15:7701. [PMID: 39227610 PMCID: PMC11371833 DOI: 10.1038/s41467-024-52072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Current-driven dynamics of topological spin textures, such as skyrmions and antiskyrmions, have garnered considerable attention in condensed matter physics and spintronics. As compared with skyrmions, the current-driven dynamics of their antiparticles - antiskyrmions - remain less explored due to the increased complexity of antiskyrmions. Here, we design and employ fabricated microdevices of a prototypical antiskyrmion host, (Fe0.63Ni0.3Pd0.07)3P, to allow in situ current application with Lorentz transmission electron microscopy observations. The experimental results and related micromagnetic simulations demonstrate current-driven antiskyrmion dynamics confined within stripe domains. Under nanosecond-long current pulses, antiskyrmions exhibit directional motion along the stripe regardless of the current direction, while the antiskyrmion velocity is linearly proportional to the current density. Significantly, the antiskyrmion mobility could be enhanced when the current flow is perpendicular to the stripe direction. Our findings provide novel and reliable insights on dynamical antiskyrmions and their potential implications on spintronics.
Collapse
Affiliation(s)
- Yao Guang
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
| | - Xichao Zhang
- Department of Applied Physics, Waseda University, Tokyo, Japan
| | - Yizhou Liu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | - Licong Peng
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | | | - Kosuke Karube
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | | | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Fundamental Quantum Science Program, TRIP Headquarters, RIKEN, Wako, Japan
| | | | | | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo, Japan
- Tokyo College, The University of Tokyo, Tokyo, Japan
| | - Xiuzhen Yu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
| |
Collapse
|
7
|
Yang L, Savchenko AS, Zheng F, Kiselev NS, Rybakov FN, Han X, Blügel S, Dunin-Borkowski RE. Embedded Skyrmion Bags in Thin Films of Chiral Magnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403274. [PMID: 39045913 DOI: 10.1002/adma.202403274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Magnetic skyrmions are topologically nontrivial spin configurations that possess particle-like properties. Earlier research has mainly focused on a specific type of skyrmion with topological charge Q = -1. However, theoretical analyses of 2D chiral magnets have predicted the existence of skyrmion bags-solitons with arbitrary positive or negative topological charge. Although such spin textures are metastable states, recent experimental observations have confirmed the stability of isolated skyrmion bags in a limited range of applied magnetic fields. Here, by utilizing Lorentz transmission electron microscopy, the extraordinary stability of skyrmion bags in thin plates of B20-type FeGe is shown. In particular, it is shown that skyrmion bags embedded within a skyrmion lattice remain stable even in zero or inverted external magnetic fields. A robust protocol for nucleating such embedded skyrmion bags is provided. The results agree perfectly with micromagnetic simulations and establish thin plates of cubic chiral magnets as a powerful platform for exploring a broad spectrum of topological magnetic solitons.
Collapse
Affiliation(s)
- Luyan Yang
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Andrii S Savchenko
- Peter Grünberg Institute, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany
| | - Fengshan Zheng
- Spin-X Institute, Center for Electron Microscopy, School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 511442, China
| | - Nikolai S Kiselev
- Peter Grünberg Institute, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany
| | - Filipp N Rybakov
- Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Stefan Blügel
- Peter Grünberg Institute, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
8
|
Sun W, Zhou N, Chen W, Sheng Z, Wu H. Acoustic Skyrmionic Mode Coupling and Transferring in a Chain of Subwavelength Metastructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401370. [PMID: 38981042 PMCID: PMC11425862 DOI: 10.1002/advs.202401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/02/2024] [Indexed: 07/11/2024]
Abstract
Skyrmions, a stable topological vectorial textures characteristic with skyrmionic number, hold promise for advanced applications in information storage and transmission. While the dynamic motion control of skyrmions has been realized with various techniques in magnetics and optics, the manipulation of acoustic skyrmion has not been done. Here, the propagation and control of acoustic skyrmion along a chain of metastructures are shown. In coupled acoustic resonators made with Archimedes spiral channel, the skyrmion hybridization is found giving rise to bonding and antibonding skyrmionic modes. Furthermore, it is experimentally observed that the skyrmionic mode of acoustic velocity field distribution can be robustly transferred covering a long distance and almost no distortion of the skyrmion textures in a chain of metastructures, even if a structure defect is introduced in the travel path. The proposed localized acoustic skyrmionic mode coupling and propagating is expected in future applications for manipulating acoustic information storage and transfer.
Collapse
Affiliation(s)
- Wen‐Jun Sun
- School of Mechanics and Photoelectric PhysicsAnhui University of Science and TechnologyHuainan232001China
| | - Nong Zhou
- School of Mechanics and Photoelectric PhysicsAnhui University of Science and TechnologyHuainan232001China
| | - Wan‐Na Chen
- School of Mechanics and Photoelectric PhysicsAnhui University of Science and TechnologyHuainan232001China
| | - Zong‐Qiang Sheng
- School of Mechanics and Photoelectric PhysicsAnhui University of Science and TechnologyHuainan232001China
| | - Hong‐Wei Wu
- School of Mechanics and Photoelectric PhysicsAnhui University of Science and TechnologyHuainan232001China
- Center for Fundamental PhysicsAnhui University of Science and TechnologyHuainan232001China
- Institute of EnergyHefei Comprehensive National Science Center (Anhui Energy Laboratory)Hefei230031China
| |
Collapse
|
9
|
Xie YM, Liu Y, Nagaosa N. Sliding Dynamics of Current-Driven Skyrmion Crystal and Helix in Chiral Magnets. PHYSICAL REVIEW LETTERS 2024; 133:096702. [PMID: 39270189 DOI: 10.1103/physrevlett.133.096702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024]
Abstract
The skyrmion crystal (SkX) and helix (HL) phases, present in typical chiral magnets, can each be considered as forms of density waves but with distinct topologies. The SkX exhibits gyrodynamics analogous to electrons under a magnetic field, while the HL state resembles topological trivial spin density waves. However, unlike the charge density waves, the theoretical analysis of the sliding motion of SkX and HL remains unclear, especially regarding the similarities and differences in sliding dynamics between these two spin density waves. In this Letter, we systematically explore the sliding dynamics of SkX and HL in chiral magnets in the limit of large current density. We demonstrate that the sliding dynamics of both SkX and HL can be unified within the same theoretical framework as density waves, despite their distinct microscopic orders. Furthermore, we highlight the significant role of gyrotropic sliding induced by impurity effects in the SkX state, underscoring the impact of nontrivial topology on the sliding motion of density waves. Our theoretical analysis shows that the effect of impurity pinning is much stronger in HL compared with SkX, i.e., χ^{SkX}/χ^{HL}∼α^{2} (χ^{SkX}, χ^{HL}: susceptibility to the impurity potential, α (≪1) is the Gilbert damping). Moreover, the velocity correction is mostly in the transverse direction to the current in SkX. These results are further substantiated by realistic Landau-Lifshitz-Gilbert simulations.
Collapse
|
10
|
Guo Y, Zhuo F, Li H. Influence of the Hall-bar geometry on texture-induced topological spin transport in two-dimensional Rashba spin-orbit ferromagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:415801. [PMID: 38959901 DOI: 10.1088/1361-648x/ad5eea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
While the recent prediction and observation of magnetic skyrmions bears inspiring promise for next-generation spintronic devices, how to detect and track their position becomes an important issue. In this work, we investigate the spin transport in a two-dimensional magnetic nanoribbon with the Hall-bar geometry in the presence of Rashba spin-orbit coupling and magnetic skyrmions. We employ the Kwant tight-binding code to compute the Hall conductance and local spin-polarized current density. We consider two versions of the model: One with single skyrmion and one with two separate skyrmions. It is found that the size and position of the skyrmions strongly modulate the Hall conductance near the Hall-bar position. The geometry of the Hall bar also has a strong influence on the Hall conductance of the system. With the decreasing of the width of Hall leads, the peak of Hall conductance becomes sharper. We also show the spatial distribution of the spin-polarized current density around a skyrmion located at different positions. We extend this study toward two separate skyrmions, where the Hall conductance also reveals a sizable dependence on the position of the skyrmions and their distance. Our numerical analysis offers the possibility of electrically detecting the skyrmion position, which could have potential applications in ultrahigh-density storage design.
Collapse
Affiliation(s)
- Yufei Guo
- School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
| | - Fengjun Zhuo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Hang Li
- School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
11
|
Dong Y, Arai Y, Kuroda K, Ochi M, Tanaka N, Wan Y, Watson MD, Kim TK, Cacho C, Hashimoto M, Lu D, Aoki Y, Matsuda TD, Kondo T. Fermi Surface Nesting Driving the RKKY Interaction in the Centrosymmetric Skyrmion Magnet Gd_{2}PdSi_{3}. PHYSICAL REVIEW LETTERS 2024; 133:016401. [PMID: 39042805 DOI: 10.1103/physrevlett.133.016401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 07/25/2024]
Abstract
The magnetic skyrmions generated in a centrosymmetric crystal were recently first discovered in Gd_{2}PdSi_{3}. In light of this, we observe the electronic structure by angle-resolved photoemission spectroscopy and unveil its direct relationship with the magnetism in this compound. The Fermi surface and band dispersions are demonstrated to have a good agreement with the density functional theory calculations carried out with careful consideration of the crystal superstructure. Most importantly, we find that the three-dimensional Fermi surface has extended nesting which matches well the q vector of the magnetic order detected by recent scattering measurements. The consistency we find among angle-resolved photoemission spectroscopy, density functional theory, and the scattering measurements suggests the Ruderman-Kittel-Kasuya-Yosida interaction involving itinerant electrons to be the formation mechanism of skyrmions in Gd_{2}PdSi_{3}.
