1
|
Lückert PL, Gilmer J, Virovets A, Lerner HW, Wagner M. Donor-free 9-aluminafluorenes: molecular structures and reactivity. Dalton Trans 2024. [PMID: 39688506 DOI: 10.1039/d4dt03148b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Aluminum-doped polycyclic aromatic hydrocarbons (PAHs) are underexplored despite the broad applications of boron-containing PAHs in areas such as catalysis and optoelectronics. We disclose the donor-free, sterically unprotected 9-methyl-9-aluminafluorene (Me-AlFlu; 2), synthesized by heating a 9,9-dimethyl-9-stannafluorene and AlMe3 in hexanes. The compound is a dimer, (2)2, with trans-positioned AlMe substituents in the solid state. In solution, (2)2 shows a dynamic cis/trans-interconversion rather than a monomer-dimer equilibrium (Tol-d8, RT). Lewis bases L cleave (2)2 into monomeric adducts 2·L (L = OEt2, thf, pyridine). Lewis acidic AlBr3 transforms (2)2 into a 2,2'-(Br2Al)2-1,1'-biphenyl (3), crystallographically characterized as dimeric (3)2. (3)2 is a synthetic equivalent for the elusive free Br-AlFlu: Treatment with donor molecules furnishes Br-AlFlu·L adducts (L = OEt2, pyridine); the three-coordinate, monomeric aluminafluorene Mes*-AlFlu was prepared from (3)2, Mes*Li, and a 2,2'-dilithio-1,1'-biphenyl in quantitative yield (Mes* = 2,4,6-(tBu)3C6H2).
Collapse
Affiliation(s)
- Paula L Lückert
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt, Main, Germany.
| | - Jannik Gilmer
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt, Main, Germany.
| | - Alexander Virovets
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt, Main, Germany.
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt, Main, Germany.
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt, Main, Germany.
| |
Collapse
|
2
|
Bohlen JL, Wieprecht N, Arrowsmith M, Häfner A, Neder M, Braunschweig H. One-step selective synthesis of doubly and triply fused chiral boroloborole derivatives. Chem Commun (Camb) 2024; 60:14782-14785. [PMID: 39576176 DOI: 10.1039/d4cc04433a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Chiral 3a,6a-dihydroborolo[3,2-b]boroles are obtained in one diastereoselective step from the reactions of ortho-(dihaloboryl)arenes with stannole derivatives via a complex rearrangement of 1-borolyl-2-(dihaloboryl)arene intermediates.
Collapse
Affiliation(s)
- Josina L Bohlen
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nele Wieprecht
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alena Häfner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Neder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Tan L, Chen J, Liu X, Matler A, Schopper N, Finze M, Lin Z, Ye Q. Antiaromatic 2-Azaboroles with π 4σ 2 Electronic Configuration. J Am Chem Soc 2024; 146:31681-31690. [PMID: 39415725 DOI: 10.1021/jacs.4c10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Similar to pyridine, which is a structural analog of benzene, 2-azaborole can be viewed as a structural analog of borole, in which the CH group at the 2-position is replaced by an N atom. Due to its unique π4σ2 electronic configuration, it should exhibit Lewis acidity, antiaromaticity, as well as Lewis basicity simultaneously. However, this uniqueness also makes its synthesis and isolation particularly challenging. One anticipated issue is its readiness for self-dimerization. This work proposes 2-azaborole and targets the synthesis and characterization of its derivatives for the first time. By reacting benzoborirene C6H4{BN(SiMe3)2} with bulky nitriles, crystalline benzo-fused 2-azaboroles have been successfully achieved and fully characterized. The importance of steric hindrance has been experimentally verified, showing that insufficient kinetic protection results in the dimerization of benzo-fused 2-azaboroles to form BN-allenophanes, a class of 10-membered macrocyclic compounds featuring two BN-allene units. The unique electronic structure of 2-azaborole as well as the mechanism of dimerization has been corroborated by theoretical calculations. In addition, its ability to act both as a Lewis acid and a Lewis base is demonstrated through its reaction with 1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene (MeIiPr) and AlCl3, respectively, which also implies the potential of the 2-azaborole motif as a σ-donor ligand for main group and organometallic chemistry.
Collapse
Affiliation(s)
- Leibo Tan
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jiaxin Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Xiaocui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndromes, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Alexander Matler
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nils Schopper
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Qing Ye
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Britt L, Zhao Y. Mechanistic study of double boron-silicon exchange reactions between dibenzosiloles and boron tribromide. Phys Chem Chem Phys 2024; 26:26526-26536. [PMID: 39397691 DOI: 10.1039/d4cp03118k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This paper describes a mechanistic study on double boron-silicon exchange reactions between dibenzosiloles and boron tribromide. This type of reaction presents a safe and environmentally benign approach to convert electron-rich siloles into corresponding electron-deficient boroles and hence shows intriguing potential for the synthesis of boron-doped π-conjugated molecular materials. However, the detailed mechanisms for such reactions have not yet been established in the current literature. In this work, we performed density functional theory (DFT) calculations in conjunction with NMR analysis to unravel the reaction pathways and energy profiles for relevant boron-silicon exchange reactions where two dibenzolesiloles and a phenanthrosilole were employed as reactants, respectively. Our results have shown that excess boron tribromide provides beneficial microsolvation effects on key transition states and reactive intermediates to lower the activation energy barrier for the overall reaction. In the meantime, the substitution pattern at the bay region of the dibenzosilole framework exerts significant impacts on the potential energy surface of the reaction; increased steric hindrance at the bay region decelerates the second boron-silicon exchange step, while extended π-conjugation at the bay region makes the first boron-silicon exchange more challenging. Overall, our computational and experimental results provide an in-depth understanding of the reactivity and scope of this type of reaction, which in turn serves as useful guidance for ongoing research in the field of borole-based organic optoelectronic materials.
Collapse
Affiliation(s)
- Liam Britt
- Department of Chemistry, Memorial University of Newfoundland, Core Science Facility, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada.
| | - Yuming Zhao
- Department of Chemistry, Memorial University of Newfoundland, Core Science Facility, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
5
|
Full F, Artigas A, Wiegand K, Volland D, Szkodzińska K, Coquerel Y, Nowak-Król A. Controllable 1,4-Palladium Aryl to Aryl Migration in Fused Systems─Application to the Synthesis of Azaborole Multihelicenes. J Am Chem Soc 2024; 146:29245-29254. [PMID: 39392613 DOI: 10.1021/jacs.4c12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herein, we report the first 1,4-Pd aryl to aryl migration/Miyaura borylation tandem reaction in fused systems. The Pd shift occurred in the bay region of the dibenzo[g,p]chrysene building blocks, giving rise to a thermodynamically controlled mixture of 1,8- and 1,9-borylated compounds that allowed the preparation of regioisomeric azaborole multihelicenes from the same starting material. The outcome of this synthesis can be controlled by the choice of reaction conditions, allowing the migration process to be turned off in the absence of an acetate additive and the target multiheterohelicenes to be prepared in a regioselective manner. The target compounds show bright green fluorescence in dichloromethane with emission quantum yields (Φ) of up to 0.29, |glum| values up to 2.7 × 10-3, and green or green-yellow emission in the solid state, reaching Φ of 0.22. Single crystal X-ray diffraction analyses gave insight into their molecular structures and the packing arrangement. Evaluation of aromaticity in these multihelicenes revealed a nonaromatic character of the 2H-1,2-azaborole constituent rings.
Collapse
Affiliation(s)
- Felix Full
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Albert Artigas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Facultat de Ciències, C/ Maria Aurèlia Capmany, 69, Girona, Catalunya 17003, Spain
| | - Kevin Wiegand
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Daniel Volland
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Klaudia Szkodzińska
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille 13397, France
| | - Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
6
|
Xiang L, Wang J, Matler A, Ye Q. Structure-constraint induced increase in Lewis acidity of tris( ortho-carboranyl)borane and selective complexation with Bestmann ylides. Chem Sci 2024:d4sc06144f. [PMID: 39397822 PMCID: PMC11465496 DOI: 10.1039/d4sc06144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
The Lewis acidity of tris(ortho-carboranyl)borane has been slightly increased by mimicking the structural evolution from triarylborane to 9-aryl-9-borafluorene. The o-carborane-based analogue (C2B10H10)2B(C2B10H11), obtained via salt elimination between LiC2B10H11 and (C2B10H10)2BBr, has been fully characterized. Gutmann-Beckett and computational fluoride/hydride ion affinity (FIA/HIA) studies have confirmed the increase in Lewis acidity, which is attributable to structural constraint imposed by the CC-coupling between two carboranyl groups. Selective complexation of (C2B10H10)2B(C2B10H11) with Bestmann ylides R3PCCO (R = Ph, Cy) has been achieved, enabling further conversion into the zwitterionic phospholium salt through NHC-catalyzed proton transfer.
