1
|
Tan P, Wang C, Wei D, Wang F, Zhao Z, Zhang W. Laser processing materials for photo-to-thermal applications. Adv Colloid Interface Sci 2024; 337:103382. [PMID: 39700970 DOI: 10.1016/j.cis.2024.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Photothermal conversion materials (PCMs) are crucial component in solar-thermal energy technologies. Although various PCMs with excellent sunlight harvesting have been developed for colorful solar-thermal applications, uniform and large-scale production of PCMs remains a challenge, and the PCMs prepared through the conventional methods are often non-site specific. Laser processing technology (LPT), as an efficient, convenient, green and sustainable technology, can directly create micro/nano structures and patterns at specific locations on materials surface, attracting widespread attention in photo-to-thermal applications. Here, we summarize the laser processing of preparing PCMs through laser sintering, laser modification, laser ablation in liquid, laser induced carbonization, and laser etching. We also introduce the working mechanism of LPT, and analyze the thermal conductivity, heat storage performance and hydrophilic/hydrophobic properties of the substrate after LPT treatment. Furthermore, the application of LPT in solar anti-icing/deicing, seawater desalination, heat exchange system, energy storage and transfer, and other related fields are introduced. Additionally, we provide a prospect for the development of LPT and offer directions for future research. We hope that this review can provide meaningful reference value for scholars in this field.
Collapse
Affiliation(s)
- Puxin Tan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Chengbing Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Dan Wei
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Fan Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Zexiang Zhao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wenhe Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
2
|
Spataro GM, Yang J, Coviello V, Agnoli S, Amendola V. Surface Gold Atoms Determine Peroxidase Mimic Activity in Gold Alloy Nanoparticles. Chemphyschem 2024; 25:e202400486. [PMID: 39022857 DOI: 10.1002/cphc.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
The development of peroxidase mimic nanocatalysts is relevant for oxidation reactions in biosensing, environmental monitoring and green chemical processes. Several nanomaterials have been proposed as peroxidase mimic, the majority of which consists of noble metals and oxide nanoparticles (NPs). Yet, there is still limited information about how the change in the composition influences their catalytic activity. Here, the peroxidase mimic behaviour of gold NPs is compared to a traditional nanoalloy as Au-Ag and to the Au-Fe and the Au-Co nanoalloys, which were not tested before as oxidation catalysts. Since the alloys of gold with iron and cobalt are thermodynamically unstable, laser ablation in liquid (LAL) is exploited for the synthesis of these NPs. Using LAL, no chemical stabilizers or capping agents are present on the NPs surface, allowing the evaluation of the oxidation behaviour as a function of the alloy composition. The results point to the importance of surface gold atoms in the catalytic process, but also indicate the possibility of obtaining active nanocatalysts with a lower content of Au by alloying it with iron, which is earth-abundant, non-toxic and low cost. Overall, Au nanoalloys are worth consideration as a more sustainable alternative to pure Au nanocatalysts for oxidation reactions.
Collapse
Affiliation(s)
| | - Jijin Yang
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Vito Coviello
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Meng Z, Wilsey MK, Müller AM. Role of LiOH in Aqueous Electrocatalytic Defluorination of Perfluorooctanoic Sulfonate: Efficient Li-F Ion Pairing Prevents Anode Fouling by Produced Fluoride. ACS Catal 2024; 14:16577-16588. [PMID: 39569161 PMCID: PMC11574766 DOI: 10.1021/acscatal.4c04523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose a significant environmental and health threat due to their high toxicity, widespread use, and persistence in the environment. Electrochemical methods have emerged as promising approaches for PFAS destruction, offering cost-effective and energy-efficient solutions. We established recently that electrocatalysis with nonprecious materials enabled the complete defluorination of perfluorooctanesulfonate (PFOS) in aqueous 8.0 M LiOH. Here, we reveal the mechanistic role of LiOH in the efficient aqueous electrocatalytic PFOS defluorination. Our results demonstrate that synergistic effects of high lithium and high hydroxide ion concentrations are essential for complete PFOS defluorination. Two-dimensional NMR data of electrolytes post pulsed electrolysis provide experimental evidence for Li-F ion pairing, which plays a crucial role in preventing anode fouling by produced fluoride, thus enabling sustained C-F bond cleavage. This Li-F ion pairing was increased at high pH, and elevated temperatures enhanced diffusion of Li-F ion pairs into the bulk electrolyte. High hydroxide ion concentrations additionally removed fluoride from the anode surface by competitive adsorption, corroborated by XPS data. Our findings provide quantitative mechanistic insights into the electrocatalytic defluorination process and offer a general route of enhancing the efficiency of anodic PFAS defluorination.
Collapse
Affiliation(s)
- Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Astrid M Müller
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
4
|
Liu KW, Sie PY, Huang JY, Chen HY, Chen YL, Lin YC, Liao MY. Rational design of stable Cu and AuCu nanoparticles for investigations of size-enhanced SERS applications. Anal Chim Acta 2024; 1329:343189. [PMID: 39396279 DOI: 10.1016/j.aca.2024.343189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND While significant progress has been made to clarify the effects of Au and Ag nanoparticle size on SERS enhancement, research on the size effects of copper nanoparticles and copper-related nanoalloys on SERS enhancement remain scarce. Nanoscale copper (Cu) is important because of its unique sensing and catalytic properties; however, research on its size and compositional effects remains a significant challenge because of the intricate fabrication process and difficulty in preventing oxidation. RESULTS Our study elucidated the size-dependent, surface-enhanced Raman scattering (SERS) of Cu NPs, particularly the sensing capabilities of both electromagnetic (EM) SERS at 1.5 × 103 and chemical enhancement (CE) SERS at 3.6 × 104 of approximately 58 nm Cu NPs. Additionally, a solution aging examination revealed preservation of the metal-related core structure, surface plasmon resonance, and SERS features of the PSMA/ONPG-coated Cu NPs for up to 7 days. With the introduction of galvanic replacement reactions and laser ablation syntheses, the incorporation of Au atoms enabled the fabrication of 7-75 nm AuxCuy nanoparticles by using the remaining Cu core after aging in water, which offered precise control over the Cu/Au ratio from 5/95 to 29/71. SERS measurements of the large AuxCuy nanoparticles amplified up to 1.4 × 104 of the EM-mediated vibrational signals from the adsorbed molecules. The strong Au-S chemical bonds of the Au-rich AuxCuy nanocrystals increased the CE SERS to 5.5 × 104, whereas the Au3Cu1 crystals at the AuxCuy interface decreased the CE SERS but improved the electron transfer for catalysis via SERS detection. SIGNIFICANCE Our research provides further insight into the structural and size effects of Cu and AuCu alloys used as SERS enhancers and offers avenues for designing cutting-edge SERS catalytic sensors tailored to Cu-related catalytic reactive structures. For the first time, we also manipulated the Cu atomic structure and surface composition to understand the significance of surface effects on SERS substrates of the Cu series from a nanoscale analytical perspective.
Collapse
Affiliation(s)
- Kuan-Wen Liu
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Pei-Yu Sie
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Jing-Yin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Hsi-Ying Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Yi-Lun Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Yu-Ching Lin
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan.
| |
Collapse
|
5
|
Harris S, Kaplan E, Aftel M, Tibbetts KM. Understanding Selectivity in Product Distributions from Laser Ablation of Organic Liquids. J Phys Chem B 2024; 128:10481-10491. [PMID: 39412100 PMCID: PMC11514026 DOI: 10.1021/acs.jpcb.4c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Pulsed laser ablation in organic solvents is widely used to produce oxide-free metal and metal carbide nanoparticles, often with carbon coatings resulting from laser-induced reactions in the organic solvent. To gain insight into how the molecular structure of the solvent affects these reaction pathways, this work investigates ablation of the C6H14 isomers n-hexane, 2-methylpentane, and 3-methylpentane through characterization of the gas and liquid products with mass spectrometry. Ablation of each C6H14 isomer produces a distinct distribution of product molecular weights and isomers. 2-methylpentane preferentially produces C3 and C9, whereas 3-methylpentane produces C2, C4, C8, and C10 products. These preferential product distributions, along with the lack of such selectivity in n-hexane, arise from differences in the most favorable C-C bond scission pathways in each C6H14 isomer. Moreover, the particular isomers of C8H18, C9H20, C10H22, and C12H26 produced by ablation of each C6H14 isomer indicate that the vast majority of reaction pathways involve addition reactions between a fragment radical and parent C6H14 or between two C6H14 molecules, without molecular rearrangement. This propensity toward direct addition suggests that the chemical reactions induced by ultrashort pulsed laser ablation proceed on faster time scales than those of radical rearrangements.
Collapse
Affiliation(s)
- Samuel Harris
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| | - Ella Kaplan
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| | - Michael Aftel
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
6
|
Wu C, Zhang Y, Yang HY. Rational Design and Facile Preparation of Palladium-Based Electrocatalysts for Small Molecules Oxidation. CHEMSUSCHEM 2024:e202401127. [PMID: 39211939 DOI: 10.1002/cssc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Direct liquid fuel cells (DLFCs) can convert the chemical energy of small organic molecules directly into electrical energy, which is a promising technique and always calls for electrocatalysts with high activity, stability and selectivity. Palladium (Pd)-based catalysts for DLFCs have been widely studied with the pursuit of ultra-high performance, however, most of the preparation routes require complex agents, multi-operation steps, even extreme experimental conditions, which are high-cost, energy-consuming, and not conducive to the scalable and sustainable production of catalysts. In this review, the recent progresses on not only the rational design strategies, but also the facile preparation methods of Pd-based electrocatalysts for small molecules oxidation reaction (SMOR) are comprehensively summarized. Based on the principles of green chemistry in material synthesis, the basic rules of "facile method" have been restricted, and the fabrication processes, perks and drawbacks, as well as practical applications of the "real" facile methods have been highlighted. The landscape of this review is to facilitate the mild preparation of efficient Pd-based electrocatalysts for SMOR, that is, to achieve a balance between "facile preparation" and "outstanding performance", thereby to stimulate the huge potential of sustainable nano-electrocatalysts in various research and industrial fields.
