1
|
Chen F, Guo L, Long D, Luo S, Song Y, Wang M, Li L, Chen S, Wei Z. Overcoming the Limitation of Ionomers on Mass Transport and Pt Activity to Achieve High-Performing Membrane Electrode Assembly. J Am Chem Soc 2024. [PMID: 39437412 DOI: 10.1021/jacs.4c10742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The membrane electrode assembly (MEA) is one of the critical components in proton exchange membrane fuel cells (PEMFCs). However, the conventional MEA cathode with a covered-type catalyst/ionomer interfacial structure severely limits oxygen transport efficiency and Pt activity, hardly achieving the theoretical performance upper bound of PEMFCs. Here, we design a noncovered catalyst/ionomer interfacial structure with low proton transport resistance and high oxygen transport efficiency in the cathode catalyst layer (CL). This noncovered interfacial structure employs the ionomer cross-linked carbon particles as long-range and fast proton transport channels and prevents the ionomer from directly covering the Pt/C catalyst surface in the CL, freeing the oxygen diffusion process from passing through the dense ionomer covering layer to the Pt surface. Moreover, the structure improves oxygen transport within the pores of the CL and achieves more than 20% lower pressure-independent oxygen transport resistance compared to the covered-type structure. Fuel-cell diagnostics demonstrate that the noncovered catalyst/ionomer interfacial structure provides exceptional fuel-cell performance across the kinetic and mass transport-limited regions, with 77% and 67% higher peak power density than the covered-type interfacial structure under 0 kPagauge of oxygen and air conditions, respectively. This alternative interfacial structure provides a new direction for optimizing the electrode structure and improving mass-transport paths of MEA.
Collapse
Affiliation(s)
- Fadong Chen
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Lin Guo
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Daojun Long
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Shijian Luo
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yang Song
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Meng Wang
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Li Li
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Siguo Chen
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Zidong Wei
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Guterman V, Alekseenko A, Belenov S, Menshikov V, Moguchikh E, Novomlinskaya I, Paperzh K, Pankov I. Exploring the Potential of Bimetallic PtPd/C Cathode Catalysts to Enhance the Performance of PEM Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1672. [PMID: 39453008 PMCID: PMC11510532 DOI: 10.3390/nano14201672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Bimetallic platinum-containing catalysts are deemed promising for electrolyzers and proton-exchange membrane fuel cells (PEMFCs). A significant number of laboratory studies and commercial offers are related to PtNi/C and PtCo/C electrocatalysts. The behavior of PtPd/C catalysts has been studied much less, although palladium itself is the metal closest to platinum in its properties. Using a series of characterization methods, this paper presents a comparative study of structural characteristics of the commercial PtPd/C catalysts containing 38% wt. of precious metals and the well-known HiSpec4000 Pt/C catalyst. The electrochemical behavior of the catalysts was studied both in a three-electrode electrochemical cell and in the membrane electrode assemblies (MEAs) of hydrogen-air PEMFCs. Both PtPd/C samples demonstrated higher values of the electrochemically active surface area, as well as greater specific and mass activity in the oxygen reduction reaction in comparison with conventional Pt/C, while not being inferior to the latter in durability. The MEA based on the best of the PtPd/C catalysts also exhibited higher performance in single tests and long-term durability testing. The results of this study conducted indicate the prospects of using bimetallic PtPd/C materials for cathode catalysts in PEMFCs.
Collapse
Affiliation(s)
- Vladimir Guterman
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Anastasia Alekseenko
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Sergey Belenov
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Vladislav Menshikov
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Elizaveta Moguchikh
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Irina Novomlinskaya
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Kirill Paperzh
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Ilya Pankov
- Research Institute of Physical Organic Chemistry, Southern Federal University, 194/2 Stachki St., Rostov-on-Don 344090, Russia;
| |
Collapse
|
3
|
Zhang B, Ma P, Wang R, Cao H, Bao J. A Janus Platinum/Tin Oxide Heterostructure for Durable Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405234. [PMID: 39358963 DOI: 10.1002/smll.202405234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Indexed: 10/04/2024]
Abstract
Designing efficient and durable electrocatalysts for oxygen reduction reaction (ORR) is essential for proton exchange membrane fuel cells (PEMFCs). Platinum-based catalysts are considered efficient ORR catalysts due to their high activity. However, the degradation of Pt species leads to poor durability of catalysts, limiting their applications in PEMFCs. Herein, a Janus heterostructure is designed for high durability ORR in acidic media. The Janus heterostructure composes of crystalline platinum and cassiterite tin oxide nanoparticles with carbon support (J-Pt@SnO2/C). Based on the synchrotron fine structure analysis and electrochemical investigation, the crystalline reconstruction and charge redistribution at the interface of Janus structure are revealed. The tightly coupled interface could optimize the valance states of Pt and the adsorption/desorption of oxygenated intermediates. As a result, the J-Pt@SnO2/C catalyst possesses distinguishing long-term stability during the accelerated durability test without obvious degradation after 40 000 cycles and keeps the majority of activity after 70 000 cycles. Meanwhile, the catalyst exhibits outstanding activity with half-wave potential at 0.905 V and a mass activity of 0.355 A mgPt -1 (2.7 times higher than Pt/C). The approach of the Janus catalyst paves an avenue for designing highly efficient and stable Pt-based ORR catalyst in the future implementation.
Collapse
Affiliation(s)
- Boyan Zhang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Peiyu Ma
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruyang Wang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Heng Cao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
4
|
Chen Y, Lin H, Huo J, Fang L, Zhang W, Ma T, Cui Z, Liang Z, Du L. Multi-scale revealing how real catalyst layer interfaces dominate the local oxygen transport resistance in ultra-low platinum PEMFC. J Colloid Interface Sci 2024; 671:344-353. [PMID: 38815371 DOI: 10.1016/j.jcis.2024.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
In view of a catalyst layer (CL) with low-Pt causing higher local transport resistance of O2 (Rlocal), we propose a multi-study methodology that combines CO poisoning, the limiting current density method, and electrochemical impedance spectroscopy to reveal how real CL interfaces dominate Rlocal. Experimental results indicate that the ionomer is not evenly distributed on the catalyst surface, and the uniformity of ionomer distribution does not show a positive correlation with the ionomer content. When the ionomer coverage on the supported catalyst surface is below 20 %, the ECSA is only 10 m2·g-1, and the ionomer coverage on the supported catalyst surface reaches 60 %, the ECSA is close to 40 m2·g-1. The ECSA has a positive correlation with ionomer coverage. Because the ECSA is measured by CO poisoning, it can be inferred that the platinum contacted with ionomer can generate effective active sites. Furthermore, a more uniform distribution of ionomer can create additional proton transport channels and reduce the distance for oxygen transport from the catalyst layer bulk to the active sites. A higher ECSA and a shorter distance for oxygen transport will reduce the Rlocal, leading to better performance.
Collapse
Affiliation(s)
- Yangyang Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Lin
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junlang Huo
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifeng Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tongmei Ma
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
6
|
Gao Y, Liu H, Wang X, Liu X, Shan B, Chen R. Spatially Confined Alloying of Pt Accelerates Mass Transport for Fuel Cell Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405748. [PMID: 39248683 DOI: 10.1002/smll.202405748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Pt-based alloy with high mass activity and durability is highly desired for proton exchange membrane fuel cells, yet a great challenge remains due to the high mass transport resistance near catalysts with lowering Pt loading. Herein, an extensible approach employing atomic layer deposition to accurately introduce a gas-phase metal precursor into platinum nanoparticles (NPs) pre-filled mesoporous channels is reported, achieved by controlling both the deposition site and quantity. Following the spatially confined alloying treatment, the prepared PtSn alloy catalyst within mesopores demonstrates a small size and homogeneous distribution (2.10 ± 0.53 nm). The membrane electrode assembly with mesoporous carbon-supported PtSn alloy catalyst achieves a high initial mass activity of 0.85 Amg Pt - 1 ${\mathrm{mg}}_{\mathrm{Pt}}^{-1}$ at 0.9 V, which is attributed to the smallest local oxygen transport resistance (3.68 S m-1) ever reported. The mass activity of the catalyst only decreases by 11% after 30000 cycles of accelerated durability test, representing superior full-cell durability among the reported Pt-based alloy catalysts. The enhanced activity and durability are attributed to the decreased adsorption energy of oxygen intermediates on Pt surface and the strong electronic interaction between Pt and Sn inhibiting Pt dissolution.