Collapse
Affiliation(s)
- Libo Xiang
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Junyi Wang
- Department of Chemistry, Southern University of Science and Technology 518055 Shenzhen P. R. China
| | - Alexander Matler
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Qing Ye
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
7
|
Liu M, Li C, Liao G, Zhao F, Yao C, Wang N, Yin X. Narrowband Blue Circularly Polarized Luminescence Emitter Based on BN-Doped Benzo[6]helicene with Stimuli-Responsive Properties. Chemistry 2024; 30:e202402257. [PMID: 38955898 DOI: 10.1002/chem.202402257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Boron-doped helicenes, known for their unique electronic and photophysical properties, are of great interest for numerous applications. This research introduces two new azabora[6]helicenes, H[6]BN1 and H[6]BN2, synthesized through an efficient method. These molecules have boron and nitrogen atoms in opposing positions, enhancing their distinctive attributes. Both helicenes show excellent emission properties, with H[6]BN1 and H[6]BN2 exhibiting narrowband blue fluorescence and circularly polarized luminescence (CPL), achieving glum values of 4~5×10-4 which is beneficial for chiroptical applications. The addition of a donor group, 3, 6-di-tert-butyl-9H-carbazole, in H[6]BN2 improves luminescence, likely due to enhanced molecular orbital overlap and electron delocalization. H[6]BN1's needle-like single crystals exhibit mechanochromism, changing luminescent color from yellow to green under mechanical stress, which is promising for stimulus-responsive materials. In conclusion, this study presents a novel class of BN[6]helicenes with superior chiroptical properties. Their combination of electronic features and mechanochromism makes them ideal for advanced chiroptical materials, expanding the potential of helicene-based compounds and offering new directions for the synthesis of molecules with specific chiroptical characteristics.
Collapse
Affiliation(s)
- Meiyan Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Chenglong Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Guanming Liao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Fenggui Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Chunxia Yao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Nan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
8
|
Frey NC, Hollister KK, Müller P, Dickie DA, Webster CE, Gilliard RJ. Borafluorene-Mediated Sulfur Activation: Isolation of Boryl-Linked S 7 and S 8 Catenates and Related Chalcogenide Molecules. Inorg Chem 2024. [PMID: 39239900 DOI: 10.1021/acs.inorgchem.4c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Although the activation of elemental sulfur by main group compounds is well-documented in the literature, the products of such reactions are often heterocyclic in nature. However, the isolation and characterization of sulfur catenates (i.e., acyclic sulfur chains) is significantly less common. In this study, we report the activation of elemental sulfur by the 9-CAAC-9-borafluorene radical (1) and anion (2) (CAAC = (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene) to form boron-sulfur catenates (3-6). From the isolation of the octasulfide-bridged compound 3, a sulfur extrusion reaction using 1,3,4,5-tetramethylimidazol-2-ylidene (IMe4) was used to decrease the sulfide chain length from eight to seven (4). Bonding analysis of compounds 3-6 was performed using density functional theory, which elucidated the nature of the sulfur-sulfur bonding observed within these compounds. We also report the synthesis of a series of borafluorene-chalcogenide species (7-9), via diphenyl dichalcogenide activation, which portray characteristics described by an internal heavy atom effect. Compounds 7-9 each exhibit blue fluorescence, with the lowest energy emissive process (S2 → S0) at 436 nm (7 and 8) and 431 nm (9). The S1 → S0 emission is not observed experimentally due to a Laporte forbidden transition. Density functional theory was employed to investigate the frontier molecular orbitals and absorption and emission profiles of compounds 7-9.
Collapse
Affiliation(s)
- Nathan C Frey
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
9
|
Kawaguchi H, Fuse K, Maeda N, Kuwabara T. Arylboronic Acid Pinacol Esters as Stable Boron Sources for Dihydrodibenzoborepin Derivatives and a Dibenzoborole. Molecules 2024; 29:4024. [PMID: 39274871 PMCID: PMC11397486 DOI: 10.3390/molecules29174024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The general synthesis of boron-containing cyclic compounds (boracycles) necessitates toxic organotin precursors or highly reactive boron halides. Here, we report the synthesis of seven- and five-membered boracycles utilizing arylboronic acid pinacol esters (ArBpins) as stable boron sources. Grignard reagents generated from 2,2'-dibromodibenzyl or 2,2'-dibromobiphenyl reacted with ArBpins, where Ar = 9-anthryl (Anth), 2,4,6-trimethylphenyl (Mes), or 2,4,6-triisopropylphenyl (Tip), to give 10,11-dihydro-5H-dibenzo[b,f]borepins or dibenzoborole derivatives. This Bpin-based method was successfully applied to a one-shot double boracycle formation, providing a dihydrodibenzoborepin-anthracene-dihydrodibenzoborepin triad molecule in a good yield. The dihydrodibenzoborepin bearing the Anth group was directly converted to the unsaturated borepin by NBS/AIBN. All products were characterized by NMR, HRMS, and in some cases, single-crystal X-ray diffraction analysis. Additionally, the photophysical properties of the products are also reported.
Collapse
Affiliation(s)
- Himeko Kawaguchi
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kotomi Fuse
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Nanoka Maeda
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Takuya Kuwabara
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
10
|
Wieprecht N, Krummenacher I, Wüst L, Michel M, Fuchs S, Nees S, Härterich M, Braunschweig H. The forgotten borole: synthesis, properties and reactivity of a 1-boraindene. Chem Sci 2024; 15:12496-12501. [PMID: 39118599 PMCID: PMC11304793 DOI: 10.1039/d4sc03817g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
The chemistry of unsaturated boron heterocycles, including five-membered boroles, continues to attract substantial interest. Herein, we report the synthesis of 1,2,3-triphenyl-1-boraindene, a benzene-fused borole, and examine its Lewis acidic, electrophilic, and antiaromatic properties relative to non-fused and bis-benzannulated boroles (9-borafluorenes). Reactivity studies with organic azides reveal that the boraindene behaves similarly to other boroles, undergoing ring expansion to a BN-naphthalene through insertion of a nitrogen atom.
Collapse
Affiliation(s)
- Nele Wieprecht
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Leonie Wüst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maximilian Michel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Sonja Fuchs
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Samuel Nees
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marcel Härterich
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
11
|
Hollister KK, Molino A, Le VV, Jones N, Smith WJ, Müller P, Dickie DA, Wilson DJD, Gilliard RJ. Pentacyclic fused diborepinium ions with carbene- and carbone-mediated deep-blue to red emission. Chem Sci 2024:d4sc03835e. [PMID: 39156927 PMCID: PMC11325318 DOI: 10.1039/d4sc03835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
Designing molecules that can undergo late-stage modifications resulting in specific optical properties is useful for developing structure-function trends in materials, which ultimately advance optoelectronic applications. Herein, we report a series of fused diborepinium ions stabilized by carbene and carbone ligands (diamino-N-heterocyclic carbenes, cyclic(alkyl)(amino) carbenes, carbodicarbenes, and carbodiphosphoranes), including a detailed bonding analysis. These are the first structurally confirmed examples of diborepin dications and we detail how distortions in the core of the pentacyclic fused system impact aromaticity, stability, and their light-emitting properties. Using the same fused diborepin scaffold, coordinating ligands were used to dramatically shift the emission profile, which exhibit colors ranging from blue to red (358-643 nm). Notably, these diborepinium ions access expanded regions of the visible spectrum compared to known examples of borepins, with quantum yields up to 60%. Carbones were determined to be superior stabilizing ligands, resulting in improved stability in the solution and solid states. Density functional theory was used to provide insight into the bonding as well as the specific transitions that result in the observed photophysical properties.