Collapse
Affiliation(s)
- Chenshuo Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Yingmeng Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
7
|
Jung S, Senthil RA, Min A, Kumar A, Moon CJ, Choi MY. Laser-Synthesized Co-Doped CuO Electrocatalyst: Unveiling Boosted Methanol Oxidation Kinetics for Enhanced Hydrogen Production Efficiency by In Situ/Operando Raman and Theoretical Analyses. SMALL METHODS 2024; 8:e2301628. [PMID: 38412410 DOI: 10.1002/smtd.202301628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The present study details the strategic development of Co-doped CuO nanostructures via sophisticated and expedited pulsed laser ablation in liquids (PLAL) technique. Subsequently, these structures are employed as potent electrocatalysts for the anodic methanol oxidation reaction (MOR), offering an alternative to the sluggish oxygen evolution reaction (OER). Electrochemical assessments indicate that the Co-CuO catalyst exhibits exceptional MOR activity, requiring a reduced potential of 1.42 V at 10 mA cm-2 compared to that of pure CuO catalyst (1.57 V at 10 mA cm-2). Impressively, the Co-CuO catalyst achieved a nearly 180 mV potential reduction in MOR compared to its OER performance (1.60 V at 10 mA cm-2). Furthermore, when pairing Co-CuO(+)ǀǀPt/C(-) in methanol electrolysis, the cell voltage required is only 1.51 V at 10 mA cm-2, maintaining remarkable stability over 12 h. This represents a substantial voltage reduction of ≈160 mV relative to conventional water electrolysis (1.67 V at 10 mA cm-2). Additionally, both in situ/operando Raman spectroscopy studies and theoretical calculations have confirmed that Co-doping plays a crucial role in enhancing the activity of the Co-CuO catalyst. This research introduces a novel synthetic approach for fabricating high-efficiency electrocatalysts for large-scale hydrogen production while co-synthesizing value-added formic acid.
Collapse
Affiliation(s)
- Sieon Jung
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raja Arumugam Senthil
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Cheol Joo Moon
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
8
|
Lasemi N, Wicht T, Bernardi J, Liedl G, Rupprechter G. Defect-Rich CuZn Nanoparticles for Model Catalysis Produced by Femtosecond Laser Ablation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38163-38176. [PMID: 38934369 DOI: 10.1021/acsami.4c07766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Femtosecond laser ablation of Cu0.70Zn0.30 targets in ethanol led to the formation of periodic surface nanostructures and crystalline CuZn alloy nanoparticles with defects, low-coordinated surface sites, and, controlled by the applied laser fluence, different sizes and elemental composition. The Cu/Zn ratio of the nanoparticles was determined by energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and selected area electron diffraction. The CuZn nanoparticles were about 2-3 nm in size, and Cu-rich, varying between 70 and 95%. Increasing the laser fluence from 1.6 to 3.2 J cm-2 yielded larger particles, more stacking fault defects, and repeated nanotwinning, as evident from high-resolution transmission electron microscopy, aided by (inverse) fast Fourier transform analysis. This is due to the higher plasma temperature, leading to increased random collisions/diffusion of primary nanoparticles and their incomplete ordering due to immediate solidification typical of ultrashort pulses. The femtosecond laser-synthesized often nanotwinned CuZn nanoparticles were supported on highly oriented pyrolytic graphite and applied for ethylene hydrogenation, demonstrating their promising potential as model catalysts. Nanoparticles produced at 3.2 J cm-2 exhibited lower catalytic activity than those made at 2.7 J cm-2. Presumably, agglomeration/aggregation of especially 2-3 nm sized nanoparticles, as observed by postreaction analysis, resulted in a decrease in the surface area to volume ratio and thus in the number of low-coordinated active sites.
Collapse
Affiliation(s)
- Niusha Lasemi
- Institute of Materials Chemistry, TU Wien, 1060 Wien, Austria
| | - Thomas Wicht
- Institute of Materials Chemistry, TU Wien, 1060 Wien, Austria
| | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, 1020 Wien, Austria
| | - Gerhard Liedl
- Institute of Production Engineering and Photonic Technologies, TU Wien, 1060 Wien, Austria
| | | |
Collapse
|
9
|
Almarashi JQM, Gadallah AS, Shaban M, Ellabban MA, Hbaieb K, Kordy MGM, Zayed M, Mohamed AAH. Quick methylene blue dye elimination via SDS-Ag nanoparticles catalysts. Sci Rep 2024; 14:15227. [PMID: 38956146 PMCID: PMC11220135 DOI: 10.1038/s41598-024-65491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Methylene blue dye, being toxic, carcinogenic and non-biodegradable, poses a serious threat for human health and environmental safety. The effective and time-saving removal of such industrial dye necessitates the use of innovative technologies such as silver nanoparticle-based catalysis. Utilizing a pulsed Nd:YAG laser operating at the second harmonic generation of 532 nm with 2.6 J energy per pulse and 10 ns pulse duration, Ag nanoparticles were synthesized via an eco-friendly method with sodium dodecyl sulphate (SDS) as a capping agent. Different exposure times (15, 30, and 45 min) resulted in varying nanoparticle sizes. Characterization was achieved through UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) imaging, and energy dispersive X-ray (EDX). Lorentzian fitting was used to model nanoparticle size, aligning well with SEM results. Mie's theory was applied to evaluate the absorption, scattering, and extinction cross-sectional area spectra. EDX revealed increasing Ag and carbon content with exposure time. The SDS-caped AgNPs nanoparticles were tested as catalyst for methylene blue degradation, achieving up to 92.5% removal in just 12 min with a rate constant of 0.2626 min-1, suggesting efficient and time-saving catalyst compared to previously reported Ag-based nanocatalysts.
Collapse
Affiliation(s)
- Jamal Q M Almarashi
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia
| | - A-S Gadallah
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia
- Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia
| | - M A Ellabban
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia
- Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Kais Hbaieb
- Mechanical department, College of Engineering, Taibah University, P.O. Box 344, Al-Madinah Al-Munawwara, Kingdom of Saudi Arabia.
| | - Mohamed G M Kordy
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Zayed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Abdel-Aleam H Mohamed
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia.
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
10
|
Fromme T, Reichenberger S, Tibbetts KM, Barcikowski S. Laser synthesis of nanoparticles in organic solvents - products, reactions, and perspectives. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:638-663. [PMID: 38887526 PMCID: PMC11181208 DOI: 10.3762/bjnano.15.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Laser synthesis and processing of colloids (LSPC) is an established method for producing functional and durable nanomaterials and catalysts in virtually any liquid of choice. While the redox reactions during laser synthesis in water are fairly well understood, the corresponding reactions in organic liquids remain elusive, particularly because of the much greater complexity of carbon chemistry. To this end, this article first reviews the knowledge base of chemical reactions during LSPC and then deduces identifiable reaction pathways and mechanisms. This review also includes findings that are specific to the LSPC method variants laser ablation (LAL), fragmentation (LFL), melting (LML), and reduction (LRL) in organic liquids. A particular focus will be set on permanent gases, liquid hydrocarbons, and solid, carbonaceous species generated, including the formation of doped, compounded, and encapsulated nanoparticles. It will be shown how the choice of solvent, synthesis method, and laser parameters influence the nanostructure formation as well as the amount and chain length of the generated polyyne by-products. Finally, theoretical approaches to address the mechanisms of organic liquid decomposition and carbon shell formation are highlighted and discussed regarding current challenges and future perspectives of LSPC using organic liquids instead of water.
Collapse
Affiliation(s)
- Theo Fromme
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Sven Reichenberger
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Katharine M Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| |
Collapse
|
11
|
Huo Z, Lv Y, Wang N, Zhou C, Su X. Construction of a dual-signal readout platform for effective glutathione S-transferase sensing based on polyethyleneimine-capped silver nanoclusters and cobalt-manganese oxide nanosheets with oxidase-mimicking activity. Mikrochim Acta 2024; 191:282. [PMID: 38652326 DOI: 10.1007/s00604-024-06363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.
Collapse
Affiliation(s)
- Zejiao Huo
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
12
|
Jiang N, Zhu L, Liu P, Zhang P, Gan Y, Zhao Y, Jiang Y. Laser Irradiation Synthesis of AuPd Alloy with Decreased Alloying Degree for Efficient Ethanol Oxidation Reaction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1876. [PMID: 38673231 PMCID: PMC11052525 DOI: 10.3390/ma17081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The preparation of electrocatalysts with high performance for the ethanol oxidation reaction is vital for the large-scale commercialization of direct ethanol fuel cells. Here, we successfully synthesized a high-performance electrocatalyst of a AuPd alloy with a decreased alloying degree via pulsed laser irradiation in liquids. As indicated by the experimental results, the photochemical effect-induced surficial deposition of Pd atoms, combined with the photothermal effect-induced interdiffusion of Au and Pd atoms, resulted in the formation of AuPd alloys with a decreased alloying degree. Structural characterization reveals that L-AuPd exhibits a lower degree of alloying compared to C-AuPd prepared via the conventional co-reduction method. This distinct structure endows L-AuPd with outstanding catalytic activity and stability in EOR, achieving mass and specific activities as high as 16.01 A mgPd-1 and 20.69 mA cm-2, 9.1 and 5.2 times than that of the commercial Pd/C respectively. Furthermore, L-AuPd retains 90.1% of its initial mass activity after 300 cycles. This work offers guidance for laser-assisted fabrication of efficient Pd-based catalysts in EOR.