Collapse
Affiliation(s)
- Yuxin Gao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Hang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xintian Wang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Xiao Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
7
|
Yang J, Xu H, Li J, Gong K, Yue F, Han X, Wu K, Shao P, Fu Q, Zhu Y, Xu W, Huang X, Xie J, Wang F, Yang W, Zhang T, Xu Z, Feng X, Wang B. Oxygen- and proton-transporting open framework ionomer for medium-temperature fuel cells. Science 2024; 385:1115-1120. [PMID: 39236188 DOI: 10.1126/science.adq2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024]
Abstract
Medium-temperature proton exchange membrane fuel cells (MT PEMFCs) operating at 100° to 120°C have improved kinetics, simplified thermal and water management, and broadened fuel tolerance compared with low-temperature PEMFCs. However, high temperatures lead to Nafion ionomer dehydration and exacerbate gas transportation limitations. Inspired by osmolytes found in hyperthermophiles, we developed α-aminoketone-linked covalent organic framework (COF) ionomers, interwoven with Nafion, to act as "breathable" proton conductors. This approach leverages synergistic hydrogen bonding to retain water, enhancing hydration and proton transport while reducing oxygen transport resistance. For commercial Pt/C, the MT PEMFCs achieved peak and rated power densities of 18.1 and 9.5 Watts per milligram of Pt at the cathode at 105°C fueled with H2 and air, marking increases of 101 and 187%, respectively, compared with cells lacking the COF.
Collapse
Affiliation(s)
- Jianwei Yang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hengyu Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230022, P. R. China
| | - Jie Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ke Gong
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Feiyu Yue
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xianghao Han
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ke Wu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengpeng Shao
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qingling Fu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenli Xu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xin Huang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Xie
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fengchao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230022, P. R. China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Teng Zhang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zengshi Xu
- Wuhan Institute of Marine Electric Propulsion, Wuhan Hydrogen Fuel Cell Engineering Research Center, Wuhan 430064, P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
8
|
Nakajima H, Ogura T, Kato Y, Kondo N, Usukawa R, Watanabe R, Kobashi K, Okazaki T. Quantitative evaluation of particle-binder interactions in ceramic slurries via differential centrifugal sedimentation. Sci Rep 2024; 14:18508. [PMID: 39122827 PMCID: PMC11316082 DOI: 10.1038/s41598-024-68420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
In diverse materials science spanning from fine ceramics to lithium-ion batteries and fuel cells, the particle-binder interactions in slurries play a crucial role in governing the ultimate performance. Despite numerous efforts to date, quantitatively elucidating these hidden interactions has remained a longstanding challenge. Here, we demonstrate a dynamic approach to evaluate adsorptive interactions between ceramic particles and polymeric binders entangled in a slurry utilizing differential centrifugal sedimentation (DCS). Particles settling under a centrifugal force field impart significant viscous resistance on the adsorbed binder, leading to its detachment, influenced by particle size and density. This behaviour directly reflects the particle-binder interactions, and detailed DCS spectrum analysis enables the quantitative assessment of nano-Newton-order adsorption forces. An important finding is the strong correlation of these forces with the mechanical properties of the moulded products. Our results provide insight that forming a flexible network structure with appropriate interactions is essential for desirable formability.
Collapse
Affiliation(s)
- Hideaki Nakajima
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan.
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Yuichi Kato
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, 563-8577, Japan
| | - Naoki Kondo
- Multi-Material Research Institute, National Institute of Advanced Industrial Science and Technology, Nagoya, 463-8560, Japan
| | - Ryutaro Usukawa
- Multi-Material Research Institute, National Institute of Advanced Industrial Science and Technology, Nagoya, 463-8560, Japan
| | - Ryota Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan
| | - Kazufumi Kobashi
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan
| | - Toshiya Okazaki
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan.
| |
Collapse
|
9
|
Huang L, Niu H, Xia C, Li FM, Shahid Z, Xia BY. Integration Construction of Hybrid Electrocatalysts for Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404773. [PMID: 38829366 DOI: 10.1002/adma.202404773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
There is notable progress in the development of efficient oxygen reduction electrocatalysts, which are crucial components of fuel cells. However, these superior activities are limited by imbalanced mass transport and cannot be fully reflected in actual fuel cell applications. Herein, the design concepts and development tracks of platinum (Pt)-nanocarbon hybrid catalysts, aiming to enhance the performance of both cathodic electrocatalysts and fuel cells, are presented. This review commences with an introduction to Pt/C catalysts, highlighting the diverse architectures developed to date, with particular emphasis on heteroatom modification and microstructure construction of functionalized nanocarbons based on integrated design concepts. This discussion encompasses the structural evolution, property enhancement, and catalytic mechanisms of Pt/C-based catalysts, including rational preparation recipes, superior activity, strong stability, robust metal-support interactions, adsorption regulation, synergistic pathways, confinement strategies, ionomer optimization, mass transport permission, multidimensional construction, and reactor upgrading. Furthermore, this review explores the low-barrier or barrier-free mass exchange interfaces and channels achieved through the impressive multidimensional construction of Pt-nanocarbon integrated catalysts, with the goal of optimizing fuel cell efficiency. In conclusion, this review outlines the challenges associated with Pt-nanocarbon integrated catalysts and provides perspectives on the future development trends of fuel cells and beyond.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- School of Chemical Sciences, The University of Auckland (UOA), Auckland, 1010, New Zealand
| | - Huiting Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Fu-Min Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zaman Shahid
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
10
|
Zhang X, Tang J, Zhang X, Wang L, Yuan D, Deng H, Deng L. Preferential segregation of gold at the symmetrical tilt grain boundaries of platinum: an atomic-scale quantitative understanding. Phys Chem Chem Phys 2024; 26:17274-17281. [PMID: 38860342 DOI: 10.1039/d4cp00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Grain boundary (GB) segregation plays a pivotal role in maintaining and optimizing the remarkable catalytic or mechanical properties of nanocrystalline Pt by reducing the Gibbs free energy and thereby impeding structure degradation. The solute segregation behavior at the Pt GB, however, is not well understood at the atomic level. In this study, we employed first-principles calculations to elucidate the preferential segregation behavior of a single Au atom at the symmetrical tilt GB of Pt. For pure Pt, a linear relationship between the GB energy and excess volume is observed. Therefore, Au exhibits strong segregation tendencies towards GB to release excess energy and volume stored at the strained GB. Although the segregation energy is sensitive to various GB sites, it is interesting to note that the minimum one increases linearly with GB energy. This site-sensitivity of segregation energy can be attributed to mechanical, chemical, and interaction parts, which are quantitatively related to the atomic volume, coordination number, and average bond length, respectively. Finally, the interplay among different structural descriptors is revealed. These insights into the association between GB structures, segregation configuration and energy offers valuable atomic-scale quantitative insights into the segregation behavior of Au in Pt GBs, which holds significant implications for the design of Pt nanomaterials with enhanced thermal stability via GB engineering.
Collapse
Affiliation(s)
- Xianxian Zhang
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China.
| | - Jianfeng Tang
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China.
| | - Xingming Zhang
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China.
| | - Liang Wang
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China.
- The Peac Institute of Multiscale Sciences, Chengdu 610207, China
| | - Dingwang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Huiqiu Deng
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lei Deng
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
11
|
Li X, Duan X, Zhang S, Wang C, Hua K, Wang Z, Wu Y, Li J, Liu J. Strategies for Achieving Ultra-Long ORR Durability-Rh Activates Interatomic Interactions in Alloys. Angew Chem Int Ed Engl 2024; 63:e202400549. [PMID: 38595043 DOI: 10.1002/anie.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
The stability of platinum-based alloy catalysts is crucial for the future development of proton exchange membrane fuel cells, considering the potential dissolution of transition metals under complex operating conditions. Here, we report on a Rh-doped Pt3Co alloy that exhibits strong interatomic interactions, thereby enhancing the durability of fuel cells. The Rh-Pt3Co/C catalyst demonstrates exceptional catalytic activity for oxygen reduction reactions (ORR) (1.31 A mgPt -1 at 0.9 V vs. the reversible hydrogen electrode (RHE) and maintaining 92 % of its mass activity after 170,000 potential cycles). Long-term testing has shown direct inhibition of Co dissolution in Rh-Pt3Co/C. Furthermore, tests on proton exchange membrane fuel cells (PEMFC) have shown excellent performance and long-term durability with low Pt loading. After 50,000 cycles, there was no voltage loss at 0.8 A cm-2 for Rh-Pt3Co/C, while Pt3Co/C experienced a loss of 200 mV. Theoretical calculations suggest that introducing transition metal atoms through doping creates a stronger compressive strain, which in turn leads to increased catalytic activity. Additionally, Rh doping increases the energy barrier for Co diffusion in the bulk phase, while also raising the vacancy formation energy of the surface Pt. This ensures the long-term stability of the alloy over the course of the cycle.