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
| | - Andrew Molino
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne 3086 Victoria Australia
| | - VuongVy V Le
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - Nula Jones
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - Wyatt J Smith
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - David J D Wilson
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne 3086 Victoria Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
| |
Collapse
|
12
|
Zacharias H, Begum A, Han J, Bartholome TA, Marder TB, Martin CD. Synthesis of phenanthrylboroles and formal nitrene insertion to access azaborapyrenes. Chem Commun (Camb) 2024. [PMID: 39072482 DOI: 10.1039/d4cc02863e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Extended conjugation has been introduced into boroles but only on the 2,3- or 4,5-positions of the central BC4 core. In this work we synthesize phenanthrylboroles that also have conjugation on the 3,4-positions and demonstrate their insertion reactivity with azides to furnish B,N-analogues of pyrene.
Collapse
Affiliation(s)
- Harie Zacharias
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| | - Ayesha Begum
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| | - Jianhua Han
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tyler A Bartholome
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| | - Todd B Marder
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| |
Collapse
|
13
|
Pattathil V, Pranckevicius C. Aromaticity transfer in an annulated 1,4,2-diazaborole: facile access to Cs symmetric 1,4,2,5-diazadiborinines. Chem Commun (Camb) 2024; 60:7705-7708. [PMID: 38975792 DOI: 10.1039/d4cc02414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A tricyclic annulated 1,4,2-diazaborole is readily accessed via reaction of a bidentate pyridyl-carbene ligand with MesBBr2 followed by reduction. Dearomatization of the flanking rings is shown to increase reactivity of this heterocycle in the form of a B-centred alkylation with MeI. Its reaction with hydrido-, fluoro-, and chloro-boranes reveal an unprecedented ring expansion reaction to form a diverse family of B2C2N2 heterocycles, reduction of which allows facile access to the first examples of Cs symmetric 1,4,2,5-diazadiborinines. DFT calculations have shed light on the electronic structures of the reduced species and provide insight into mechanistic aspects of the observed ring-expansion.
Collapse
Affiliation(s)
- Vignesh Pattathil
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| | - Conor Pranckevicius
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| |
Collapse
|
14
|
Zhang C, Cummins CC, Gilliard RJ. Synthesis and reactivity of an N-heterocyclic carbene-stabilized diazoborane. Science 2024; 385:327-331. [PMID: 39024440 DOI: 10.1126/science.adp5749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Diazo compounds and organic azides are widely used as reagents for accessing valuable molecules in multiple areas of fundamental and applied chemistry. Their capacity to undergo versatile chemical transformations arises from the reactive nature of an incipient dinitrogen molecule at the terminal position. In this work, we report the synthesis and characterization of an N-heterocyclic carbene (NHC)-stabilized diazoborane-a boron-centered analog of organic azides and diazoalkanes. The diazoborane displays a strong tendency to release dinitrogen, thus serving as a borylene source, in analogy to organic azides and diazoalkanes serving as nitrene and carbene sources, respectively. Also reminiscent of diazoalkane and organic azide reactivity, the diazoborane serves as a 1,3-dipole that undergoes uncatalyzed [3+2] cycloaddition with an unactivated terminal alkyne, affording a five-membered heterocycle after a two-step rearrangement.
Collapse
Affiliation(s)
- Chonghe Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Xiang L, Matler A, Tan L, Ye Q. Reactivity study of Lewis superacidic carborane-based analogue of 9-bromo-9-borafluorene towards Lewis bases. Dalton Trans 2024; 53:11655-11658. [PMID: 38946218 DOI: 10.1039/d4dt01615g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this contribution, we present the reactions of the o-carborane-based analogue of 9-bromo-9-borafluorene, a Lewis superacid, with diverse Lewis bases. A range of acid-base adducts, along with an intramolecular C-H activation product, were generated. All new compounds have been fully characterized.
Collapse
Affiliation(s)
- Libo Xiang
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry& Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Matler
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry& Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Leibo Tan
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry& Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Qing Ye
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry& Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
16
|
Shi Y, Li C, Di J, Xue Y, Jia Y, Duan J, Hu X, Tian Y, Li Y, Sun C, Zhang N, Xiong Y, Jin T, Chen P. Polycationic Open-Shell Cyclophanes: Synthesis of Electron-Rich Chiral Macrocycles, and Redox-Dependent Electronic States. Angew Chem Int Ed Engl 2024; 63:e202402800. [PMID: 38411404 DOI: 10.1002/anie.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yuting Xue
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyu Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yu Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yanqiu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Cuiping Sun
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Yan Xiong
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Tianyun Jin
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography University of California, San Diego La Jolla, 92093, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
17
|
Tra BYE, Molino A, Hollister KK, Sarkar SK, Dickie DA, Wilson DJD, Gilliard RJ. Mono- and Bis-Phosphine Promoted Incorporation of Boron, Nitrogen, and Phosphorus into Heterocycles via Staudinger Reactions of Borafluorene Azides. Inorg Chem 2024; 63:11604-11615. [PMID: 38864676 DOI: 10.1021/acs.inorgchem.4c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
We report the synthesis and characterization of a series of BNP-incorporated borafluorenate heterocycles formed via thermolysis reactions of pyridylphosphine and bis(phosphine)-coordinated borafluorene azides. The use of diphenyl-2-pyridylphosphine (PyPh2P), trans-1,2-bis(diphenylphosphino)ethylene (Ph2P(H)C═C(H)PPh2), and bis(diphenylphosphino)methane (Ph2PC(H2)PPh2) as stabilizing ligands resulted in Staudinger reactions to form complex heterocycles with four- (BN2P, BNPC, P2N2) and five-membered (BNP2C and BN2PC) rings, which were successfully isolated and fully characterized by multinuclear NMR and X-ray crystallography. However, when bis(diphenylphosphino)benzene (Ph2P-Ph-PPh2) was used as the ligand in a reaction with 9-bromo-9-borafluorene (BF-Br), due to the close proximity of the donor P atoms, the diphosphine-stabilized borafluoronium ion with an unusual borafluorene dibromide anion was formed. Reaction of the borafluoronium ion with trimethylsilyl azide left the cation intact, and the dibromide anion was substituted by a diazide. Density functional theory calculations were used to provide mechanistic insight into the formation of these new boracyclic compounds. This work highlights a new method in which donor phosphine ligands may be used to promote dimerization, cyclization, and ring contraction reactions to produce boracycles via Staudinger reactions.
Collapse
Affiliation(s)
- Bi Youan E Tra
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Andrew Molino
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Samir Kumar Sarkar
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
18
|
Shere HTW, Liu HY, Neale SE, Hill MS, Mahon MF, McMullin CL. The borylamino-diborata-allyl anion. Chem Sci 2024; 15:7999-8007. [PMID: 38817583 PMCID: PMC11134337 DOI: 10.1039/d4sc01953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024] Open
Abstract
Reactions of β-diketiminato alkaline earth alkyldiboranate derivatives [(BDI)Ae{pinBB(R)pin}] (BDI = HC{(Me)CNDipp}2; Dipp = 2,6-i-Pr2C6H3; Ae = Mg, R = n-Bu or Ae = Ca, R = n-hexyl) with t-BuNC provide access to the respective group 2 derivatives of unprecedented diborata-allyl, {(pinB)2CNBpin(t-Bu)}-, anions. Although the necessary mode of B-C bond cleavage implicated in these transformations could not be elucidated, further studies of the reactivity of magnesium triboranates toward isonitriles delivered a more general and rational synthetic access to analogous anionic moieties. Extending this latter reactivity to a less symmetric triboranate variant also provided an isomeric Mg-C-bonded dibora-alkyl species and sufficient experimental insight to prompt theoretical evaluation of this reactivity. DFT calculations, thus, support a reaction pathway predicated on initial RNC attack at a peripheral boron centre and the intermediacy of such dibora-alkyl intermediates.