Collapse
Affiliation(s)
- Nan Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Liye Zhu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Peng Liu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
| | - Pengju Zhang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuqi Gan
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhao
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Yijian Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Plech A, Tack M, Huang H, Arefev M, Ziefuss AR, Levantino M, Karadas H, Chen C, Zhigilei LV, Reichenberger S. Physical Regimes and Mechanisms of Picosecond Laser Fragmentation of Gold Nanoparticles in Water from X-ray Probing and Atomistic Simulations. ACS NANO 2024; 18:10527-10541. [PMID: 38567906 DOI: 10.1021/acsnano.3c12314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Laser fragmentation in liquids has emerged as a promising green chemistry technique for changing the size, shape, structure, and phase composition of colloidal nanoparticles, thus tuning their properties to the needs of practical applications. The advancement of this technique requires a solid understanding of the mechanisms of laser-nanoparticle interactions that lead to the fragmentation. While theoretical studies have made impressive practical and mechanistic predictions, their experimental validation is required. Hence, using the picosecond laser fragmentation of Au nanoparticles in water as a model system, the transient melting and fragmentation processes are investigated with a combination of time-resolved X-ray probing and atomistic simulations. The direct comparison of the diffraction profiles predicted in the simulations and measured in experiments has revealed a sequence of several nonequilibrium processes triggered by the laser irradiation. At low laser fluences, in the regime of nanoparticle melting and resolidification, the results provide evidence of a transient superheating of crystalline nanoparticles above the melting temperature. At fluences about three times the melting threshold, the fragmentation starts with evaporation of Au atoms and their condensation into small satellite nanoparticles. As fluence increases above five times the melting threshold, a transition to a rapid (explosive) phase decomposition of superheated nanoparticles into small liquid droplets and vapor phase atoms is observed. The transition to the phase explosion fragmentation regime is signified by prominent changes in the small-angle X-ray scattering profiles measured in experiments and calculated in simulations. The good match between the experimental and computational diffraction profiles gives credence to the physical picture of the cascade of thermal fragmentation regimes revealed in the simulations and demonstrates the high promise of the joint tightly integrated computational and experimental efforts.
Collapse
Affiliation(s)
- Anton Plech
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Meike Tack
- Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 7, D-45141 Essen, Germany
| | - Hao Huang
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904-4745, United States
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mikhail Arefev
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904-4745, United States
| | - Anna R Ziefuss
- Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 7, D-45141 Essen, Germany
| | - Matteo Levantino
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - Hasan Karadas
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Chaobo Chen
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904-4745, United States
| | - Leonid V Zhigilei
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904-4745, United States
| | - Sven Reichenberger
- Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 7, D-45141 Essen, Germany
| |
Collapse
|
14
|
Fakhrutdinova ED, Volokitina AV, Kulinich SA, Goncharova DA, Kharlamova TS, Svetlichnyi VA. Plasmonic Nanocomposites of ZnO-Ag Produced by Laser Ablation and Their Photocatalytic Destruction of Rhodamine, Tetracycline and Phenol. MATERIALS (BASEL, SWITZERLAND) 2024; 17:527. [PMID: 38276466 PMCID: PMC10818360 DOI: 10.3390/ma17020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Hydrosphere pollution by organic pollutants of different nature (persistent dyes, phenols, herbicides, antibiotics, etc.) is one of the urgent ecological problems facing humankind these days. The task of water purification from such pollutants can be effectively solved with the help of modern photocatalytic technologies. This article is devoted to the study of photocatalytic properties of composite catalysts based on ZnO modified with plasmonic Ag nanoparticles. All materials were obtained by laser synthesis in liquid and differed by their silver content and preparation conditions, such as additional laser irradiation and/or annealing of produced powders. The prepared ZnO-Ag powders were investigated by electron microscopy, X-ray diffraction and UV-Vis spectroscopy. Photocatalytic tests were carried out with well- known test molecules in water (persistent dye rhodamine B, phenol and common antibiotic tetracycline) using LED light sources with wavelengths of 375 and 410 nm. The introduction of small concentrations (up to 1%) of plasmonic Ag nanoparticles is shown to increase the efficiency of the ZnO photocatalyst by expanding its spectral range. Both the preparation conditions and material composition were optimized to obtain composite photocatalysts with the highest efficiency. Finally, the operation mechanisms of the material with different distribution of silver are discussed.
Collapse
Affiliation(s)
- Elena D. Fakhrutdinova
- Laboratory of Advanced Materials and Technology, Tomsk State University, 634050 Tomsk, Russia; (E.D.F.)
| | - Anastasia V. Volokitina
- Laboratory of Advanced Materials and Technology, Tomsk State University, 634050 Tomsk, Russia; (E.D.F.)
- Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Sergei A. Kulinich
- Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Daria A. Goncharova
- Laboratory of Advanced Materials and Technology, Tomsk State University, 634050 Tomsk, Russia; (E.D.F.)
| | | | - Valery A. Svetlichnyi
- Laboratory of Advanced Materials and Technology, Tomsk State University, 634050 Tomsk, Russia; (E.D.F.)
| |
Collapse
|
15
|
Wang Y, Li X, Chen Y, Li Y, Liu Z, Fang C, Wu T, Niu H, Li Y, Sun W, Tang W, Xia W, Song K, Liu H, Zhou W. Pulsed-Laser-Triggered Piezoelectric Photocatalytic CO 2 Reduction over Tetragonal BaTiO 3 Nanocubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305257. [PMID: 37530983 DOI: 10.1002/adma.202305257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/23/2023] [Indexed: 08/03/2023]
Abstract
The recombination of photoinduced carriers in photocatalysts is considered one of the biggest barriers to the increase of photocatalytic efficiency. Piezoelectric photocatalysts open a new route to realize rapid carrier separation by mechanically distorting the lattice of piezoelectric nanocrystals to form a piezoelectric potential within the nanocrystals, generally requiring external force (e.g., ultrasonic radiation, mechanical stirring, and ball milling). In this study, a low-power UV pulsed laser (PL) (3 W, 355 nm) as a UV light source can trigger piezoelectric photocatalytic CO2 reduction of tetragonal BaTiO3 (BTO-T) in the absence of an applied force. The tremendous transient light pressure (5.7 × 107 Pa, 2.7 W) of 355 nm PL not only bends the energy band of BTO-T, thus allowing reactions that cannot theoretically occur to take place, but also induces a pulsed built-in electric field to determine an efficient photoinduced carrier separation. On that basis, the PL-triggered piezoelectric photocatalytic CO2 reduction realizes the highest reported performance, reaching a millimole level CO yield of 52.9 mmol g-1 h-1 and achieving efficient photocatalytic CO2 reduction in the continuous catalytic system. The method in this study is promising to contribute to the design of efficient piezoelectric photocatalytic reactions.
Collapse
Affiliation(s)
- Yijie Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiao Li
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yuke Chen
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yue Li
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Zhen Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Chaoqiong Fang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Tong Wu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hongsen Niu
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yang Li
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Wanggen Sun
- School of Physics and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Wenjing Tang
- School of Physics and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Wei Xia
- School of Physics and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Kepeng Song
- Electron Microscopy Center, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
16
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
17
|
Li Y, Xiao L, Zheng Z, Yan J, Sun L, Huang Z, Li X. A Review on Pulsed Laser Fabrication of Nanomaterials in Liquids for (Photo)catalytic Degradation of Organic Pollutants in the Water System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2628. [PMID: 37836269 PMCID: PMC10574106 DOI: 10.3390/nano13192628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The water pollution caused by the release of organic pollutants has attracted remarkable attention, and solutions for wastewater treatment are being developed. In particular, the photocatalytic removal of organic pollutants in water systems is a promising strategy to realize the self-cleaning of ecosystems under solar light irradiation. However, at present the semiconductor-based nanocatalysts can barely satisfy the industrial requirements because their wide bandgaps restrict the effective absorption of solar light, which needs an energy band modification to boost the visible light harvesting via surface engineering. As an innovative approach, pulsed laser heating in liquids has been utilized to fabricate the nanomaterials in catalysis; it demonstrates multi-controllable features, such as size, morphology, crystal structure, and even optical or electrical properties, with which photocatalytic performances can be precisely optimized. In this review, focusing on the powerful heating effect of pulsed laser irradiation in liquids, the functional nanomaterials fabricated by laser technology and their applications in the catalytic degradation of various organic pollutants are summarized. This review not only highlights the innovative works of pulsed laser-prepared nanomaterials for organic pollutant removal in water systems, such as the photocatalytic degradation of organic dyes and the catalytic reduction of toxic nitrophenol and nitrobenzene, it also critically discusses the specific challenges and outlooks of this field, including the weakness of the produced yields and the relevant automatic strategies for massive production.
Collapse
Affiliation(s)
- Yang Li
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Liangfen Xiao
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Zhong Zheng
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiujiang Yan
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Liang Sun
- Department of Basic Courses, Naval University of Engineering, Wuhan 430033, China
| | - Zhijie Huang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangyou Li
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
18
|
Frias Batista LM, Kaplan E, Weththasingha C, Cook B, Harris S, Nag A, Tibbetts KM. How Pulse Width Affects Laser Ablation of Organic Liquids. J Phys Chem B 2023; 127:6551-6561. [PMID: 37462519 DOI: 10.1021/acs.jpcb.3c03708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Laser synthesis in liquids is often carried out in organic solvents to prevent oxidation of metals during nanoparticle generation and to produce tailored carbon-based nanomaterials. This work investigates laser ablation of neat organic liquids acetone, ethanol, n-hexane, and toluene with pulse widths ranging from 30 fs to 4 ps through measurements of reaction kinetics and characterization of the ablation products with optical spectroscopy and mass spectrometry. Increasing the pulse width from 30 fs to 4 ps impacts both the reaction kinetics and product distributions, suppressing the formation of solvent molecule dimers and oxidized molecules while enhancing the yields of gaseous molecules, sp-hybridized carbons, and fluorescent carbon dots. The observed trends are explained in the context of established ionization mechanisms and cavitation bubble dynamical processes that occur during ultrashort pulsed laser ablation of liquid media. The results of this work have important implications both for controlling the formation of carbon shells around metal nanoparticles during the ablation of solid targets in liquid and producing carbon nanomaterials directly from the ablation of organic liquids without a solid target.
