1
|
Cabezón A, Suárez-Lestón F, Granja JR, Piñeiro Á, Garcia-Fandino R. CYCLOPEp Builder: Facilitating cyclic peptide and nanotube research through a user-friendly web platform. Comput Struct Biotechnol J 2024; 25:91-94. [PMID: 38966006 PMCID: PMC11222899 DOI: 10.1016/j.csbj.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024] Open
Abstract
The study of cyclic peptides (CPs) and self-assembling cyclic peptide nanotubes (SCPNs) is pivotal in advancing applications in diverse fields such as biomedicine, nanoelectronics, and catalysis. Recognizing the limitations in the experimental study of these molecules, this article introduces CYCLOPEp Builder, a comprehensive web-based application designed to facilitate the design, simulation, and visualization of CPs and SCPNs. The tool is engineered to generate molecular topologies, essential for conducting Molecular Dynamics simulations that span All-Atom to Coarse-Grain resolutions. CYCLOPEp Builder's user-friendly interface simplifies the complex process of molecular modeling, providing researchers with the ability to readily construct CPs and SCPNs. The platform is versatile, equipped with various force fields, and capable of producing structures ranging from individual CPs to complex SCPNs with different sequences, offering parallel and antiparallel orientations among them. By enhancing the capacity for detailed visualization of molecular assemblies, CYCLOPEp Builder improves the understanding of CP and SCPN molecular interactions. This tool is a step forward in democratizing access to sophisticated simulations, offering an invaluable resource to the scientific community engaged in the exploration of supramolecular structures. CYCLOPEp is accessible at http://cyclopep.com/.
Collapse
Affiliation(s)
- Alfonso Cabezón
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, CIQUS, Spain
| | - Fabián Suárez-Lestón
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, CIQUS, Spain
- Soft Matter & Molecular Biophysics Group, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, 15782 Santiago de Compostela, Spain
| | - Juan R. Granja
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, CIQUS, Spain
| | - Ángel Piñeiro
- Soft Matter & Molecular Biophysics Group, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandino
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, CIQUS, Spain
| |
Collapse
|
2
|
Kurita T, Numata K. The structural and functional impacts of rationally designed cyclic peptides on self-assembly-mediated functionality. Phys Chem Chem Phys 2024; 26:28776-28792. [PMID: 39555904 DOI: 10.1039/d4cp02759k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Compared with their linear counterparts, cyclic peptides, characterized by their unique topologies, offer superior stability and enhanced functionality. In this review article, the rational design of cyclic peptide primary structures and their significant influence on self-assembly processes and functional capabilities are comprehensively reviewed. We emphasize how strategically modifying amino acid sequences and ring sizes critically dictate the formation and properties of peptide nanotubes (PNTs) and complex assemblies, such as rotaxanes. Adjusting the number of amino acid residues and side chains allows researchers to tailor the diameter, surface properties, and functions of PNTs precisely. In addition, we discuss the complex host-guest chemistry of cyclic peptides and their ability to form rotaxanes, highlighting their potential in the development of mechanically interlocked structures with novel functionalities. Moreover, the critical role of computational methods for accurately predicting the solution structures of cyclic peptides is also highlighted, as it enables the design of novel peptides with tailored properties for a range of applications. These insights set the stage for groundbreaking advances in nanotechnology, drug delivery, and materials science, driven by the strategic design of cyclic peptide primary structures.
Collapse
Affiliation(s)
- Taichi Kurita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
3
|
Li S, Peng L, Chen L, Que L, Kang W, Hu X, Ma J, Di Z, Liu Y. Discovery of Highly Bioactive Peptides through Hierarchical Structural Information and Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:8164-8175. [PMID: 39466714 DOI: 10.1021/acs.jcim.4c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Peptide drugs play an essential role in modern therapeutics, but the computational design of these molecules is hindered by several challenges. Traditional methods like molecular docking and molecular dynamics (MD) simulation, as well as recent deep learning approaches, often face limitations related to computational resource demands, complex binding affinity assessments, extensive data requirements, and poor model interpretability. Here, we introduce PepHiRe, an innovative methodology that utilizes the hierarchical structural information in peptide sequences and employs a novel strategy called Ladderpath, rooted in algorithmic information theory, to rapidly generate and enhance the efficiency and clarity of novel peptide design. We applied PepHiRe to develop BH3-like peptide inhibitors targeting myeloid cell leukemia-1, a protein associated with various cancers. By analyzing just eight known bioactive BH3 peptide sequences, PepHiRe effectively derived a hierarchy of subsequences used to create new BH3-like peptides. These peptides underwent screening through MD simulations, leading to the selection of five candidates for synthesis and subsequent in vitro testing. Experimental results demonstrated that these five peptides possess high inhibitory activity, with IC50 values ranging from 28.13 ± 7.93 to 167.42 ± 22.15 nM. Our study explores a white-box model driven technique and a structured screening pipeline for identifying and generating novel peptides with potential bioactivity.
Collapse
Affiliation(s)
- Shu Li
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Lu Peng
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Liuqing Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linjie Que
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Wenqingqing Kang
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Xiaojun Hu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jun Ma
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zengru Di
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
4
|
Zhai S, Tan Y, Zhu C, Zhang C, Gao Y, Mao Q, Zhang Y, Duan H, Yin Y. PepExplainer: An explainable deep learning model for selection-based macrocyclic peptide bioactivity prediction and optimization. Eur J Med Chem 2024; 275:116628. [PMID: 38944933 DOI: 10.1016/j.ejmech.2024.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Macrocyclic peptides possess unique features, making them highly promising as a drug modality. However, evaluating their bioactivity through wet lab experiments is generally resource-intensive and time-consuming. Despite advancements in artificial intelligence (AI) for bioactivity prediction, challenges remain due to limited data availability and the interpretability issues in deep learning models, often leading to less-than-ideal predictions. To address these challenges, we developed PepExplainer, an explainable graph neural network based on substructure mask explanation (SME). This model excels at deciphering amino acid substructures, translating macrocyclic peptides into detailed molecular graphs at the atomic level, and efficiently handling non-canonical amino acids and complex macrocyclic peptide structures. PepExplainer's effectiveness is enhanced by utilizing the correlation between peptide enrichment data from selection-based focused library and bioactivity data, and employing transfer learning to improve bioactivity predictions of macrocyclic peptides against IL-17C/IL-17 RE interaction. Additionally, PepExplainer underwent further validation for bioactivity prediction using an additional set of thirteen newly synthesized macrocyclic peptides. Moreover, it enabled the optimization of the IC50 of a macrocyclic peptide, reducing it from 15 nM to 5.6 nM based on the contribution score provided by PepExplainer. This achievement underscores PepExplainer's skill in deciphering complex molecular patterns, highlighting its potential to accelerate the discovery and optimization of macrocyclic peptides.
Collapse
Affiliation(s)
- Silong Zhai
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Cheng Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chengyun Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan Gao
- Qilu Institute of Technology, Jinan, 250200, China
| | - Qingyi Mao
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Hongliang Duan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China.
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China; Shandong Research Institute of Industrial Technology, Jinan, 250101, China.
| |
Collapse
|
5
|
Darling WTP, Wieske LHE, Cook DT, Aliev AE, Caron L, Humphrys EJ, Figueiredo AM, Hansen DF, Erdélyi M, Tabor AB. The Influence of Disulfide, Thioacetal and Lanthionine-Bridges on the Conformation of a Macrocyclic Peptide. Chemistry 2024; 30:e202401654. [PMID: 38953277 DOI: 10.1002/chem.202401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cyclisation of peptides by forming thioether (lanthionine), disulfide (cystine) or methylene thioacetal bridges between side chains is established as an important tool to stabilise a given structure, enhance metabolic stability and optimise both potency and selectivity. However, a systematic comparative study of the effects of differing bridging modalities on peptide conformation has not previously been carried out. In this paper, we have used the NMR deconvolution algorithm, NAMFIS, to determine the conformational ensembles, in aqueous solution, of three cyclic analogues of angiotensin(1-7), incorporating either disulfide, or non-reducible thioether or methylene thioacetal bridges. We demonstrate that the major solution conformations are conserved between the different bridged peptides, but the distribution of conformations differs appreciably. This suggests that subtle differences in ring size and bridging structure can be exploited to fine-tune the conformational properties of cyclic peptides, which may modulate their bioactivities.