Collapse
Affiliation(s)
- Xiaoke Li
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093, P. R. China
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| | - Xiao Duan
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Siao Zhang
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| | - Chuanjie Wang
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| | - Kang Hua
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Zejin Wang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Yongkang Wu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Jia Li
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| | - Jianguo Liu
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| |
Collapse
|
12
|
Davletbaev K, Chougule SS, Min J, Ko K, Kim Y, Choi H, Choi Y, Chavan AA, Pak B, Rakhmonov IU, Jung N. Effect of Heat Treatment on Structure of Carbon Shell-Encapsulated Pt Nanoparticles for Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:924. [PMID: 38869549 PMCID: PMC11173419 DOI: 10.3390/nano14110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) have attracted much attention as highly efficient, eco-friendly energy conversion devices. However, carbon-supported Pt (Pt/C) catalysts for PEMFCs still have several problems, such as low long-term stability, to be widely commercialized in fuel cell applications. To address the stability issues of Pt/C such as the dissolution, detachment, and agglomeration of Pt nanoparticles under harsh operating conditions, we design an interesting fabrication process to produce a highly active and durable Pt catalyst by introducing a robust carbon shell on the Pt surface. Furthermore, this approach provides insights into how to regulate the carbon shell layer for fuel cell applications. Through the application of an appropriate amount of H2 gas during heat treatment, the carbon shell pores, which are integral to the structure, can be systematically modulated to facilitate oxygen adsorption for the oxygen reduction reaction. Simultaneously, the carbon shell functions as a protective barrier, preventing catalyst degradation. In this regard, we investigate an in-depth analysis of the effects of critical parameters including H2 content and the flow rate of H2/N2 mixed gas during heat treatment to prepare better catalysts.
Collapse
Affiliation(s)
- Khikmatulla Davletbaev
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (K.D.); (S.S.C.); (J.M.); (K.K.); (Y.K.); (H.C.); (Y.C.); (A.A.C.); (B.P.)
- Department of Power Supply, Tashkent State Technical University, Tashkent 100095, Uzbekistan
| | - Sourabh S. Chougule
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (K.D.); (S.S.C.); (J.M.); (K.K.); (Y.K.); (H.C.); (Y.C.); (A.A.C.); (B.P.)
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (K.D.); (S.S.C.); (J.M.); (K.K.); (Y.K.); (H.C.); (Y.C.); (A.A.C.); (B.P.)
| | - Keonwoo Ko
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (K.D.); (S.S.C.); (J.M.); (K.K.); (Y.K.); (H.C.); (Y.C.); (A.A.C.); (B.P.)
| | - Yunjin Kim
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (K.D.); (S.S.C.); (J.M.); (K.K.); (Y.K.); (H.C.); (Y.C.); (A.A.C.); (B.P.)
| | - Hyeonwoo Choi
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (K.D.); (S.S.C.); (J.M.); (K.K.); (Y.K.); (H.C.); (Y.C.); (A.A.C.); (B.P.)
| | - Yoonseong Choi
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (K.D.); (S.S.C.); (J.M.); (K.K.); (Y.K.); (H.C.); (Y.C.); (A.A.C.); (B.P.)
| | - Abhishek A. Chavan
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (K.D.); (S.S.C.); (J.M.); (K.K.); (Y.K.); (H.C.); (Y.C.); (A.A.C.); (B.P.)
| | - Beomjun Pak
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (K.D.); (S.S.C.); (J.M.); (K.K.); (Y.K.); (H.C.); (Y.C.); (A.A.C.); (B.P.)
| | - Ikromjon U. Rakhmonov
- Department of Power Supply, Tashkent State Technical University, Tashkent 100095, Uzbekistan
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (K.D.); (S.S.C.); (J.M.); (K.K.); (Y.K.); (H.C.); (Y.C.); (A.A.C.); (B.P.)
| |
Collapse
|
13
|
Ko K, Kim D, Min J, Sravani B, Kim Y, Lee S, Sul T, Jang S, Jung N. Redesign of Anode Catalyst for Sustainable Survival of Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307073. [PMID: 38225690 DOI: 10.1002/advs.202307073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) suffer from severe performance degradation when operating under harsh conditions such as fuel starvation, shut-down/start-up, and open circuit voltage. A fundamental solution to these technical issues requires an integrated approach rather than condition-specific solutions. In this study, an anode catalyst based on Pt nanoparticles encapsulated in a multifunctional carbon layer (MCL), acting as a molecular sieve layer and protective layer is designed. The MCL enabled selective hydrogen oxidation reaction on the surface of the Pt nanoparticles while preventing their dissolution and agglomeration. Thus, the structural deterioration of a membrane electrode assembly can be effectively suppressed under various harsh operating conditions. The results demonstrated that redesigning the anode catalyst structure can serve as a promising strategy to maximize the service life of the current PEMFC system.
Collapse
Affiliation(s)
- Keonwoo Ko
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Dongsu Kim
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Bathinapatla Sravani
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Yunjin Kim
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sanghyeok Lee
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Taejun Sul
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Segeun Jang
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
14
|
Rampai MM, Mtshali CB, Seroka NS, Khotseng L. Hydrogen production, storage, and transportation: recent advances. RSC Adv 2024; 14:6699-6718. [PMID: 38405074 PMCID: PMC10884891 DOI: 10.1039/d3ra08305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
One such technology is hydrogen-based which utilizes hydrogen to generate energy without emission of greenhouse gases. The advantage of such technology is the fact that the only by-product is water. Efficient storage is crucial for the practical application of hydrogen. There are several techniques to store hydrogen, each with certain advantages and disadvantages. In gaseous hydrogen storage, hydrogen gas is compressed and stored at high pressures, requiring robust and expensive pressure vessels. In liquid hydrogen storage, hydrogen is cooled to extremely low temperatures and stored as a liquid, which is energy-intensive. Researchers are exploring advanced materials for hydrogen storage, including metal hydrides, carbon-based materials, metal-organic frameworks (MOFs), and nanomaterials. These materials aim to enhance storage capacity, kinetics, and safety. The hydrogen economy envisions hydrogen as a clean energy carrier, utilized in various sectors like transportation, industry, and power generation. It can contribute to decarbonizing sectors that are challenging to electrify directly. Hydrogen can play a role in a circular economy by facilitating energy storage, supporting intermittent renewable sources, and enabling the production of synthetic fuels and chemicals. The circular economy concept promotes the recycling and reuse of materials, aligning with sustainable development goals. Hydrogen availability depends on the method of production. While it is abundant in nature, obtaining it in a clean and sustainable manner is crucial. The efficiency of hydrogen production and utilization varies among methods, with electrolysis being a cleaner but less efficient process compared to other conventional methods. Chemisorption and physisorption methods aim to enhance storage capacity and control the release of hydrogen. There are various viable options that are being explored to solve these challenges, with one option being the use of a multilayer film of advanced metals. This work provides an overview of hydrogen economy as a green and sustainable energy system for the foreseeable future, hydrogen production methods, hydrogen storage systems and mechanisms including their advantages and disadvantages, and the promising storage system for the future. In summary, hydrogen holds great promise as a clean energy carrier, and ongoing research and technological advancements are addressing challenges related to production, storage, and utilization, bringing us closer to a sustainable hydrogen economy.
Collapse
Affiliation(s)
- M M Rampai
- Tandetron Laboratory, iThemba LABS, National Research Foundation P.O. Box 722 Somerset West 7129 South Africa
- Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa
| | - C B Mtshali
- Tandetron Laboratory, iThemba LABS, National Research Foundation P.O. Box 722 Somerset West 7129 South Africa
| | - N S Seroka
- Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa
- Council for Science and Industrial Research Pretoria 0001 South Africa
| | - L Khotseng
- Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa
| |
Collapse
|
15
|
Hashimoto K, Nakazono T, Yamada Y. High Power Density of a Hydrogen Peroxide Fuel Cell Using Cobalt Chlorin Complex Supported on Carbon Nanotubes as a Noncorrosive Anode. Inorg Chem 2024; 63:1347-1355. [PMID: 38178696 DOI: 10.1021/acs.inorgchem.3c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hydrogen peroxide fuel cells (HPFCs) have attracted much attention due to their simple one-compartment structures and high availability under harsh conditions such as an anaerobic environment; however, catalysis improvement is strongly demanded for both anodes and cathodes in terms of activity and durability. Herein, we report the high catalytic activity of CoII chlorin [CoII(Ch)] for hydrogen peroxide (H2O2) oxidation with a low overpotential (0.21 V) compared to that of the CoII phthalocyanine and CoII porphyrin complexes, which have previously been reported as active anode catalysts. Linear sweep voltammograms and differential pulse voltammograms of the CoII complexes (CoIIL) and the corresponding ligands clearly showed that the CoIIIL species are the active species for H2O2 oxidation. Then, one-compartment HPFCs were constructed with CoII(Ch) supported on multiwalled carbon nanotubes (CNTs) as the anode together with FeII3[CoIII(CN)6]2 supported on CNTs as the cathode. The maximum power density of the HPFCs reached 151 μW cm-2 with an open circuit potential of 0.33 V when the coverage of CNT surfaces with CoII(Ch) exceeded ∼60% at the anode.