Collapse
Affiliation(s)
- Henry T W Shere
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Han-Ying Liu
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Samuel E Neale
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Michael S Hill
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Claire L McMullin
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
19
|
Li Y, Tamizmani M, Akram MO, Martin CD. Carborane-arene fused boracyclic analogues of polycyclic aromatic hydrocarbons accessed by intramolecular borylation. Chem Sci 2024; 15:7568-7575. [PMID: 38784749 PMCID: PMC11110167 DOI: 10.1039/d4sc00990h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Arenes are 2D aromatics while dicarbadodecaborane clusters are branded as 3D aromatic molecules. In this work we prepare molecules that feature fused 2D/3D aromatic systems that represent boron-doped analogues of polycyclic aromatic hydrocarbons. The electron withdrawing nature of the ortho-carborane substituent enables swift arene borylation on boron bromide or hydride precursors to furnish five- and six-membered boracycles in conjugation with the arene. The mechanism was modeled by DFT computations implying a concerted transition state and analyzing the photophysical properties revealed high quantum yields in the six-membered systems.
Collapse
Affiliation(s)
- Yijie Li
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| | - Masilamani Tamizmani
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| | - Manjur O Akram
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| | - Caleb D Martin
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| |
Collapse
|
20
|
Hollister KK, Wentz KE, Gilliard RJ. Redox- and Charge-State Dependent Trends in 5, 6, and 7-Membered Boron Heterocycles: A Neutral Ligand Coordination Chemistry Approach to Boracyclic Cations, Anions, and Radicals. Acc Chem Res 2024; 57:1510-1522. [PMID: 38708938 DOI: 10.1021/acs.accounts.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
ConspectusBoron heterocycles represent an important subset of heteroatom-incorporated rings, attracting attention from organic, inorganic, and materials chemists. The empty pz orbital at the boron center makes them stand out as quintessential Lewis acidic molecules, also serving as a means to modulate electronic structure and photophysical properties in a facile manner. As boracycles are ripe for extensive functionalization, they are used in catalysis, chemical biology, materials science, and continue to be explored as chemical synthons for conjugated materials and reagents. Neutral boron(III)-incorporated polycyclic molecules are some of the most studied types of boracycles, and understanding their redox transformations is important for applications relying on electron transfer and charge transport. While relevant redox species can often be electrochemically observed, it remains challenging to isolate and characterize boracycles where the boron center and/or polycyclic skeleton have been chemically reduced.We describe our recent work isolating 5-, 6-, and 7-membered boracyclic radicals, anions, and cations, focusing on stabilization strategies, ligand-mediated bonding situations, and reactivity. We present a versatile neutral ligand coordination chemistry approach that permits the transformation of boracycles from potent electrophiles to powerful nucleophilic heterocycles that facilitate diverse electron transfer and bond activation chemistry. Although there are a wide range of suitable stabilizing ligands, we have employed both diamino-N-heterocyclic carbenes (NHCs) and cyclic(alkyl)(amino) carbenes (CAACs), which led to boracycles with tunable electronic structures and aromaticity trends. We highlight successful isolation of borafluorene radicals and demonstrate their reversible redox behavior, undergoing oxidation to the cation or reduction to the anion. The borafluorene anion is a chemical synthon that has been used to prepare boryl main-group and transition-metal bonds, luminescent oxabora-spirocycles, borafluorenate-crown ethers, and CO-releasing molecules via carbon dioxide activation. We expanded to 6-membered boracycles and characterized neutral bis(NHC-supported 9-boraphenanthrene)s and the corresponding bis(CAAC-stabilized 9-boraphenanthrene) biradical. We detail the interconvertible multiredox states of boraphenalene, where the boraphenalenyl radical, anion, and cation mimic the charge-states of the all-hydrocarbon analogue. Reactivity studies of the boraphenalenyl anion displayed unusual nucleophilic reactivity at multiple sites on the periphery of the boraphenalenyl tricyclic scaffold. Reduced borepins, 7-membered boron containing heterocycles, have also been isolated. We used a stepwise one-pot synthesis combining the halo-borepin precursor, CAAC, and KC8 to afford the monomeric borepin radicals and anions. The π-system was extended to contain two borepin rings fused in a pentacyclic scaffold, which permitted isolation of diborepin biradicals and a diborepin containing a dibora-quinone core.Our goal is to provide a guide explaining the current structure-function trends and isolation strategies for redox-active boron-incorporated polycyclic molecules to initiate the rational design and use of these types of compounds across a vast chemical space.
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Kelsie E Wentz
- Department of Chemistry, Johns Hopkins University, Remson Hall, 3400 N Charles Street, Baltimore, Maryland 21218-2625, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
21
|
Zhang K, Hao M, Jin T, Shi Y, Tian G, Li C, Ma H, Zhang N, Li Q, Chen P. Synthesis of π-Conjugated Chiral Aza/Boracyclophanes with a meta and para Substitution. Chemistry 2024; 30:e202302950. [PMID: 37950682 DOI: 10.1002/chem.202302950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
We herein describe the synthesis of a new class of axially chiral aza/boracyclophanes (BDN1, BXN1, BDB1 and BXB1) using binaphthyls as chiral building blocks and the main-group (B/N) chemistry with tunable electronic effects. All macrocycles substituted with triarylamine donors or triarylborane acceptors are strongly luminescent. These macrocycles showed two distinct meta and para π-conjugation pathways, leading to the formation of quasi figure-of-eight and square-shaped conformations. Interestingly, comparison of such structural models revealed that the former type of macrocycles BXN1 and BXB1 gave higher racemization barriers relative to the other ones. The results reported here may provide a new approach to engineer the optical stability of π-conjugated chiral macrocycles by controlling π-substitution patterns. The ring constraints induced by macrocyclization were also demonstrated to contribute to the configurational persistence as compared with the open-chain analogues p-BTT and m-BTT.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Mengyao Hao
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
- Program in General Education, Capital Normal University, Beijing, 102488, China
| | - Tianyun Jin
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego La Jolla, 92093, USA
| | - Yafei Shi
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Guoqing Tian
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Chenglong Li
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Hongwei Ma
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing, 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing, 102488, China
| | - Quansong Li
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Pangkuan Chen
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| |
Collapse
|
22
|
Lamprecht A, Arrowsmith M, Dietz M, Fuchs S, Rempel A, Härterich M, Braunschweig H. Synthesis, reduction and C-H activation chemistry of azaborinines with redox-active organoboryl substituents. Dalton Trans 2024; 53:1004-1013. [PMID: 38088750 DOI: 10.1039/d3dt03826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The 2,3,4,5,6-pentaphenyl-1,2-azaborinin-1-yl (PPAB) potassium complex 1 undergoes facile salt metathesis with 9,10-dibromo-9,10-dihydroboraanthracene (DBABr2), 5-bromodibenzo[b,d]borole (DBBBr), 1-chlorotetraphenylborole (TPBCl) and dibromo(phenyl)borane (BBr2Ph) to yield the corresponding N-borylated azaborinines N-DBABr-PPAB (2, which hydrolyses and dimerises to the oxo-bridged N,N'-O(DBA)2-(PPAB)2, 3), N,N'-DBA-(PPAB)2 (4), N-DBB-PPAB (5), N-PPB-PPAB (7) and N-BBrPh-PPBA (9). Stepwise reduction of 4 yields the corresponding stable radical anion 4˙- and dianion 42-. One-electron reduction of 5 with KC8 yields the purple radical anion 5˙-, which forms a highly insoluble coordination polymer. 5˙- undergoes very slow radical intramolecular ortho-C-H activation at the C4-phenyl substituent of the PPAB moiety, yielding a BN-analogue of the 5,5'-spiro-bi[dibenzoborole] anion, [6]K. Compound 7 cannot be isolated and undergoes spontaneous and diastereoselective 2,5-anti-addition of the ortho-C-H bond of the PPAB C4-phenyl substituent to yield a novel BNB-analogue of the triply fused dihydrocyclopenta[l]phenanthrene cation, compound 8. Finally the one-electron reduction of 9 results in the ortho-C-H activation of the PPAB C4-phenyl substituent at an in situ-generated dicoordinate boryl anion (10), resulting in the formation of a BNB-analogue of 9H-fluorene, the borate 11-. DFT calculations provide a rationale for the diverse C-H activations observed in these reactions.
Collapse
Affiliation(s)
- Anna Lamprecht
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sonja Fuchs
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anna Rempel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcel Härterich
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
23
|
Timoshkin AY. The Field of Main Group Lewis Acids and Lewis Superacids: Important Basics and Recent Developments. Chemistry 2024; 30:e202302457. [PMID: 37752859 DOI: 10.1002/chem.202302457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
New developments in the field of Lewis acidity are highlighted, with the focus of novel Lewis acids and Lewis superacids of group 2, 13, 14, and 15 elements. Several important basics, illustrated by modern examples (classification of Donor-Acceptor (DA) complexes, amphoteric nature of any compound in terms of DA interactions, reorganization energies of main group Lewis acids and the role of the energies of frontier orbitals) are presented and discussed. It is emphasized that the Lewis acidity phenomena are general and play vital role in different areas of chemistry: from weak "atomophilic" interactions to the complexes of Lewis superacids.