Collapse
Affiliation(s)
| | | | - Kenta Kuroda
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Higashi-hiroshima, Hiroshima 739-8526, Japan
- Research Institute for Semiconductor Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Song D, Wang W, Zhang S, Liu Y, Wang N, Zheng F, Tian M, Dunin-Borkowski RE, Zang J, Du H. Steady motion of 80-nm-size skyrmions in a 100-nm-wide track. Nat Commun 2024; 15:5614. [PMID: 38965221 PMCID: PMC11224351 DOI: 10.1038/s41467-024-49976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
The current-driven movement of magnetic skyrmions along a nanostripe is essential for the advancement and functionality of a new category of spintronic devices resembling racetracks. Despite extensive research into skyrmion dynamics, experimental verification of current-induced motion of ultra-small skyrmions within an ultrathin nanostripe is still pending. Here, we unveil the motion of individual 80 nm-size skyrmions in an FeGe track with an ultrathin width of 100 nm. The skyrmions can move steadily along the track over a broad range of current densities by using controlled pulse durations of as low as 2 ns. The potential landscape, arising from the magnetic edge twists in such a geometrically confined system, introduces skyrmion inertia and ensures efficient motion with a vanishing skyrmion Hall angle. Our results showcase the steady motion of skyrmions in an ultrathin track, offering a practical pathway for implementing skyrmion-based spintronic devices.
Collapse
Affiliation(s)
- Dongsheng Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Weiwei Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Shuisen Zhang
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yizhou Liu
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Ning Wang
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Fengshan Zheng
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425, Jülich, Germany
- Spin-X Institute, Center for Electron Microscopy, School of Physics and Optoelectronics State Key Laboratory of Luminescent Materials and Devices Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Mingliang Tian
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jiadong Zang
- Department of Physics and Astronomy, University of New Hampshire, Durham, NH, 03824, USA
- Materials Science Program, University of New Hampshire, Durham, NH, 03824, USA
| | - Haifeng Du
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
13
|
Zhang J, Shen S, Puggioni D, Wang M, Sha H, Xu X, Lyu Y, Peng H, Xing W, Walters LN, Liu L, Wang Y, Hou D, Xi C, Pi L, Ishizuka H, Kotani Y, Kimata M, Nojiri H, Nakamura T, Liang T, Yi D, Nan T, Zang J, Sheng Z, He Q, Zhou S, Nagaosa N, Nan CW, Tokura Y, Yu R, Rondinelli JM, Yu P. A correlated ferromagnetic polar metal by design. NATURE MATERIALS 2024; 23:912-919. [PMID: 38605196 DOI: 10.1038/s41563-024-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.
Collapse
Affiliation(s)
- Jianbing Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Shengchun Shen
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Danilo Puggioni
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Meng Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Haozhi Sha
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China
| | - Xueli Xu
- High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Yingjie Lyu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Huining Peng
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Wandong Xing
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China
| | - Lauren N Walters
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Linhan Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - De Hou
- High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Chuanying Xi
- High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Li Pi
- High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Hiroaki Ishizuka
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - Yoshinori Kotani
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Motoi Kimata
- Institute of Materials Research, Tohoku University, Sendai, Japan
| | - Hiroyuki Nojiri
- Institute of Materials Research, Tohoku University, Sendai, Japan
| | - Tetsuya Nakamura
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Sendai, Japan
| | - Tian Liang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Frontier Science Center for Quantum Information, Beijing, China
| | - Di Yi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Tianxiang Nan
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
| | - Jiadong Zang
- Department of Physics and Astronomy, University of New Hampshire, Durham, NH, USA
| | - Zhigao Sheng
- High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Qing He
- Department of Physics, Durham University, Durham, UK
| | - Shuyun Zhou
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
- Frontier Science Center for Quantum Information, Beijing, China
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Department of Applied Physics, University of Tokyo, Tokyo, Japan
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Department of Applied Physics, University of Tokyo, Tokyo, Japan
| | - Rong Yu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China.
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
- Frontier Science Center for Quantum Information, Beijing, China.
| |
Collapse
|
14
|
Wang Y, Xing J, Zhao Y, Wang Y, Zhao J, Jiang X. Alloying Driven Antiferromagnetic Skyrmions on NiPS 3 Monolayer: A First-Principles Calculation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401048. [PMID: 38647400 PMCID: PMC11220710 DOI: 10.1002/advs.202401048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Topological magnetic states are promising information carriers for ultrahigh-density and high-efficiency magnetic storage. Recent advances in two-dimensional (2D) magnets provide powerful platforms for stabilizing various nanometer-size topological spin textures within a wide range of magnetic field and temperature. However, non-centrosymmetric 2D magnets with broken inversion symmetry are scarce in nature, making direct observations of the chiral spin structure difficult, especially for antiferromagnetic (AFM) skyrmions. In this work, it is theoretically predicted that intrinsic AFM skyrmions can be easily triggered in XY-type honeycomb magnet NiPS3 monolayer by alloying of Cr atoms, due to the presence of a sizable Dzyaloshinskii-Moriya interaction. More interestingly, the diameter of the AFM skyrmions in Ni3/4Cr1/4PS3 decreases from 12 to 4.4 nm as the external magnetic field increases and the skyrmion phases remain stable up to an external magnetic field of 4 T. These results highlight an effective strategy to generate and modulate the topological spin texture in 2D magnets by alloying with magnetic element.
Collapse
Affiliation(s)
- Yanxia Wang
- Key Laboratory of Materials Modification by LaserIon and Electron BeamsDalian University of TechnologyMinistry of EducationDalian116024China
| | - Jianpei Xing
- Key Laboratory of Materials Modification by LaserIon and Electron BeamsDalian University of TechnologyMinistry of EducationDalian116024China
| | - Ying Zhao
- Key Laboratory of Materials Modification by LaserIon and Electron BeamsDalian University of TechnologyMinistry of EducationDalian116024China
| | - Yi Wang
- Key Laboratory of Materials Modification by LaserIon and Electron BeamsDalian University of TechnologyMinistry of EducationDalian116024China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by LaserIon and Electron BeamsDalian University of TechnologyMinistry of EducationDalian116024China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum MaterialsSchool of PhysicsSouth China Normal UniversityGuangzhou510006China
- Guangdong‐Hong Kong Joint Laboratory of Quantum MatterFrontier Research Institute for PhysicsSouth China Normal UniversityGuangzhou510006China
| | - Xue Jiang
- Key Laboratory of Materials Modification by LaserIon and Electron BeamsDalian University of TechnologyMinistry of EducationDalian116024China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum MaterialsSchool of PhysicsSouth China Normal UniversityGuangzhou510006China
- Guangdong‐Hong Kong Joint Laboratory of Quantum MatterFrontier Research Institute for PhysicsSouth China Normal UniversityGuangzhou510006China
| |
Collapse
|
15
|
Pankratova M, Eriksson O, Bergman A. Zero-field magnetic skyrmions in exchange-biased ferromagnetic-antiferromagnetic bilayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:385803. [PMID: 38848725 DOI: 10.1088/1361-648x/ad5598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
We report on the stabilization of ferromagnetic skyrmions in zero external magnetic fields, in exchange-biased systems composed of ferromagnetic-antiferromagnetic (FM-AFM) bilayers. By performing atomistic spin dynamics simulations, we study cases of compensated, uncompensated, and partly uncompensated FM-AFM interfaces, and investigate the impact of important parameters such as temperature, inter-plane exchange interaction, Dzyaloshinskii-Moriya interaction, and magnetic anisotropy on the skyrmions appearance and stability. The model with an uncompensated FM-AFM interface leads to the stabilization of individual skyrmions and skyrmion lattices in the FM layer, caused by the effective field from the AFM instead of an external magnetic field. Similarly, in the case of a fully compensated FM-AFM interface, we show that FM skyrmions can be stabilized. We also demonstrate that accounting for interface roughness leads to stabilization of skyrmions both in compensated and uncompensated interface. Moreover, in bilayers with a rough interface, skyrmions in the FM layer are observed for a wide range of exchange interaction values through the FM-AFM interface, and the chirality of the skyrmions depends critically on the exchange interaction.
Collapse
Affiliation(s)
- M Pankratova
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Uppsala University, 75121 Uppsala, Sweden
| | - O Eriksson
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Uppsala University, 75121 Uppsala, Sweden
| | - A Bergman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| |
Collapse
|
16
|
Yang B, Patel T, Cheng M, Pichugin K, Tian L, Sherlekar N, Yan S, Fu Y, Tian S, Lei H, Reimer ME, Okamoto J, Tsen AW. Macroscopic tunneling probe of Moiré spin textures in twisted CrI 3. Nat Commun 2024; 15:4982. [PMID: 38862504 PMCID: PMC11167019 DOI: 10.1038/s41467-024-49261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Various noncollinear spin textures and magnetic phases have been predicted in twisted two-dimensional CrI3 due to competing ferromagnetic (FM) and antiferromagnetic (AFM) interlayer exchange from moiré stacking-with potential spintronic applications even when the underlying material possesses a negligible Dzyaloshinskii-Moriya or dipole-dipole interaction. Recent measurements have shown evidence of coexisting FM and AFM layer order in small-twist-angle CrI3 bilayers and double bilayers. Yet, the nature of the magnetic textures remains unresolved and possibilities for their manipulation and electrical readout are unexplored. Here, we use tunneling magnetoresistance to investigate the collective spin states of twisted double-bilayer CrI3 under both out-of-plane and in-plane magnetic fields together with detailed micromagnetic simulations of domain dynamics based on magnetic circular dichroism. Our results capture hysteretic and anisotropic field evolutions of the magnetic states and we further uncover two distinct non-volatile spin textures (out-of-plane and in-plane domains) at ≈1° twist angle, with a different global tunneling resistance that can be switched by magnetic field.