Collapse
Affiliation(s)
- Kazuki Hashimoto
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
16
|
Gao L, Sun T, Chen X, Yang Z, Li M, Lai W, Zhang W, Yuan Q, Huang H. Identifying the distinct roles of dual dopants in stabilizing the platinum-nickel nanowire catalyst for durable fuel cell. Nat Commun 2024; 15:508. [PMID: 38218946 PMCID: PMC10787824 DOI: 10.1038/s41467-024-44788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Stabilizing active PtNi alloy catalyst toward oxygen reduction reaction is essential for fuel cell. Doping of specific metals is an empirical strategy, however, the atomistic insight into how dopant boosts the stability of PtNi catalyst still remains elusive. Here, with typical examples of Mo and Au dopants, we identify the distinct roles of Mo and Au in stabilizing PtNi nanowires catalysts. Specifically, due to the stronger interaction between atomic orbital for Ni-Mo and Pt-Au, the Mo dopant mainly suppresses the outward diffusion of Ni atoms while the Au dopant contributes to the stabilization of surface Pt overlayer. Inspired by this atomistic understanding, we rationally construct the PtNiMoAu nanowires by integrating the different functions of Mo and Au into one entity. Such catalyst assembled in fuel cell cathode thus presents both remarkable activity and durability, even surpassing the United States Department of Energy technical targets for 2025.
Collapse
Affiliation(s)
- Lei Gao
- College of Materials Science and Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, PR China
| | - Tulai Sun
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, PR China
| | - Xuli Chen
- College of Materials Science and Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, PR China
| | - Zhilong Yang
- College of Materials Science and Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, PR China
| | - Mengfan Li
- College of Materials Science and Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, PR China
| | - Wenchuan Lai
- College of Materials Science and Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, PR China
| | - Wenhua Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Quan Yuan
- College of Materials Science and Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, PR China
| | - Hongwen Huang
- College of Materials Science and Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, PR China.
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong, PR China.
| |
Collapse
|
17
|
Yin P, Niu X, Li SB, Chen K, Zhang X, Zuo M, Zhang L, Liang HW. Machine-learning-accelerated design of high-performance platinum intermetallic nanoparticle fuel cell catalysts. Nat Commun 2024; 15:415. [PMID: 38195668 PMCID: PMC10776629 DOI: 10.1038/s41467-023-44674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
Carbon supported PtCo intermetallic alloys are known to be one of the most promising candidates as low-platinum oxygen reduction reaction electrocatalysts for proton-exchange-membrane fuel cells. Nevertheless, the intrinsic trade-off between particle size and ordering degree of PtCo makes it challenging to simultaneously achieve a high specific activity and a large active surface area. Here, by machine-learning-accelerated screenings from the immense configuration space, we are able to statistically quantify the impact of chemical ordering on thermodynamic stability. We find that introducing of Cu/Ni into PtCo can provide additional stabilization energy by inducing Co-Cu/Ni disorder, thus facilitating the ordering process and achieveing an improved tradeoff between specific activity and active surface area. Guided by the theoretical prediction, the small sized and highly ordered ternary Pt2CoCu and Pt2CoNi catalysts are experimentally prepared, showing a large electrochemically active surface area of ~90 m2 gPt‒1 and a high specific activity of ~3.5 mA cm‒2.
Collapse
Affiliation(s)
- Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiangfu Niu
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Shuo-Bin Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Kai Chen
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ming Zuo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China.
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
18
|
Jiang N, Huang B, Wang M, Chen Y, Yu Q, Guan L. Universal and Energy-Efficient Approach to Synthesize Pt-Rare Earth Metal Alloys for Proton Exchange Membrane Fuel Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305110. [PMID: 37986658 PMCID: PMC10767455 DOI: 10.1002/advs.202305110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Traditional synthesis methods of platinum-rare earth metal (Pt-RE) alloys usually involve harsh conditions and high energy consumption because of the low standard reduction potentials and high oxophilicity of RE metals. In this work, a one-step strategy is developed by rapid Joule thermal-shock (RJTS) to synthesize Pt-RE alloys within tens of seconds. The method can not only realize the regulation of alloy size, but also a universal method for the preparation of a family of Pt-RE alloys (RE = Ce, La, Gd, Sm, Tb, Y). In addition, the energy consumption of the Pt-RE alloy preparation is only 0.052 kW h, which is 2-3 orders of magnitude lower than other reported methods. This method allows individual Pt-RE alloy to be embedded in the carbon substrate, endowing the alloy catalyst excellent durability for oxygen reduction reaction (ORR). The performance of alloy catalyst shows negligible decay after 20k accelerated durability testing (ADT) cycles. This strategy offers a new route to synthesize noble/non-noble metal alloys with diversified applications besides ORR.
Collapse
Affiliation(s)
- Nannan Jiang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000P.R. China
- University of Chinese Academy of SciencesBeijing100049P.R. China
| | - Bing Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000P.R. China
- University of Chinese Academy of SciencesBeijing100049P.R. China
| | - Minghao Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000P.R. China
| | - Yumo Chen
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen Institute & Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055P.R. China
| | - Qiangmin Yu
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen Institute & Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055P.R. China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000P.R. China
| |
Collapse
|
19
|
Chee SW, Lunkenbein T, Schlögl R, Roldán Cuenya B. Operando Electron Microscopy of Catalysts: The Missing Cornerstone in Heterogeneous Catalysis Research? Chem Rev 2023; 123:13374-13418. [PMID: 37967448 PMCID: PMC10722467 DOI: 10.1021/acs.chemrev.3c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
Heterogeneous catalysis in thermal gas-phase and electrochemical liquid-phase chemical conversion plays an important role in our modern energy landscape. However, many of the structural features that drive efficient chemical energy conversion are still unknown. These features are, in general, highly distinct on the local scale and lack translational symmetry, and thus, they are difficult to capture without the required spatial and temporal resolution. Correlating these structures to their function will, conversely, allow us to disentangle irrelevant and relevant features, explore the entanglement of different local structures, and provide us with the necessary understanding to tailor novel catalyst systems with improved productivity. This critical review provides a summary of the still immature field of operando electron microscopy for thermal gas-phase and electrochemical liquid-phase reactions. It focuses on the complexity of investigating catalytic reactions and catalysts, progress in the field, and analysis. The forthcoming advances are discussed in view of correlative techniques, artificial intelligence in analysis, and novel reactor designs.
Collapse
Affiliation(s)
- See Wee Chee
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Thomas Lunkenbein
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Robert Schlögl
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldán Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
20
|
Tang M, Yan H, Zhang X, Zheng Z, Chen S. Materials Strategies Tackling Interfacial Issues in Catalyst Layers of Proton Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306387. [PMID: 38018316 DOI: 10.1002/adma.202306387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Indexed: 11/30/2023]
Abstract
The most critical challenge for the large-scale commercialization of proton exchange membrane fuel cells (PEMFCs), one of the primary hydrogen energy technologies, is to achieve decent output performance with low usage of platinum (Pt). Currently, the performance of PEMFCs is largely limited by two issues at the catalyst/ionomer interface, specifically, the poisoning of active sites of Pt by sulfonate groups and the extremely sluggish local oxygen transport toward Pt. In the past few years, emerging strategies are derived to tackle these interface problems through materials optimization and innovation. This perspective summarizes the latest advances in this regard, and in the meantime unveils the molecule-level mechanisms behind the materials modulation of interfacial structures. This paper starts with a brief introduction of processes and structures of catalyst/ionomer interfaces, which is followed by a detailed review of progresses in key materials toward interface optimization, including catalysts, ionomers, and additives, with particular emphasis on the role of materials structure in regulating the intermolecular interactions. Finally, the challenges for the application of the established materials and research directions to broaden the material library are highlighted.
Collapse
Affiliation(s)
- Meihua Tang
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Huangli Yan
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xianming Zhang
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenying Zheng
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shengli Chen
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
21
|
Jang S, Kang YS, Kim D, Park S, Seol C, Lee S, Kim SM, Yoo SJ. Multiscale Architectured Membranes, Electrodes, and Transport Layers for Next-Generation Polymer Electrolyte Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204902. [PMID: 36222387 DOI: 10.1002/adma.202204902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Over the past few decades, considerable advances have been achieved in polymer electrolyte membrane fuel cells (PEMFCs) based on the development of material technology. Recently, an emerging multiscale architecturing technology covering nanometer, micrometer, and millimeter scales has been regarded as an alternative strategy to overcome the hindrance to achieving high-performance and reliable PEMFCs. This review summarizes the recent progress in the key components of PEMFCs based on a novel architecture strategy. In the first section, diverse architectural methods for patterning the membrane surface with random, single-scale, and multiscale structures as well as their efficacy for improving catalyst utilization, charge transport, and water management are discussed. In the subsequent section, the electrode structures designed with 1D and 3D multiscale structures to enable low Pt usage, improve oxygen transport, and achieve high electrode durability are elucidated. Finally, recent advances in the architectured transport layer for improving mass transportation including pore gradient, perforation, and patterned wettability for gas diffusion layer and 3D structured/engineered flow fields are described.
Collapse
Affiliation(s)
- Segeun Jang
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Yun Sik Kang
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon, 34129, Republic of Korea
| | - Dohoon Kim
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Subin Park
- Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Changwook Seol
- Department of Mechanical Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sungchul Lee
- Fuel Cell Core Parts Development Cell, Hyundai Mobis Co. Ltd., Uiwang, 16082, Republic of Korea
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sung Jong Yoo
- Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
22
|
Sun D, Zhao Z, Jin M, Zhang H. Tailoring ionomer distribution in the catalyst layer via heteroatom-functionalization toward superior PEMFC performance. Chem Commun (Camb) 2023; 59:11357-11360. [PMID: 37670613 DOI: 10.1039/d3cc03610c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
We investigate in detail the influence of O, S, and N functionalization of Pt3Co/C catalysts on the proton exchange membrane fuel cell (PEMFC). The results demonstrated that N-functionalization is more beneficial for the distribution of the ionomer in the catalyst layer, resulting in a trade-off between oxygen and hydronium ion transport.