Collapse
Affiliation(s)
- Alexey Y Timoshkin
- Institute of Chemistry, St. Petersburg State University, 199034, Universitetskaya emb. 7/9, St. Petersburg, Russia
| |
Collapse
|
24
|
Bischof T, Wieprecht N, Fuchs S, Endres L, Krummenacher I, Michel M, Mihm C, Braunschweig H, Finze M. Unlocking Heteroaromatic Ring Systems through Chalcogen Insertion into Boroles. Inorg Chem 2023; 62:21329-21335. [PMID: 38048693 DOI: 10.1021/acs.inorgchem.3c03403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
In this work, we report the reactivity of various annulated borole derivatives toward chalcogen (O, S, and Se) insertion. Among a series of 9-borafluorenes with different boron substituents (Ph, Br, or o-carboranyl) and a mixed thiophene-benzene-fused derivative, only the 9-o-carboranyl-substituted 9-borafluorene yielded the complete set of chalcogen-containing heteroarenes, including the first 1,2-selenaborinine derivative. To evaluate the aromaticity of this heterocyclic analogue of phenanthrene, nucleus-independent chemical shift (NICS) values were computed and compared to those of its lighter group 16 congeners.
Collapse
Affiliation(s)
- Tobias Bischof
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nele Wieprecht
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sonja Fuchs
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lukas Endres
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Michel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Cornelius Mihm
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
25
|
Liu TT, Cui YS. One-Pot Access to Boron-Doped Fused Heterocycles via Domino Cyclization of Bis-Diazidoboranes with Isonitrile. Chemistry 2023; 29:e202302683. [PMID: 37753737 DOI: 10.1002/chem.202302683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Boron-doped fused heterocycles have shown great potential in the field of functional materials. This study reports on the synthesis of a new class of bis-diazidoboranes and the discovery of their cycloaddition reaction with isonitriles. Triply fused boron-doped heterocyclic compounds were constructed in a one-pot process through a domino cycloaddition, providing an effective route for constructing complex boron-doped heterocyclic systems.
Collapse
Affiliation(s)
- Tong-Tong Liu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yun-Shu Cui
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
26
|
Adamek J, Marek-Urban PH, Woźniak K, Durka K, Luliński S. Highly electron-deficient 3,6-diaza-9-borafluorene scaffolds for the construction of luminescent chelate complexes. Chem Sci 2023; 14:12133-12142. [PMID: 37969585 PMCID: PMC10631248 DOI: 10.1039/d3sc03876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
The synthesis and characterization of two fluorinated 3,6-diaza-9-hydroxy-9-borafluorene oxonium acids featuring improved hydrolytic stability and the strong electron-deficient character of the diazaborafluorene core is reported. These boracycles served as precursors of fluorescent spiro-type complexes with (O,N)-chelating ligands which revealed specific properties such as delayed emission, white light emission in the solid state and photocatalytic performance in singlet oxygen-mediated oxidation reactions.
Collapse
Affiliation(s)
- Jan Adamek
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Paulina H Marek-Urban
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- Department of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Krzysztof Woźniak
- Department of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
27
|
Dietz M, Arrowsmith M, Endres L, Paprocki V, Engels B, Braunschweig H. Synthesis and Reactivity of Highly Electron-Rich Zerovalent Group 10 Diborabenzene Pogo-Stick Complexes. J Am Chem Soc 2023; 145:22222-22231. [PMID: 37782897 DOI: 10.1021/jacs.3c08323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A cyclic alkyl(amino)carbene (CAAC)-stabilized 1,4-diborabenzene (DBB, 1) reacts with the group 10 precursor [Ni(CO)4] to yield the DBB pogo-stick complex [(η6-DBB)Ni(CO)] (2) as a dark-green crystalline solid. The IR-spectroscopic and X-ray crystallographic data of 2 highlight the strong π-donor properties of the DBB ligand. The reaction of 1 with [M(nbe)2] (M = Pd, Pt; nbe = norbornene) yields the unique zerovalent heavier group 10 arene pogo-stick complexes [(η6-DBB)M(nbe)] (3-M), isolated as dark-purple and black crystalline solids, respectively. 3-Pd and 3-Pt show strong near-IR (NIR) absorptions at 835 and 904 nm, respectively. Time-dependent density functional theory (TD-DFT) calculations show that these result from the S0→S1 excitation, which corresponds to a transfer of electron density from a metal d orbital aligned with the z direction (dxz or dyz) to a d orbital located in the xy plane (dxy or dx2-y2), with the redshift for 3-Pt resulting from the higher spin-orbit coupling (SOC). In complex 2, electron donation from the nickel center into the carbonyl 2π* orbital destabilizes the DBB···Ni interaction, resulting in an absorption at a higher energy. Complexes 2 and 3-M react with [Fe(CO)5] to yield the doubly CO-bridged M(0)→Fe(0) (M = Ni, Pd, Pt) metal-only Lewis pairs (MOLPs) 4-M as black (M = Ni, Pt) and dark-turquoise (M = Pd) crystalline solids. Furthermore, 3-Pt undergoes oxidative Sn-H addition with Ph3SnH to yield the corresponding Pt(II) stannyl hydride, [(η6-DBB)PtH(SnPh3)] (5).
Collapse
Affiliation(s)
- Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Lukas Endres
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Valerie Paprocki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
| |
Collapse
|
28
|
Tra BYE, Molino A, Hollister KK, Sarkar SK, Dickie DA, Wilson DJD, Gilliard RJ. Photochemically and Thermally Generated BN-Doped Borafluorenate Heterocycles via Intramolecular Staudinger-Type Reactions. Inorg Chem 2023; 62:15809-15818. [PMID: 37715684 DOI: 10.1021/acs.inorgchem.3c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
A series of BN-incorporated borafluorenate heterocycles, bis(borafluorene-phosphinimine)s (11-15), have been formed via intramolecular Staudinger-type reactions. The reactions were promoted by light or heat using monodentate phosphine-stabilized 9-azido-9-borafluorenes (R3P-BF-N3; 6-10) and involve the release of dinitrogen (N2), migration of phosphine from boron to nitrogen, and oxidation of the phosphorus center (PIII to PV). Density functional theory (DFT) calculations provide mechanistic insight into the formation of these compounds. Compounds 11-15 are blue emissive in the solution and solid states with absolute quantum yields (ΦF) ranging from 12 to 68%.
Collapse
Affiliation(s)
- Bi Youan E Tra
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Andrew Molino
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria, Australia
| | - Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Samir Kumar Sarkar
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
29
|
Liu X, Heinz M, Wang J, Tan L, Holthausen MC, Ye Q. A Journey from Benzoborirene to Benzoborole-Supported 1,2-Diimine and Antiaromatic Borolediide. Angew Chem Int Ed Engl 2023:e202312608. [PMID: 37758684 DOI: 10.1002/anie.202312608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
The reaction of benzoborirene with one equivalent of isocyanides leads to benzene-fused boretes bearing one imine function, while the reaction with two equivalents of isocyanide affords 2,3-dihydro-2,3-diiminoboroles with perfect regioselectivity. The isocyanide double insertion products represent a novel type of 1,2-diimine with a benzoborole backbone. The reduction chemistry of the benzoborole-supported 1,2-diimine was investigated. Single- and two-electron reduction allow for the isolation and full characterization of a radical anion and a dianion, respectively. In stark contrast to the ordinary boroles, which should turn aromatic by accepting two electrons, the antiaromatic character of the benzoborole backbone is highlighted upon reduction, thus presenting a rare example of antiaromatic borole dianion. Detailed quantum chemical calculations provide a rationale for the observed regioselectivity and the electronic structure of the reduced borole diimine species.