Collapse
Affiliation(s)
- William T P Darling
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Lianne H E Wieske
- Department of Chemistry-BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Declan T Cook
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Abil E Aliev
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Laurent Caron
- Biosynth Laboratories Ltd (formerly Cambridge Research Biochemicals Ltd), 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, TS23 4AZ, UK
| | - Emily J Humphrys
- Biosynth Laboratories Ltd (formerly Cambridge Research Biochemicals Ltd), 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, TS23 4AZ, UK
| | - Angelo Miguel Figueiredo
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UCL Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UCL Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Máté Erdélyi
- Department of Chemistry-BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
6
|
Khandibharad S, Singh S. Mechanistic study of inhibitory peptides with SHP-1 in hypertonic environment for infection model. Biochim Biophys Acta Gen Subj 2024; 1868:130670. [PMID: 38996989 DOI: 10.1016/j.bbagen.2024.130670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Cutaneous Leishmaniasis, an infectious disease is globally the most prevalent form of leishmaniasis accounting for approximately 1 million cases every year as per world health organization. Infected individuals develop skin lesion which has been reported to be infiltrated by immune cells and parasite with high sodium accumulation creating hypertonic environment. In our work, we tried to mimic the hypertonic environment in virtual environment to study dynamicity of SHP-1 and NFAT5 along with their interactions through molecular dynamics simulation. We validated the SHP-1 and NFAT5 dynamics in infection and HSD conditions to study the impact of hypertonicity derived NFAT5 mediated response to L.major infection. We also evaluated our therapeutic peptides for their binding to SHP-1 and to form stable complex. Membrane stability with the peptides was analyzed to understand their ability to sustain mammalian membrane. We identified PepA to be a potential candidate to interact with SHP-1. Inhibition of SHP-1 through PepA to discern IL-10 and IL-12 reciprocity may be assessed in future and furnish us with a potential therapeutic molecule. HSD mice exhibited high pro-inflammatory response to L.major infection which resulted in reduced lesion size. Contrary to observations in HSD mice, infection model exhibited low pro-inflammatory response and increased lesion size with high parasite load. Thus, increase in NFAT5 expression and reduced SHP-1 expression may result in disease resolving effect which can be further studied through incorporation of synthetic circuit using PepA to modulate IL-10 and IL-12 reciprocity.
Collapse
Affiliation(s)
- Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, INDIA
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, INDIA.
| |
Collapse
|
7
|
Grambow CA, Weir H, Cunningham CN, Biancalani T, Chuang KV. CREMP: Conformer-rotamer ensembles of macrocyclic peptides for machine learning. Sci Data 2024; 11:859. [PMID: 39122750 PMCID: PMC11316032 DOI: 10.1038/s41597-024-03698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Computational and machine learning approaches to model the conformational landscape of macrocyclic peptides have the potential to enable rational design and optimization. However, accurate, fast, and scalable methods for modeling macrocycle geometries remain elusive. Recent deep learning approaches have significantly accelerated protein structure prediction and the generation of small-molecule conformational ensembles, yet similar progress has not been made for macrocyclic peptides due to their unique properties. Here, we introduce CREMP, a resource generated for the rapid development and evaluation of machine learning models for macrocyclic peptides. CREMP contains 36,198 unique macrocyclic peptides and their high-quality structural ensembles generated using the Conformer-Rotamer Ensemble Sampling Tool (CREST). Altogether, this new dataset contains nearly 31.3 million unique macrocycle geometries, each annotated with energies derived from semi-empirical extended tight-binding (xTB) DFT calculations. Additionally, we include 3,258 macrocycles with reported passive permeability data to couple conformational ensembles to experiment. We anticipate that this dataset will enable the development of machine learning models that can improve peptide design and optimization for novel therapeutics.
Collapse
Affiliation(s)
- Colin A Grambow
- Prescient Design, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Hayley Weir
- Prescient Design, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Christian N Cunningham
- Department of Peptide Therapeutics, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tommaso Biancalani
- Biology Research | Development, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kangway V Chuang
- Prescient Design, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
8
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
9
|
Kurita T, Higashi M, Gimenez-Dejoz J, Fujita S, Uji H, Sato H, Numata K. Synthesis of All-Peptide-Based Rotaxane from a Proline-Containing Cyclic Peptide. Biomacromolecules 2024; 25:3661-3670. [PMID: 38807574 DOI: 10.1021/acs.biomac.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Rotaxane cross-linkers enhance the toughness of the resulting rotaxane cross-linked polymers through a stress dispersion effect, which is attributed to the mobility of the interlocked structure. To date, the compositional diversity of rotaxane cross-linkers has been limited, and the poor compatibility of these cross-linkers with peptides and proteins has made their use in such materials challenging. The synthesis of a rotaxane composed of peptides may result in a biodegradable cross-linker that is compatible with peptides and proteins, allowing the fortification of polypeptides and proteins and ultimately leading to the development of innovative materials that possess excellent mechanical properties and biodegradability. However, the chemical synthesis of all-peptide-based rotaxanes has remained elusive because of the absence of strong binding motifs in peptides, which prevents an axial peptide from penetrating a cyclic peptide. Here, we synthesized all-peptide-based rotaxanes using an active template method for proline-containing cyclic peptides. The results of molecular dynamics simulations suggested that cyclic peptides with an expansive inner cavity and carbonyl oxygens oriented toward the center are favorable for rotaxane synthesis. This rotaxane synthesis method is expected to accelerate the synthesis of peptides and proteins with mechanically interlocked structures, potentially leading to the development of peptide- and protein-based materials with unprecedented functionalities.
Collapse
Affiliation(s)
- Taichi Kurita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Life Sciences Department, Barcelona Supercomputing Center, Jordi Girona 31, 08034 Barcelona, Spain
| | - Seiya Fujita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hirotaka Uji
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishibiraki-cho 34-4, Sakyou-ku, Kyoto 606-8103, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
10
|
Miao J, Ghosh AP, Ho MN, Li C, Huang X, Pentelute BL, Baleja JD, Lin YS. Assessing the Performance of Peptide Force Fields for Modeling the Solution Structural Ensembles of Cyclic Peptides. J Phys Chem B 2024; 128:5281-5292. [PMID: 38785765 PMCID: PMC11163431 DOI: 10.1021/acs.jpcb.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Molecular dynamics simulation is a powerful tool for characterizing the solution structural ensembles of cyclic peptides. However, the ability of simulation to recapitulate experimental results and make accurate predictions largely depends on the force fields used. In our work here, we evaluate the performance of seven state-of-the-art force fields in recapitulating the experimental NMR results in water of 12 benchmark cyclic peptides, consisting of 6 cyclic pentapeptides, 4 cyclic hexapeptides, and 2 cyclic heptapeptides. The results show that RSFF2+TIP3P, RSFF2C+TIP3P, and Amber14SB+TIP3P exhibit similar and the best performance, all recapitulating the NMR-derived structure information on 10 cyclic peptides. Amber19SB+OPC successfully recapitulates the NMR-derived structure information on 8 cyclic peptides. In contrast, OPLS-AA/M+TIP4P, Amber03+TIP3P, and Amber14SBonlysc+GB-neck2 could only recapitulate the NMR-derived structure information on 5 cyclic peptides, the majority of which are not well-structured.
Collapse
Affiliation(s)
- Jiayuan Miao
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Arghya Pratim Ghosh
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Minh Ngoc Ho
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengxi Li
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310030, China
- Engineering
Research Center of Functional Materials Intelligent Manufacturing
of Zhejiang Province, ZJU-Hangzhou Global
Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| | - Xuejian Huang
- Graduate
Program in Pharmacology and Experimental Therapeutics, Graduate School
of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - James D. Baleja
- Graduate
Program in Pharmacology and Experimental Therapeutics, Graduate School
of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
| | - Yu-Shan Lin
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
11
|
Tomasello B, Bellia F, Naletova I, Magrì A, Tabbì G, Attanasio F, Tomasello MF, Cairns WRL, Fortino M, Pietropaolo A, Greco V, La Mendola D, Sciuto S, Arena G, Rizzarelli E. BDNF- and VEGF-Responsive Stimulus to an NGF Mimic Cyclic Peptide with Copper Ionophore Capability and Ctr1/CCS-Driven Signaling. ACS Chem Neurosci 2024; 15:1755-1769. [PMID: 38602894 DOI: 10.1021/acschemneuro.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.
Collapse
Affiliation(s)
- Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, Catania 95125, Italy
| | - Francesco Bellia
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Irina Naletova
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Antonio Magrì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Giovanni Tabbì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | | | | | - Warren R L Cairns
- Istituto di Scienze Polari (ISP), c/o Campus Scientifico, Università Ca' Foscari Venezia Via Torino, Venezia Mestre 155-30170, Italy
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Diego La Mendola
- Department of Pharmaceutical Sciences, University of Pisa, Bonanno Pisano 12, Pisa 56126, Italy
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| |
Collapse
|
12
|
Liu L, Yang L, Cao S, Gao Z, Yang B, Zhang G, Zhu R, Wu D. CyclicPepedia: a knowledge base of natural and synthetic cyclic peptides. Brief Bioinform 2024; 25:bbae190. [PMID: 38678388 PMCID: PMC11056021 DOI: 10.1093/bib/bbae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 04/30/2024] Open
Abstract
Cyclic peptides offer a range of notable advantages, including potent antibacterial properties, high binding affinity and specificity to target molecules, and minimal toxicity, making them highly promising candidates for drug development. However, a comprehensive database that consolidates both synthetically derived and naturally occurring cyclic peptides is conspicuously absent. To address this void, we introduce CyclicPepedia (https://www.biosino.org/iMAC/cyclicpepedia/), a pioneering database that encompasses 8744 known cyclic peptides. This repository, structured as a composite knowledge network, offers a wealth of information encompassing various aspects of cyclic peptides, such as cyclic peptides' sources, categorizations, structural characteristics, pharmacokinetic profiles, physicochemical properties, patented drug applications, and a collection of crucial publications. Supported by a user-friendly knowledge retrieval system and calculation tools specifically designed for cyclic peptides, CyclicPepedia will be able to facilitate advancements in cyclic peptide drug development.