Collapse
Affiliation(s)
- Laysa M Frias Batista
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ella Kaplan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Chamari Weththasingha
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Benjamin Cook
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Samuel Harris
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ashish Nag
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
19
|
Rostovshchikova TN, Shilina MI, Maslakov KI, Gurevich SA, Yavsin DA, Veselov GB, Stoyanovskii VO, Vedyagin AA. High-Temperature Behavior of Laser Electrodispersion-Prepared Pd/ZSM-5 Hydrocarbon Traps under CO Oxidation Conditions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4423. [PMID: 37374606 DOI: 10.3390/ma16124423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/15/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Zeolites and metal-doped zeolites are now widely considered as low-temperature hydrocarbon traps to be a part of emission control systems in automobiles. However, due to the high temperature of exhaust gases, the thermal stability of such sorbent materials is of great concern. To avoid the thermal instability problem, in the present work, laser electrodispersion was used to deposit Pd particles on the surface of ZSM-5 zeolite grains (SiO2/Al2O3 = 55 and SiO2/Al2O3 = 30) to obtain Pd/ZSM-5 materials with a Pd loading as low as 0.03 wt.%. The thermal stability was evaluated in a prompt thermal aging regime involving thermal treatment at temperatures up to 1000 °C in a real reaction mixture (CO, hydrocarbons, NO, an excess of O2, and balance N2) and a model mixture of the same composition with the exception of hydrocarbons. Low-temperature nitrogen adsorption and X-ray diffraction analysis were used to examine the stability of the zeolite framework. Special attention was paid to the state of Pd after thermal aging at varied temperatures. By means of transmission electron microscopy, X-ray photoelectron spectroscopy, and diffuse reflectance UV-Vis spectroscopy, it was shown that palladium, having been initially located on the surface of zeolite, undergoes oxidation and migrates into the zeolite's channels. This enhances the trapping of hydrocarbons and their subsequent oxidation at lower temperatures.
Collapse
Affiliation(s)
- Tatiana N Rostovshchikova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia
| | - Marina I Shilina
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey A Gurevich
- Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya Street, 194021 Saint Petersburg, Russia
| | - Denis A Yavsin
- Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya Street, 194021 Saint Petersburg, Russia
| | - Grigory B Veselov
- Boreskov Institute of Catalysis, 5 Lavrentyev Avenue, 630090 Novosibirsk, Russia
| | | | - Aleksey A Vedyagin
- Boreskov Institute of Catalysis, 5 Lavrentyev Avenue, 630090 Novosibirsk, Russia
| |
Collapse
|
20
|
Saravanan PK, Bhalothia D, Huang GH, Beniwal A, Cheng M, Chao YC, Lin MW, Chen PC, Chen TY. Sub-Millisecond Laser-Irradiation-Mediated Surface Restructure Boosts the CO Production Yield of Cobalt Oxide Supported Pd Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111801. [PMID: 37299704 DOI: 10.3390/nano13111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
The catalytic conversion of CO2 into valuable commodities has the potential to balance ongoing energy and environmental issues. To this end, the reverse water-gas shift (RWGS) reaction is a key process that converts CO2 into CO for various industrial processes. However, the competitive CO2 methanation reaction severely limits the CO production yield; therefore, a highly CO-selective catalyst is needed. To address this issue, we have developed a bimetallic nanocatalyst comprising Pd nanoparticles on the cobalt oxide support (denoted as CoPd) via a wet chemical reduction method. Furthermore, the as-prepared CoPd nanocatalyst was exposed to sub-millisecond laser irradiation with per-pulse energies of 1 mJ (denoted as CoPd-1) and 10 mJ (denoted as CoPd-10) for a fixed duration of 10 s to optimize the catalytic activity and selectivity. For the optimum case, the CoPd-10 nanocatalyst exhibited the highest CO production yield of ∼1667 μmol g-1catalyst, with a CO selectivity of ∼88% at a temperature of 573 K, which is a 41% improvement over pristine CoPd (~976 μmol g-1catalyst). The in-depth analysis of structural characterizations along with gas chromatography (GC) and electrochemical analysis suggested that such a high catalytic activity and selectivity of the CoPd-10 nanocatalyst originated from the sub-millisecond laser-irradiation-assisted facile surface restructure of cobalt oxide supported Pd nanoparticles, where atomic CoOx species were observed in the defect sites of the Pd nanoparticles. Such an atomic manipulation led to the formation of heteroatomic reaction sites, where atomic CoOx species and adjacent Pd domains, respectively, promoted the CO2 activation and H2 splitting steps. In addition, the cobalt oxide support helped to donate electrons to Pd, thereby enhancing its ability of H2 splitting. These results provide a strong foundation to use sub-millisecond laser irradiation for catalytic applications.
Collapse
Affiliation(s)
- Praveen Kumar Saravanan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Dinesh Bhalothia
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Guo-Heng Huang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Amisha Beniwal
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mingxing Cheng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Yu-Chieh Chao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Wei Lin
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
21
|
Rostovshchikova TN, Shilina MI, Gurevich SA, Yavsin DA, Veselov GB, Stoyanovskii VO, Vedyagin AA. Studies on High-Temperature Evolution of Low-Loaded Pd Three-Way Catalysts Prepared by Laser Electrodispersion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093501. [PMID: 37176383 PMCID: PMC10179799 DOI: 10.3390/ma16093501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Pd/Al2O3 catalyst of the "crust" type with Pd loading of 0.03 wt.% was prepared by the deposition of 2 nm Pd particles on the outer surface of the alumina support using laser electrodispersion (LED). This technique differs from a standard laser ablation into a liquid in that the formation of monodisperse nanoparticles occurs in the laser torch plasma in a vacuum. As is found, the LED-prepared catalyst surpasses Pd-containing three-way catalysts, obtained by conventional chemical synthesis, in activity and stability in CO oxidation under prompt thermal aging conditions. Thus, the LED-prepared Pd/Al2O3 catalyst showed the best thermal stability up to 1000 °C. The present research is focused on the study of the high-temperature evolution of the Pd/Al2O3 catalyst in two reaction mixtures by a set of physicochemical methods (transmission electron microscopy, X-ray photoelectron spectroscopy, and diffuse reflectance UV-vis spectroscopy). In order to follow the dispersion of the Pd nanoparticles during the thermal aging procedure, the testing reaction of ethane hydrogenolysis was also applied. The possible reasons for the high stability of LED-prepared catalysts are suggested.
Collapse
Affiliation(s)
- Tatiana N Rostovshchikova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia
| | - Marina I Shilina
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey A Gurevich
- Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya Str., 194021 Saint Petersburg, Russia
| | - Denis A Yavsin
- Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya Str., 194021 Saint Petersburg, Russia
| | - Grigory B Veselov
- Boreskov Institute of Catalysis, 5 Lavrentyev Avenue, 630090 Novosibirsk, Russia
| | | | - Aleksey A Vedyagin
- Boreskov Institute of Catalysis, 5 Lavrentyev Avenue, 630090 Novosibirsk, Russia
| |
Collapse
|
22
|
Lasemi N, Liedl G, Rupprechter G. Formation of Periodic Surface Structures by Multipulse Femtosecond Laser Processing of Au-Coated Ni in Various Fluids. ACS APPLIED ENGINEERING MATERIALS 2023; 1:1263-1276. [PMID: 37152716 PMCID: PMC10152447 DOI: 10.1021/acsaenm.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023]
Abstract
Using multipulse linearly polarized femtosecond laser processing of a Au-coated Ni surface in various liquid media created subwavelength self-organized nanoripples. The thin gold film improved the laser absorptivity, decreasing the ripple generation threshold in liquids. High spatial frequency ripples exhibited lower angular deviation than low spatial frequency ones, but in water the deviation was comparable for both types of ripples. The initiation of nanoripples may precede nanoparticle generation, which is why in hexane several cuboid Au particles were trapped between the ripples. Fast cooling processes freeze ejected molten droplets during the phase explosion and surface reorganization. Grazing incidence X-ray diffraction of samples processed in butanol showed a small shift toward smaller angles for the Ni phase, indicating a lattice expansion due to higher tensile stress. Confocal micro-Raman spectroscopy detected surface graphitization and amorphization in areas laser-treated in ethanol, butanol, and hexane, with the highest carbonization observed in butanol. Presumably, femtosecond laser-induced photolysis triggers the formation of graphite nanocrystallites, and consecutive pulses cause amorphization. Static contact angle measurements showed a general tendency toward hydrophobicity with highest contact angles for rippled areas created in butanol.
Collapse
Affiliation(s)
- Niusha Lasemi
- Institute
of Materials Chemistry, Technische Universität
Wien, 1060 Wien, Austria
| | - Gerhard Liedl
- Institute
of Production Engineering and Photonic Technologies, Technische Universität Wien, 1060 Wien, Austria
| | - Günther Rupprechter
- Institute
of Materials Chemistry, Technische Universität
Wien, 1060 Wien, Austria
| |
Collapse
|
23
|
Park CE, Jeong GH, Theerthagiri J, Lee H, Choi MY. Moving beyond Ti 2C 3T x MXene to Pt-Decorated TiO 2@TiC Core-Shell via Pulsed Laser in Reshaping Modification for Accelerating Hydrogen Evolution Kinetics. ACS NANO 2023; 17:7539-7549. [PMID: 36876982 DOI: 10.1021/acsnano.2c12638] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phase engineering of nanocatalysts on specific facets is critical not only for enhancing catalytic activity but also for intensely understanding the impact of facet-based phase engineering on electrocatalytic reactions. In this study, we successfully reshaped a two-dimensional (2D) MXene (Ti3C2Tx) obtained by etching Ti3AlC2 MAX via a pulsed laser irradiation in liquid (PLIL) process. We produced a TiO2@TiC core-shell structure in spheres with sizes of 200-350 nm, and then ∼2 nm ultrasmall Pt NPs were decorated on the surface of the TiO2@TiC core-shell using the single-step PLIL method. These advances allow for a significant increase in electrocatalytic hydrogen evolution reaction (HER) activity under visible light illumination. The effect of optimal Pt loading on PLIL time was identified, and the resulting Pt/TiO2@TiC/Pt-5 min sample demonstrated outstanding electrochemical and photoelectrochemical performance. The photoelectrochemical HER activity over Pt/TiO2@TiC/Pt-5 min catalyst exhibits a low overpotential of 48 mV at 10 mA/cm2 and an ultralow Tafel slope of 54.03 mV/dec with excellent stability of over 50 h, which is hydrogen production activity even superior to that of the commercial Pt/C catalysts (55 mV, 62.45 mV/dec). This investigation not only serves as a potential for laser-dependent phase engineering but also provides a reliable strategy for the rational design and fabrication of highly effective nanocatalysts.