Collapse
Affiliation(s)
- Xiaocui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndromes, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510000, Guangzhou, P. R. China
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, P. R. China
| | - Myron Heinz
- Institute of Inorganic and Analytical Chemistry, Goethe-Universität, 60438, Frankfurt am Main, Germany
| | - Junyi Wang
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, P. R. China
| | - Leibo Tan
- Institute für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074, Würzburg, Germany
| | - Max C Holthausen
- Institute of Inorganic and Analytical Chemistry, Goethe-Universität, 60438, Frankfurt am Main, Germany
| | - Qing Ye
- Institute für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
30
|
Li P, Jia Y, Chen P. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chemistry 2023; 29:e202300300. [PMID: 37439485 DOI: 10.1002/chem.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Supramolecular chemistry has received much attention for decades. Macrocyclic architectures as representative receptors play a vital role in supramolecular chemistry and are applied in many fields such as supramolecular assembly and host-guest recognition. However, the classical macrocycles generally lack functional groups in the scaffolds, which limit their further applications, especially in optoelectronic materials. Therefore, developing a new design principle is not only essential to better understand macrocyclic chemistry and the supramolecular behaviors, but also further expand their applications in many research fields. In recent years, the doping compounds with main-group heteroatoms (B, N, S, O, P) into the carbon-based π-conjugated macrocycles offered a new strategy to build macrocyclic architectures with unique optoelectronic properties. In particular, the energy gaps and redox behavior can be effectively tuned by incorporating heteroatoms into the macrocyclic scaffolds. In this Minireview, we briefly summarize the design and synthesis of new macrocycles, and further discuss the related applications in optoelectronic materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan Province, P. R. China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
31
|
Bohlen JL, Endres L, Drescher R, Radacki K, Dietz M, Krummenacher I, Braunschweig H. Boroles from alumoles: accessing boroles with alkyl-substituted backbones via transtrielation. Chem Sci 2023; 14:9010-9015. [PMID: 37655034 PMCID: PMC10466280 DOI: 10.1039/d3sc02668j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
The alumole Cp3tAlC4Et4 (Cp3t = 1,2,4-tris(tert-butyl)cyclopentadienyl) is reported to be capable of transferring its butadiene moiety to aryl(dihalo)boranes to generate boroles through aluminum-boron exchange. The products feature a rare alkyl-substituted backbone, which, as shown in other examples, often leads to dimerization due to insufficient steric protection of the antiaromatic borole ring. Sterically crowded aryl groups bound to the boron atom are shown to prevent dimerization, allowing access to the first monomeric derivatives of this type. Results from UV-vis spectroscopy, electrochemistry, and DFT calculations reveal that the alkyl substituents cause remarkable modifications in the optical and electronic properties of the boroles compared to their perarylated counterparts.
Collapse
Affiliation(s)
- Josina L Bohlen
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Lukas Endres
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Regina Drescher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Krzysztof Radacki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
32
|
Imagawa T, Okazawa K, Yoshizawa K, Yoshida H, Shang R, Yamamoto Y, Nakamoto M. Complexation-Triggered Fluctuation of π-Conjugation on an Antiaromatic Dicyanoanthracene Dianion. Chemistry 2023:e202302550. [PMID: 37643995 DOI: 10.1002/chem.202302550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The formation of Lewis pairs is an important chemical concept. Recently, the complexation of Lewis acidic tris(pentafluorophenyl)borane with Lewis basic moieties and subsequent reduction has emerged as a fascinating strategy for designing novel reactions and structures. The impact of the complexation and subsequent reduction of antiaromatic systems bearing Lewis base moieties has been investigated. We found how Lewis adduct formation stabilizes an antiaromatic system consisting of 9,10-dicyanoanthracene and tris(pentafluorophenyl)borane by using synthesis, X-ray crystallography, spectroscopic analysis, and quantum chemical calculations.
Collapse
Affiliation(s)
- Taiki Imagawa
- Department of Chemistry, Graduate School of Advanced Engineering and Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Kazuki Okazawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroto Yoshida
- Department of Chemistry, Graduate School of Advanced Engineering and Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Engineering and Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Advanced Engineering and Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Masaaki Nakamoto
- Department of Chemistry, Graduate School of Advanced Engineering and Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| |
Collapse
|
33
|
Akram MO, Martin CD, Dutton JL. The Effect of Carborane Substituents on the Lewis Acidity of Boranes. Inorg Chem 2023; 62:13495-13504. [PMID: 37560972 DOI: 10.1021/acs.inorgchem.3c01872] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The Lewis acidity of primary, secondary, and tertiary boranes with phenyl, pentafluorophenyl, and all three isomers of the C-substituted icosahedral carboranes (ortho, meta, and para) was investigated by computing their fluoride, hydride, and ammonia affinities as well as their global electrophilicity indices and LUMO energies. From these calculations, it was determined that the substituent effects on the Lewis acidity of these boranes follow the trend of ortho-carborane > meta-carborane > para-carborane > C6F5 > C6H5.
Collapse
Affiliation(s)
- Manjur O Akram
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, Texas 76798, United States
| | - Caleb D Martin
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, Texas 76798, United States
| | - Jason L Dutton
- La Trobe University, Department of Chemistry, La Trobe Institute for Molecular Science, Melbourne, Victoria 3086,Australia
| |
Collapse
|
34
|
Adachi Y, Hasegawa T, Ohshita J. Highly luminescent antiaromatic diborinines with fused thiophene rings. Dalton Trans 2023. [PMID: 37357987 DOI: 10.1039/d3dt01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Tricoordinate boron-incorporated π-conjugated systems are widely investigated as optoelectronic materials because of their unique p-π* orbital interactions and high Lewis acidity. Among them, thiophene-fused diborinines are characterized by moderate antiaromaticity and extended conjugation. In this work, we have developed two new dithienodiborinines with C2h and C2v symmetries, which exhibited completely different optical properties. The thiophene-fused diborinines synthesized in this study showed excellent fluorescence properties both in solution and in the solid state, with quantum yields of up to 95%. The high antiaromaticity enhanced the Lewis acidity of the boron centers, as proven by the large association constants with fluoride ion estimated from titration experiments. The high Lewis acidity and the superior luminescence property have enabled their application as fluorescent sensor materials for the detection of ammonia vapor.
Collapse
Affiliation(s)
- Yohei Adachi
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Takumi Hasegawa
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Joji Ohshita
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
- Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan.