Collapse
Affiliation(s)
- Lei Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, P. R. China
| | - Liu Yang
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, P. R. China
| | - Suqi Cao
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, P. R. China
| | - Zhigang Gao
- Department of General Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, P. R. China
| | - Bin Yang
- Shanghai Southgene Technology Co., Ltd., Shanghai 201203, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Ruixin Zhu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, P. R. China
| | - Dingfeng Wu
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, P. R. China
| |
Collapse
|
13
|
Frigerio G, Donadoni E, Siani P, Vertemara J, Motta S, Bonati L, Gioia LD, Valentin CD. Mechanism of RGD-conjugated nanodevice binding to its target protein integrin α Vβ 3 by atomistic molecular dynamics and machine learning. NANOSCALE 2024; 16:4063-4081. [PMID: 38334981 DOI: 10.1039/d3nr05123d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Active targeting strategies have been proposed to enhance the selective uptake of nanoparticles (NPs) by diseased cells, and recent experimental findings have proven the effectiveness of this approach. However, no mechanistic studies have yet revealed the atomistic details of the interactions between ligand-activated NPs and integrins. As a case study, here we investigate, by means of advanced molecular dynamics simulations (MD) and machine learning methods (namely equilibrium MD, binding free energy calculations and training of self-organized maps), the interaction of a cyclic-RGD-conjugated PEGylated TiO2 NP (the nanodevice) with the extracellular segment of integrin αVβ3 (the target), the latter experimentally well-known to be over-expressed in several solid tumors. Firstly, we proved that the cyclic-RGD ligand binding to the integrin pocket is established and kept stable even in the presence of the cumbersome realistic model of the nanodevice. In this respect, the unsupervised machine learning analysis allowed a detailed comparison of the ligand/integrin binding in the presence and in the absence of the nanodevice, which unveiled differences in the chemical features. Then, we discovered that unbound cyclic RGDs conjugated to the NP largely contribute to the interactions between the nanodevice and the integrin. Finally, by increasing the density of cyclic RGDs on the PEGylated TiO2 NP, we observed a proportional enhancement of the nanodevice/target binding. All these findings can be exploited to achieve an improved targeting selectivity and cellular uptake, and thus a more successful clinical outcome.
Collapse
Affiliation(s)
- Giulia Frigerio
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Edoardo Donadoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Stefano Motta
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Laura Bonati
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
- BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Italy
| |
Collapse
|
14
|
Kong X, Wang W, Zhong Y, Wang N, Bai K, Wu Y, Qi Q, Zhang Y, Liu X, Xie J. Recent advances in the exploration and discovery of SARS-CoV-2 inhibitory peptides from edible animal proteins. Front Nutr 2024; 11:1346510. [PMID: 38389797 PMCID: PMC10883054 DOI: 10.3389/fnut.2024.1346510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19), is spreading worldwide. Although the COVID-19 epidemic has passed its peak of transmission, the harm it has caused deserves our attention. Scientists are striving to develop medications that can effectively treat COVID-19 symptoms without causing any adverse reactions. SARS-CoV-2 inhibitory peptides derived from animal proteins have a wide range of functional activities in addition to safety. Identifying animal protein sources is crucial to obtaining SARS-CoV-2 inhibitory peptides from animal sources. This review aims to reveal the mechanisms of action of these peptides on SARS-CoV-2 and the possibility of animal proteins as a material source of SARS-CoV-2 inhibitory peptides. Also, it introduces the utilization of computer-aided design methods, phage display, and drug delivery strategies in the research on SARS-CoV-2 inhibitor peptides from animal proteins. In order to identify new antiviral peptides and boost their efficiency, we recommend investigating the interaction between SARS-CoV-2 inhibitory peptides from animal protein sources and non-structural proteins (Nsps) using a variety of technologies, including computer-aided drug approaches, phage display techniques, and drug delivery techniques. This article provides useful information for the development of novel anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Xiaoyue Kong
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yi Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yu Zhang
- Institute of Quality and Standard for Agriculture Products, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
de Raffele D, Ilie IM. Unlocking novel therapies: cyclic peptide design for amyloidogenic targets through synergies of experiments, simulations, and machine learning. Chem Commun (Camb) 2024; 60:632-645. [PMID: 38131333 DOI: 10.1039/d3cc04630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Existing therapies for neurodegenerative diseases like Parkinson's and Alzheimer's address only their symptoms and do not prevent disease onset. Common therapeutic agents, such as small molecules and antibodies struggle with insufficient selectivity, stability and bioavailability, leading to poor performance in clinical trials. Peptide-based therapeutics are emerging as promising candidates, with successful applications for cardiovascular diseases and cancers due to their high bioavailability, good efficacy and specificity. In particular, cyclic peptides have a long in vivo stability, while maintaining a robust antibody-like binding affinity. However, the de novo design of cyclic peptides is challenging due to the lack of long-lived druggable pockets of the target polypeptide, absence of exhaustive conformational distributions of the target and/or the binder, unknown binding site, methodological limitations, associated constraints (failed trials, time, money) and the vast combinatorial sequence space. Hence, efficient alignment and cooperation between disciplines, and synergies between experiments and simulations complemented by popular techniques like machine-learning can significantly speed up the therapeutic cyclic-peptide development for neurodegenerative diseases. We review the latest advancements in cyclic peptide design against amyloidogenic targets from a computational perspective in light of recent advancements and potential of machine learning to optimize the design process. We discuss the difficulties encountered when designing novel peptide-based inhibitors and we propose new strategies incorporating experiments, simulations and machine learning to design cyclic peptides to inhibit the toxic propagation of amyloidogenic polypeptides. Importantly, these strategies extend beyond the mere design of cyclic peptides and serve as template for the de novo generation of (bio)materials with programmable properties.
Collapse
Affiliation(s)
- Daria de Raffele
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Ioana M Ilie
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
16
|
Wang Z, Xu J, Zeng X, Du Q, Lan H, Zhang J, Pan D, Tu M. Recent Advances on Antimicrobial Peptides from Milk: Molecular Properties, Mechanisms, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:80-93. [PMID: 38152984 DOI: 10.1021/acs.jafc.3c07217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Traditional antibiotics are facing a tremendous challenge due to increased antimicrobial resistance; hence, there is an urgent need to find novel antibiotic alternatives. Milk protein-derived antimicrobial peptides (AMPs) are currently attracting substantial attention considering that they showcase an extensive spectrum of antimicrobial activities, with slower development of antimicrobial resistance and safety of raw materials. This review summarizes the molecular properties, and activity mechanisms and highlights the applications and limitations of AMPs derived from milk proteins comprehensively. Also the analytical technologies, especially bioinformatics methodologies, applied in the process of screening, identification, and mechanism illustration of AMPs were underlined. This review will give some ideas for further research and broadening of the applications of milk protein-derived AMPs in the food field.
Collapse
Affiliation(s)
- Zhicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
17
|
Chang L, Mondal A, Singh B, Martínez-Noa Y, Perez A. Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2024; 14:e1693. [PMID: 38680429 PMCID: PMC11052547 DOI: 10.1002/wcms.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 05/01/2024]
Abstract
Peptide-based drugs offer high specificity, potency, and selectivity. However, their inherent flexibility and differences in conformational preferences between their free and bound states create unique challenges that have hindered progress in effective drug discovery pipelines. The emergence of AlphaFold (AF) and Artificial Intelligence (AI) presents new opportunities for enhancing peptide-based drug discovery. We explore recent advancements that facilitate a successful peptide drug discovery pipeline, considering peptides' attractive therapeutic properties and strategies to enhance their stability and bioavailability. AF enables efficient and accurate prediction of peptide-protein structures, addressing a critical requirement in computational drug discovery pipelines. In the post-AF era, we are witnessing rapid progress with the potential to revolutionize peptide-based drug discovery such as the ability to rank peptide binders or classify them as binders/non-binders and the ability to design novel peptide sequences. However, AI-based methods are struggling due to the lack of well-curated datasets, for example to accommodate modified amino acids or unconventional cyclization. Thus, physics-based methods, such as docking or molecular dynamics simulations, continue to hold a complementary role in peptide drug discovery pipelines. Moreover, MD-based tools offer valuable insights into binding mechanisms, as well as the thermodynamic and kinetic properties of complexes. As we navigate this evolving landscape, a synergistic integration of AI and physics-based methods holds the promise of reshaping the landscape of peptide-based drug discovery.
Collapse
Affiliation(s)
- Liwei Chang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Arup Mondal
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Bhumika Singh
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | | | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL 32611
| |
Collapse
|
18
|
Rüdisser SH, Matabaro E, Sonderegger L, Güntert P, Künzler M, Gossert AD. Conformations of Macrocyclic Peptides Sampled by Nuclear Magnetic Resonance: Models for Cell-Permeability. J Am Chem Soc 2023; 145:27601-27615. [PMID: 38062770 PMCID: PMC10739998 DOI: 10.1021/jacs.3c09367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
The biological activities and pharmacological properties of peptides and peptide mimetics are determined by their conformational states. Therefore, a detailed understanding of the conformational landscape is crucial for rational drug design. Nuclear magnetic resonance (NMR) is the only method for structure determination in solution. However, it remains challenging to determine the structures of peptides using NMR because of very weak nuclear Overhauser effects (NOEs), the semiquantitative nature of the rotating frame Overhauser effect (ROE), and the low number of NOEs/ROEs in N-methylated peptides. In this study, we introduce a new approach to investigating the structures of modified macrocyclic peptides. We utilize exact NOEs (eNOEs) in viscous solvent mixtures to replicate various cellular environments. eNOEs provide detailed structural information for highly dynamic modified peptides. Structures of high precision were obtained for cyclosporin A, with a backbone atom rmsd of 0.10 Å. Distinct conformational states in different environments were identified for omphalotin A (OmphA), a fungal nematotoxic and multiple backbone N-methylated macrocyclic peptides. A model for cell-permeation is presented for OmphA, based on its structures in polar, apolar, and mixed polarity solvents. During the transition from a polar to an apolar environment, OmphA undergoes a rearrangement of its H-bonding network, accompanied by a cis to trans isomerization of the ω torsion angle within a type VIa β-turn. We hypothesize that the kinetics of these conformational transitions play a crucial role in determining the membrane-permeation capabilities of OmphA.