Collapse
Affiliation(s)
- Chae Eun Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyoung Hwa Jeong
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeyeon Lee
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
24
|
Cai M, Zhang Y, Cao Z, Lin W, Lu N. DNA-Programmed Tuning of the Growth and Enzyme-Like Activity of a Bimetallic Nanozyme and Its Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18620-18629. [PMID: 37017457 DOI: 10.1021/acsami.2c21854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nanozymes, which combine the merits of both nanomaterials and natural enzymes, have aroused tremendous attention as new representatives of artificial enzyme mimics. However, it still remains to be a great challenge to rationally engineer the morphologies and surface properties of nanostructures that lead to the desired enzyme-like activities. Here, we report a DNA-programming seed-growth strategy to mediate the growth of platinum nanoparticles (PtNPs) on gold bipyramids (AuBPs) for the synthesis of a bimetallic nanozyme. We find that the preparation of a bimetallic nanozyme is in a sequence-dependent manner, and the encoding of a polyT sequence allows the successful formation of bimetallic nanohybrids with greatly enhanced peroxidase-like activity. We further observe that the morphologies and optical properties of T15-mediated Au/Pt nanostructures (Au/T15/Pt) change over the reaction time, and the nanozymatic activity can be tuned by controlling the experimental conditions. As a concept application, Au/T15/Pt nanozymes are used to establish a simple, sensitive, and selective colorimetric assay for the determination of ascorbic acid (AA), alkaline phosphatase (ALP), and the inhibitor sodium vanadate (Na3VO4), demonstrating excellent analytical performance. This work provides a new avenue for the rational design of bimetallic nanozymes for biosensing applications.
Collapse
Affiliation(s)
- Mengchao Cai
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yunqing Zhang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhongxu Cao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wensong Lin
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
25
|
Gu Y, Cao Z, Zhao M, Xu Y, Lu N. Single-Atom Fe Nanozyme with Enhanced Oxidase-like Activity for the Colorimetric Detection of Ascorbic Acid and Glutathione. BIOSENSORS 2023; 13:bios13040487. [PMID: 37185562 PMCID: PMC10137000 DOI: 10.3390/bios13040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Single-atom nanozymes (SAzymes) have drawn ever-increasing attention due to their maximum atom utilization efficiency and enhanced enzyme-like activity. Herein, a facile pyrolysis strategy is reported for the synthesis of the iron-nitrogen-carbon (Fe-N-C) SAzyme using ferrocene trapped within porous zeolitic imidazolate framework-8 (ZIF-8@Fc) as a precursor. The as-prepared Fe-N-C SAzyme exhibited exceptional oxidase-mimicking activity, catalytically oxidizing 3,3',5,5'-tetramethylbenzidine (TMB) with high affinity (Km) and fast reaction rate (Vmax). Taking advantage of this property, we designed two colorimetric sensing assays based on different interaction modes between small molecules and Fe active sites. Firstly, utilizing the reduction activity of ascorbic acid (AA) toward oxidized TMB (TMBox), a colorimetric bioassay for AA detection was established, which exhibited a good linear range of detection from 0.1 to 2 μM and a detection limit as low as 0.1 μM. Additionally, based on the inhibition of nanozyme activity by the thiols of glutathione (GSH), a colorimetric biosensor for GSH detection was constructed, showing a linear response over a concentration range of 1-10 μM, with a detection limit of 1.3 μM. This work provides a promising strategy for rationally designing oxidase-like SAzymes and broadening their application in biosensing.
Collapse
Affiliation(s)
- Yue Gu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhongxu Cao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mengde Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yanan Xu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
26
|
Xiao W, Cai S, Wu T, Fu Z, Liu X, Wang C, Zhang W, Yang R. IrO 2 clusters loaded on dendritic mesoporous silica nanospheres with superior peroxidase-like activity for sensitive detection of acetylcholinesterase and its inhibitors. J Colloid Interface Sci 2023; 635:481-493. [PMID: 36599245 DOI: 10.1016/j.jcis.2022.12.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Nanomaterials-based enzyme mimics (nanozymes), by simulating enzyme catalysis, have shown potential in numerous biocatalytic applications, but nanozymes face significant challenges of catalytic activity and reusability that may restrict their practical uses. Herein, we report facile fabrication of surface-clean IrO2 clusters supported on dendritic mesoporous silica nanospheres (DMSNs), which exhibit superior peroxidase-like activity, high thermal/long-term stability, and good recyclability. The IrO2 clusters (1.4 ± 0.2 nm in size) are obtained by the laser ablation without any ligands and possess negative surface charge, which are efficiently loaded on the amino-functionalized DMSNs by electrostatic adsorption. Owing to morphological and structural advantages, the resulted DMSN/IrO2 heterostructure displays outstanding peroxidase-like catalytic performance. Compared with horseradish peroxidase, it shows comparable affinities but higher reaction rate (2.95 × 10-7 M·s-1) towards H2O2, resulting from rapid electron transfer during the catalysis. This value is also larger than those of mesoporous silicas supported metal or metal oxides nanoparticles/clusters in the previous studies. Benefitting from excellent peroxidase-catalysis of the DMSN/IrO2, the colorimetric assays are further successfully established for the detection of acetylcholine esterase and its inhibitor, showing high sensitivity and selectivity. The work provides novel design of supported nanozymes for biosensing.
Collapse
Affiliation(s)
- Wei Xiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shuangfei Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ting Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xueliang Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
| | - Rong Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Taseska T, Yu W, Wilsey MK, Cox CP, Meng Z, Ngarnim SS, Müller AM. Analysis of the Scale of Global Human Needs and Opportunities for Sustainable Catalytic Technologies. Top Catal 2023; 66:338-374. [PMID: 37025115 PMCID: PMC10007685 DOI: 10.1007/s11244-023-01799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
AbstractWe analyzed the enormous scale of global human needs, their carbon footprint, and how they are connected to energy availability. We established that most challenges related to resource security and sustainability can be solved by providing distributed, affordable, and clean energy. Catalyzed chemical transformations powered by renewable electricity are emerging successor technologies that have the potential to replace fossil fuels without sacrificing the wellbeing of humans. We highlighted the technical, economic, and societal advantages and drawbacks of short- to medium-term decarbonization solutions to gauge their practicability, economic feasibility, and likelihood for widespread acceptance on a global scale. We detailed catalysis solutions that enhance sustainability, along with strategies for catalyst and process development, frontiers, challenges, and limitations, and emphasized the need for planetary stewardship. Electrocatalytic processes enable the production of solar fuels and commodity chemicals that address universal issues of the water, energy and food security nexus, clothing, the building sector, heating and cooling, transportation, information and communication technology, chemicals, consumer goods and services, and healthcare, toward providing global resource security and sustainability and enhancing environmental and social justice.
Collapse
Affiliation(s)
- Teona Taseska
- Department of Chemical Engineering, University of Rochester, 14627 Rochester, NY USA
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, 14627 Rochester, NY USA
| | | | - Connor P. Cox
- Materials Science Program, University of Rochester, 14627 Rochester, NY USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, 14627 Rochester, NY USA
| | - Soraya S. Ngarnim
- Department of Chemistry, University of Rochester, 14627 Rochester, NY USA
| | - Astrid M. Müller
- Department of Chemical Engineering, University of Rochester, 14627 Rochester, NY USA
- Materials Science Program, University of Rochester, 14627 Rochester, NY USA
- Department of Chemistry, University of Rochester, 14627 Rochester, NY USA
| |
Collapse
|
28
|
Spellauge M, Tack M, Streubel R, Miertz M, Exner KS, Reichenberger S, Barcikowski S, Huber HP, Ziefuss AR. Photomechanical Laser Fragmentation of IrO 2 Microparticles for the Synthesis of Active and Redox-Sensitive Colloidal Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206485. [PMID: 36650990 DOI: 10.1002/smll.202206485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Pulsed laser fragmentation of microparticles (MPs) in liquid is a synthesis method for producing high-purity nanoparticles (NPs) from virtually any material. Compared with laser ablation in liquids (LAL), the use of MPs enables a fully continuous, single-step synthesis of colloidal NPs. Although having been employed in several studies, neither the fragmentation mechanism nor the efficiency or scalability have been described. Starting from time-resolved investigations of the single-pulse fragmentation of single IrO2 MPs in water, the contribution of stress-mediated processes to the fragmentation mechanism is highlighted. Single-pulse, multiparticle fragmentation is then performed in a continuously operated liquid jet. Here, 2 nm-sized nanoclusters (NCs) accompanied by larger fragments with sizes ranging between several ten nm and several µm are generated. For the nanosized product, an unprecedented efficiency of up to 18 µg J-1 is reached, which exceeds comparable values reported for high-power LAL by one order of magnitude. The generated NCs exhibit high catalytic activity and stability in oxygen evolution reactions while simultaneously expressing a redox-sensitive fluorescence, thus rendering them promising candidates in electrocatalytic sensing. The provided insights will pave the way for laser fragmentation of MPs to become a versatile, scalable yet simple technique for nanomaterial design and development.