| |
Collapse
|
35
|
Zhao F, Zhao J, Liu H, Wang Y, Duan J, Li C, Di J, Zhang N, Zheng X, Chen P. Synthesis of π-Conjugated Chiral Organoborane Macrocycles with Blue to Near-Infrared Emissions and the Diradical Character of Cations. J Am Chem Soc 2023; 145:10092-10103. [PMID: 37125835 DOI: 10.1021/jacs.3c00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly emissive π-conjugated macrocycles with tunable circularly polarized luminescence (CPL) have sparked theoretical and synthetic interests in recent years. Herein, we report a synthetic approach to obtain new chiral organoborane macrocycles (CMC1, CMC2, and CMC3) that are built on the structurally chiral [5]helicenes and highly luminescent triarylborane/amine moieties embedded into the cyclic systems. These rarely accessible B/N-doped main-group chiral macrocycles show a unique topology dependence of the optoelectronic and chiroptical properties. CMC1 and CMC2 show a higher luminescence dissymmetry factor (glum) together with an enhanced CPL brightness (BCPL) as compared with CMC3. Electronic effects were also tuned and resulted in bathochromic shifts of their emission and CPL responses from blue for CMC1 to the near-infrared (NIR) region for CMC3. Furthermore, chemical oxidations of the N donor sites in CMC1 gave rise to a highly stable radical cation (CMC1·+SbF6-) and diradical dication species (CMC12·2+2SbF6-) that serve as a rare example of a positively charged open-shell chiral macrocycle.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
36
|
Diab M, Jaiswal K, Bawari D, Dobrovetsky R. The Chemistry of [1,1′‐bis(
o‐
Carboranyl)]Borane η
2
‐
σ‐
Silane Adduct. Isr J Chem 2023. [DOI: 10.1002/ijch.202300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Mohanad Diab
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Department Tel Aviv 69978 Israel
| | - Kuldeep Jaiswal
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Department Tel Aviv 69978 Israel
| | - Deependra Bawari
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Department Tel Aviv 69978 Israel
| | - Roman Dobrovetsky
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Department Tel Aviv 69978 Israel
| |
Collapse
|
37
|
Murali AC, Nayak P, Nayak S, Das S, Senanayak SP, Venkatasubbaiah K. Boron-Thioketonates: A New Class of S,O-Chelated Boranes as Acceptors in Optoelectronic Devices. Angew Chem Int Ed Engl 2023; 62:e202216871. [PMID: 36650612 DOI: 10.1002/anie.202216871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Development of new n-type semiconductors with tunable band gap and dielectric constant has significant implication in dissociating bound charge carrier relevant for demonstrating high performance optoelectronic devices. Boron-β-thioketonates (MTDKB), analogues to boron-β-diketonates containing a sulfur atom in the framework of β-diketones were synthesized. Bulk transport measurement exhibited an outstanding bulk electron mobility of ≈0.003 cm2 V-1 s-1 , which is among the best values reported till date in these class of semiconducting materials and correspondingly a single junction photo responsivity of upto 6 mA W-1 was obtained. This new family of O,S-chelated boron compounds exhibited luminescence in the far red/near-infrared region. The remarkable red shift of 89 nm (fluorescence) observed for 4 a in comparison with analogues boron-β-diketonate signifies the importance of sulfur in these molecules. MTDKBs with amine functionality have also been investigated as an ON/OFF fluorescent sensor.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Shashwat Nayak
- School of Physical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Sabyasachi Das
- School of Physical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Satyaprasad P Senanayak
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India.,School of Physical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India.,Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| |
Collapse
|
38
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Approaching Dianionic Tetraoxadiborecine Macrocycles: 10-Membered Bora-Crown Ethers Incorporating Borafluorenate Units. Angew Chem Int Ed Engl 2023; 62:e202215772. [PMID: 36437238 DOI: 10.1002/anie.202215772] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The addition of non-benzenoid quinones, acenapthenequinone or aceanthrenequinone, to the 9-carbene-9-borafluorene monoanion (1) affords the first examples of dianionic 10-membered bora-crown ethers (2-5), which are characterized by multi-nuclear NMR spectroscopy (1 H, 13 C, 11 B), X-ray crystallography, elemental analysis, and UV/Vis spectroscopy. These tetraoxadiborecines have distinct absorption profiles based on the positioning of the alkali metal cations. When compound 4, which has a vacant C4 B2 O4 cavity, is reacted with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, a color change from purple to orange serves as a visual indicator of metal binding to the central ring, whereby the Na+ ion coordinates to four oxygen atoms. A detailed theoretical analysis of the calculated reaction energetics is provided to gain insight into the reaction mechanism for the formation of 2-5. These data, and the electronic structures of proposed intermediates, indicate that the reaction proceeds via a boron enolate intermediate.
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, 409 McCormick Rd./PO Box 400319, 22904, Charlottesville, VA, USA
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, 3086, Melbourne, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, 409 McCormick Rd./PO Box 400319, 22904, Charlottesville, VA, USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Rd./PO Box 400319, 22904, Charlottesville, VA, USA
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, 3086, Melbourne, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Rd./PO Box 400319, 22904, Charlottesville, VA, USA
| |
Collapse
|
39
|
Li Y, Shen YH, Esper AM, Tidwell JR, Veige AS, Martin CD. Probing borafluorene B-C bond insertion with gold acetylide and azide. Dalton Trans 2023; 52:668-674. [PMID: 36537567 DOI: 10.1039/d2dt03672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reaction of Ph3PAuN3 with 9-Ph-9-borafluorene resulted in complexation of the azide to boron while a gold acetylide reacted with 9-Ph-9-borafluorene to insert the acetylide carbon to access a six-membered boracycle with an exocyclic double bond.
Collapse
Affiliation(s)
- Yijie Li
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.
| | - Yu-Hsuan Shen
- University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611, USA
| | - Alec M Esper
- University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611, USA
| | - John R Tidwell
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.
| | - Adam S Veige
- University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611, USA
| | - Caleb D Martin
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.
| |
Collapse
|
40
|
Dong S, Zhu J. Predicting Small Molecule Activation including Catalytic Hydrogenation of Dinitrogen Promoted by a Dual Lewis Acid. Chem Asian J 2023; 18:e202200991. [PMID: 36353939 DOI: 10.1002/asia.202200991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/20/2022] [Indexed: 11/12/2022]
Abstract
For decades, N2 activation and functionalization have required the use of transition metal complexes. Thus, it is one of the most challenging projects to activate the abundant dinitrogen through metal-free systems under mild conditions. Here, we demonstrate a proof-of-concept study on the catalytic hydrogenation of dinitrogen (with activation energy as low as 15.3 kcal mol-1 ) initiated by a dual Lewis acid (DLA) via density functional theory (DFT) calculations. In addition, such a DLA could be also used to activate a series of small molecules including carbon dioxide, formaldehyde, N-ethylenemethylamine, and acetonitrile. It is found that aromaticity plays an important role in stabilizing intermediates and products. Our findings provide an alternative approach to N2 activation and functionalization, highlighting a great potential of DLA for small molecule activation.
Collapse
Affiliation(s)
- Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
41
|
Krebs J, Häfner A, Fuchs S, Guo X, Rauch F, Eichhorn A, Krummenacher I, Friedrich A, Ji L, Finze M, Lin Z, Braunschweig H, Marder TB. Backbone-controlled LUMO energy induces intramolecular C-H activation in ortho-bis-9-borafluorene-substituted phenyl and o-carboranyl compounds leading to novel 9,10-diboraanthracene derivatives. Chem Sci 2022; 13:14165-14178. [PMID: 36540825 PMCID: PMC9728567 DOI: 10.1039/d2sc06057d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 08/11/2023] Open
Abstract
The choice of backbone linker for two ortho-bis-(9-borafluorene)s has a great influence on the LUMO located at the boron centers and, therefore, the reactivity of the respective compounds. Herein, we report the room temperature rearrangement of 1,2-bis-(9-borafluorenyl)-ortho-carborane, C2B10H10-1,2-[B(C12H8)]2 ([2a]) featuring o-carborane as the inorganic three-dimensional backbone and the synthesis of 1,2-bis-(9-borafluorenyl)benzene, C6H4-1,2-[B(C12H8)]2 (2b), its phenylene analog. DFT calculations on the transition state for the rearrangement support an intramolecular C-H bond activation process via an SEAr-like mechanism in [2a], and predicted that the same rearrangement would take place in 2b, but at elevated temperatures, which indeed proved to be the case. The rearrangement gives access to 3a and 3b as dibora-benzo[a]fluoroanthene isomers, a form of diboron polycyclic aromatic hydrocarbon (PAH) that had yet to be explored. The isolated compounds 2b, 3a, and 3b were fully characterized by NMR, HRMS, cyclic voltammetry (CV), single-crystal X-ray diffraction analysis, and photophysical measurements, supported by DFT and TD-DFT calculations.
Collapse
Affiliation(s)
- Johannes Krebs
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alena Häfner
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Sonja Fuchs
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Florian Rauch
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Antonius Eichhorn
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Lei Ji
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University 127 West Youyi Road Xi'an Shaanxi P. R. China
| | - Maik Finze
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
42
|
Akram MO, Tidwell JR, Dutton JL, Martin CD. Tris(ortho-carboranyl)borane: An Isolable, Halogen-Free, Lewis Superacid. Angew Chem Int Ed Engl 2022; 61:e202212073. [PMID: 36135949 PMCID: PMC9828388 DOI: 10.1002/anie.202212073] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/12/2023]
Abstract
The synthesis of tris(ortho-carboranyl)borane (BoCb3 ), a single site neutral Lewis superacid, in one pot from commercially available materials is achieved. The high fluoride ion affinity (FIA) confirms its classification as a Lewis superacid and the Gutmann-Beckett method as well as adducts with Lewis bases indicate stronger Lewis acidity over the widely used fluorinated aryl boranes. The electron withdrawing effect of ortho-carborane and lack of pi-delocalization of the LUMO rationalize the unusually high Lewis acidity. Catalytic studies indicate that BoCb3 is a superior catalyst for promoting C-F bond functionalization reactions than tris(pentafluorophenyl)borane [B(C6 F5 )3 ].