Collapse
Affiliation(s)
| | | | | | - Peter Güntert
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich 8093, Switzerland
- Institute
of Biophysical Chemistry, Goethe University, Frankfurt am Main 60438, Germany
- Department
of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Markus Künzler
- Department
of Biology, ETH Zürich, Zürich 8093, Switzerland
| | | |
Collapse
|
19
|
Cheng J, Zhou J, Kong L, Wang H, Zhang Y, Wang X, Liu G, Chu Q. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation. RSC Med Chem 2023; 14:2496-2508. [PMID: 38107173 PMCID: PMC10718590 DOI: 10.1039/d3md00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023] Open
Abstract
Protein-protein interactions (PPIs) control many essential biological pathways which are often misregulated in disease. As such, selective PPI modulators are desirable to unravel complex functions of PPIs and thus expand the repertoire of therapeutic targets. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets for conventional drug modalities, rendering most PPIs "undruggable". Therefore, there is a growing need to discover innovative molecules that are able to modulate crucial PPIs. Peptides are ideal candidates to deliver such therapeutics attributed to their ability to closely mimic structural features of protein interfaces. However, their inherently poor proteolysis resistance and cell permeability inevitably hamper their biomedical applications. The introduction of a constraint (i.e., peptide cyclization) to stabilize peptides' secondary structure is a promising strategy to address this problem as witnessed by the rapid development of cyclic peptide drugs in the past two decades. Here, we comprehensively review the recent progress on stabilized cyclic peptides in targeting challenging PPIs. Technological advancements and emerging chemical approaches for stabilizing active peptide conformations are categorized in terms of α-helix stapling, β-hairpin mimetics and macrocyclization. To discover potent and selective ligands, cyclic peptide library technologies were updated based on genetic, biochemical or synthetic methodologies. Moreover, several advances to improve the permeability and oral bioavailability of biologically active cyclic peptides enable the de novo development of cyclic peptide ligands with pharmacological properties. In summary, the development of cyclic peptide-based PPI modulators carries tremendous promise for the next generation of therapeutic agents to target historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Junlong Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Lingyan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
20
|
Tang X, Kokot J, Waibl F, Fernández-Quintero ML, Kamenik AS, Liedl KR. Addressing Challenges of Macrocyclic Conformational Sampling in Polar and Apolar Solvents: Lessons for Chameleonicity. J Chem Inf Model 2023; 63:7107-7123. [PMID: 37943023 PMCID: PMC10685455 DOI: 10.1021/acs.jcim.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
We evaluated a workflow to reliably sample the conformational space of a set of 47 peptidic macrocycles. Starting from SMILES strings, we use accelerated molecular dynamics simulations to overcome high energy barriers, in particular, the cis-trans isomerization of peptide bonds. We find that our approach performs very well in polar solvents like water and dimethyl sulfoxide. Interestingly, the protonation state of a secondary amine in the ring only slightly influences the conformational ensembles of our test systems. For several of the macrocycles, determining the conformational distribution in chloroform turns out to be considerably more challenging. Especially, the choice of partial charges crucially influences the ensembles in chloroform. We address these challenges by modifying initial structures and the choice of partial charges. Our results suggest that special care has to be taken to understand the configurational distribution in apolar solvents, which is a key step toward a reliable prediction of membrane permeation of macrocycles and their chameleonic properties.
Collapse
Affiliation(s)
- Xuechen Tang
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Janik Kokot
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | | | - Anna S. Kamenik
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
21
|
Yu L, Barros SA, Sun C, Somani S. Cyclic Peptide Linker Design and Optimization by Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:6863-6876. [PMID: 37903231 DOI: 10.1021/acs.jcim.3c01359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cyclic peptides are an emerging therapeutic modality that can target protein-protein interaction sites with high affinity and selectivity. A common medicinal chemistry strategy for the optimization of peptide hits is conformational stabilization through macrocyclization. We present a method based on explicit solvent enhanced sampling molecular dynamics simulations for estimating the impact of varying linker lengths and chemistry on the conformational stability of a peptide. The method is demonstrated on three cyclic peptide series that bind to proteins PCSK9, trypsin, and MDM2 adopting loop, β-sheet, and helical secondary structures. In general, the simulations show greater solution stability of the receptor-bound conformation for the higher-affinity peptides, consistent with the idea that preorganizing a ligand for binding can enhance binding affinity. The impact of the force field and sampling is discussed for one series that does not follow this trend. We have successfully applied this method to internal discovery programs to design peptides with increased potency and chemical stability.
Collapse
Affiliation(s)
- Lei Yu
- Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Stephanie A Barros
- Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Chengzao Sun
- Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Sandeep Somani
- Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
22
|
Fonseca Lopez F, Miao J, Damjanovic J, Bischof L, Braun MB, Ling Y, Hartmann MD, Lin YS, Kritzer JA. Computational Prediction of Cyclic Peptide Structural Ensembles and Application to the Design of Keap1 Binders. J Chem Inf Model 2023; 63:6925-6937. [PMID: 37917529 PMCID: PMC10807374 DOI: 10.1021/acs.jcim.3c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The Nrf2 transcription factor is a master regulator of the cellular response to oxidative stress, and Keap1 is its primary negative regulator. Activating Nrf2 by inhibiting the Nrf2-Keap1 protein-protein interaction has shown promise for treating cancer and inflammatory diseases. A loop derived from Nrf2 has been shown to inhibit Keap1 selectively, especially when cyclized, but there are no reliable design methods for predicting an optimal macrocyclization strategy. In this work, we employed all-atom, explicit-solvent molecular dynamics simulations with enhanced sampling methods to predict the relative degree of preorganization for a series of peptides cyclized with a set of bis-thioether "staples". We then correlated these predictions to experimentally measured binding affinities for Keap1 and crystal structures of the cyclic peptides bound to Keap1. This work showcases a computational method for designing cyclic peptides by simulating and comparing their entire solution-phase ensembles, providing key insights into designing cyclic peptides as selective inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Luca Bischof
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Interfaculty Institute of Biochemistry, Tübingen University, 72076 Tübingen, Germany
| | - Michael B Braun
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Interfaculty Institute of Biochemistry, Tübingen University, 72076 Tübingen, Germany
| | - Yingjie Ling
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Interfaculty Institute of Biochemistry, Tübingen University, 72076 Tübingen, Germany
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
23
|
Mi X, Desormeaux EK, Le TT, van der Donk WA, Shukla D. Sequence controlled secondary structure is important for the site-selectivity of lanthipeptide cyclization. Chem Sci 2023; 14:6904-6914. [PMID: 37389248 PMCID: PMC10306099 DOI: 10.1039/d2sc06546k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/08/2023] [Indexed: 07/01/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides that are generated from precursor peptides through a dehydration and cyclization process. ProcM, a class II lanthipeptide synthetase, demonstrates high substrate tolerance. It is enigmatic that a single enzyme can catalyze the cyclization process of many substrates with high fidelity. Previous studies suggested that the site-selectivity of lanthionine formation is determined by substrate sequence rather than by the enzyme. However, exactly how substrate sequence contributes to site-selective lanthipeptide biosynthesis is not clear. In this study, we performed molecular dynamic simulations for ProcA3.3 variants to explore how the predicted solution structure of the substrate without enzyme correlates to the final product formation. Our simulation results support a model in which the secondary structure of the core peptide is important for the final product's ring pattern for the substrates investigated. We also demonstrate that the dehydration step in the biosynthesis pathway does not influence the site-selectivity of ring formation. In addition, we performed simulation for ProcA1.1 and 2.8, which are well-suited candidates to investigate the connection between order of ring formation and solution structure. Simulation results indicate that in both cases, C-terminal ring formation is more likely which was supported by experimental results. Our findings indicate that the substrate sequence and its solution structure can be used to predict the site-selectivity and order of ring formation, and that secondary structure is a crucial factor influencing the site-selectivity. Taken together, these findings will facilitate our understanding of the lanthipeptide biosynthetic mechanism and accelerate bioengineering efforts for lanthipeptide-derived products.
Collapse
Affiliation(s)
- Xuenan Mi
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emily K Desormeaux
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Tung T Le
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
24
|
Maharani R, Yayat HNA, Hidayat AT, Al Anshori J, Sumiarsa D, Farabi K, Mayanti T, Harneti D, Supratman U. Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity. Molecules 2023; 28:4779. [PMID: 37375334 DOI: 10.3390/molecules28124779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cyclopurpuracin is a cyclooctapeptide isolated from the methanol extract of Annona purpurea seeds with a sequence of cyclo-Gly-Phe-Ile-Gly-Ser-Pro-Val-Pro. In our previous study, the cyclisation of linear cyclopurpuracin was problematic; however, the reversed version was successfully cyclised even though the NMR spectra revealed the presence of a mixture of conformers. Herein, we report the successful synthesis of cyclopurpuracin using a combination of solid- and solution-phase synthetic methods. Initially, two precursors of cyclopurpuracin were prepared, precursor linear A (NH2-Gly-Phe-Ile-Gly-Ser(t-Bu)-Pro-Val-Pro-OH) and precursor linear B (NH-Pro-Gly-Phe-Ile-Gly-Ser(t-Bu)-Pro-Val-OH, and various coupling reagents and solvents were trialled to achieve successful synthesis. The final product was obtained when precursors A and B were cyclised using the PyBOP/NaCl method, resulting in a cyclic product with overall yields of 3.2% and 3.6%, respectively. The synthetic products were characterised by HR-ToF-MS, 1H-NMR, and 13C-NMR, showing similar NMR profiles to the isolated product from nature and no conformer mixture. The antimicrobial activity of cyclopurpuracin was also evaluated for the first time against S. aureus, E. coli, and C. albicans, showing weak activity with MIC values of 1000 µg/mL for both synthetic products, whereas the reversed cyclopurpuracin was more effective with an MIC of 500 µg/mL.