Collapse
Affiliation(s)
- Dianding Sun
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Zhong Zhao
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| | - Meng Jin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Pramadewandaru RK, Lee YW, Hong JW. Synergistic effect of bimetallic Pd-Pt nanocrystals for highly efficient methanol oxidation electrocatalysts. RSC Adv 2023; 13:27046-27053. [PMID: 37693086 PMCID: PMC10486200 DOI: 10.1039/d3ra04837c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Metal nanocrystals (NCs) with controlled compositional and distributional structures have gained increasing attention due to their unique properties and broad applications, particularly in fuel cell systems. However, despite the significant importance of composition in metal NCs and their electrocatalytic behavior, comprehensive investigations into the relationship between atomic distribution and electrocatalytic activity remain scarce. In this study, we present the development of four types of nanocubes with similar sizes and controlled compositions (Pd-Pt alloy, Pd@Pt core-shell, Pd, and Pt) to investigate their influence on electrocatalytic performance for methanol oxidation reaction (MOR). The electrocatalytic activity and stability of these nanocubes exhibited variations based on their compositional structures, potentially affecting the interaction between the surface-active sites of the nanocrystals and reactive molecules. As a result, leveraging the synergistic effect of their alloy nanostructure, the Pd-Pt alloy nanocubes exhibited exceptional performance in MOR, surpassing the catalytic activity of other nanocubes, including Pd@Pt core-shell nanocubes, monometallic Pd and Pt nanocubes, as well as commercial Pd/C and Pt/C catalysts.
Collapse
Affiliation(s)
| | - Young Wook Lee
- Department of Education Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Republic of Korea
| | - Jong Wook Hong
- Department of Chemistry, University of Ulsan Ulsan 44776 Republic of Korea
| |
Collapse
|
24
|
Sunda AP, Singh S, Yadav S, Singh RK. Atomistic Simulations of Hydrated Sulfonated Polybenzophenone Block Copolymer Membranes. Chemphyschem 2023; 24:e202300104. [PMID: 37260415 DOI: 10.1002/cphc.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/02/2023]
Abstract
We present a classical molecular dynamics simulations study on the nanostructures of the sulfonated polybenzophenone (SPK) block copolymer membranes at 300 K and 353 K. The results of the radial distribution function (RDF) show that the interactions of the sulfonate groups of the membrane with the hydronium ions are more significant than those of water due to the strong electrostatic attraction over the hydrogen bonding. However, the effect of temperatures on the RDF profile seems insignificant. Furthermore, the spatial distribution function (SDF) portrays that the sulfonate groups of the hydrophilic components are preferential binding sites for hydronium ions against the hydrophobic counterpart of the SPK membrane. The mobility of the H3 O+ ions at 300 K and 353 K is two (or three) times lower than that of Nafion/Aciplex. However, the diffusion coefficients for water molecules closely agree with Nafion/Aciplex. This study suggests that water clusters are more localized around the sulfonate groups in the SPK membranes. Thus, the molecular modeling study of SPK block copolymer membranes is warranted to design better-performing membrane electrolytes.
Collapse
Affiliation(s)
- Anurag Prakash Sunda
- Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, India
| | - Soni Singh
- Department of Chemistry, Jagdam College, Jai Prakash University, Chapra, 841301, Bihar, India
| | - Sonia Yadav
- Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, India
| | - Raman K Singh
- Department of Chemistry, Jagdam College, Jai Prakash University, Chapra, 841301, Bihar, India
| |
Collapse
|
25
|
Zhao W, Xu G, Dong W, Zhang Y, Zhao Z, Qiu L, Dong J. Progress and Perspective for In Situ Studies of Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300550. [PMID: 37097627 DOI: 10.1002/advs.202300550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Indexed: 06/15/2023]
Abstract
Proton exchange membrane fuel cell (PEMFC) is one of the most promising energy conversion devices with high efficiency and zero emission. However, oxygen reduction reaction (ORR) at the cathode is still the dominant limiting factor for the practical development of PEMFC due to its sluggish kinetics and the vulnerability of ORR catalysts under harsh operating conditions. Thus, the development of high-performance ORR catalysts is essential and requires a better understanding of the underlying ORR mechanism and the failure mechanisms of ORR catalysts with in situ characterization techniques. This review starts with the introduction of in situ techniques that have been used in the research of the ORR processes, including the principle of the techniques, the design of the in situ cells, and the application of the techniques. Then the in situ studies of the ORR mechanism as well as the failure mechanisms of ORR catalysts in terms of Pt nanoparticle degradation, Pt oxidation, and poisoning by air contaminants are elaborated. Furthermore, the development of high-performance ORR catalysts with high activity, anti-oxidation ability, and toxic-resistance guided by the aforementioned mechanisms and other in situ studies are outlined. Finally, the prospects and challenges for in situ studies of ORR in the future are proposed.
Collapse
Affiliation(s)
- Wenhui Zhao
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Guangtong Xu
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Wenyan Dong
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Yiwei Zhang
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Zipeng Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Limei Qiu
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Duan W, Han S, Fang Z, Xiao Z, Lin S. In Situ Filling of the Oxygen Vacancies with Dual Heteroatoms in Co 3O 4 for Efficient Overall Water Splitting. Molecules 2023; 28:molecules28104134. [PMID: 37241875 DOI: 10.3390/molecules28104134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Electrocatalytic water splitting is a crucial area in sustainable energy development, and the development of highly efficient bifunctional catalysts that exhibit activity toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance. Co3O4 is a promising candidate catalyst, owing to the variable valence of Co, which can be exploited to enhance the bifunctional catalytic activity of HER and OER through rational adjustments of the electronic structure of Co atoms. In this study, we employed a plasma-etching strategy in combination with an in situ filling of heteroatoms to etch the surface of Co3O4, creating abundant oxygen vacancies, while simultaneously filling them with nitrogen and sulfur heteroatoms. The resulting N/S-VO-Co3O4 exhibited favorable bifunctional activity for alkaline electrocatalytic water splitting, with significantly enhanced HER and OER catalytic activity compared to pristine Co3O4. In an alkaline overall water-splitting simulated electrolytic cell, N/S-VO-Co3O4 || N/S-VO-Co3O4 showed excellent overall water splitting catalytic activity, comparable to noble metal benchmark catalysts Pt/C || IrO2, and demonstrated superior long-term catalytic stability. Additionally, the combination of in situ Raman spectroscopy with other ex situ characterizations provided further insight into the reasons behind the enhanced catalyst performance achieved through the in situ incorporation of N and S heteroatoms. This study presents a facile strategy for fabricating highly efficient cobalt-based spinel electrocatalysts incorporated with double heteroatoms for alkaline electrocatalytic monolithic water splitting.
Collapse
Affiliation(s)
- Wei Duan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Road, Haikou 570228, China
| | - Shixing Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Road, Haikou 570228, China
| | - Zhonghai Fang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Road, Haikou 570228, China
| | - Zhaohui Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Road, Haikou 570228, China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Road, Haikou 570228, China
| |
Collapse
|
27
|
Ji Y, Kwon O, Jeon OS, Yim S, Jeon Y, Shul YG. Effective single web-structured electrode for high membrane electrode assembly performance in polymer electrolyte membrane fuel cell. SCIENCE ADVANCES 2023; 9:eadf4863. [PMID: 37115932 PMCID: PMC10146897 DOI: 10.1126/sciadv.adf4863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To achieve a sustainable society, CO2 emissions must be reduced and efficiency of energy systems must be enhanced. The polymer electrolyte membrane fuel cell (PEMFC) has zero CO2 emissions and high effectiveness for various applications. A well-designed membrane electrolyte assembly (MEA) composed of electrode layers of effective materials and structure can alter the performance and durability of PEMFC. We demonstrate an efficient electrode deposition method through a well-designed carbon single web with a porous 3D web structure that can be commercially adopted. To achieve excellent electrochemical properties, active Pt nanoparticles are controlled by a nanoglue effect on a highly graphitized carbon surface. The developed MEA exhibits a notable maximum power density of 1082 mW/cm2 at 80°C, H2/air, 50% RH, and 1.8 atm; low cathode loading of 0.1 mgPt/cm2; and catalytic performance decays of only 23.18 and 13.42% under commercial-based durability protocols, respectively, thereby achieving all desirables for commercial applications.