Collapse
Affiliation(s)
- Bowen Yang
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
| | - Tarun Patel
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
| | - Meixin Cheng
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | | | - Lin Tian
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
| | - Nachiket Sherlekar
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
| | - Shaohua Yan
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, China
| | - Yang Fu
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, China
| | - Shangjie Tian
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, China
- School of Materials Science and Engineering, Anhui University, Hefei, China
| | - Hechang Lei
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, China
| | - Michael E Reimer
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
| | - Junichi Okamoto
- Institute of Physics, University of Freiburg, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, University of Freiburg, Freiburg, Germany
| | - Adam W Tsen
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
17
|
Zhou Y, Li S, Liang X, Zhou Y. Topological Spin Textures: Basic Physics and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312935. [PMID: 38861696 DOI: 10.1002/adma.202312935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/24/2024] [Indexed: 06/13/2024]
Abstract
In the face of escalating modern data storage demands and the constraints of Moore's Law, exploring spintronic solutions, particularly the devices based on magnetic skyrmions, has emerged as a promising frontier in scientific research. Since the first experimental observation of skyrmions, topological spin textures have been extensively studied for their great potential as efficient information carriers in spintronic devices. However, significant challenges have emerged alongside this progress. This review aims to synthesize recent advances in skyrmion research while addressing the major issues encountered in the field. Additionally, current research on promising topological spin structures in addition to skyrmions is summarized. Beyond 2D structures, exploration also extends to 1D magnetic solitons and 3D spin textures. In addition, a diverse array of emerging magnetic materials is introduced, including antiferromagnets and 2D van der Waals magnets, broadening the scope of potential materials hosting topological spin textures. Through a systematic examination of magnetic principles, topological categorization, and the dynamics of spin textures, a comprehensive overview of experimental and theoretical advances in the research of topological magnetism is provided. Finally, both conventional and unconventional applications are summarized based on spin textures proposed thus far. This review provides an outlook on future development in applied spintronics.
Collapse
Affiliation(s)
- Yuqing Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Shuang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xue Liang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
18
|
Kurumaji T, Fang S, Ye L, Kitou S, Checkelsky JG. Metamagnetic multiband Hall effect in Ising antiferromagnet ErGa 2. Proc Natl Acad Sci U S A 2024; 121:e2318411121. [PMID: 38805279 PMCID: PMC11161778 DOI: 10.1073/pnas.2318411121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/13/2024] [Indexed: 05/30/2024] Open
Abstract
Frustrated rare-earth-based intermetallics provide a promising platform for emergent magnetotransport properties through exchange coupling between conduction electrons and localized rare-earth magnetic moments. Metamagnetism, the abrupt change of magnetization under an external magnetic field, is a signature of first-order magnetic phase transitions; recently, metamagnetic transitions in frustrated rare earth intermetallics have attracted interest for their accompanying nontrivial spin structures (e.g., skyrmions) and associated nonlinear and topological Hall effects (THE). Here, we present metamagnetism-induced Hall anomalies in single-crystalline ErGa2, which recalls features arising from the THE but wherein the strong Ising-type anisotropy of Er moments prohibits noncoplanar spin structures. We show that the observed anomalies are neither due to anomalous Hall effect nor THE; instead, can be accounted for via 4f-5d interactions which produce a band-dependent mobility modulation. This leads to a pronounced multiband Hall response across the magnetization process-a metamagnetic multiband Hall effect that resembles a topological-Hall-like response but without nontrivial origins. The present findings may be of general relevance in itinerant metamagnetic systems regardless of coplanar/noncoplanar nature of spins and are important for the accurate identification of Hall signals due to emergent magnetic fields.
Collapse
Affiliation(s)
- Takashi Kurumaji
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Shiang Fang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, NJ08854
| | - Linda Ye
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Shunsuke Kitou
- Department of Advanced Materials Science, University of Tokyo, Kashiwa277-8561, Japan
| | - Joseph G. Checkelsky
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
19
|
Grebenchuk S, McKeever C, Grzeszczyk M, Chen Z, Šiškins M, McCray ARC, Li Y, Petford-Long AK, Phatak CM, Ruihuan D, Zheng L, Novoselov KS, Santos EJG, Koperski M. Topological Spin Textures in an Insulating van der Waals Ferromagnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311949. [PMID: 38306214 DOI: 10.1002/adma.202311949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
Generation and control of topological spin textures constitutes one of the most exciting challenges of modern spintronics given their potential applications in information storage technologies. Of particular interest are magnetic insulators, which due to low damping, absence of Joule heating and reduced dissipation can provide energy-efficient spin-textures platform. Here, it is demonstrated that the interplay between sample thickness, external magnetic fields, and optical excitations can generate a prolific paramount of spin textures, and their coexistence in insulating CrBr3 van der Waals (vdW) ferromagnets. Using high-resolution magnetic force microscopy and large-scale micromagnetic simulation methods, the existence of a large region in T-B phase diagram is demonstrated where different stripe domains, skyrmion crystals, and magnetic domains exist and can be intrinsically selected or transformed to each-other via a phase-switch mechanism. Lorentz transmission electron microscopy unveils the mixed chirality of the magnetic textures that are of Bloch-type at given conditions but can be further manipulated into Néel-type or hybrid-type via thickness-engineering. The topological phase transformation between the different magnetic objects can be further inspected by standard photoluminescence optical probes resolved by circular polarization indicative of an existence of exciton-skyrmion coupling mechanism. The findings identify vdW magnetic insulators as a promising framework of materials for the manipulation and generation of highly ordered skyrmion lattices relevant for device integration at the atomic level.
Collapse
Affiliation(s)
- Sergey Grebenchuk
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Conor McKeever
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Magdalena Grzeszczyk
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Zhaolong Chen
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Makars Šiškins
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Arthur R C McCray
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Applied Physics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Yue Li
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Amanda K Petford-Long
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Charudatta M Phatak
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Duan Ruihuan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Nanyang Technological University, Singapore, 639798, Singapore
| | - Liu Zheng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Elton J G Santos
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Maciej Koperski
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
20
|
Huai X, Acheampong E, Delles E, Winiarski MJ, Sorolla M, Nassar L, Liang M, Ramette C, Ji H, Scheie A, Calder S, Mourigal M, Tran TT. Noncentrosymmetric Triangular Magnet CaMnTeO 6: Strong Quantum Fluctuations and Role of s 0 versus s 2 Electronic States in Competing Exchange Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313763. [PMID: 38506567 DOI: 10.1002/adma.202313763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Noncentrosymmetric triangular magnets offer a unique platform for realizing strong quantum fluctuations. However, designing these quantum materials remains an open challenge attributable to a knowledge gap in the tunability of competing exchange interactions at the atomic level. Here, a new noncentrosymmetric triangular S = 3/2 magnet CaMnTeO6 is created based on careful chemical and physical considerations. The model material displays competing magnetic interactions and features nonlinear optical responses with the capability of generating coherent photons. The incommensurate magnetic ground state of CaMnTeO6 with an unusually large spin rotation angle of 127°(1) indicates that the anisotropic interlayer exchange is strong and competing with the isotropic interlayer Heisenberg interaction. The moment of 1.39(1) µB, extracted from low-temperature heat capacity and neutron diffraction measurements, is only 46% of the expected value of the static moment 3 µB. This reduction indicates the presence of strong quantum fluctuations in the half-integer spin S = 3/2 CaMnTeO6 magnet, which is rare. By comparing the spin-polarized band structure, chemical bonding, and physical properties of AMnTeO6 (A = Ca, Sr, Pb), how quantum-chemical interpretation can illuminate insights into the fundamentals of magnetic exchange interactions, providing a powerful tool for modulating spin dynamics with atomically precise control is demonstrated.
Collapse
Affiliation(s)
- Xudong Huai
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | | | - Erich Delles
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Michał J Winiarski
- Applied Physics and Mathematics and Advanced Materials Center, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Maurice Sorolla
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Lila Nassar
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mingli Liang
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Caleb Ramette
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Huiwen Ji
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Allen Scheie
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Stuart Calder
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Martin Mourigal
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Thao T Tran
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
21
|
Zhang H, Sanchez JJ, Chu JH, Liu J. Perspective: probing elasto-quantum materials with x-ray techniques and in situanisotropic strain. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:333002. [PMID: 38722324 DOI: 10.1088/1361-648x/ad493e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Anisotropic lattice deformation plays an important role in the quantum mechanics of solid state physics. The possibility of mediating the competition and cooperation among different order parameters by applyingin situstrain/stress on quantum materials has led to discoveries of a variety of elasto-quantum effects on emergent phenomena. It has become increasingly critical to have the capability of combining thein situstrain tuning with x-ray techniques, especially those based on synchrotrons, to probe the microscopic elasto-responses of the lattice, spin, charge, and orbital degrees of freedom. Herein, we briefly review the recent studies that embarked on utilizing elasto-x-ray characterizations on representative material systems and demonstrated the emerging opportunities enabled by this method. With that, we further discuss the promising prospect in this rising area of quantum materials research and the bright future of elasto-x-ray techniques.
Collapse
Affiliation(s)
- Han Zhang
- Changzhou University, Changzhou, Jiangsu 213001, People's Republic of China
| | - Joshua J Sanchez
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Jiun-Haw Chu
- Department of Physics, University of Washington, Seattle, WA 98195, United States of America
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States of America
| |
Collapse
|
22
|
Kitaori A, White JS, Ukleev V, Peng L, Nakajima K, Kanazawa N, Yu X, Ōnuki Y, Tokura Y. Enhanced emergent electromagnetic inductance in Tb 5Sb 3 due to highly disordered helimagnetism. COMMUNICATIONS PHYSICS 2024; 7:159. [PMID: 38779470 PMCID: PMC11106002 DOI: 10.1038/s42005-024-01656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
In helimagnetic metals, ac current-driven spin motions can generate emergent electric fields acting on conduction electrons, leading to emergent electromagnetic induction (EEMI). Recent experiments reveal the EEMI signal generally shows a strongly current-nonlinear response. In this study, we investigate the EEMI of Tb5Sb3, a short-period helimagnet. Using small angle neutron scattering we show that Tb5Sb3 hosts highly disordered helimagnetism with a distribution of spin-helix periodicity. The current-nonlinear dynamics of the disordered spin helix in Tb5Sb3 indeed shows up as the nonlinear electrical resistivity (real part of ac resistivity), and even more clearly as a nonlinear and huge EEMI (imaginary part of ac resistivity) response. The magnitude of the EEMI reaches as large as several tens of μH for Tb5Sb3 devices on the scale of several tens of μm, originating to noncollinear spin textures possibly even without long-range helimagnetic order.