Collapse
Affiliation(s)
- Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Laboratorium Sentral, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Centre of Natural Products and Synthesis Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| | - Hasna Noer Agus Yayat
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| | - Ace Tatang Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Laboratorium Sentral, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Centre of Natural Products and Synthesis Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| | - Jamaludin Al Anshori
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Laboratorium Sentral, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Laboratorium Sentral, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Laboratorium Sentral, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Centre of Natural Products and Synthesis Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Laboratorium Sentral, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Laboratorium Sentral, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Laboratorium Sentral, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
- Centre of Natural Products and Synthesis Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia
| |
Collapse
|
25
|
Ramelot TA, Palmer J, Montelione GT, Bhardwaj G. Cell-permeable chameleonic peptides: Exploiting conformational dynamics in de novo cyclic peptide design. Curr Opin Struct Biol 2023; 80:102603. [PMID: 37178478 PMCID: PMC10923192 DOI: 10.1016/j.sbi.2023.102603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
Membrane-traversing peptides offer opportunities for targeting intracellular proteins and oral delivery. Despite progress in understanding the mechanisms underlying membrane traversal in natural cell-permeable peptides, there are still several challenges to designing membrane-traversing peptides with diverse shapes and sizes. Conformational flexibility appears to be a key determinant of membrane permeability of large macrocycles. We review recent developments in the design and validation of chameleonic cyclic peptides, which can switch between alternative conformations to enable improved permeability through cell membranes, while still maintaining reasonable solubility and exposed polar functional groups for target protein binding. Finally, we discuss the principles, strategies, and practical considerations for rational design, discovery, and validation of permeable chameleonic peptides.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan Palmer
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Gaurav Bhardwaj
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
26
|
Hui T, Descoteaux ML, Miao J, Lin YS. Training Neural Network Models Using Molecular Dynamics Simulation Results to Efficiently Predict Cyclic Hexapeptide Structural Ensembles. J Chem Theory Comput 2023. [PMID: 37236147 PMCID: PMC10373485 DOI: 10.1021/acs.jctc.3c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cyclic peptides have emerged as a promising class of therapeutics. However, their de novo design remains challenging, and many cyclic peptide drugs are simply natural products or their derivatives. Most cyclic peptides, including the current cyclic peptide drugs, adopt multiple conformations in water. The ability to characterize cyclic peptide structural ensembles would greatly aid their rational design. In a previous pioneering study, our group demonstrated that using molecular dynamics results to train machine learning models can efficiently predict structural ensembles of cyclic pentapeptides. Using this method, which was termed StrEAMM (Structural Ensembles Achieved by Molecular Dynamics and Machine Learning), linear regression models were able to predict the structural ensembles for an independent test set with R2 = 0.94 between the predicted populations for specific structures and the observed populations in molecular dynamics simulations for cyclic pentapeptides. An underlying assumption in these StrEAMM models is that cyclic peptide structural preferences are predominantly influenced by neighboring interactions, namely, interactions between (1,2) and (1,3) residues. Here we demonstrate that for larger cyclic peptides such as cyclic hexapeptides, linear regression models including only (1,2) and (1,3) interactions fail to produce satisfactory predictions (R2 = 0.47); further inclusion of (1,4) interactions leads to moderate improvements (R2 = 0.75). We show that when using convolutional neural networks and graph neural networks to incorporate complex nonlinear interaction patterns, we can achieve R2 = 0.97 and R2 = 0.91 for cyclic pentapeptides and hexapeptides, respectively.
Collapse
Affiliation(s)
- Tiffani Hui
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Marc L Descoteaux
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
27
|
Shandiz SA, Leuty GM, Guo H, Mokarizadeh AH, Maia JM, Tsige M. Structure and Thermodynamics of Linear, Ring, and Catenane Polymers in Solutions and at Liquid-Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7154-7166. [PMID: 37155243 DOI: 10.1021/acs.langmuir.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent decades, advances in the syntheses of mechanically interlocked macromolecules, such as catenanes, have led to much greater interest in the applications of these complexes, from molecular motors and actuators to nanoscale computational memory and nanoswitches. Much remains to be understood, however, regarding how catenated ring compounds behave as a result of the effects of different solvents as well as the effects of solvent/solvent interfaces. In this work, we have investigated, using molecular dynamics simulations, the effects of solvation of poly(ethylene oxide) chains of different topologies─linear, ring, and [2]catenane─in two solvents both considered favorable toward PEO (water, toluene) and at the water/toluene interface. Compared to ring and [2]catenane molecules, the linear PEO chain showed the largest increase in size at the water/toluene interface compared to bulk water or bulk toluene. Perhaps surprisingly, observations indicate that the tendency of all three topologies to extend at the water/toluene interface may have more to do with screening the interaction between the two solvents than with optimizing specific solvent-polymer contacts.
Collapse
Affiliation(s)
- Saeed Akbari Shandiz
- Department of Macromolecular Science & Engineering, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Gary M Leuty
- LinQuest Corporation, Beavercreek, Ohio 45431, United States
| | - Hao Guo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Joao M Maia
- Department of Macromolecular Science & Engineering, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
28
|
Yang J, Wang X, Ji S, Zhu Y. Chiral discrimination of cyclodecapeptide to anti-COVID-19 clinical candidates: a theoretical study. Struct Chem 2023; 34:1-11. [PMID: 37363041 PMCID: PMC10011793 DOI: 10.1007/s11224-023-02149-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023]
Abstract
Various undesirable side effects are frequently associated with isomers of chiral clinical agents. The separation of chiral medicines remains a challenging issue in the medicines research. In this work, we employed cyclic decapeptide as the host molecule and the M06-2X theoretical computational method for chiral recognition of four clinical candidate guests and their isomers, including bucillamine, molnupiravir, azvudine, and VV116, which are relevant for the treatment of COVID-19. The obtained results indicated that bucillamine and molnupiravir and their respective isomers may be distinguished by cyclic decapeptide and that some of the isomers of Azvudine and VV116 may be discriminated by cyclic decapeptide. The inclusion conformation, deformation analysis, and electrostatic potential analysis also visualized the binding modes and binding sites between cyclic peptides and medicine candidates. A series of weak interaction analyses suggest that hydrogen bonding and dispersion interactions may be the primary factors for the recognition and separation of the clinical candidates by cyclic decapeptides. Visualized analyses of noncovalent interaction, hydrogen bond interaction, and NBO, AIM topological demonstrated that the difference of dispersion interaction is not obvious between the complexes, while the type and number of hydrogen bonds are very different, hinting that hydrogen bonds might be crucial for the differentiation of molnupiravir and its isomers. These findings might provide a theoretical reference for the identification and separation of chiral compounds in host-guest interaction. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-023-02149-5.
Collapse
Affiliation(s)
- Jian Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Xinqing Wang
- Base of Sigma-ZZU Postgraduate Co-Cultivation, Zhengzhou, 450000 People’s Republic of China
| | - Shuangshuang Ji
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Yanyan Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| |
Collapse
|
29
|
Juarez RJ, Jiang Y, Tremblay M, Shao Q, Link AJ, Yang ZJ. LassoHTP: A High-Throughput Computational Tool for Lasso Peptide Structure Construction and Modeling. J Chem Inf Model 2023; 63:522-530. [PMID: 36594886 PMCID: PMC10117200 DOI: 10.1021/acs.jcim.2c00945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lasso peptides are a subclass of ribosomally synthesized and post-translationally modified peptides with a slipknot conformation. With superior thermal stability, protease resistance, and antimicrobial activity, lasso peptides are promising candidates for bioengineering and pharmaceutical applications. To enable high-throughput computational prediction and design of lasso peptides, we developed a software, LassoHTP, for automatic lasso peptide structure construction and modeling. LassoHTP consists of three modules, including the scaffold constructor, mutant generator, and molecular dynamics (MD) simulator. With a user-provided sequence and conformational annotation, LassoHTP can either generate the structure and conformational ensemble as is or conduct random mutagenesis. We used LassoHTP to construct eight known lasso peptide structures de novo and to simulate their conformational ensembles for 100 ns MD simulations. For benchmarking, we calculated the root mean square deviation (RMSD) of these ensembles with reference to their experimental crystal or NMR PDB structures; we also compared these RMSD values against those of the MD ensembles that are initiated from the PDB structures. Dihedral principal component analysis was also conducted. The results show that the LassoHTP-initiated ensembles are similar to those of the PDB-initiated ensembles. LassoHTP offers a computational platform to develop strategies for lasso peptide prediction and design.