Collapse
Affiliation(s)
- Maximilian Spellauge
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
- Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences HM, Lothstraße 34, 80335, Munich, Germany
| | - Meike Tack
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - René Streubel
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Matthias Miertz
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Kai Steffen Exner
- Theoretical Inorganic Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
- Center for Nanointegration (CENIDE) Duisburg-Essen, 47057, Duisburg, Germany
| | - Sven Reichenberger
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Heinz Paul Huber
- Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences HM, Lothstraße 34, 80335, Munich, Germany
| | - Anna Rosa Ziefuss
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| |
Collapse
|
29
|
Highly Effective Pt-Co/ZSM-5 Catalysts with Low Pt Loading for Preferential CO Oxidation in H2-Rich Mixture. HYDROGEN 2023. [DOI: 10.3390/hydrogen4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
New Pt-Co catalysts of hydrogen purification from CO impurities for fuel cells were fabricated via the deposition of monodispersed 1.7 nm Pt nanoparticles using laser electrodispersion on Co-modified ZSM-5 prepared by the Co(CH3COO)2 impregnation. The structure of prepared Pt-Co zeolites was studied by low-temperature N2 sorption, TEM, EDX, and XPS methods. The comparative analysis of samples with different Pt (0.01–0.05 wt.%) and Co (2.5–4.5 wt.%) contents on zeolites with the ratio of Si/Al = 15, 28, and 40 was performed in the CO-PROX reaction in H2-rich mixture (1%CO + 1%O2 + 49%H2 + 49%He). The synergistic catalytic action of Pt and Co on zeolite surface makes it possible to completely remove CO from a mixture with hydrogen in a wide temperature range from 50 to 150 °C; the high efficiency of designed composites with low Pt loading is maintained for a long time. The enhancement of PROX performance originates from the formation of new active sites for the CO oxidation at the Pt-Co interfaces within zeolite channels and at the surface. In terms of their activity, stability, and selectivity, such composites are significantly superior to known supported Pt-Co catalysts.
Collapse
|
30
|
Zhang L, Zhao Z, Fu X, Zhu S, Min Y, Xu Q, Li Q. Curved Porous PdCu Metallene as a High-Efficiency Bifunctional Electrocatalyst for Oxygen Reduction and Formic Acid Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5198-5208. [PMID: 36691303 DOI: 10.1021/acsami.2c19196] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Designing high-efficiency and newly developed Pd-based bifunctional catalytic materials still faces tremendous challenges for oxygen reduction reaction (ORR) and formic acid oxidation reaction (FAO). Metallene materials with unique structural features are considered strong candidates for enhancing the catalytic performance. In this work, we synthesized copper-doped two-dimensional curved porous Pd metallene nanomaterials via a simplistic one-pot solvothermal method. The updated catalysts served as sturdy bifunctional electrocatalysts for cathodal ORR and anodic FAO. In particular, the developed PdCu metallene exhibits excellent half-wave potential (0.943 V vs RHE) and mass activity (MA) (1.227 A mgPt-1) in alkaline solutions, which are 1.09 and 6.26 times higher than those of commercial Pt/C, respectively, indicating that the nanomaterials have abundant active sites, displaying surpassing catalytic performance for oxygen reduction. Furthermore, in an acidic formic acid electrolyte, PdCu metallene exhibits prominent MA with a value of 0.905 A mgPd-1, which is 2.76 times that of commercial Pd/C. The remarkable bifunctional catalytic performance of metallene materials can be attributed to the special structure and electronic effects. This work shows that metallene materials with curved and porous properties provide a scientific idea for the development and design of efficient and steady electrocatalysts.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhengwei Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xin Fu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| |
Collapse
|
31
|
Gurbatov SO, Puzikov V, Storozhenko D, Modin E, Mitsai E, Cherepakhin A, Shevlyagin A, Gerasimenko AV, Kulinich SA, Kuchmizhak AA. Multigram-Scale Production of Hybrid Au-Si Nanomaterial by Laser Ablation in Liquid (LAL) for Temperature-Feedback Optical Nanosensing, Light-to-Heat Conversion, and Anticounterfeit Labeling. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3336-3347. [PMID: 36602431 DOI: 10.1021/acsami.2c18999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent progress in hybrid optical nanomaterials composed of dissimilar constituents permitted an improvement in the performance and functionality of novel devices developed for optoelectronics, catalysis, medical diagnostics, and sensing. However, the rational combination of contrasting materials such as noble metals and semiconductors within individual hybrid nanostructures via a ready-to-use and lithography-free fabrication approach is still a challenge. Here, we report on a two-step synthesis of hybrid Au-Si microspheres generated by laser ablation of silicon in isopropanol followed by laser irradiation of the produced Si nanoparticles in the presence of HAuCl4. Thermal reduction of [AuCl4]- species to a metallic gold phase, along with its subsequent mixing with silicon under laser irradiation, creates a nanostructured material with a unique composition and morphology, as revealed by electron microscopy, tomography, and elemental analysis. A combination of basic plasmonic and nanophotonic materials such as gold and silicon within a single microsphere allows for efficient light-to-heat conversion, as well as single-particle SERS sensing with temperature-feedback modality and expanded functionality. Moreover, the characteristic Raman signal and hot-electron-induced nonlinear photoluminescence coexisting within the novel Au-Si hybrids, as well as the commonly criticized randomness of the nanomaterials prepared by laser ablation in liquid, were proved to be useful for the realization of anticounterfeiting labels based on a physically unclonable function approach.
Collapse
Affiliation(s)
- Stanislav O Gurbatov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
- Far Eastern Federal University, Russky Island, Vladivostok690922, Russia
| | - Vladislav Puzikov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
| | - Dmitriy Storozhenko
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
| | - Evgeny Modin
- CIC NanoGUNE BRTA, Donostia-San Sebastian20018, Spain
| | - Eugeny Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
| | - Artem Cherepakhin
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
| | - Alexander Shevlyagin
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
| | | | - Sergei A Kulinich
- Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa259-1292, Japan
| | - Aleksandr A Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
- Far Eastern Federal University, Russky Island, Vladivostok690922, Russia
| |
Collapse
|
32
|
Wagner E, Delp E, Mishra R. Energy Storage with Highly-Efficient Electrolysis and Fuel Cells: Experimental Evaluation of Bifunctional Catalyst Structures. Top Catal 2023. [DOI: 10.1007/s11244-022-01771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractWith the roll-out of renewable energies, highly-efficient storage systems are needed to be developed to enable sustainable use of these technologies. For short duration lithium-ion batteries provide the best performance, with storage efficiencies between 70 and 95%. Hydrogen based technologies can be developed as an attractive storage option for longer storage durations. But, common polymer electrolyte membrane (PEM) electrolyzers and fuel cells have round-trip system efficiencies of only 30–40%, and platinum and rare iridium catalysts are needed. Thus, it is a major challenge to increase the energy conversion efficiency of electrolyzers and fuel cells significantly, and at the same time to use non-precious catalysts. The present work experimentally examines the usefulness of a bifunctional NiC catalyst in two different assemblies: an alkaline fuel cell (AFC) with electrolyte gap and gas diffusion electrodes and an alkaline membrane electrolyzer (AEL). The performance characteristics of the novel system are compared with a reversible PEM fuel cell. While the AEL reaches acceptable power densities, the PEM based system still performs better than the proposed system. The AFC with an electrolyte gap provides remarkable results as it shows vanishingly small overvoltage during electrolysis at temperatures around 90 °C and current density of 100 mA cm−2: an electrolyzer efficiency of about 100% could be achieved for the single cell. The round-trip efficiency was also very high: 65% were realized with 50 mA cm−2. While the current density must be improved, this is a promising result for designing highly-efficient energy storage systems based on alkaline fuel cells.
Collapse
|
33
|
Chemical Kinetics of Serial Processes for Photogenerated Charges at Semiconductor Surface: A Classical Theoretical Calculation. Catal Letters 2023. [DOI: 10.1007/s10562-022-04267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
A Review on Pulsed Laser Preparation of Nanocomposites in Liquids and Their Applications in Photocatalysis. Catalysts 2022. [DOI: 10.3390/catal12121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The purpose of photocatalysis is to realize the conversion between solar energy and chemical energy, and it is essential to develop a high-performance photocatalyst under visible-light irradiation. The conventional methods for photocatalyst preparation are mainly wet chemical routes, and abundant yields can be obtained. However, the products are not neat and accompanied by chemical groups and impurities, which are not beneficial for the enhancement of photocatalytic performance. In recent years, as a powerful tool for nanomaterial fabrication, pulsed laser heating in a liquid medium has been utilized to prepare a variety of nanocomposites. Products with synergistic effects and high crystallinity can be rapidly prepared under pulsed laser selective heating, which is beneficial for obtaining more effective photocatalytic performance. In this review, the typical characteristics of pulsed laser heating in liquids and their prepared nanocomposites for photocatalytic applications are summarized. This review not only highlights the innovative works of pulsed-laser-prepared nanocomposites in liquids for photocatalysis but also briefly introduces the specific challenges and prospects of this field.
Collapse
|
35
|
Faddeev NA, Kuriganova AB, Leont’ev IN, Smirnova NV. Palladium-Based Electroactive Materials for Environmental Catalysis. DOKLADY PHYSICAL CHEMISTRY 2022. [DOI: 10.1134/s0012501622700063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
36
|
Johny J, van Halteren CER, Zwiehoff S, Behrends C, Bäumer C, Timmermann B, Rehbock C, Barcikowski S. Impact of Sterilization on the Colloidal Stability of Ligand-Free Gold Nanoparticles for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13030-13047. [PMID: 36260482 DOI: 10.1021/acs.langmuir.2c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sterilization is a major prerequisite for the utilization of nanoparticle colloids in biomedicine, a process well examined for particles derived from chemical synthesis although highly underexplored for electrostatically stabilized ligand-free gold nanoparticles (AuNPs). Hence, in this work, we comprehensively examined and compared the physicochemical characteristics of laser-generated ligand-free colloidal AuNPs exposed to steam sterilization and sterile filtration as a function of particle size and mass concentration and obtained physicochemical insight into particle growth processes. These particles exhibit long-term colloidal stability (up to 3 months) derived from electrostatic stabilization without using any ligands or surfactants. We show that particle growth attributed to cluster-based ripening occurs in smaller AuNPs (∼5 nm) following autoclaving, while larger particles (∼10 and ∼30 nm) remain stable. Sterile filtration, as an alternative effective sterilizing approach, has no substantial impact on the colloidal stability of AuNPs, regardless of particle size, although a mass loss of 5-10% is observed. Finally, we evaluated the impact of the sterilization procedures on potential particle functionality in proton therapy, using the formation of reactive oxygen species (ROS) as a readout. In particular, 5 nm AuNPs exhibit a significant loss in activity upon autoclaving, probably dedicated to specific surface area reduction and surface restructuring during particle growth. The filtered analog enhanced the ROS release by up to a factor of ∼2.0, at 30 ppm gold concentration. Our findings highlight the need for carefully adapting the sterilization procedure of ligand-free NPs to the desired biomedical application with special emphasis on particle size and concentration.