Collapse
Affiliation(s)
- Aki Kitaori
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, 113-0032 Japan
- Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656 Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198 Japan
| | - Jonathan S. White
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
| | - Victor Ukleev
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Licong Peng
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198 Japan
| | - Kiyomi Nakajima
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198 Japan
| | - Naoya Kanazawa
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505 Japan
| | - Xiuzhen Yu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198 Japan
| | - Yoshichika Ōnuki
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198 Japan
| | - Yoshinori Tokura
- Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656 Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198 Japan
- Tokyo College, The University of Tokyo, Tokyo, 113-8656 Japan
| |
Collapse
|
23
|
Zhang H, Shao YT, Chen X, Zhang B, Wang T, Meng F, Xu K, Meisenheimer P, Chen X, Huang X, Behera P, Husain S, Zhu T, Pan H, Jia Y, Settineri N, Giles-Donovan N, He Z, Scholl A, N'Diaye A, Shafer P, Raja A, Xu C, Martin LW, Crommie MF, Yao J, Qiu Z, Majumdar A, Bellaiche L, Muller DA, Birgeneau RJ, Ramesh R. Spin disorder control of topological spin texture. Nat Commun 2024; 15:3828. [PMID: 38714653 PMCID: PMC11076609 DOI: 10.1038/s41467-024-47715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 05/10/2024] Open
Abstract
Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.
Collapse
Affiliation(s)
- Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Yu-Tsun Shao
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Xiang Chen
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Physics, University of California, Berkeley, CA, 94720, USA.
- Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Binhua Zhang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China
- Shanghai Qi Zhi Institute, Shanghai, 200030, China
| | - Tianye Wang
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Fanhao Meng
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kun Xu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Xianzhe Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Piush Behera
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Sajid Husain
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tiancong Zhu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Hao Pan
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Yanli Jia
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Nick Settineri
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Zehao He
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alpha N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Archana Raja
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Changsong Xu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China.
- Shanghai Qi Zhi Institute, Shanghai, 200030, China.
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA
| | - Michael F Crommie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Jie Yao
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ziqiang Qiu
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Robert J Birgeneau
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Physics, University of California, Berkeley, CA, 94720, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA.
- Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
24
|
Liu C, Zhang S, Hao H, Algaidi H, Ma Y, Zhang XX. Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe 3GaTe 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311022. [PMID: 38290153 DOI: 10.1002/adma.202311022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/11/2024] [Indexed: 02/01/2024]
Abstract
2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room-temperature skyrmion-hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room-temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L-TEM). Upon an optimized field cooling procedure, zero-field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30-180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above-room-temperature skyrmion-hosting vdW material, holding great promise for future spintronics.
Collapse
Affiliation(s)
- Chen Liu
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Senfu Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Hongyuan Hao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Hanin Algaidi
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yinchang Ma
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xi-Xiang Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
McClarty PA, Rau JG. Landau Theory of Altermagnetism. PHYSICAL REVIEW LETTERS 2024; 132:176702. [PMID: 38728708 DOI: 10.1103/physrevlett.132.176702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/11/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024]
Abstract
We formulate a Landau theory for altermagnets, a class of collinear compensated magnets with spin-split bands. Starting from the nonrelativistic limit, this Landau theory goes beyond a conventional analysis by including spin-space symmetries, providing a simple framework for understanding the key features of this family of materials. We find a set of multipolar secondary order parameters connecting existing ideas about the spin symmetries of these systems, their order parameters, and the effect of nonzero spin-orbit coupling. We account for several features of canonical altermagnets such as RuO_{2}, MnTe, and CuF_{2} that go beyond symmetry alone, relating the order parameter to key observables such as magnetization, anomalous Hall conductivity, and magnetoelastic and magneto-optical probes. Finally, we comment on generalizations of our framework to a wider family of exotic magnetic systems derived from the zero spin-orbit coupled limit.
Collapse
Affiliation(s)
- Paul A McClarty
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Jeffrey G Rau
- Department of Physics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
26
|
Zhang Y, Tang J, Wu Y, Shi M, Xu X, Wang S, Tian M, Du H. Stable skyrmion bundles at room temperature and zero magnetic field in a chiral magnet. Nat Commun 2024; 15:3391. [PMID: 38649678 PMCID: PMC11035646 DOI: 10.1038/s41467-024-47730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Topological spin textures are characterized by magnetic topological charges, Q, which govern their electromagnetic properties. Recent studies have achieved skyrmion bundles with arbitrary integer values of Q, opening possibilities for exploring topological spintronics based on Q. However, the realization of stable skyrmion bundles in chiral magnets at room temperature and zero magnetic field - the prerequisite for realistic device applications - has remained elusive. Here, through the combination of pulsed currents and reversed magnetic fields, we experimentally achieve skyrmion bundles with different integer Q values - reaching a maximum of 24 at above room temperature and zero magnetic field - in the chiral magnet Co8Zn10Mn2. We demonstrate the field-driven annihilation of high-Q bundles and present a phase diagram as a function of temperature and field. Our experimental findings are consistently corroborated by micromagnetic simulations, which reveal the nature of the skyrmion bundle as that of skyrmion tubes encircled by a fractional Hopfion.
Collapse
Grants
- This work was supported by the National Key R&D Program of China, Grant No. 2022YFA1403603 (H.D.); the Natural Science Foundation of China, Grants No. 12174396 (J.T.), 12104123 (Y.W.), and 12241406 (H.D.); the National Natural Science Funds for Distinguished Young Scholar, Grant No. 52325105 (H.D.); the Anhui Provincial Natural Science Foundation, Grant No. 2308085Y32 (J.T.); the Natural Science Project of Colleges and Universities in Anhui Province, Grant No. 2022AH030011 (J.T.); the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDB33030100 (H.D.); CAS Project for Young Scientists in Basic Research, Grant No. YSBR-084 (H.D.); Systematic Fundamental Research Program Leveraging Major Scientific and Technological Infrastructure, Chinese Academy of Sciences, Grant No. JZHKYPT-2021-08 (H.D.);Anhui Province Excellent Young Teacher Training Project Grant No. YQZD2023067 (Y.W.); and the China Postdoctoral Science Foundation Grant No. 2023M743543 (Y.W.).
Collapse
Affiliation(s)
- Yongsen Zhang
- Science Island Branch, Graduate School of USTC, Hefei, 230026, China
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jin Tang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China.
| | - Yaodong Wu
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
| | - Meng Shi
- Science Island Branch, Graduate School of USTC, Hefei, 230026, China
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xitong Xu
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shouguo Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Mingliang Tian
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
27
|
Wang ZQ, Xue F, Qiu L, Wang Z, Wu R, Hou Y. Switching Intrinsic Magnetic Skyrmions with Controllable Magnetic Anisotropy in van der Waals Multiferroic Heterostructures. NANO LETTERS 2024; 24:4117-4123. [PMID: 38509030 DOI: 10.1021/acs.nanolett.3c05024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Magnetic skyrmions, topologically nontrivial whirling spin textures at nanometer scales, have emerged as potential information carriers for spintronic devices. The ability to efficiently create and erase magnetic skyrmions is vital yet challenging for such applications. Based on first-principles studies, we find that switching between intrinsic magnetic skyrmion and high-temperature ferromagnetic states can be achieved in the two-dimensional van der Waals (vdW) multiferroic heterostructure CrSeI/In2Te3 by reversing the ferroelectric polarization of In2Te3. The core mechanism of this switching is traced to the controllable magnetic anisotropy of CrSeI influenced by the ferroelectric polarization of In2Te3. We propose a useful descriptor linking the presence of magnetic skyrmions to magnetic parameters and validate this connection through studies of a variety of similar vdW multiferroic heterostructures. Our work demonstrates that manipulating magnetic skyrmions via tunable magnetic anisotropies in vdW multiferroic heterostructures represents a highly promising and energy-efficient strategy for the future development of spintronics.
Collapse
Affiliation(s)
- Ze-Quan Wang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Feng Xue
- Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Liang Qiu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhe Wang
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, United States
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, United States
| | - Yusheng Hou
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Yu J, Liu Y, Ke Y, Su J, Cao J, Li Z, Sun B, Bai H, Wang W. Observation of Topological Hall Effect in a Chemically Complex Alloy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308415. [PMID: 38265890 DOI: 10.1002/adma.202308415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/28/2023] [Indexed: 01/26/2024]
Abstract
The topological Hall effect (THE) is the transport response of chiral spin textures and thus can serve as a powerful probe for detecting and understanding these unconventional magnetic orders. So far, the THE is only observed in either noncentrosymmetric systems where spin chirality is stabilized by Dzyaloshinskii-Moriya interactions, or triangular-lattice magnets with Ruderman-Kittel-Kasuya-Yosida-type interactions. Here, a pronounced THE is observed in a Fe-Co-Ni-Mn chemically complex alloy with a simple face-centered cubic (fcc) structure across a wide range of temperatures and magnetic fields. The alloy is shown to have a strong magnetic frustration owing to the random occupation of magnetic atoms on the close-packed fcc lattice and the direct Heisenberg exchange interaction among atoms, as evidenced by the appearance of a reentrant spin glass state in the low-temperature regime and the first principles calculations. Consequently, THE is attributed to the nonvanishing spin chirality created by strong spin frustration under the external magnetic field, which is distinct from the mechanism responsible for the skyrmion systems, as well as geometrically frustrated magnets.