Collapse
Affiliation(s)
- Reecan J. Juarez
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Matthew Tremblay
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Chemistry and Molecular Biology, Princeton University, 207 Hoyt Laboratory, Princeton, New Jersey 08544, United States
| | - Zhongyue J. Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
30
|
Wang YJ, Liu CY, Wang YL, Zhang FX, Lu YF, Dai SY, Li C, Sun Y, Pei YH. Cytotoxic Cyclodepsipeptides and Cyclopentane Derivatives from a Plant-Associated Fungus Fusarium sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:2592-2602. [PMID: 36288556 DOI: 10.1021/acs.jnatprod.2c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, four new cyclodepsipeptides, fusarihexins C-E (1-3) and enniatin Q (4), four new cyclopentane derivatives, fusarilins A-D (5-8), together with eight known compounds (9-16), were isolated from cultures of the endophytic fungus Fusarium sp. The structures of the isolated compounds were elucidated by analysis of HRMS and NMR spectroscopic data. The absolute configurations were determined using Marfey's method, a modified Mosher's method, single-crystal X-ray diffraction analysis, and ECD analysis. The antitumor activities of the isolated compounds in vitro were evaluated. Cyclodepsipeptides displayed cytotoxicities against the Huh-7, MRMT-1, and HepG-2 cell lines. Compounds 4, 9, 10, and 12 with IC50 values of 1.0-9.1 μM exhibited the most potent cytotoxicities against the three cell lines as compared to the positive control-5-fluorouracil. Compounds 1-3 and 11 exhibited moderate cytotoxic activities (IC50 values of 10.7-20.1 μM).
Collapse
Affiliation(s)
- Ya-Jing Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Chun-Yue Liu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yan-Lei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yong-Fu Lu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yi Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| |
Collapse
|
31
|
Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Srivastava D, Patra N. Self-Uptake Mechanism of Polymyxin-Based Lipopeptide against Gram-Negative Bacterial Membrane: Role of the First Adsorbed Lipopeptide. J Phys Chem B 2022; 126:8222-8232. [PMID: 36126341 DOI: 10.1021/acs.jpcb.2c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Research in the continuously increasing threat of polymyxin-resistant multidrug-resistant Pseudomonas aeruginosa, which causes severe infection in immunocompromised patients, has resulted in the development of several polymyxin-derived cyclic lipopeptides containing l-α-γ- diamino butyric acid-like FADDI-019 (F19). In this work, F19's insertion into a minimal model of the asymmetric outer membrane of the bacterium, which contained only penta-acylated lipid A (LipA) and lacked keto-d-octulosonic acid and O-antigens, in the top leaflet and phospholipids in the bottom leaflet, was studied. F19 exhibited all of the hallmarks of the self-uptake mechanism into the asymmetric bilayer. While a single monomer of the lipopeptide did not get partitioned into the inside of the bilayer, it competitively displaced Ca2+ from the membrane surface, observed as a decrease in Ca2+ coordination number with phosphate groups (1.89 vs 1.718), resulting in membrane destabilization. This resulted in an increment of the average defect size and the probability of interplay between lipid tails and hydrophobic residues of another F19. When more than one monomer was present in the system, the first monomer remained docked on the surface, while other monomers intercalated into the bilayer interior with their hydrophobic moieties "sleeved" by lipid acyl chains. The free energy barrier for partial insertion of the lipopeptide into a bilayer in the presence of surface-docked second F19 was recorded at ∼1.3 kcal/mol using two-dimensional (2D) well-tempered metadynamics, making it a low barrier process at 300 K. This study is an attempt to demonstrate the self-uptake mechanism of F19 during intercalation process into the bilayer interior, which may help in the design of better alternates for polymyxins to work against polymyxin resistance.
Collapse
Affiliation(s)
- Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
33
|
Tao H, Zhao X, Zhang K, Lin P, Huang SY. Docking cyclic peptides formed by a disulfide bond through a hierarchical strategy. Bioinformatics 2022; 38:4109-4116. [PMID: 35801933 DOI: 10.1093/bioinformatics/btac486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Cyclization is a common strategy to enhance the therapeutic potential of peptides. Many cyclic peptide drugs have been approved for clinical use, in which the disulfide-driven cyclic peptide is one of the most prevalent categories. Molecular docking is a powerful computational method to predict the binding modes of molecules. For protein-cyclic peptide docking, a big challenge is considering the flexibility of peptides with conformers constrained by cyclization. RESULTS Integrating our efficient peptide 3D conformation sampling algorithm MODPEP2.0 and knowledge-based scoring function ITScorePP, we have proposed an extended version of our hierarchical peptide docking algorithm, named HPEPDOCK2.0, to predict the binding modes of the peptide cyclized through a disulfide against a protein. Our HPEPDOCK2.0 approach was extensively evaluated on diverse test sets and compared with the state-of-the-art cyclic peptide docking program AutoDock CrankPep (ADCP). On a benchmark dataset of 18 cyclic peptide-protein complexes, HPEPDOCK2.0 obtained a native contact fraction of above 0.5 for 61% of the cases when the top prediction was considered, compared with 39% for ADCP. On a larger test set of 25 cyclic peptide-protein complexes, HPEPDOCK2.0 yielded a success rate of 44% for the top prediction, compared with 20% for ADCP. In addition, HPEPDOCK2.0 was also validated on two other test sets of 10 and 11 complexes with apo and predicted receptor structures, respectively. HPEPDOCK2.0 is computationally efficient and the average running time for docking a cyclic peptide is about 34 min on a single CPU core, compared with 496 min for ADCP. HPEPDOCK2.0 will facilitate the study of the interaction between cyclic peptides and proteins and the development of therapeutic cyclic peptide drugs. AVAILABILITY AND IMPLEMENTATION http://huanglab.phys.hust.edu.cn/hpepdock/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Huanyu Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuejun Zhao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Keqiong Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
34
|
Fu Z, Liu W, Huang C, Mei T. A Review of Performance Prediction Based on Machine Learning in Materials Science. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172957. [PMID: 36079994 PMCID: PMC9457802 DOI: 10.3390/nano12172957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/24/2022] [Indexed: 05/11/2023]
Abstract
With increasing demand in many areas, materials are constantly evolving. However, they still have numerous practical constraints. The rational design and discovery of new materials can create a huge technological and social impact. However, such rational design and discovery require a holistic, multi-stage design process, including the design of the material composition, material structure, material properties as well as process design and engineering. Such a complex exploration using traditional scientific methods is not only blind but also a huge waste of time and resources. Machine learning (ML), which is used across data to find correlations in material properties and understand the chemical properties of materials, is being considered a new way to explore the materials field. This paper reviews some of the major recent advances and applications of ML in the field of properties prediction of materials and discusses the key challenges and opportunities in this cross-cutting area.
Collapse
Affiliation(s)
- Ziyang Fu
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
- Hubei Software Engineering Technology Research Center, Wuhan 430062, China
- Hubei Engineering Research Center for Smart Government and Artificial Intelligence Application, Wuhan 430062, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chen Huang
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
- Hubei Software Engineering Technology Research Center, Wuhan 430062, China
- Hubei Engineering Research Center for Smart Government and Artificial Intelligence Application, Wuhan 430062, China
- Correspondence: (C.H.); (T.M.)
| | - Tao Mei
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 430062, China
- Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan 430062, China
- Correspondence: (C.H.); (T.M.)
| |
Collapse
|
35
|
Paciotti R, Fish RH, Marrone A. MD-DFT Computational Studies on the Mechanistic and Conformational Parameters for the Chemoselective Tyrosine Residue Reactions of G-Protein-Coupled Receptor Peptides with [Cp*Rh(H 2O) 3](OTf) 2 in Water To Form Their [(η 6-Cp*Rh-Tyr #)-GPCR peptide] 2+ Complexes: Noncovalent H-Bonding Interactions, Molecular Orbital Analysis, Thermodynamics, and Lowest Energy Conformations. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberto Paciotti
- Dipartimento di Farmacia, Università “G d’Annunzio” di Chieti-Pescara, Chieti 5130, Italy
| | - Richard H. Fish
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università “G d’Annunzio” di Chieti-Pescara, Chieti 5130, Italy
| |
Collapse
|
36
|
Eastwood JRB, Jiang L, Bonneau R, Kirshenbaum K, Renfrew PD. Evaluating the Conformations and Dynamics of Peptoid Macrocycles. J Phys Chem B 2022; 126:5161-5174. [PMID: 35820178 DOI: 10.1021/acs.jpcb.2c01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptoid macrocycles are versatile and chemically diverse peptidomimetic oligomers. However, the conformations and dynamics of these macrocycles have not been evaluated comprehensively and require extensive further investigation. Recent studies indicate that two degrees of freedom, and four distinct conformations, adequately describe the behavior of each monomer backbone unit in most peptoid oligomers. On the basis of this insight, we conducted molecular dynamics simulations of model macrocycles using an exhaustive set of idealized possible starting conformations. Simulations of various sizes of peptoid macrocycles yielded a limited set of populated conformations. In addition to reproducing all relevant experimentally determined conformations, the simulations accurately predicted a cyclo-octamer conformation for which we now present the first experimental observation. Sets of three adjacent dihedral angles (ϕi, ψi, ωi+1) exhibited correlated crankshaft motions over the course of simulation for peptoid macrocycles of six residues and larger. These correlated motions may occur in the form of an inversion of one amide bond and the concerted rotation of the preceding ϕ and ψ angles to their mirror-image conformation, a variation on "crankshaft flip" motions studied in polymers and peptides. The energy landscape of these peptoid macrocycles can be described as a network of conformations interconnected by transformations of individual crankshaft flips. For macrocycles of up to eight residues, our mapping of the landscape is essentially complete.