Collapse
Affiliation(s)
- Jacob Johny
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Charlotte E R van Halteren
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Sandra Zwiehoff
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Carina Behrends
- West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany
| | - Christian Bäumer
- West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Beate Timmermann
- West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Rehbock
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
37
|
Fakhrutdinova E, Reutova O, Maliy L, Kharlamova T, Vodyankina O, Svetlichnyi V. Laser-Based Synthesis of TiO 2-Pt Photocatalysts for Hydrogen Generation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7413. [PMID: 36363006 PMCID: PMC9655175 DOI: 10.3390/ma15217413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The development of visible-light active titanium dioxide is one of the key challenges in photocatalysis that stimulates the development of TiO2-based composite materials and methods for their synthesis. Here, we report the use of pristine and Pt-modified dark titanium dioxide prepared via pulsed laser ablation in liquid (Nd:YAG laser, 1064 nm, 7 ns) for photocatalytic hydrogen evolution from alcohol aqueous solutions. The structure, textural, optical, photoelectrochemical, and electrochemical properties of the materials are studied by a complex of methods including X-ray diffraction, low-temperature nitrogen adsorption, electrophoretic light scattering, diffuse reflection spectroscopy, photoelectrochemical testing, and electrochemical impedance spectroscopy. Both the thermal treatment effect and the effect of modification with platinum on photocatalytic properties of dark titania materials are studied. Optimal compositions and experimental conditions are selected, and high photocatalytic efficiency of the samples in the hydrogen evolution reaction (apparent quantum yield of H2 up to 0.38) is demonstrated when irradiated with soft UV and blue LED, i.e., 375 and 410 nm. The positive effect of low platinum concentrations on the increase in the catalytic activity of dark titania is explained.
Collapse
Affiliation(s)
- Elena Fakhrutdinova
- Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia
| | - Olesia Reutova
- Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia
| | - Liubov Maliy
- Laboratory of Catalytic Research, Tomsk State University, Tomsk 634050, Russia
| | - Tamara Kharlamova
- Laboratory of Catalytic Research, Tomsk State University, Tomsk 634050, Russia
| | - Olga Vodyankina
- Laboratory of Catalytic Research, Tomsk State University, Tomsk 634050, Russia
| | - Valery Svetlichnyi
- Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
38
|
Rostovshchikova TN, Shilina MI, Gurevich SA, Yavsin DA, Veselov GB, Vedyagin AA. New Approaches to the Synthesis of Ultralow-Palladium Automotive Emission Control Catalysts. DOKLADY PHYSICAL CHEMISTRY 2022. [DOI: 10.1134/s001250162260019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
39
|
Abdalkareem Jasim S, Thaeer Hammid A, Kamal Abdelbasset W, Hussien M, Urunbaevna Tillaeva G, Majdi A, Yasin G, Fakri Mustafa Y. Synthesis and Characterization of Magnetized Di(Pyridin-2-Yl)Amine-Copper (II) Complex and Its Catalytic Applications in Synthesis of Ynones and Amides. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohamed Hussien
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Pesticide Formulation Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Egypt
| | - Gulnora Urunbaevna Tillaeva
- Doctor of Pharmaceutical Sciences, Tashkent Pharmaceutical Institute, Tashkent, Uzbekistan
- Department of Research and Development, School of Pharmacy, Akfa University, Tashkent, Uzbekistan
| | - Ali Majdi
- Department of Building and Construction Techniques, Al Mustaqbal University College, Hillah, Iraq
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
40
|
Mo X, Gao X, Gillado AV, Chen HY, Chen Y, Guo Z, Wu HL, Tse ECM. Direct 3D Printing of Binder-Free Bimetallic Nanomaterials as Integrated Electrodes for Glycerol Oxidation with High Selectivity for Valuable C 3 Products. ACS NANO 2022; 16:12202-12213. [PMID: 35959924 DOI: 10.1021/acsnano.2c02865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Net-zero carbon strategies and green synthesis methodologies are key to realizing the United Nations' sustainable development goals (SDGs) on a global scale. An electrocatalytic glycerol oxidation reaction (GOR) holds the promise of upcycling excess glycerol from biodiesel production directly into precious hydrocarbon commodities that are worth orders of magnitude more than the glycerol feedstock. Despite years of research on the GOR, the synthesis process of nanoscale electrocatalysts still involves (1) prohibitive heat input, (2) expensive vacuum chambers, and (3) emission of toxic liquid pollutants. In this paper, these knowledge gaps are closed via developing a laser-assisted nanomaterial preparation (LANP) process to fabricate bimetallic nanocatalysts (1) at room temperature, (2) under an ambient atmosphere, and (3) without liquid waste emission. Specifically, PdCu nanoparticles with adjustable Pd:Cu content supported on few-layer graphene can be prepared using this one-step LANP method with performance that can rival state-of-the-art GOR catalysts. Beyond exhibiting high GOR activity, the LANP-fabricated PdCu/C nanomaterials with an optimized Pd:Cu ratio further deliver an exclusive product selectivity of up to 99% for partially oxidized C3 products with value over 280000-folds that of glycerol. Through DFT calculations and in situ XAS experiments, the synergy between Pd and Cu is found to be responsible for the stability under GOR conditions and preference for C3 products of LANP PdCu. This dry LANP method is envisioned to afford sustainable production of multimetallic nanoparticles in a continuous fashion as efficient electrocatalysts for other redox reactions with intricate proton-coupled electron transfer steps that are central to the widespread deployment of renewable energy schemes and carbon-neutral technologies.
Collapse
Affiliation(s)
- Xiaoyong Mo
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| | - Xutao Gao
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| | - Armida V Gillado
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Yu Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhengxiao Guo
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Edmund C M Tse
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| |
Collapse
|
41
|
Theerthagiri J, Karuppasamy K, Lee SJ, Shwetharani R, Kim HS, Pasha SKK, Ashokkumar M, Choi MY. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:250. [PMID: 35945216 PMCID: PMC9363469 DOI: 10.1038/s41377-022-00904-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 05/03/2023]
Abstract
The global energy crisis is increasing the demand for innovative materials with high purity and functionality for the development of clean energy production and storage. The development of novel photo- and electrocatalysts significantly depends on synthetic techniques that facilitate the production of tailored advanced nanomaterials. The emerging use of pulsed laser in liquid synthesis has attracted immense interest as an effective synthetic technology with several advantages over conventional chemical and physical synthetic routes, including the fine-tuning of size, composition, surface, and crystalline structures, and defect densities and is associated with the catalytic, electronic, thermal, optical, and mechanical properties of the produced nanomaterials. Herein, we present an overview of the fundamental understanding and importance of the pulsed laser process, namely various roles and mechanisms involved in the production of various types of nanomaterials, such as metal nanoparticles, oxides, non-oxides, and carbon-based materials. We mainly cover the advancement of photo- and electrocatalytic nanomaterials via pulsed laser-assisted technologies with detailed mechanistic insights and structural optimization along with effective catalytic performances in various energy and environmental remediation processes. Finally, the future directions and challenges of pulsed laser techniques are briefly underlined. This review can exert practical guidance for the future design and fabrication of innovative pulsed laser-induced nanomaterials with fascinating properties for advanced catalysis applications.
Collapse
Affiliation(s)
- Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - R Shwetharani
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore, 562112, Karnataka, India
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - S K Khadheer Pasha
- Department of Physics, Vellore Institute of Technology (Amaravati Campus), Amaravati, 522501, Guntur, Andhra Pradesh, India
| | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Parkville Campus, Melbourne, VIC, 3010, Australia
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
42
|
Stadnichenko AI, Slavinskaya EM, Fakhrutdinova ED, Kardash TY, Svetlichnyi VA, Boronin AI. Effect of the Type of Active Component–Support Interaction on the Low-Temperature Activity of Metal–Oxide Catalysts in CO Oxidation. DOKLADY PHYSICAL CHEMISTRY 2022. [DOI: 10.1134/s0012501622700051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Hesabizadeh T, Hicks E, Medina Cruz D, Bourdo SE, Watanabe F, Bonney M, Nichols J, Webster TJ, Guisbiers G. Synthesis of "Naked" TeO 2 Nanoparticles for Biomedical Applications. ACS OMEGA 2022; 7:23685-23694. [PMID: 35847343 PMCID: PMC9280960 DOI: 10.1021/acsomega.2c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chalcogenide nanoparticles have become a very active field of research for their optoelectronic and biological properties. This article shows the production of tellurium dioxide nanoparticles (TeO2 NPs) by pulsed laser ablation in liquids. The produced nanoparticles were spherical with a diameter of around 70 nm. The energy band gap of those nanoparticles was determined to be around 5.2 eV. Moreover, TeO2 NPs displayed a dose-dependent antibacterial effect against antibiotic-resistant bacteria such as multidrug-resistant Escherichia coli (MDR E. coli) and methicillin-resistant Staphylococcus aureus (MR S. aureus). The "naked" nature of the nanoparticle surface helped to eradicate the antibiotic-resistant bacteria at a very low concentration, with IC50 values of ∼4.3 ± 0.9 and 3.7 ± 0.2 ppm for MDR E. coli and MR S. aureus, respectively, after just 8 h of culture. Further, the IC50 values of the naked TeO2 NPs against melanoma (skin cancer) and healthy fibroblasts were 1.6 ± 0.7 and 5.5 ± 0.2 ppm, respectively, for up to 72 h. Finally, to understand these optimal antibacterial and anticancer properties of the TeO2 NPs, the reactive oxygen species generated by the nanoparticles were measured. In summary, the present in vitro results demonstrate much promise for the presently prepared TeO2 NPs and they should be studied for a wide range of safe antibacterial and anticancer applications.