Collapse
Affiliation(s)
- Jihao Yu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuying Liu
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan, 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Su
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jingshan Cao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zian Li
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Baoan Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Haiyang Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Weihua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
29
|
Minami S, Ikeda Y, Shimada T. Spontaneous Atomic-Scale Polar Skyrmions and Merons on a SrTiO 3 (001) Surface: Defect Engineering for Emerging Topological Orders. NANO LETTERS 2024; 24:3686-3693. [PMID: 38451549 DOI: 10.1021/acs.nanolett.3c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The emergence of nontrivial topological order in condensed matter has been attracting a great deal of attention owing to its promising technological applications in novel functional nanodevices. In ferroelectrics, the realization of polar topological order at an ultimately small scale is extremely challenging due to the lack of chiral interaction and the critical size of the ferroelectricity. Here, we break through these limitations and demonstrate that the ultimate atomic-scale polar skyrmion and meron (∼2 nm) can be induced by engineering oxygen vacancies on the SrTiO3 (001) surface based on first-principles calculations. The paraelectric-to-antiferrodistortive phase transition leads to a novel topological transition from skyrmion to meron, indicating phase-topology correlations. We also discuss accumulating and driving polar skyrmions based on the oxygen divacancy model; these results and the recent discovery of defect engineering techniques suggest the possibility of arithmetic operations on topological numbers through the natural self-organization and diffusion features of oxygen vacancies.
Collapse
Affiliation(s)
- Susumu Minami
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Yoshitaka Ikeda
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Takahiro Shimada
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
30
|
Urrestarazu Larrañaga J, Sisodia N, Guedas R, Pham VT, Di Manici I, Masseboeuf A, Garello K, Disdier F, Fernandez B, Wintz S, Weigand M, Belmeguenai M, Pizzini S, Sousa RC, Buda-Prejbeanu LD, Gaudin G, Boulle O. Electrical Detection and Nucleation of a Magnetic Skyrmion in a Magnetic Tunnel Junction Observed via Operando Magnetic Microscopy. NANO LETTERS 2024; 24:3557-3565. [PMID: 38499397 DOI: 10.1021/acs.nanolett.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Magnetic skyrmions are topological spin textures which are envisioned as nanometer scale information carriers in magnetic memory and logic devices. The recent demonstrations of room temperature skyrmions and their current induced manipulation in ultrathin films were first steps toward the realization of such devices. However, important challenges remain regarding the electrical detection and the low-power nucleation of skyrmions, which are required for the read and write operations. Here, we demonstrate, using operando magnetic microscopy experiments, the electrical detection of a single magnetic skyrmion in a magnetic tunnel junction (MTJ) and its nucleation and annihilation by gate voltage via voltage control of magnetic anisotropy. The nucleated skyrmion can be manipulated by both gate voltages and external magnetic fields, leading to tunable intermediate resistance states. Our results unambiguously demonstrate the readout and voltage controlled write operations in a single MTJ device, which is a major milestone for low power skyrmion based technologies.
Collapse
Affiliation(s)
| | - Naveen Sisodia
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Rodrigo Guedas
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Van Tuong Pham
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France
| | - Ilaria Di Manici
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Aurélien Masseboeuf
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Kevin Garello
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Florian Disdier
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Bruno Fernandez
- Univ. Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France
| | - Sebastian Wintz
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, D-14109 Berlin, Germany
| | - Markus Weigand
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, D-14109 Berlin, Germany
| | - Mohamed Belmeguenai
- LSPM (CNRS-UPR 3407), Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
| | - Stefania Pizzini
- Univ. Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France
| | - Ricardo C Sousa
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | | | - Gilles Gaudin
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Olivier Boulle
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| |
Collapse
|
31
|
Liao X, Minamitani E, Xie T, Yang L, Zhang W, Klyatskaya S, Ruben M, Fu YS. Altering Spin Distribution of Tb 2Pc 3 via Molecular Chirality Manipulation. J Am Chem Soc 2024; 146:5901-5907. [PMID: 38408315 DOI: 10.1021/jacs.3c11882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Manipulating the chirality of the spin-polarized electronic state is pivotal for understanding many unusual quantum spin phenomena, but it has not been achieved at the single-molecule level. Here, using scanning tunneling microscopy and spectroscopy (STM/STS), we successfully manipulate the chirality of spin distribution in a triple-decker single-molecule magnet tris(phthalocyaninato)bis(terbium(III)) (Tb2Pc3), which is evaporated on a Pb(111) substrate via molecular beam epitaxy. The otherwise achiral Tb2Pc3 becomes chiral after being embedded into the self-assembled monolayer films of bis(phthalocyaninato)terbium(III) (TbPc2). The chirality of the spin distribution in Tb2Pc3 is manifested via the spatial mapping of its Kondo resonance state from its ligand orbital. Our first-principles calculations revealed that the spin and molecular chirality are associated with a small rotation followed by a structural distortion of the top Pc, consistent with the experimental observation. By constructing tailored molecular clusters with the STM tip, a single Tb2Pc3 molecule can be manipulated among achiral and differently handed chiral configurations of spin distributions reversibly. This paves the way for designing chiral spin enantiomers for fundamental studies and developing functional spintronic devices.
Collapse
Affiliation(s)
- Xin Liao
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Emi Minamitani
- SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Tao Xie
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Lianzhi Yang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Wenhao Zhang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Svetlana Klyatskaya
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Centre Européen de Sciences Quantiques, Institut de Science et d'Ingénierie Supramoléculaires, 8 Allée Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France
| | - Ying-Shuang Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| |
Collapse
|
32
|
Cheng E, Yan L, Shi X, Lou R, Fedorov A, Behnami M, Yuan J, Yang P, Wang B, Cheng JG, Xu Y, Xu Y, Xia W, Pavlovskii N, Peets DC, Zhao W, Wan Y, Burkhardt U, Guo Y, Li S, Felser C, Yang W, Büchner B. Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi. Nat Commun 2024; 15:1467. [PMID: 38368411 PMCID: PMC10874455 DOI: 10.1038/s41467-024-45658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, a magnetism-facilitated anomalous Hall/Nernst effect (AHE/ANE) is uncovered. Angle-resolved photoemission spectroscopy (ARPES) measurements demonstrated that the Weyl nodes with opposite chirality are moving away from each other upon entering the ferromagnetic phase. Under pressure, by tracing the pressure evolution of AHE and band structure, we demonstrate that pressure could also serve as a pivotal knob to tune the positions of Weyl nodes. Moreover, multiple pressure-induced phase transitions are also revealed. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to potential applications, such as spintronics.
Collapse
Affiliation(s)
- Erjian Cheng
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden), 01069, Dresden, Germany.
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany.
| | - Limin Yan
- Center for High Pressure Science and Technology Advanced Research, 201203, Shanghai, China
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, 130012, Changchun, China
| | - Xianbiao Shi
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, 150001, Harbin, China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Rui Lou
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden), 01069, Dresden, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany.
- Joint Laboratory "Functional Quantum Materials" at BESSY II, 12489, Berlin, Germany.
| | - Alexander Fedorov
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden), 01069, Dresden, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
- Joint Laboratory "Functional Quantum Materials" at BESSY II, 12489, Berlin, Germany
| | - Mahdi Behnami
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden), 01069, Dresden, Germany
| | - Jian Yuan
- School of Physical Science and Technology, ShanghaiTech University, 200031, Shanghai, China
| | - Pengtao Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Bosen Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jin-Guang Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuanji Xu
- Institute for Applied Physics, University of Science and Technology Beijing, 100083, Beijing, China
| | - Yang Xu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
| | - Wei Xia
- School of Physical Science and Technology, ShanghaiTech University, 200031, Shanghai, China
| | - Nikolai Pavlovskii
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - Darren C Peets
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - Weiwei Zhao
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, 150001, Harbin, China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Yimin Wan
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
| | - Ulrich Burkhardt
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Yanfeng Guo
- School of Physical Science and Technology, ShanghaiTech University, 200031, Shanghai, China
| | - Shiyan Li
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
- Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China
- Shanghai Research Center for Quantum Sciences, 201315, Shanghai, China
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research, 201203, Shanghai, China.
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research (IFW-Dresden), 01069, Dresden, Germany.
- Institute of Solid State and Materials Physics and Würzburg-Dresden Cluster of Excellence-ct.qmat, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
33
|
Liu M, Wan TL, Dou K, Zhang L, Sun W, Jiang J, Ma Y, Gu Y, Kou L. Magnetic skyrmions and their manipulations in a 2D multiferroic CuCrP 2Te 6 monolayer. Phys Chem Chem Phys 2024; 26:6189-6195. [PMID: 38305045 DOI: 10.1039/d3cp05096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Magnetic skyrmions and their effective manipulations are promising for the design of next-generation information storage and processing devices, due to their topologically protected chiral spin textures and low energy cost. They, therefore, have attracted significant interest from the communities of condensed matter physics and materials science. Herein, based on density functional theory (DFT) calculations and micromagnetic simulations, we report the spontaneous 2 nm-diameter magnetic skyrmions in the monolayer CuCrP2Te6 originating from the synergistic effect of broken inversion symmetry and strong Dzyaloshinskii-Moriya interactions (DMIs). The creation and annihilation of magnetic skyrmions can be achieved via the ferroelectric to anti-ferroelectric (FE-to-AFE) transition, due to the variation of the magnetic parameter D2/|KJ|. Moreover, we also found that the DMIs and Heisenberg isotropic exchange can be manipulated by bi-axial strain, to effectively enhance skyrmion stability. Our findings provide feasible approaches to manipulate the skyrmions, which can be used for the design of next-generation information storage devices.