Collapse
Affiliation(s)
- Yunseong Ji
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
- KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Ohchan Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ok Sung Jeon
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Sungdae Yim
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Yukwon Jeon
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonsei-gil, Wonju, Gangwon-do 26493, Republic of Korea
- Corresponding author. (Y.Jeon); (Y.Shul)
| | - Yong-gun Shul
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. (Y.Jeon); (Y.Shul)
| |
Collapse
|
28
|
Nelli D, Mastronardi V, Brescia R, Pompa PP, Moglianetti M, Ferrando R. Hydrogen Promotes the Growth of Platinum Pyramidal Nanocrystals by Size-Dependent Symmetry Breaking. NANO LETTERS 2023; 23:2644-2650. [PMID: 36995102 PMCID: PMC10103309 DOI: 10.1021/acs.nanolett.2c04982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The growth of pyramidal platinum nanocrystals is studied by a combination of synthesis/characterization experiments and density functional theory calculations. It is shown that the growth of pyramidal shapes is due to a peculiar type of symmetry breaking, which is caused by the adsorption of hydrogen on the growing nanocrystals. Specifically, the growth of pyramidal shapes is attributed to the size-dependent adsorption energies of hydrogen atoms on {100} facets, whose growth is hindered only if they are sufficiently large. The crucial role of hydrogen adsorption is further confirmed by the absence of pyramidal nanocrystals in experiments where the reduction process does not involve hydrogen.
Collapse
Affiliation(s)
- Diana Nelli
- Dipartimento
di Fisica, Università di Genova, Via Dodecaneso 33, Genova 16146, Italia
| | - Valentina Mastronardi
- Istituto
Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, PVia Morego 30, Genova 16163, Italy
- BeDimensional
S.p.A., Via Lungotorrente
Secca 30R, Genova 16163, Italy
| | - Rosaria Brescia
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego
30, Genova 16163, Italy
| | - Pier Paolo Pompa
- Istituto
Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, PVia Morego 30, Genova 16163, Italy
| | - Mauro Moglianetti
- Istituto
Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, PVia Morego 30, Genova 16163, Italy
- Center for
Cultural Heritage Technology, Istituto Italiano
di Tecnologia, via Torino
155, Venice 30172, Italy
| | - Riccardo Ferrando
- Dipartimento
di Fisica, Università di Genova, Via Dodecaneso 33, Genova 16146, Italia
| |
Collapse
|
29
|
Chen JH, Choo YSL, Wang XH, Liu YJ, Yue XB, Gao XL, Gao WT, Zhang QG, Zhu AM, Liu QL. Effects of the crown ether cavity on the performance of anion exchange membranes. J Colloid Interface Sci 2023; 643:62-72. [PMID: 37044014 DOI: 10.1016/j.jcis.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs) have emerged as a promising alternative to proton exchange membrane fuel cells (PEMFCs) due to their adaptability to low-cost stack components and non-noble-metals catalysts. However, the poor alkaline resistance and low OH- conductivity of anion exchange membranes (AEMs) have impeded the large-scale implementation of AEMFCs. Herein, the preparation of a new type of AEMs with crown ether macrocycles in their main chains via a one-pot superacid catalyzed reaction was reported. The study aimed to examine the influence of crown ether cavity size on the phase separation structure, ionic conductivity and alkali resistance of anion exchange membranes. Attributed to the self-assembly of crown ethers, the poly (crown ether) (PCE) AEMs with dibenzo-18-crown-6-ether (QAPCE-18-6) exhibit an obvious phase separated structure and a maximum OH- conductivity of 122.5 mS cm-1 at 80 °C (ionic exchange capacity is 1.51 meq g-1). QAPCE-18-6 shows a good alkali resistance with the OH- conductivity retention of 94.5% albeit being treated in a harsh alkali condition. Moreover, the hydrogen/oxygen single cell equipped with QAPCE-18-6 can achieve a peak power density (PPD) of 574 mW cm-2 at a current density of 1.39 A cm-2.
Collapse
Affiliation(s)
- Jia Hui Chen
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yvonne Shuen Lann Choo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia
| | - Xi Hao Wang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ying Jie Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xi Bin Yue
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xue Lang Gao
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Wei Ting Gao
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiu Gen Zhang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ai Mei Zhu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qing Lin Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
30
|
Zeng WJ, Wang C, Yin P, Tong L, Yan QQ, Chen MX, Xu SL, Liang HW. Alloying Matters for Ordering: Synthesis of Highly Ordered PtCo Intermetallic Catalysts for Fuel Cells. Inorg Chem 2023; 62:5262-5269. [PMID: 36947415 DOI: 10.1021/acs.inorgchem.3c00331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Porous carbon-supported atomically ordered intermetallic compounds (IMCs) are promising electrocatalysts in boosting oxygen reduction reaction (ORR) for fuel cell applications. However, the formation mechanism of IMC structures under high temperatures is poorly understood, which hampers the synthesis of highly ordered IMC catalysts with promoted ORR performance. Here, we employ high-temperature X-ray diffraction and energy-dispersive spectroscopic elemental mapping techniques to study the formation process of IMCs, by taking PtCo for example, in an industry-relevant impregnation synthesis. We find that high-temperature annealing is crucial in promoting the formation of alloy particles with a stoichiometric Co/Pt ratio, which in turn is the precondition for transforming the disordered alloys to ordered intermetallic structures at a relatively low temperature. Based on the findings, we accordingly synthesize highly ordered L10-type PtCo catalysts with a remarkable ORR performance in fuel cells.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qiang-Qiang Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Xi Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Long Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
31
|
Ma J, Chen K, Wang J, Huang L, Dang C, Gu L, Cao X. Killing Two Birds with One Stone: Upgrading Organic Compounds via Electrooxidation in Electricity-Input Mode and Electricity-Output Mode. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2500. [PMID: 36984379 PMCID: PMC10056343 DOI: 10.3390/ma16062500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The electrochemically oxidative upgrading reaction (OUR) of organic compounds has gained enormous interest over the past few years, owing to the advantages of fast reaction kinetics, high conversion efficiency and selectivity, etc., and it exhibits great potential in becoming a key element in coupling with electricity, synthesis, energy storage and transformation. On the one hand, the kinetically more favored OUR for value-added chemical generation can potentially substitute an oxygen evolution reaction (OER) and integrate with an efficient hydrogen evolution reaction (HER) or CO2 electroreduction reaction (CO2RR) in an electricity-input mode. On the other hand, an OUR-based cell or battery (e.g., fuel cell or Zinc-air battery) enables the cogeneration of value-added chemicals and electricity in the electricity-output mode. For both situations, multiple benefits are to be obtained. Although the OUR of organic compounds is an old and rich discipline currently enjoying a revival, unfortunately, this fascinating strategy and its integration with the HER or CO2RR, and/or with electricity generation, are still in the laboratory stage. In this minireview, we summarize and highlight the latest progress and milestones of the OUR for the high-value-added chemical production and cogeneration of hydrogen, CO2 conversion in an electrolyzer and/or electricity in a primary cell. We also emphasize catalyst design, mechanism identification and system configuration. Moreover, perspectives on OUR coupling with the HER or CO2RR in an electrolyzer in the electricity-input mode, and/or the cogeneration of electricity in a primary cell in the electricity-output mode, are offered for the future development of this fascinating technology.
Collapse
Affiliation(s)
- Jiamin Ma
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Keyu Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jigang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Lin Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Chenyang Dang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Li Gu
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xuebo Cao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
32
|
Wu K, Chen R, Zhou Z, Chen X, Lv Y, Ma J, Shen Y, Liu S, Zhang Y. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Time-Dependent Electrochemiluminescence. Angew Chem Int Ed Engl 2023; 62:e202217078. [PMID: 36591995 DOI: 10.1002/anie.202217078] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/03/2023]
Abstract
Facile evaluation of oxygen reduction reaction (ORR) kinetics for electrocatalysts is critical for sustainable fuel-cell development and industrial H2 O2 production. Despite great success in ORR studies using mainstream strategies, such as the membrane electrode assembly, rotation electrodes, and advanced surface-sensitive spectroscopy, the time and spatial distribution of reactive oxygen species (ROS) intermediates in the diffusion layer remain unknown. Using time-dependent electrochemiluminescence (Td-ECL), we report an intermediate-oriented method for ORR kinetics analysis. Owing to multiple ultrasensitive stoichiometric reactions between ROS and the ECL emitter, except for electron transfer numbers and rate constants, the potential-dependent time and spatial distribution of ROS were successfully obtained for the first time. Such exclusively uncovered information would guide the development of electrocatalysts for fuel cells and H2 O2 production with maximized activity and durability.