Collapse
Affiliation(s)
- Tina Hesabizadeh
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Evan Hicks
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - David Medina Cruz
- Department
of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360
Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Shawn E. Bourdo
- Center
for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Fumiya Watanabe
- Center
for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Marvin Bonney
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - John Nichols
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Thomas J. Webster
- Department
of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360
Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Grégory Guisbiers
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| |
Collapse
|
44
|
Subhan A, Mourad AHI, Al-Douri Y. Influence of Laser Process Parameters, Liquid Medium, and External Field on the Synthesis of Colloidal Metal Nanoparticles Using Pulsed Laser Ablation in Liquid: A Review. NANOMATERIALS 2022; 12:nano12132144. [PMID: 35807980 PMCID: PMC9268572 DOI: 10.3390/nano12132144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023]
Abstract
Pulsed laser ablation in liquid, used for nanoparticle synthesis from solid bulk metal targets (a top-down approach), has been a hot topic of research in the past few decades. It is a highly efficient and ‘green’ fabrication method for producing pure, stable, non-toxic (ligand-free), colloidal nanoparticles, which is often challenging using traditional chemical methods. Due to the short time scale interaction between the laser pulses and the target, it is difficult to achieve complete control on the physical characteristics of metallic nanoparticles. Laser process parameters, liquid environment, and external fields vastly effect the shape and structure of nanoparticles for targeted applications. Past reviews on pulsed laser ablation have focused extensively on synthesising different materials using this technique but little attention has been given to explaining the dependency aspect of the process parameters in fine-tuning the nanoparticle characteristics. In this study, we reviewed the state of the art literature available on this technique, which can help the scientific community develop a comprehensive understanding with special insights into the laser ablation mechanism. We further examined the importance of these process parameters in improving the ablation rate and productivity and analysed the morphology, size distribution, and structure of the obtained nanoparticles. Finally, the challenges faced in nanoparticle research and prospects are presented.
Collapse
Affiliation(s)
- Abdul Subhan
- Mechanical and Aerospace Engineering Department, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Abdel-Hamid Ismail Mourad
- Mechanical and Aerospace Engineering Department, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Mechanical Design Department, Faculty of Engineering, El Mataria, Helwan University, Cairo 11795, Egypt
- Correspondence:
| | - Yarub Al-Douri
- Engineering Department, American University of Iraq-Sulaimani, Sulaimani P.O. Box 46001, Kurdistan Region, Iraq;
- Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Besiktas, Istanbul 34349, Turkey
| |
Collapse
|
45
|
Scandurra A, Censabella M, Gulino A, Grimaldi MG, Ruffino F. Electro-Sorption of Hydrogen by Platinum, Palladium and Bimetallic Pt-Pd Nanoelectrode Arrays Synthesized by Pulsed Laser Ablation. MICROMACHINES 2022; 13:mi13060963. [PMID: 35744577 PMCID: PMC9228338 DOI: 10.3390/mi13060963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Sustainable and renewable production of hydrogen by water electrolysers is expected to be one of the most promising methods to satisfy the ever-growing demand for renewable energy production and storage. Hydrogen evolution reaction in alkaline electrolyte is still challenging due to its slow kinetic properties. This study proposes new nanoelectrode arrays for high Faradaic efficiency of the electro-sorption reaction of hydrogen in an alkaline electrolyte. A comparative study of the nanoelectrode arrays, consisting of platinum or palladium or bimetallic nanoparticles (NPs) Pt80Pd20 (wt.%), obtained by nanosecond pulsed laser ablation in aqueous environment, casted onto graphene paper, is proposed. The effects of thin films of perfluoro-sulfonic ionomer on the material morphology, nanoparticles dispersion, and electrochemical performance have been investigated. The NPs-GP systems have been characterized by field emission scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge cycles. Faradaic efficiency up to 86.6% and hydrogen storage capacity up to 6 wt.% have been obtained by the Pt-ionomer and Pd/Pt80Pd20 systems, respectively.
Collapse
Affiliation(s)
- Antonino Scandurra
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Viale Andrea Doria 8 and Via S. Sofia 64, 95125 Catania, Italy;
- Correspondence:
| | - Maria Censabella
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
| | - Antonino Gulino
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Viale Andrea Doria 8 and Via S. Sofia 64, 95125 Catania, Italy;
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy
| | - Maria Grazia Grimaldi
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Viale Andrea Doria 8 and Via S. Sofia 64, 95125 Catania, Italy;
| |
Collapse
|
46
|
Rostovshchikova TN, Nikolaev SA, Krotova IN, Maslakov KI, Udalova OV, Gurevich SA, Yavsin DA, Shilina MI. ZSM-5 and BEA zeolites modified with Pd nanoparticles by laser electrodispersion. The structure and catalytic activity in CO and CH4 oxidation. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Zhang C, Zhang W, Karadas F, Low J, Long R, Liang C, Wang J, Li Z, Xiong Y. Laser-ablation assisted strain engineering of gold nanoparticles for selective electrochemical CO 2 reduction. NANOSCALE 2022; 14:7702-7710. [PMID: 35551317 DOI: 10.1039/d2nr01400a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strain engineering can endow versatile functions, such as refining d-band center and inducing lattice mismatch, on catalysts for a specific reaction. To this end, effective strain engineering for introducing strain on the catalyst is highly sought in various catalytic applications. Herein, a facile laser ablation in liquid (LAL) strategy is adopted to synthesize gold nanoparticles (Au NPs) with rich compressive strain (Au-LAL) for electrochemical CO2 reduction. It is demonstrated that the rich compressive strain can greatly promote the electrochemical CO2 reduction performance of Au, achieving a CO partial current density of 24.9 mA cm-2 and a maximum CO faradaic efficiency of 97% at -0.9 V for Au-LAL, while it is only 2.77 mA cm-2 and 16.2% for regular Au nanoparticles (Au-A). As revealed by the in situ Raman characterization and density functional theory calculations, the presence of compressive strain can induce a unique electronic structure change in Au NPs, significantly up-shifting the d-band center of Au. Such a phenomenon can greatly enhance the adsorption strength of Au NPs toward the key intermediate of CO2 reduction (i.e., *COOH). More interestingly, we demonstrate that, an important industrial chemical feedstock, syngas, can be obtained by simply mixing Au-LAL with Au-A in a suitable ratio. This work provides a promising method for introducing strain in metal NPs and demonstrates the important role of strain in tuning the performance and selectivity of catalysts.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Wei Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ferdi Karadas
- National Nanotechnology Research Center, and Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Jingxiang Low
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
48
|
Ziefuss A, Barcikowski S, Zhigilei LV. Advances in pulsed laser synthesis of nanoparticles in liquids. SCIENCE CHINA. PHYSICS, MECHANICS & ASTRONOMY 2022; 65:274201. [PMID: 35637878 PMCID: PMC9132167 DOI: 10.1007/s11433-022-1909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- A Ziefuss
- Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen CENIDE, University of Duisburg-Essen, Essen, D-45141 Germany
| | - S Barcikowski
- Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen CENIDE, University of Duisburg-Essen, Essen, D-45141 Germany
| | - L V Zhigilei
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904-4745 USA
| |
Collapse
|
49
|
Yan B, He Y, Yang G. Nanoscale Self-Wetting Driven Monatomization of Ag Nanoparticle for Excellent Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107840. [PMID: 35199465 DOI: 10.1002/smll.202107840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Metal nanoparticles (NPs) with <10 nm have demonstrated many novel applications including surprisingly low melting point, astonishing liquid-like pseudoelasticity, and outstanding hydrogen evolution performance. Here, a nanoscale self-wetting driven monatomization of Ag NPs with <5 nm on carbon nitride (CN) to fabricate Ag single-atom catalyst (Ag1 /CN SAC) is demonstrated, and a thermodynamic approach to elucidate Ag NPs decomposing into single atoms is established. Dynamic dispersion process of Ag NPs into atoms on CN is recorded using in situ AC-HADDF-TEM techniques. Density functional theory calculations and molecular dynamics simulations suggest that the spontaneous dispersion origins from the nanoscale self-wetting effect in thermodynamics. In atomic scale, the driving force of self-wetting derived from the balance between cohesive energy of Ag NPs and excess energy of Ag atoms in CN vacations. The fabricated Ag1 /CN SAC proved a higher efficiency for photocatalytic hydrogen evolution activity (3690 μmmol g-1 h-1 ) than Pt nanoparticles on CN (3192 μmmol g-1 h-1 ). This spontaneous monatomization resulting from the interaction between metal NPs and substrate provides a simple method to prepare SACs with a high active photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Bo Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Physics, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yan He
- College of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Physics, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
50
|
Yue C, Zhou Y, Liu Y, Feng C, Bao W, Sun F, Tuo Y, Pan Y, Liu Y, Lu Y. Achieving ultra-dispersed 1T-Co-MoS 2@HMCS via space-confined engineering for highly efficient hydrogen evolution in the universal pH range. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00269h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-level spatial confinement strategy is proposed for the fabrication of ultra-dispersed 1T-Co-MoS2 nanoclusters, which exhibit remarkable electrocatalytic activity and durability for HER.
Collapse
Affiliation(s)
- Changle Yue
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Wenjing Bao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fengyue Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yongxiao Tuo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yukun Lu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| |
Collapse
|