Collapse
Affiliation(s)
- Minghao Liu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Tsz Lok Wan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Kaiying Dou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan 250100, P. R. China
| | - Lei Zhang
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wei Sun
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
| | - Jiawei Jiang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan 250100, P. R. China
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
34
|
Ukleev V, Ajejas F, Devishvili A, Vorobiev A, Steinke NJ, Cubitt R, Luo C, Abrudan RM, Radu F, Cros V, Reyren N, White JS. Observation by SANS and PNR of pure Néel-type domain wall profiles and skyrmion suppression below room temperature in magnetic [Pt/CoFeB/Ru] 10 multilayers. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2315015. [PMID: 38455384 PMCID: PMC10919321 DOI: 10.1080/14686996.2024.2315015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
We report investigations of the magnetic textures in periodic multilayers [Pt(1 nm)/(CoFeB(0.8 nm)/Ru(1.4 nm)]10 using polarised neutron reflectometry (PNR) and small-angle neutron scattering (SANS). The multilayers are known to host skyrmions stabilized by Dzyaloshinskii-Moriya interactions induced by broken inversion symmetry and spin-orbit coupling at the asymmetric interfaces. From depth-dependent PNR measurements, we observed well-defined structural features and obtained the layer-resolved magnetization profiles. The in-plane magnetization of the CoFeB layers calculated from fitting of the PNR profiles is found to be in excellent agreement with magnetometry data. Using SANS as a bulk probe of the entire multilayer, we observe long-period magnetic stripe domains and skyrmion ensembles with full orientational disorder at room temperature. No sign of skyrmions is found below 250 K, which we suggest is due to an increase of an effective magnetic anisotropy in the CoFeB layer on cooling that suppresses skyrmion stability. Using polarised SANS at room temperature, we prove the existence of pure Néel-type windings in both stripe domain and skyrmion regimes. No Bloch-type winding admixture, i.e. an indication for hybrid windings, is detected within the measurement sensitivity, in good agreement with expectations according to our micromagnetic modelling of the multilayers. Our findings using neutron techniques provide valuable microscopic insights into the rich magnetic behavior of skyrmion-hosting multilayers, which are essential for the advancement of future skyrmion-based spintronic devices.
Collapse
Affiliation(s)
- Victor Ukleev
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), Villigen, Switzerland
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Fernando Ajejas
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | | | - Alexei Vorobiev
- Institut Laue-Langevin, Grenoble, France
- Department of Physics, Uppsala University, Uppsala, Sweden
| | | | | | - Chen Luo
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | | | - Florin Radu
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Vincent Cros
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Nicolas Reyren
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Jonathan S. White
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), Villigen, Switzerland
| |
Collapse
|
35
|
Jiang J, Tang J, Bai T, Wu Y, Qin J, Xia W, Chen R, Yan A, Wang S, Tian M, Du H. Thermal Stability of Skyrmion Tubes in Nanostructured Cuboids. NANO LETTERS 2024; 24:1587-1593. [PMID: 38259044 DOI: 10.1021/acs.nanolett.3c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Magnetic skyrmions in bulk materials are typically regarded as two-dimensional structures. However, they also exhibit three-dimensional configurations, known as skyrmion tubes, that elongate and extend in-depth. Understanding the configurations and stabilization mechanism of skyrmion tubes is crucial for the development of advanced spintronic devices. However, the generation and annihilation of skyrmion tubes in confined geometries are still rarely reported. Here, we present direct imaging of skyrmion tubes in nanostructured cuboids of a chiral magnet FeGe using Lorentz transmission electron microscopy (TEM), while applying an in-plane magnetic field. It is observed that skyrmion tubes stabilize in a narrow field-temperature region near the Curie temperature (Tc). Through a field cooling process, metastable skyrmion tubes can exist in a larger region of the field-temperature diagram. Combining these experimental findings with micromagnetic simulations, we attribute these phenomena to energy differences and thermal fluctuations. Our results could promote topological spintronic devices based on skyrmion tubes.
Collapse
Affiliation(s)
- Jialiang Jiang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
| | - Jin Tang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
| | - Tian Bai
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Yaodong Wu
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Jiazhuan Qin
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Weixing Xia
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Renjie Chen
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Aru Yan
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Shouguo Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Mingliang Tian
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
36
|
Li Z, Zhang H, Li G, Guo J, Wang Q, Deng Y, Hu Y, Hu X, Liu C, Qin M, Shen X, Yu R, Gao X, Liao Z, Liu J, Hou Z, Zhu Y, Fu X. Room-temperature sub-100 nm Néel-type skyrmions in non-stoichiometric van der Waals ferromagnet Fe 3-xGaTe 2 with ultrafast laser writability. Nat Commun 2024; 15:1017. [PMID: 38310096 PMCID: PMC10838308 DOI: 10.1038/s41467-024-45310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Realizing room-temperature magnetic skyrmions in two-dimensional van der Waals ferromagnets offers unparalleled prospects for future spintronic applications. However, due to the intrinsic spin fluctuations that suppress atomic long-range magnetic order and the inherent inversion crystal symmetry that excludes the presence of the Dzyaloshinskii-Moriya interaction, achieving room-temperature skyrmions in 2D magnets remains a formidable challenge. In this study, we target room-temperature 2D magnet Fe3GaTe2 and unveil that the introduction of iron-deficient into this compound enables spatial inversion symmetry breaking, thus inducing a significant Dzyaloshinskii-Moriya interaction that brings about room-temperature Néel-type skyrmions with unprecedentedly small size. To further enhance the practical applications of this finding, we employ a homemade in-situ optical Lorentz transmission electron microscopy to demonstrate ultrafast writing of skyrmions in Fe3-xGaTe2 using a single femtosecond laser pulse. Our results manifest the Fe3-xGaTe2 as a promising building block for realizing skyrmion-based magneto-optical functionalities.
Collapse
Grants
- This work was supported by the National Key Research and Development Program of China at grant No. 2020YFA0309300, Science and Technology Projects in Guangzhou (grant No. 202201000008), the National Natural Science Foundation of China (NSFC) at grant No. 12304146, 11974191, 12127803, 52322108, 52271178, U22A20117 and 12241403, China Postdoctoral Science Foundation (2023M741828), Guangdong Basic and Applied Basic Research Foundation (grant No. 2021B1515120047 and 2023B1515020112), the Natural Science Foundation of Tianjin at grant No. 20JCJQJC00210, the 111 Project at grant No. B23045, and the “Fundamental Research Funds for the Central Universities”, Nankai University (grant No. 63213040, C029211101, C02922101, ZB22000104 and DK2300010207). This work was supported by the Synergetic Extreme Condition User Facility (SECUF).
Collapse
Affiliation(s)
- Zefang Li
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Huai Zhang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Guanqi Li
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
| | - Jiangteng Guo
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Qingping Wang
- School of Physics and Electronic and Electrical Engineering, Aba Teachers University, Wenchuan, China
| | - Ying Deng
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Yue Hu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Xuange Hu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Can Liu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Minghui Qin
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Xi Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Richeng Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xingsen Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Zhimin Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Junming Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China.
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, USA.
| | - Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China.
| |
Collapse
|
37
|
Takeda H, Kawano M, Tamura K, Akazawa M, Yan J, Waki T, Nakamura H, Sato K, Narumi Y, Hagiwara M, Yamashita M, Hotta C. Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice. Nat Commun 2024; 15:566. [PMID: 38263303 PMCID: PMC10805809 DOI: 10.1038/s41467-024-44793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Complexity of quantum phases of matter is often understood theoretically by using gauge structures, as is recognized by the [Formula: see text] and U(1) gauge theory description of spin liquids in frustrated magnets. Anomalous Hall effect of conducting electrons can intrinsically arise from a U(1) gauge expressing the spatial modulation of ferromagnetic moments or from an SU(2) gauge representing the spin-orbit coupling effect. Similarly, in insulating ferro and antiferromagnets, the magnon contribution to anomalous transports is explained in terms of U(1) and SU(2) fluxes present in the ordered magnetic structure. Here, we report thermal Hall measurements of MnSc2S4 in an applied field up to 14 T, for which we consider an emergent higher rank SU(3) flux, controlling the magnon transport. The thermal Hall coefficient takes a substantial value when the material enters a three-sublattice antiferromagnetic skyrmion phase, which is in agreement with the linear spin-wave theory. In our description, magnons are dressed with SU(3) gauge field, which is a mixture of three species of U(1) gauge fields originating from the slowly varying magnetic moments on these sublattices.
Collapse
Affiliation(s)
- Hikaru Takeda
- Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581, Japan.
| | - Masataka Kawano
- Department of Physics, Technical University of Munich, 85748, Garching, Germany.
| | - Kyo Tamura
- Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581, Japan
| | - Masatoshi Akazawa
- Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581, Japan
| | - Jian Yan
- Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581, Japan
| | - Takeshi Waki
- Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroyuki Nakamura
- Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuki Sato
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuo Narumi
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Masayuki Hagiwara
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Minoru Yamashita
- Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581, Japan
| | - Chisa Hotta
- Department of Basic Science, University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
38
|
Yu X, Kanazawa N, Zhang X, Takahashi Y, Iakoubovskii KV, Nakajima K, Tanigaki T, Mochizuki M, Tokura Y. Spontaneous Vortex-Antivortex Pairs and Their Topological Transitions in a Chiral-Lattice Magnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306441. [PMID: 37712832 DOI: 10.1002/adma.202306441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/12/2023] [Indexed: 09/16/2023]
Abstract
The spontaneous formation and topological transitions of vortex-antivortex pairs have implications for a broad range of emergent phenomena, for example, from superconductivity to quantum computing. Unlike magnets exhibiting collinear spin textures, helimagnets with noncollinear spin textures provide unique opportunities to manipulate topological forms such as (anti)merons and (anti)skyrmions. However, it is challenging to achieve multiple topological states and their interconversion in a single helimagnet due to the topological protection for each state. Here, the on-demand creation of multiple topological states in a helimagnet Fe0.5 Co0.5 Ge, including a spontaneous vortex pair of meron with topological charge N = -1/2 and antimeron with N = 1/2, and a vortex-antivortex bundle, that is, a bimeron (meron pair) with N = -1 is reported. The mutual transformation between skyrmions and bimerons with respect to the competitive effects of magnetic field and magnetic shape anisotropy is demonstrated. It is shown that electric currents drive the individual bimerons to form their connecting assembly and then into a skyrmion lattice. These findings signify the feasibility of designing topological states and offer new insights into the manipulation of noncollinear spin textures for potential applications in various fields.