Collapse
Affiliation(s)
- Kaiqing Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ran Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yanqin Lv
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jin Ma
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
33
|
Chen Q, Jin H, Cheng T, Wang Z, Ren Y, Tian J, Zhu Y. Small amounts of main group metal atoms matter: ultrathin Pd-based alloy nanowires enabling high activity and stability towards efficient oxygen reduction reaction and ethanol oxidation. NANOSCALE 2023; 15:3772-3779. [PMID: 36723133 DOI: 10.1039/d2nr07101k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proton-exchange membrane fuel cells are considered as promising energy-conversion devices. Alloying 3d transition metals with noble metals not only highly improves the performance of noble metal-based catalysts towards electrocatalytic reactions in fuel cells due to d-d hybridization interaction but also decreases the total cost. However, the rapid leaching of transition metal atoms leads to a fast decay of the activity, which seriously affects the performance of the fuel cell. Herein, alloyed Pd-main group metal (e.g. Pb, Bi, Sn) ultrathin nanowires were realized by a facile one-step wet-chemical strategy. The content of the main group metal could be tuned in a certain range while maintaining the same one-dimensional ultrathin nanowire morphology, which provided a large surface area and many more active sites. These Pd-based alloys showed a significant improvement in electrocatalytic activity and durability towards the oxygen reaction reaction as well as ethanol oxidation reaction. Optimal activity occurred when a small amount of main group metal existed, which could be explained through calculations by a strong p-d hybridization interaction between the main group metal and Pd to optimize the surface electronic structure collaboratively. Besides, high stability was achieved, which could be ascribed to the increased antioxidant activity of Pd by the main group metal. Furthermore, the low amount of the main group metal atoms also prevented them from leaching out of the crystal lattice.
Collapse
Affiliation(s)
- Qiaoli Chen
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Hui Jin
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tianchun Cheng
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Zhi Wang
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yaoyao Ren
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jinshu Tian
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yihan Zhu
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
34
|
Gao Y, Lei H, Bao Z, Liu X, Qin L, Yin Z, Li H, Huang S, Zhang W, Cao R. Electrocatalytic oxygen reduction with cobalt corroles bearing cationic substituents. Phys Chem Chem Phys 2023; 25:4604-4610. [PMID: 36723094 DOI: 10.1039/d2cp05786g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent decades have seen increasing interest in developing highly active and selective electrocatalysts for the oxygen reduction reaction (ORR). The active site environment of cytochrome c oxidases (CcOs), including electrostatic and hydrogen-bonding interactions, plays an important role in promoting the selective conversion of dioxygen to water. Herein, we report the synthesis of three CoIII corroles, namely 1 (with a 10-phenyl ortho-trimethylammonium cationic group), 2 (with a 10-phenyl ortho-dimethylamine group) and 3 (with a 10-phenyl para-trimethylammonium cationic group) as well as their electrocatalytic ORR activities in both acidic and neutral solutions. We discovered that 1 is much more active and selective than 2 and 3 for the electrocatalytic four-electron ORR. Importantly, 1 showed ORR activities with half-wave potentials at E1/2 = 0.75 V versus RHE in 0.5 M H2SO4 solutions and at E1/2 = 0.70 V versus RHE in neutral 0.1 M phosphate buffer solutions. This work is significant for outlining a strategy to increase both the activity and selectivity of metal corroles for the electrocatalytic ORR by introducing cationic units.
Collapse
Affiliation(s)
- Yimei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zijia Bao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinrong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lingshuang Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhiyuan Yin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Huiyuan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Shu Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
35
|
Luo W, Jiang Y, Wang M, Lu D, Sun X, Zhang H. Design strategies of Pt-based electrocatalysts and tolerance strategies in fuel cells: a review. RSC Adv 2023; 13:4803-4822. [PMID: 36760269 PMCID: PMC9903923 DOI: 10.1039/d2ra07644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
As highly efficient conversion devices, proton-exchange-membrane fuel cells (PEMFCs) can directly convert chemical energy to electrical energy with high efficiencies and lower or even zero emissions compared to combustion engines. However, the practical applications of PEMFCs have been seriously hindered by the intermediates (especially CO) poisoning of anodic Pt catalysts. Hence, how to improve the CO tolerance of the needed Pt catalysts and reveal their anti-CO poisoning mechanism are the key points to developing novel anti-toxic Pt-based electrocatalysts. To date, two main strategies have received increasing attention in improving the CO tolerance of Pt-based electrocatalysts, including alloying Pt with a second element and fabricating composites with geometry and interface engineering. Herein, we will first discuss the latest developments of Pt-based alloys and their anti-CO poisoning mechanism. Subsequently, a detailed description of Pt-based composites with enhanced CO tolerance by utilizing the synergistic effect between Pt and carriers is introduced. Finally, a brief perspective and new insights on the design of Pt-based electrocatalysts to inhibit CO poisoning in PEMFCs are also presented.
Collapse
Affiliation(s)
- Wenlei Luo
- National Innovation Institute of Defense Technology, Academy of Military Science Beijing 100071 China
| | - Yitian Jiang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Mengwei Wang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Dan Lu
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Xiaohui Sun
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Huahui Zhang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| |
Collapse
|
36
|
Advances in Low Pt Loading Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020773. [PMID: 36677836 PMCID: PMC9866934 DOI: 10.3390/molecules28020773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Hydrogen has the potential to be one of the solutions that can address environmental pollution and greenhouse emissions from traditional fossil fuels. However, high costs hinder its large-scale commercialization, particularly for enabling devices such as proton exchange membrane fuel cells (PEMFCs). The precious metal Pt is indispensable in boosting the oxygen reduction reaction (ORR) in cathode electrocatalysts from the most crucial component, i.e., the membrane electrode assembly (MEA). MEAs account for a considerable amount of the entire cost of PEMFCs. To address these bottlenecks, researchers either increase Pt utilization efficiency or produce MEAs with enhanced performance but less Pt. Only a few reviews that explain the approaches are available. This review summarizes advances in designing nanocatalysts and optimizing the catalyst layer structure to achieve low-Pt loading MEAs. Different strategies and their corresponding effectiveness, e.g., performance in half-cells or MEA, are summarized and compared. Finally, future directions are discussed and proposed, aiming at affordable, highly active, and durable PEMFCs.
Collapse
|
37
|
Takimoto D, Toma S, Suda Y, Shirokura T, Tokura Y, Fukuda K, Matsumoto M, Imai H, Sugimoto W. Platinum nanosheets synthesized via topotactic reduction of single-layer platinum oxide nanosheets for electrocatalysis. Nat Commun 2023; 14:19. [PMID: 36624103 PMCID: PMC9829898 DOI: 10.1038/s41467-022-35616-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Increasing the performance of Pt-based electrocatalysts for the oxygen reduction reaction (ORR) is essential for the widespread commercialization of polymer electrolyte fuel cells. Here we show the synthesis of double-layer Pt nanosheets with a thickness of 0.5 nm via the topotactic reduction of 0.9 nm-thick single-layer PtOx nanosheets, which are exfoliated from a layered platinic acid (HyPtOx). The ORR activity of the Pt nanosheets is two times greater than that of conventionally used state-of-the-art 3 nm-sized Pt nanoparticles, which is attributed to their large electrochemically active surface area (124 m2 g-1). These Pt nanosheets show excellent potential in reducing the amount of Pt used by enhancing its ORR activity. Our results unveil strategies for designing advanced catalysts that are considerably superior to traditional nanoparticle systems, allowing Pt catalysts to operate at their full potential in areas such as fuel cells, rechargeable metal-air batteries, and fine chemical production.
Collapse
Affiliation(s)
- Daisuke Takimoto
- grid.263518.b0000 0001 1507 4692Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan ,grid.267625.20000 0001 0685 5104Faculty of Science, University of the Ryukyus, 1-Senbaru, Nishihara, Nakagami, Okinawa, 903-0213 Japan
| | - Shino Toma
- grid.267625.20000 0001 0685 5104Faculty of Science, University of the Ryukyus, 1-Senbaru, Nishihara, Nakagami, Okinawa, 903-0213 Japan
| | - Yuya Suda
- grid.263518.b0000 0001 1507 4692Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Tomoki Shirokura
- grid.263518.b0000 0001 1507 4692Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Yuki Tokura
- grid.263518.b0000 0001 1507 4692Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Katsutoshi Fukuda
- grid.258799.80000 0004 0372 2033Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Masashi Matsumoto
- Device-functional Analysis Department, NISSAN ARC LTD., 1 Natsushima, Yokosuka, Kanagawa 237-0061 Japan
| | - Hideto Imai
- Device-functional Analysis Department, NISSAN ARC LTD., 1 Natsushima, Yokosuka, Kanagawa 237-0061 Japan
| | - Wataru Sugimoto
- grid.263518.b0000 0001 1507 4692Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan ,grid.263518.b0000 0001 1507 4692Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| |
Collapse
|
38
|
Yan F. Porous ionomers boosting the performances of proton exchange membrane fuel cells. Sci Bull (Beijing) 2022; 67:2505-2507. [PMID: 36604025 DOI: 10.1016/j.scib.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
39
|
Kim HY, Jun M, Lee K, Joo SH. Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ho Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
40
|
Guo P, Xia Y, Liu B, Ma M, Shen L, Dai Y, Zhang Z, Zhao Z, Zhang Y, Zhao L, Wang Z. Low-Loading Sub-3 nm PtCo Nanoparticles Supported on Co-N-C with Dual Effect for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53819-53827. [PMID: 36414243 DOI: 10.1021/acsami.2c15996] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing low-loading Pt-based catalysts possessing glorious catalytic performance can accelerate oxygen reduction reaction (ORR) and hence significantly advance the commercialization of proton exchange membrane fuel cells. In this report, we propose a hybrid catalyst that consists of low-loading sub-3 nm PtCo intermetallic nanoparticles carried on Co-N-C (PtCo/Co-N-C) via the microwave-assisted polyol procedure and subsequent heat treatment. Atomically dispersed Co atoms embedded in the Co-N-C carriers diffuse into the lattice of Pt, thus forming ultrasmall PtCo intermetallic nanoparticles. Owing to the dual effect of the enhanced metal-support interaction and alloy effect, as-fabricated PtCo/Co-N-C catalysts deliver an extraordinary performance, achieving a half-wave potential of 0.921 V, a mass activity of 0.700 A mgPt-1@0.9 V, and brilliant durability in the acidic medium. The fuel cell employing PtCo/Co-N-C as the cathode catalyst with an ultralow Pt loading of 0.05 mg cm-2 exhibits an impressive peak power density of 0.700 W cm-2, higher than that of commercial Pt/C under the same condition. Furthermore, the enhanced intrinsic ORR activity and stability are imputed to the downshifted d-band center and the strengthened metal-support interaction, as revealed by density functional theory calculations. This report affords a facile tactic to fabricate Pt-based alloy composite catalysts, which is also applicable to other alloy catalysts.