Collapse
Affiliation(s)
- James R B Eastwood
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Linhai Jiang
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Richard Bonneau
- Center for Data Science, New York University, New York, New York 10011, United States.,Center for Computational Biology, Flatiron Institute, New York, New York 10010 United States
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, New York, New York 10010 United States
| |
Collapse
|
37
|
Yayat HNA, Maharani R, Hidayat AT, Wiani I, Zainuddin A, Mayanti T, Nurlelasari, Harneti D, Supratman U. Total synthesis of a reversed cyclopurpuracin using a combination of solid and solution phase methods. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hasna Noer Agus Yayat
- Department of Chemistry Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
| | - Rani Maharani
- Department of Chemistry Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
- Laboratorium Sentral Universitas Padjadjaran, Jatinangor West Java Indonesia
- Study Centre of Natural Products and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
| | - Ace Tatang Hidayat
- Department of Chemistry Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
- Laboratorium Sentral Universitas Padjadjaran, Jatinangor West Java Indonesia
- Study Centre of Natural Products and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
| | - Ika Wiani
- Department of Chemistry Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
- Study Centre of Natural Products and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
| | - Achmad Zainuddin
- Department of Chemistry Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
- Study Centre of Natural Products and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
| | - Tri Mayanti
- Department of Chemistry Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
- Study Centre of Natural Products and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
| | - Nurlelasari
- Department of Chemistry Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
- Study Centre of Natural Products and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
| | - Desi Harneti
- Department of Chemistry Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
- Study Centre of Natural Products and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
| | - Unang Supratman
- Department of Chemistry Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
- Laboratorium Sentral Universitas Padjadjaran, Jatinangor West Java Indonesia
- Study Centre of Natural Products and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor West Java Indonesia
| |
Collapse
|
38
|
Yao N, Chen X, Fu ZH, Zhang Q. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chem Rev 2022; 122:10970-11021. [PMID: 35576674 DOI: 10.1021/acs.chemrev.1c00904] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rechargeable batteries have become indispensable implements in our daily life and are considered a promising technology to construct sustainable energy systems in the future. The liquid electrolyte is one of the most important parts of a battery and is extremely critical in stabilizing the electrode-electrolyte interfaces and constructing safe and long-life-span batteries. Tremendous efforts have been devoted to developing new electrolyte solvents, salts, additives, and recipes, where molecular dynamics (MD) simulations play an increasingly important role in exploring electrolyte structures, physicochemical properties such as ionic conductivity, and interfacial reaction mechanisms. This review affords an overview of applying MD simulations in the study of liquid electrolytes for rechargeable batteries. First, the fundamentals and recent theoretical progress in three-class MD simulations are summarized, including classical, ab initio, and machine-learning MD simulations (section 2). Next, the application of MD simulations to the exploration of liquid electrolytes, including probing bulk and interfacial structures (section 3), deriving macroscopic properties such as ionic conductivity and dielectric constant of electrolytes (section 4), and revealing the electrode-electrolyte interfacial reaction mechanisms (section 5), are sequentially presented. Finally, a general conclusion and an insightful perspective on current challenges and future directions in applying MD simulations to liquid electrolytes are provided. Machine-learning technologies are highlighted to figure out these challenging issues facing MD simulations and electrolyte research and promote the rational design of advanced electrolytes for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhong-Heng Fu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Efficient 3D conformer generation of cyclic peptides formed by a disulfide bond. J Cheminform 2022; 14:26. [PMID: 35505401 PMCID: PMC9066754 DOI: 10.1186/s13321-022-00605-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/03/2022] [Indexed: 02/07/2023] Open
Abstract
Cyclic peptides formed by disulfide bonds have been one large group of common drug candidates in drug development. Structural information of a peptide is essential to understand its interaction with its target. However, due to the high flexibility of peptides, it is difficult to sample the near-native conformations of a peptide. Here, we have developed an extended version of our MODPEP approach, named MODPEP2.0, to fast generate the conformations of cyclic peptides formed by a disulfide bond. MODPEP2.0 builds the three-dimensional (3D) structures of a cyclic peptide from scratch by assembling amino acids one by one onto the cyclic fragment based on the constructed rotamer and cyclic backbone libraries. Being tested on a data set of 193 diverse cyclic peptides, MODPEP2.0 obtained a considerable advantage in both accuracy and computational efficiency, compared with other sampling algorithms including PEP-FOLD, ETKDG, and modified ETKDG (mETKDG). MODPEP2.0 achieved a high sampling accuracy with an average C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α RMSD of 2.20 Å and 1.66 Å when 10 and 100 conformations were considered, respectively, compared with 3.41 Å and 2.62 Å for PEP-FOLD, 3.44 Å and 3.16 Å for ETKDG, 3.09 Å and 2.72 Å for mETKDG. MODPEP2.0 also reproduced experimental peptide structures for 81.35% of the test cases when an ensemble of 100 conformations were considered, compared with 54.95%, 37.50% and 50.00% for PEP-FOLD, ETKDG, and mETKDG. MODPEP2.0 is computationally efficient and can generate 100 peptide conformations in one second. MODPEP2.0 will be useful in sampling cyclic peptide structures and modeling related protein-peptide interactions, facilitating the development of cyclic peptide drugs.
Collapse
|
40
|
Tian M, Li H, Yan X, Gu J, Zheng P, Luo S, Zhangsun D, Chen Q, Ouyang Q. Application of per-Residue Energy Decomposition to Design Peptide Inhibitors of PSD95 GK Domain. Front Mol Biosci 2022; 9:848353. [PMID: 35433833 PMCID: PMC9005747 DOI: 10.3389/fmolb.2022.848353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Specific interaction between the postsynaptic density protein 95 (PSD95) and synapse-associated protein 90/postsynaptic density 95–associated protein (SAPAP) is crucial for excitatory synaptic development and plasticity. Designing inhibitors that target the guanylate kinase (GK) domain of PSD95, which is responsible for the interaction, is a promising manipulation tool for the investigation of the function of PSD95 GK and the etiology of its related psychiatric disorders. Herein, we designed new peptide inhibitors of PSD95 GK/SAPAP with higher binding affinity by using molecular dynamics simulations. First, the interactions between PSD95 GK and their reported phosphorylated and unphosphorylated peptides were explored by molecular dynamics simulations. Besides the hydrogen bonding interactions mediated by the phospho-serine (p-Ser) or corresponding phosphomimic residue Asp/Glu, the hydrophobic interactions from the other amino acids also contribute to the PSD95 GK/SAPAP interaction. As an unphosphorylated synthetic peptide with moderate binding affinity and relatively lower molecular weight, the QSF inhibitory peptide was selected for further modification. Based on per-residue energy decomposition results of the PSD95 GK/QSF complex, ten peptides were designed to enhance the binding interactions, especially the hydrophobic interactions. The top-ranked five peptides with lower binding energy were eventually synthesized. The binding affinities of the synthesized peptides were determined using fluorescence polarization (FP) assay. As expected, all peptides have higher binding affinity than the QSF peptide (Ki = 5.64 ± 0.51 μM). Among them, F10W was the most potent inhibitor (Ki = 0.75 ± 0.25 μM), suggesting that enhancement of the hydrophobic interactions is an important strategy for the design of new inhibitory peptides targeting PSD95 GK.
Collapse
Affiliation(s)
- Miao Tian
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hongwei Li
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, China
| | - Xiao Yan
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, China
| | - Jing Gu
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, China
| | - Pengfei Zheng
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- *Correspondence: Dongting Zhangsun, ; Qiong Chen, ; Qin Ouyang,
| | - Qiong Chen
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- *Correspondence: Dongting Zhangsun, ; Qiong Chen, ; Qin Ouyang,
| | - Qin Ouyang
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, China
- *Correspondence: Dongting Zhangsun, ; Qiong Chen, ; Qin Ouyang,
| |
Collapse
|
41
|
Improved Recovery and Selectivity of Lanthanide-Ion-Binding Cyclic Peptide Hosts by Changing the Position of Acidic Amino Acids. MINERALS 2022. [DOI: 10.3390/min12020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of an effective host molecule to separate lanthanide (Ln) ions and a method for predicting its guest recognition/self-assembly behavior based on primary chemical structures are highly sought after in both academia and industry. Herein, we report the improvement of one-pot Ln ion recovery and a performance prediction method for four new cyclic peptide hosts that differ in the position of acidic amino acids. These cyclic peptide hosts could recognize Ln3+ directly through a 1:1 complexation–precipitation process and exhibited high Lu3+ selectivity in spite of similar ion size and electronegativity when the positions of the acidic amino acids were changed. This unpredictable selectivity was explained by considering the dipole moment, lowest unoccupied molecular orbital, and cohesion energy. In addition, a semi-empirical function using these parameters was proposed for screening the sequence and estimating the isolated yields without long-time molecular dynamics calculations. The insights obtained from this study can be employed for the development of high-performance peptides for the selective recovery of Ln and other metal ions, as well as for the construction of diverse supramolecular recognition systems.