Collapse
Affiliation(s)
- Xiuzhen Yu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Naoya Kanazawa
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Xichao Zhang
- Department of Applied Physics, Waseda University, Tokyo, 169-8555, Japan
| | - Yoshio Takahashi
- Research and Development Group, Hitachi, Ltd., Hatoyama, 350-0395, Japan
| | | | - Kiyomi Nakajima
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Toshiaki Tanigaki
- Research and Development Group, Hitachi, Ltd., Hatoyama, 350-0395, Japan
| | - Masahito Mochizuki
- Department of Applied Physics, Waseda University, Tokyo, 169-8555, Japan
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Department of Applied Physics and Tokyo College, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
39
|
Yu L, Zhao HJ, Chen P, Bellaiche L, Ma Y. The anti-symmetric and anisotropic symmetric exchange interactions between electric dipoles in hafnia. Nat Commun 2023; 14:8127. [PMID: 38065960 PMCID: PMC10709352 DOI: 10.1038/s41467-023-43593-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/14/2023] [Indexed: 10/16/2024] Open
Abstract
The anti-symmetric and anisotropic symmetric exchange interactions between two magnetic dipole moments - responsible for intriguing magnetic textures (e.g., magnetic skyrmions) - have been discovered since last century, while their electric analogues were either hidden for a long time or still not known. It is only recently that the anti-symmetric exchange interactions between electric dipoles was proved to exist (with materials hosting such an interaction being still rare) and the existence of anisotropic symmetric exchange interaction between electric dipoles remains ambiguous. Here, by symmetry analysis and first-principles calculations, we identify hafnia as a candidate material hosting the non-collinear dipole alignments, the analysis of which reveals the anti-symmetric and anisotropic symmetric exchange interactions between electric dipoles in this material. Our findings can hopefully deepen the current knowledge of electromagnetism in condensed matter, and imply the possibility of discovering novel states of matter (e.g., electric skyrmions) in hafnia-related materials.
Collapse
Affiliation(s)
- Longju Yu
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China
| | - Hong Jian Zhao
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China.
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China.
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
- International Center of Future Science, Jilin University, Changchun, 130012, China.
| | - Peng Chen
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yanming Ma
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China.
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
- International Center of Future Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
40
|
Singh D, Fujishiro Y, Hayami S, Moody SH, Nomoto T, Baral PR, Ukleev V, Cubitt R, Steinke NJ, Gawryluk DJ, Pomjakushina E, Ōnuki Y, Arita R, Tokura Y, Kanazawa N, White JS. Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet. Nat Commun 2023; 14:8050. [PMID: 38052859 DOI: 10.1038/s41467-023-43814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Magnetic skyrmions, topological vortex-like spin textures, garner significant interest due to their unique properties and potential applications in nanotechnology. While they typically form a hexagonal crystal with distinct internal magnetisation textures known as Bloch- or Néel-type, recent theories suggest the possibility for direct transitions between skyrmion crystals of different lattice structures and internal textures. To date however, experimental evidence for these potentially useful phenomena have remained scarce. Here, we discover the polar tetragonal magnet EuNiGe3 to host two hybrid skyrmion phases, each with distinct internal textures characterised by anisotropic combinations of Bloch- and Néel-type windings. Variation of the magnetic field drives a direct transition between the two phases, with the modification of the hybrid texture concomitant with a hexagonal-to-square skyrmion crystal transformation. We explain these observations with a theory that includes the key ingredients of momentum-resolved Ruderman-Kittel-Kasuya-Yosida and Dzyaloshinskii-Moriya interactions that compete at the observed low symmetry magnetic skyrmion crystal wavevectors. Our findings underscore the potential of polar magnets with rich interaction schemes as promising for discovering new topological magnetic phases.
Collapse
Affiliation(s)
- Deepak Singh
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), CH-5232, Villigen, Switzerland.
| | - Yukako Fujishiro
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
| | - Satoru Hayami
- Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Samuel H Moody
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), CH-5232, Villigen, Switzerland
| | - Takuya Nomoto
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Priya R Baral
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), CH-5232, Villigen, Switzerland
| | - Victor Ukleev
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109, Berlin, Germany
| | - Robert Cubitt
- Institut-Laue-Langevin, 6 rue Jules Horowitz, Grenoble, 38000, France
| | | | - Dariusz J Gawryluk
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut (PSI), CH-5232, Villigen PSI, Switzerland
| | - Ekaterina Pomjakushina
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut (PSI), CH-5232, Villigen PSI, Switzerland
| | - Yoshichika Ōnuki
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
| | - Ryotaro Arita
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Bunkyo, Tokyo, 113-8656, Japan
| | - Naoya Kanazawa
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Jonathan S White
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), CH-5232, Villigen, Switzerland.
| |
Collapse
|
41
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
42
|
Chen J, Ji B, Lang P, Zhang Y, Lin J. Impact of the geometry of the excitation structure on optical skyrmion. OPTICS EXPRESS 2023; 31:37929-37942. [PMID: 38017912 DOI: 10.1364/oe.500291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 11/30/2023]
Abstract
Optical skyrmions have attracted great attention for the potential applications in novel information storage and communication. It is of great significance to get insight into the generation of optical skyrmions by surface waves. Here, we have paid greater emphasis on the influence of the geometry of the coupling structure on the formation of optical skyrmions. Optical skyrmions are constructed from the superposition of the interfering surface plasmons excited by polygon trenches on Ag film. The results show the field texture of optical skyrmions is mainly determined by the excitation structure, with distinct properties revealed with various closed and non-closed geometries. Moreover, the ratio between the electric field strengths of the optical skyrmions can be larger than 4 between the optimized and unoptimized coupling structures. The pattern of the optical skyrmion shows a strong dependence on the excitation structure, implying the significant role in skyrmion topology it plays.
Collapse
|
43
|
Yasin FS, Masell J, Karube K, Shindo D, Taguchi Y, Tokura Y, Yu X. Heat current-driven topological spin texture transformations and helical q-vector switching. Nat Commun 2023; 14:7094. [PMID: 37925467 PMCID: PMC10625536 DOI: 10.1038/s41467-023-42846-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The use of magnetic states in memory devices has a history dating back decades, and the experimental discovery of magnetic skyrmions and subsequent demonstrations of their control via magnetic fields, heat, and electric/thermal currents have ushered in a new era for spintronics research and development. Recent studies have experimentally discovered the antiskyrmion, the skyrmion's antiparticle, and while several host materials have been identified, control via thermal current remains elusive. In this work, we use thermal current to drive the transformation between skyrmions, antiskyrmions and non-topological bubbles, as well as the switching of helical states in the antiskyrmion-hosting ferromagnet (Fe0.63Ni0.3Pd0.07)3P at room temperature. We discover that a temperature gradient [Formula: see text] drives a transformation from antiskyrmions to non-topological bubbles to skyrmions while under a magnetic field and observe the opposite, unidirectional transformation from skyrmions to antiskyrmions at zero-field, suggesting that the antiskyrmion, more so than the skyrmion, is robustly metastable at zero field.
Collapse
Affiliation(s)
- Fehmi Sami Yasin
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
| | - Jan Masell
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), 76049, Karlsruhe, Germany
| | - Kosuke Karube
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Daisuke Shindo
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Yasujiro Taguchi
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan
- Tokyo College, University of Tokyo, Tokyo, 113-8656, Japan
| | - Xiuzhen Yu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
| |
Collapse
|
44
|
Tang J, Wu Y, Jiang J, Kong L, Wang S, Tian M, Du H. Skyrmion-Bubble Bundles in an X-Type Sr 2 Co 2 Fe 28 O 46 Hexaferrite above Room Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306117. [PMID: 37668003 DOI: 10.1002/adma.202306117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/20/2023] [Indexed: 09/06/2023]
Abstract
Magnetic skyrmions are spin swirls that possess topological nontriviality and are considered particle-like entities. They are distinguished by an integer topological charge Q. The presence of skyrmion bundles provides an opportunity to explore the range of values for Q, which is crucial for the advancement of topological spintronic devices with multi-Q properties. In this study, a new material candidate, Sr2 Co2 Fe28 O46 hexaferrite of the X-type, which hosts small dipolar skyrmions at room temperature and above is presented. By exploiting reversed magnetic fields from metastable skyrmion bubbles at zero fields, skyrmion-bubble bundles with different interior skyrmion/bubble numbers, topological charges, and morphologies at room temperature are incorporated. These experimental findings are consistently supported by micromagnetic simulations. These results highlight the versatility of topological spin textures in centrosymmetric uniaxial magnets, thereby paving the way for the development of room-temperature topological spintronic devices with multi-Q characteristics.