Collapse
Affiliation(s)
- Manjur O. Akram
- Department of Chemistry and BiochemistryBaylor UniversityOne Bear Place #97348WacoTX 76798USA
| | - John R. Tidwell
- Department of Chemistry and BiochemistryBaylor UniversityOne Bear Place #97348WacoTX 76798USA
| | - Jason L. Dutton
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Caleb D. Martin
- Department of Chemistry and BiochemistryBaylor UniversityOne Bear Place #97348WacoTX 76798USA
| |
Collapse
|
43
|
Gärtner A, Meier L, Arrowsmith M, Dietz M, Krummenacher I, Bertermann R, Fantuzzi F, Braunschweig H. Highly Strained Arene-Fused 1,2-Diborete Biradicaloid. J Am Chem Soc 2022; 144:21363-21370. [DOI: 10.1021/jacs.2c09971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Annalena Gärtner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lukas Meier
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rüdiger Bertermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, CT2 7NH Canterbury, U.K
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
44
|
Full F, Wölflick Q, Radacki K, Braunschweig H, Nowak‐Król A. Enhanced Optical Properties of Azaborole Helicenes by Lateral and Helical Extension. Chemistry 2022; 28:e202202280. [PMID: 35877557 PMCID: PMC9826013 DOI: 10.1002/chem.202202280] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 01/11/2023]
Abstract
The synthesis and characterization of laterally extended azabora[5]-, -[6]- and -[7]helicenes, assembled from N-heteroaromatic and dibenzo[g,p]chrysene building blocks is described. Formally, the π-conjugated systems of the pristine azaborole helicenes were enlarged with a phenanthrene unit leading to compounds with large Stokes shifts, significantly enhanced luminescence quantum yields (Φ) and dissymmetry factors (glum ). The beneficial effect on optical properties was also observed for helical elongation. The combined contributions of lateral and helical extensions resulted in a compound showing green emission with Φ of 0.31 and |glum | of 2.2×10-3 , highest within the series of π-extended azaborahelicenes and superior to emission intensity and chiroptical response of its non-extended congener. This study shows that helical and lateral extensions of π-conjugated systems are viable strategies to improve features of azaborole helicenes. In addition, single crystal X-ray analysis of configurationally stable [6]- and -[7]helicenes was used to provide insight into their packing arrangements.
Collapse
Affiliation(s)
- Felix Full
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronUniversität WürzburgAm Hubland97074WürzburgGermany,Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Quentin Wölflick
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronUniversität WürzburgAm Hubland97074WürzburgGermany,Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Krzysztof Radacki
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Agnieszka Nowak‐Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronUniversität WürzburgAm Hubland97074WürzburgGermany,Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
45
|
Zhang C, Wang J, Lin Z, Ye Q. Synthesis, Characterization, and Properties of Three-Dimensional Analogues of 9-Borafluorenes. Inorg Chem 2022; 61:18275-18284. [DOI: 10.1021/acs.inorgchem.2c03111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chonghe Zhang
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China
| | - Junyi Wang
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong
| | - Qing Ye
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
46
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Systematic Electronic and Structural Studies of 9-Carbene-9-Borafluorene Monoanions and Transformations into Luminescent Boron Spirocycles. Inorg Chem 2022; 61:17049-17058. [PMID: 36259945 DOI: 10.1021/acs.inorgchem.2c01945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The impact of the exact spatial arrangement of the alkali metal on the electronic properties of 9-carbene-9-borafluorene monoanions is assessed, and a series of [K][9-CAAC-9-borafluorene] complexes (1-4) have been isolated (CAAC = cyclic(alkyl)(amino) carbene, (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene). Compound 1, which contains [B]-K(THF)3 interactions, is compared to charge-separated 2-4, which were prepared by capturing the potassium cations with 18-crown-6, 2.2.2-cryptand, or 1,10-phenanthroline. Notably, the 11B NMR spectra of charge-separated borafluorene monoanions 2-4 show distinct low-field signatures compared to 1. Theoretical calculations indicate that charge separation may be exploited to influence the nucleophilic and electron transfer properties of 9-carbene-9-borafluorene monoanions. When [K(2.2.2-cryptand)][9-CAAC-9-borafluorene] (3) is reacted with 9,10-phenanthrenequinone and 1,10-phenanthroline-5,6-dione, the carbene ligand is displaced, and new air-stable R2BO2 spirocycles are formed (5 and 6, respectively). Remarkably, compounds 5 and 6 display fluorescence under UV light in both the solid and solution phases with quantum yields of up to 20%. In addition, a drastic red-shift in the emission color is observed in 6 because of the presence of the nitrogen atoms on the phenanthroline moiety. Mechanistic insights into the formation of these spirocycles are also described based on density functional theory calculations.
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, Charlottesville 22904, Virginia, United States
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, Charlottesville 22904, Virginia, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville 22904, Virginia, United States
| | - David J D Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, Charlottesville 22904, Virginia, United States
| |
Collapse
|
47
|
Jia Y, Li P, Liu K, Li C, Liu M, Di J, Wang N, Yin X, Zhang N, Chen P. Expanding new chemistry of aza-boracyclophanes with unique dipolar structures, AIE and redox-active open-shell characteristics. Chem Sci 2022; 13:11672-11679. [PMID: 36320401 PMCID: PMC9555748 DOI: 10.1039/d2sc03581b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 08/03/2023] Open
Abstract
π-Conjugated macrocycles involving electron-deficient boron species have received increasing attention due to their intriguing tunable optoelectronic properties. However, most of the reported B(sp2)-doped macrocycles are difficult to modify due to the synthetic challenge, which limits their further applications. Motivated by the research of non-strained hexameric bora- and aza-cyclophanes, we describe a new class of analogues MC-BN5 and MC-ABN5 that contain charge-reversed triarylborane (Ar3B) units and oligomeric triarylamines (Ar3N) in the cyclics. As predicted by DFT computations, the unique orientation of the donor-acceptor systems leads to an increased dipole moment compared with highly symmetric macrocycles (M1, M2 and M3), which was experimentally represented by a significant solvatochromic effect with large Stokes shifts up to 12 318 cm-1. Such a ring-structured design also allows the easy peripheral modification of aza-boracyclophanes with tetraphenylethenyl (TPE) groups, giving rise to a change in the luminescence mechanism from aggregation-caused quenching (ACQ) in MC-BN5 to aggregation-induced emission (AIE) in MC-ABN5. The open-shell characteristics have been chemically enabled and were characterized by UV-Vis-NIR spectroscopy and electron paramagnetic resonance (EPR) for MC-BN5. The present study not only showed new electronic properties, but also could expand the research of B/N doped macrocycles into the future scope of supramolecular chemistry, as demonstrated in the accessible functionalization of ring systems.
Collapse
Affiliation(s)
- Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Pengfei Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Meiyan Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology of China Beijing 102488 China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
48
|
Anderson KP, Rheingold AL, Djurovich PI, Soman O, Spokoyny AM. Synthesis and luminescence of monohalogenated B18H22 clusters. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Akram MO, Tidwell JR, Dutton JL, Wilson DJD, Molino A, Martin CD. Accessing Boron-Doped Pentaphene Analogues from 12-Boradibenzofluorene. Inorg Chem 2022; 61:9595-9604. [PMID: 35696381 DOI: 10.1021/acs.inorgchem.2c00930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Borole-doped polycyclic aromatic hydrocarbons (PAHs) have garnered attention in recent years due to their attractive photophysical properties and potential utility in electronic devices. In this work, a borole-doped PAH, 12-boradibenzofluorene, is synthesized and formal intermolecular nitrene and oxygen atom insertion reactions were employed to access 1,2-azaborine- and 1,2-oxaborine-containing analogues of the carbonaceous PAH pentaphene. Iodosobenzene is established as a versatile reagent for oxygen atom insertion reactions into a variety of borole species to access 1,2-oxaborine systems.
Collapse
Affiliation(s)
- Manjur O Akram
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - John R Tidwell
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Jason L Dutton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - David J D Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
50
|
Konidena RK, Justin Thomas KR, Park JW. Recent Advances in the Design of Multi‐Substituted Carbazoles for Optoelectronics: Synthesis and Structure‐Property Outlook. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - K R Justin Thomas
- Indian Institute of Technology Roorkee Department of Chemistry Haridwar Road 247667 Roorkee INDIA
| | - Jong Wook Park
- Kyunghee University College of Engineering Chemical Engineering INDIA
| |
Collapse
|