Collapse
|
42
|
Saemi Yokomichi MA, Leite Silva HR, Eivazian Vianna Nogueira Brandao L, Festozo Vicente E, Batista Junior JM. Conformational preferences induced by cyclization in orbitides: a vibrational CD study. Org Biomol Chem 2022; 20:1306-1314. [DOI: 10.1039/d1ob02170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orbitides are bioactive head-to-tail natural cyclic peptides from plant species. Their bioactivity is intrinsically related to the main conformations adopted in solution, whose correct characterization represents an important bottleneck for...
Collapse
|
43
|
Che K, Muttenthaler M, Kurzbach D. Conformational selection of vasopressin upon V 1a receptor binding. Comput Struct Biotechnol J 2021; 19:5826-5833. [PMID: 34765097 PMCID: PMC8567363 DOI: 10.1016/j.csbj.2021.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
The neuropeptide vasopressin (VP) and its three G protein-coupled receptors (V1aR, V1bR and V2R) are of high interest in a wide array of drug discovery programs. V1aR is of particular importance due to its cardiovascular functions and diverse roles in the central nervous system. The structure–activity relationships underpinning ligand-receptor interactions remain however largely unclear, hindering rational drug design. This is not least due to the high structural flexibility of VP in its free as well as receptor-bound states. In this work, we developed a novel approach to reveal features of conformational selectivity upon VP-V1aR complex formation. We employed virtual screening strategies to probe VP’s conformational space for transiently adopted structures that favor binding to V1aR. To this end, we dissected the VP conformational space into three sub-ensembles, each containing distinct structural sets for VP’s three-residue C-terminal tail. We validated the computational results with experimental nuclear magnetic resonance (NMR) data and docked each sub-ensemble to V1aR. We observed that the conformation of VP’s three-residue tail significantly modulated the complex dissociation constants. Solvent-exposed and proline trans-configured VP tail conformations bound to the receptor with three-fold enhanced affinities compared to compacted or cis-configured conformations. The solvent-exposed and more flexible structures facilitated unique interaction patterns between VP and V1aR transmembrane helices 3, 4, and 6 which led to high binding energies. The presented “virtual conformational space screening” approach, integrated with NMR spectroscopy, thus enabled identification and characterization of a conformational selection-type complex formation mechanism that confers novel perspectives on targeting the VP-V1aR interactions at the level of the encounter complex – an aspect that opens novel research avenues for understanding the functionality of the evolutionary selected conformational properties of VP, as well as guidance for ligand design strategies to provide more potent and selective VP analogues.
Collapse
Affiliation(s)
- Kateryna Che
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, A-1090 Vienna, Austria
| | - Markus Muttenthaler
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, A-1090 Vienna, Austria
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Rd, 4072 St Lucia, Brisbane, Queensland, Australia
| | - Dennis Kurzbach
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, A-1090 Vienna, Austria
- Corresponding author.
| |
Collapse
|
44
|
Damjanovic J, Murphy JM, Lin YS. CATBOSS: Cluster Analysis of Trajectories Based on Segment Splitting. J Chem Inf Model 2021; 61:5066-5081. [PMID: 34608796 PMCID: PMC8549068 DOI: 10.1021/acs.jcim.1c00598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Molecular dynamics
(MD) simulations are an exceedingly and increasingly
potent tool for molecular behavior prediction and analysis. However,
the enormous wealth of data generated by these simulations can be
difficult to process and render in a human-readable fashion. Cluster
analysis is a commonly used way to partition data into structurally
distinct states. We present a method that improves on the state of
the art by taking advantage of the temporal information of MD trajectories
to enable more accurate clustering at a lower memory cost. To date,
cluster analysis of MD simulations has generally treated simulation
snapshots as a mere collection of independent data points and attempted
to separate them into different clusters based on structural similarity.
This new method, cluster analysis of trajectories based on segment
splitting (CATBOSS), applies density-peak-based clustering to classify trajectory segments learned by change detection. Applying
the method to a synthetic toy model as well as four real-life data
sets–trajectories of MD simulations of alanine dipeptide and
valine dipeptide as well as two fast-folding proteins–we find
CATBOSS to be robust and highly performant, yielding natural-looking
cluster boundaries and greatly improving clustering resolution. As
the classification of points into segments emphasizes density gaps
in the data by grouping them close to the state means, CATBOSS applied
to the valine dipeptide system is even able to account for a degree
of freedom deliberately omitted from the input data set. We also demonstrate
the potential utility of CATBOSS in distinguishing metastable states
from transition segments as well as promising application to cases
where there is little or no advance knowledge of intrinsic coordinates,
making for a highly versatile analysis tool.
Collapse
Affiliation(s)
- Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - James M Murphy
- Department of Mathematics, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
45
|
Tang R, Song Y, Shi M, Jiang Z, Zhang L, Xiao Y, Tian Y, Zhou S. Rational Design of a Dual-Targeting Natural Toxin-Like Bicyclic Peptide for Selective Bioenergetic Blockage in Cancer Cells. Bioconjug Chem 2021; 32:2173-2183. [PMID: 34606715 DOI: 10.1021/acs.bioconjchem.1c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stapled α-helical peptides emerge as one of the attractive peptidomimetics which can efficiently penetrate the cell membrane to access intracellular targets. However, the incorporation of a highly lipophilic cross-link may lead to nonspecific membrane toxicity in certain cases. Here, we report a new class of thioether-tethered bicyclic α-helical peptide to mimic the highly constrained loop-helix structure of natural toxins with the dual-targeting ability for both cell-surface receptors and intracellular targets. The thioether cross-links are introduced to replace the redox-sensitive disulfide bonds in natural toxins via a photoinduced thiol-yne reaction followed by macrolactamization. As a proof of concept, αVβ3 integrin targeting ligand was grafted into one of the macrocycles in the bicyclic scaffold, while a mitochondria-targeting proapoptotic motif was introduced into the other macrocycle stabilized by an i, i + 7 alkyl thioether cross-link to recapitulate its α-helical conformation. The obtained dual-targeting bicyclic α-helical BIRK peptides showed highly stable α-helical conformation in the presence of denaturants or under high temperature. Notably, BIRK peptides could induce selective cell death in αVβ3 integrin-positive B16F10 cells by interfering with the bioenergetic functions of mitochondria. This work provides a new avenue to design and stabilize α-helical peptides in a highly constrained bicyclic loop-helix scaffold with dual functionality.
Collapse
Affiliation(s)
- Rui Tang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Yue Song
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Mengzhen Shi
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Zherui Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Ling Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Yao Xiao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Yuan Tian
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
46
|
Baral K, Adhikari P, Jawad B, Podgornik R, Ching WY. Solvent Effect on the Structure and Properties of RGD Peptide (1FUV) at Body Temperature (310 K) Using Ab Initio Molecular Dynamics. Polymers (Basel) 2021; 13:3434. [PMID: 34641249 PMCID: PMC8512769 DOI: 10.3390/polym13193434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
The structure and properties of the arginine-glycine-aspartate (RGD) sequence of the 1FUV peptide at 0 K and body temperature (310 K) are systematically investigated in a dry and aqueous environment using more accurate ab initio molecular dynamics and density functional theory calculations. The fundamental properties, such as electronic structure, interatomic bonding, partial charge distribution, and dielectric response function at 0 and 310 K are analyzed, comparing them in dry and solvated models. These accurate microscopic parameters determined from highly reliable quantum mechanical calculations are useful to define the range and strength of complex molecular interactions occurring between the RGD peptide and the integrin receptor. The in-depth bonding picture analyzed using a novel quantum mechanical metric, the total bond order (TBO), quantifies the role played by hydrogen bonds in the internal cohesion of the simulated structures. The TBO at 310 K decreases in the dry model but increases in the solvated model. These differences are small but extremely important in the context of conditions prevalent in the human body and relevant for health issues. Our results provide a new level of understanding of the structure and properties of the 1FUV peptide and help in advancing the study of RGD containing other peptides.
Collapse
Affiliation(s)
- Khagendra Baral
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (K.B.); (P.A.); (B.J.)
| | - Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (K.B.); (P.A.); (B.J.)
| | - Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (K.B.); (P.A.); (B.J.)
| | - Rudolf Podgornik
- School of Physical Sciences, Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing 100049, China;
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100090, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou 325000, China
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (K.B.); (P.A.); (B.J.)
| |
Collapse
|
47
|
Wang S, König G, Roth HJ, Fouché M, Rodde S, Riniker S. Effect of Flexibility, Lipophilicity, and the Location of Polar Residues on the Passive Membrane Permeability of a Series of Cyclic Decapeptides. J Med Chem 2021; 64:12761-12773. [PMID: 34406766 DOI: 10.1021/acs.jmedchem.1c00775] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclic peptides have received increasing attention over the recent years as potential therapeutics for "undruggable" targets. One major obstacle is, however, their often relatively poor bioavailability. Here, we investigate the structure-permeability relationship of 24 cyclic decapeptides that share the same backbone N-methylation pattern but differ in their side chains. The peptides cover a large range of values for passive membrane permeability as well as lipophilicity and solubility. To rationalize the observed differences in permeability, we extracted for each peptide the population of the membrane-permeable conformation in water from extensive explicit-solvent molecular dynamics simulations and used this as a metric for conformational rigidity or "prefolding." The insights from the simulations together with lipophilicity measurements highlight the intricate interplay between polarity/lipophilicity and flexibility/rigidity and the possible compensating effects on permeability. The findings allow us to better understand the structure-permeability relationship of cyclic peptides and extract general guiding principles.
Collapse
Affiliation(s)
- Shuzhe Wang
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Gerhard König
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans-Jörg Roth
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Marianne Fouché
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|