Collapse
Affiliation(s)
- Jin Tang
- School of Physics and Optoelectronic Engineering, Anhui University, 230601, Hefei, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yaodong Wu
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
| | - Jialiang Jiang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lingyao Kong
- School of Physics and Optoelectronic Engineering, Anhui University, 230601, Hefei, China
| | - Shouguo Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices School of Materials Science and Engineering, Anhui University, 230601, Hefei, China
| | - Mingliang Tian
- School of Physics and Optoelectronic Engineering, Anhui University, 230601, Hefei, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
45
|
Zheng F, Kiselev NS, Rybakov FN, Yang L, Shi W, Blügel S, Dunin-Borkowski RE. Hopfion rings in a cubic chiral magnet. Nature 2023; 623:718-723. [PMID: 37993571 PMCID: PMC10665190 DOI: 10.1038/s41586-023-06658-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/20/2023] [Indexed: 11/24/2023]
Abstract
Magnetic skyrmions and hopfions are topological solitons1-well-localized field configurations that have gained considerable attention over the past decade owing to their unique particle-like properties, which make them promising objects for spintronic applications. Skyrmions2,3 are two-dimensional solitons resembling vortex-like string structures that can penetrate an entire sample. Hopfions4-9 are three-dimensional solitons confined within a magnetic sample volume and can be considered as closed twisted skyrmion strings that take the shape of a ring in the simplest case. Despite extensive research on magnetic skyrmions, the direct observation of magnetic hopfions is challenging10 and has only been reported in a synthetic material11. Here we present direct observations of hopfions in crystals. In our experiment, we use transmission electron microscopy to observe hopfions forming coupled states with skyrmion strings in B20-type FeGe plates. We provide a protocol for nucleating such hopfion rings, which we verify using Lorentz imaging and electron holography. Our results are highly reproducible and in full agreement with micromagnetic simulations. We provide a unified skyrmion-hopfion homotopy classification and offer insight into the diversity of topological solitons in three-dimensional chiral magnets.
Collapse
Affiliation(s)
- Fengshan Zheng
- Spin-X Institute, Electron Microscopy Center, School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China.
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich, Germany.
- Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany.
| | - Nikolai S Kiselev
- Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany.
- Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich, Germany.
| | - Filipp N Rybakov
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
| | - Luyan Yang
- Institute of Microstructure and Properties of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Wen Shi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich, Germany
- Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany
| | - Stefan Blügel
- Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany
- Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich, Germany
- Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
46
|
Du W, Dou K, He Z, Dai Y, Huang B, Ma Y. Bloch-type magnetic skyrmions in two-dimensional lattices. MATERIALS HORIZONS 2023; 10:5071-5078. [PMID: 37668420 DOI: 10.1039/d3mh00868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Magnetic skyrmions in two-dimensional lattices are a prominent topic of condensed matter physics and materials science. Current research efforts in this field are exclusively constrained to Néel-type and antiskyrmions, while Bloch-type magnetic skyrmions are rarely explored. Here, we report the discovery of Bloch-type magnetic skyrmions in a two-dimensional lattice of MnInP2Te6, using first-principles calculations and Monte-Carlo simulations. Arising from the joint effect of broken inversion symmetry and strong spin-orbit coupling, monolayer MnInP2Te6 presents large Dzyaloshinskii-Moriya interaction. This, along with ferromagnetic exchange interaction and out-of-plane magnetic anisotropy, gives rise to skyrmion physics in monolayer MnInP2Te6, in the absence of a magnetic field. Remarkably, different from all previous works on two-dimensional lattices, the resultant magnetic skyrmions feature Bloch-type magnetism, which is protected by D3 symmetry. Furthermore, Bloch-type magnetic bimerons are also identified in monolayer MnTlP2Te6. The phase diagrams of these Bloch-type topological magnetisms under a magnetic field, temperature and strain are mapped out. Our results greatly enrich the research on magnetic skyrmions in two-dimensional lattices.
Collapse
Affiliation(s)
- Wenhui Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Kaiying Dou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Zhonglin He
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| |
Collapse
|
47
|
Matetskiy AV, Milotti V, Sheverdyaeva PM, Moras P, Carbone C, Mihalyuk AN. Interplay between magnetic order and electronic band structure in ultrathin GdGe 2 metalloxene films. NANOSCALE 2023; 15:16080-16088. [PMID: 37750836 DOI: 10.1039/d3nr03398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Dimensionality can strongly influence the magnetic structure of solid systems. Here, we predict theoretically and confirm experimentally that the antiferromagnetic (AFM) ground state of bulk gadolinium germanide metalloxene, which has a quasi-layered defective GdGe2 structure, is preserved in the ultrathin film limit. Ab initio calculations demonstrate that ultrathin GdGe2 films present in-plane intra-layer ferromagnetic coupling and AFM inter-layer coupling in the ground state. Angle-resolved photoemission spectroscopy finds the AFM-induced band splitting expected for the 2 and 3 GdGe2 trilayer (TL) films, which disappear above the Néel temperature. The comparative analysis of isostructural ultrathin DyGe2 and GdSi2 films confirms the magnetic origin of the observed band splitting. These findings are in contrast with the recent report of ferromagnetism in ultrathin metalloxene films, which we ascribe to the presence of uncompensated magnetic moments.
Collapse
Affiliation(s)
- Andrey V Matetskiy
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Valeria Milotti
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Polina M Sheverdyaeva
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Paolo Moras
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Carlo Carbone
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Alexey N Mihalyuk
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 690950 Vladivostok, Russia
| |
Collapse
|
48
|
Xie L, Gonzalez O, Li K, Michiardi M, Gorovikov S, Ryu SH, Fender SS, Zonno M, Jo NH, Zhdanovich S, Jozwiak C, Bostwick A, Husremović S, Erodici MP, Mollazadeh C, Damascelli A, Rotenberg E, Ping Y, Bediako DK. Comparative Electronic Structures of the Chiral Helimagnets Cr 1/3NbS 2 and Cr 1/3TaS 2. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7239-7251. [PMID: 37719035 PMCID: PMC10500995 DOI: 10.1021/acs.chemmater.3c01564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Indexed: 09/19/2023]
Abstract
Magnetic materials with noncollinear spin textures are promising for spintronic applications. To realize practical devices, control over the length and energy scales of such spin textures is imperative. The chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2 exhibit analogous magnetic-phase diagrams with different real-space periodicities and field dependence, positioning them as model systems for studying the relative strengths of the microscopic mechanisms giving rise to exotic spin textures. Although the electronic structure of the Nb analogue has been experimentally investigated, the Ta analogue has received far less attention. Here, we present a comprehensive suite of electronic structure studies on both Cr1/3NbS2 and Cr1/3TaS2 using angle-resolved photoemission spectroscopy and density functional theory. We show that bands in Cr1/3TaS2 are more dispersive than their counterparts in Cr1/3NbS2, resulting in markedly different Fermi wavevectors. The fact that their qualitative magnetic phase diagrams are nevertheless identical shows that hybridization between the intercalant and host lattice mediates the magnetic exchange interactions in both of these materials. We ultimately find that ferromagnetic coupling is stronger in Cr1/3TaS2, but larger spin-orbit coupling (and a stronger Dzyaloshinskii-Moriya interaction) from the heavier host lattice ultimately gives rise to shorter spin textures.
Collapse
Affiliation(s)
- Lilia
S. Xie
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Oscar Gonzalez
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kejun Li
- Department
of Physics, University of California, Santa Cruz, California 95064, United States
| | - Matteo Michiardi
- Quantum
Matter Institute, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Physics and Astronomy, University of
British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sergey Gorovikov
- Canadian
Light Source, Inc., 44
Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Sae Hee Ryu
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Shannon S. Fender
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Marta Zonno
- Canadian
Light Source, Inc., 44
Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Na Hyun Jo
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sergey Zhdanovich
- Quantum
Matter Institute, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Physics and Astronomy, University of
British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Jozwiak
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Aaron Bostwick
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Samra Husremović
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew P. Erodici
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Cameron Mollazadeh
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Andrea Damascelli
- Quantum
Matter Institute, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Physics and Astronomy, University of
British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Eli Rotenberg
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Yuan Ping
- Department
of Physics, University of California, Santa Cruz, California 95064, United States
- Department
of Materials Science and Engineering, University
of Wisconsin, Madison, Wisconsin 53706, United States
| | - D. Kwabena Bediako
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
49
|
Song Y, Xu T, Zhao G, Xu Y, Zhong Z, Zheng X, Shi N, Zhou C, Hao Y, Huang Q, Xing X, Zhang Y, Chen J. High-density, spontaneous magnetic biskyrmions induced by negative thermal expansion in ferrimagnets. SCIENCE ADVANCES 2023; 9:eadi1984. [PMID: 37672584 PMCID: PMC10482331 DOI: 10.1126/sciadv.adi1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Magnetic skyrmions are topologically protected quasiparticles that are promising for applications in spintronics. However, the low stability of most magnetic skyrmions leads to either a narrow temperature range in which they can exist, a low density of skyrmions, or the need for an external magnetic field, which greatly limits their wide application. In this study, high-density, spontaneous magnetic biskyrmions existing within a wide temperature range and without the need for a magnetic field were formed in ferrimagnets owing to the existence of a negative thermal expansion of the lattice. Moreover, a strong connection between the atomic-scale ferrimagnetic structure and nanoscale magnetic domains in Ho(Co,Fe)3 was revealed via in situ neutron powder diffraction and Lorentz transmission electron microscopy measurements. The critical role of the negative thermal expansion in generating biskyrmions in HoCo3 based on the magnetoelastic coupling effect is further demonstrated by comparing the behavior of HoCo2.8Fe0.2 with a positive thermal expansion.
Collapse
Affiliation(s)
- Yuzhu Song
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Tiankuo Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoping Zhao
- College of Physics and Electronic Engineering and Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, China
| | - Yuanji Xu
- Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xinqi Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Naike Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Chang Zhou
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yiqing Hao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Qingzhen Huang
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg MD, 20899-6102, USA
| | - Xianran Xing
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
50
|
Watanabe S. Magnetic dynamics and nonreciprocal excitation in uniform hedgehog order in icosahedral 1/1 approximant crystal. Sci Rep 2023; 13:14438. [PMID: 37660091 PMCID: PMC10475090 DOI: 10.1038/s41598-023-41292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice [Formula: see text]-energy [Formula: see text] space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P-[Formula: see text] line in the [Formula: see text] space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the [Formula: see text]-H line and the P-[Formula: see text]-N line in the [Formula: see text] space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast [Formula: see text]-[Formula: see text] regime in the QC is attributed to the QC lattice structure.
Collapse
Affiliation(s)
- Shinji Watanabe
- Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu, Fukuoka, 804-8550, Japan.
| |
Collapse
|