Collapse
Affiliation(s)
- Pan Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yunfei Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Bo Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Miao Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lixiao Shen
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yunkun Dai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ziyu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zigang Zhao
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yunlong Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zhenbo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| |
Collapse
|
41
|
Xu F, Zou Q, Xiong G, Zhang H, Wang F, Wang Y. Activated Single‐Phase Ti
4
O
7
Nanosheets with Efficient Use of Precious Metal for Inspired Oxygen Reduction Reaction. Chemistry 2022; 28:e202202580. [DOI: 10.1002/chem.202202580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Fan Xu
- The School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment &System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Qing Zou
- The School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment &System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Gangquan Xiong
- The School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment &System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Feipeng Wang
- The School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment &System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Yu Wang
- The School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment &System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
- The School of Chemistry and Chemical Engineering Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| |
Collapse
|
42
|
Zhang Q, Dong S, Shao P, Zhu Y, Mu Z, Sheng D, Zhang T, Jiang X, Shao R, Ren Z, Xie J, Feng X, Wang B. Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 2022; 378:181-186. [PMID: 36228000 DOI: 10.1126/science.abm6304] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lowering platinum (Pt) loadings without sacrificing power density and durability in fuel cells is highly desired yet challenging because of the high mass transport resistance near the catalyst surfaces. We tailored the three-phase microenvironment by optimizing the ionomer by incorporating ionic covalent organic framework (COF) nanosheets into Nafion. The mesoporous apertures of 2.8 to 4.1 nanometers and appendant sulfonate groups enabled the proton transfer and promoted oxygen permeation. The mass activity of Pt and the peak power density of the fuel cell with Pt/Vulcan (0.07 mg of Pt per square centimeter in the cathode) both reached 1.6 times those values without the COF. This strategy was applied to catalyst layers with various Pt loadings and different commercial catalysts.
Collapse
Affiliation(s)
- Qingnuan Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Shuda Dong
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengpeng Shao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhenjie Mu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dafei Sheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Teng Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xin Jiang
- Orthopaedics Department, China-Japan Friendship Hospital, Beijing 100081, P. R. China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhixin Ren
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Xie
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
43
|
Kim OH, Choi HJ, Kang SY, Jang GY, Karuppannan M, Park JE, Sung YE, Kwon OJ, Cho YH. Towards outstanding performance of direct urea fuel cells through optimization of anode catalyst layer and operating conditions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Biomass-Based Oxygen Reduction Reaction Catalysts from the Perspective of Ecological Aesthetics—Duckweed Has More Advantages than Soybean. SUSTAINABILITY 2022. [DOI: 10.3390/su14159087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ecological aesthetics encourages the harmonization of humans and nature. In this paper, we integrate ecological aesthetics into the development of oxygen reduction reaction (ORR) catalysts of H2/O2 fuel cells. Moldy soybean and duckweed as raw materials are adopted to prepare biomass-based ORR catalysts, both of which have advantages in activity, stability, environmental protection and resource richness over the conventional expensive and scarce noble metal-based catalysts. Therefore, duckweed is more environmentally friendly, entails a simpler preparation process and has a better catalytic performance, ultimately being more in line with ecological aesthetics.
Collapse
|
45
|
Activity and durability of intermetallic PdZn electrocatalyst for ethanol oxidation reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04780-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
46
|
Li Z, Zou J, Xi X, Fan P, Zhang Y, Peng Y, Banham D, Yang D, Dong A. Native Ligand Carbonization Renders Common Platinum Nanoparticles Highly Durable for Electrocatalytic Oxygen Reduction: Annealing Temperature Matters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202743. [PMID: 35426176 DOI: 10.1002/adma.202202743] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Current protocols for synthesizing monodisperse platinum (Pt) nanoparticles typically involve the use of hydrocarbon molecules as surface-capping ligands. Using Pt nanoparticles as catalysts for the oxygen reduction reaction (ORR), however, these ligands must be removed to expose surface sites. Here, highly durable ORR catalysts are realized without ligand removal; instead, the native ligands are converted into ultrathin, conformal graphitic shells by simple thermal annealing. Strikingly, the annealing temperature is a critical factor dictating the ORR performance of Pt catalysts. Pt nanoparticles treated at 500 °C show a very poor ORR activity, whereas those annealed at 700 °C become highly active along with exceptional stability. In-depth characterization reveals that thermal treatment from 500 to 700 °C gradually opens up the porosity in carbon shells through graphitization. Importantly, such graphitic-shell-coated Pt catalysts exhibit a superior ORR stability, largely retaining the activity after 20 000 cycles in a membrane electrode assembly. Moreover, this ligand carbonization strategy can be extended to modify commercial Pt/C catalysts with substantially enhanced stability. This work demonstrates the feasibility of boosting the ORR performance of common Pt nanoparticles by harnessing the native surface ligands, offering a robust approach of designing highly durable catalysts for proton-exchange-membrane fuel cells.
Collapse
Affiliation(s)
- Zhicheng Li
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Jinxiang Zou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiangyun Xi
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Pengshuo Fan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yi Zhang
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China
| | - Ye Peng
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China
- Guangdong TaiJi Power, Foshan, 528000, China
| | - Dustin Banham
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China
- Guangdong TaiJi Power, Foshan, 528000, China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
47
|
Huang QA, Murayama H, Yamamoto E, Honma T, Tokunaga M. Investigation of reusability and deactivation mechanism of supported platinum catalysts in the practical isomerization of allylic esters. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Ayyubov I, Tálas E, Salmanzade K, Kuncser A, Pászti Z, Neațu Ș, Mirea AG, Florea M, Tompos A, Borbáth I. Electrocatalytic Properties of Mixed-Oxide-Containing Composite-Supported Platinum for Polymer Electrolyte Membrane (PEM) Fuel Cells. MATERIALS 2022; 15:ma15103671. [PMID: 35629708 PMCID: PMC9148157 DOI: 10.3390/ma15103671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Abstract
TiO2-based mixed oxide–carbon composite supports have been suggested to provide enhanced stability for platinum (Pt) electrocatalysts in polymer electrolyte membrane (PEM) fuel cells. The addition of molybdenum (Mo) to the mixed oxide is known to increase the CO tolerance of the electrocatalyst. In this work Pt catalysts, supported on Ti1−xMoxO2–C composites with a 25/75 oxide/carbon mass ratio and prepared from different carbon materials (C: Vulcan XC-72, unmodified and functionalized Black Pearls 2000), were compared in the hydrogen oxidation reaction (HOR) and in the oxygen reduction reaction (ORR) with a commercial Pt/C reference catalyst in order to assess the influence of the support on the electrocatalytic behavior. Our aim was to perform electrochemical studies in preparation for fuel cell tests. The ORR kinetic parameters from the Koutecky–Levich plot suggested a four-electron transfer per oxygen molecule, resulting in H2O. The similarity between the Tafel slopes suggested the same reaction mechanism for electrocatalysts supported by these composites. The HOR activity of the composite-supported electrocatalysts was independent of the type of carbonaceous material. A noticeable difference in the stability of the catalysts appeared only after 5000 polarization cycles; the Black Pearl-containing sample showed the highest stability.
Collapse
Affiliation(s)
- Ilgar Ayyubov
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Emília Tálas
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
| | - Khirdakhanim Salmanzade
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Andrei Kuncser
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania; (A.K.); (Ș.N.); (A.G.M.); (M.F.)
| | - Zoltán Pászti
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
| | - Ștefan Neațu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania; (A.K.); (Ș.N.); (A.G.M.); (M.F.)
| | - Anca G. Mirea
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania; (A.K.); (Ș.N.); (A.G.M.); (M.F.)
| | - Mihaela Florea
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania; (A.K.); (Ș.N.); (A.G.M.); (M.F.)
| | - András Tompos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
- Correspondence: ; Tel.: +36-1-382-501
| | - Irina Borbáth
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
| |
Collapse
|
49
|
Yu H, Zachman MJ, Li C, Hu L, Kariuki NN, Mukundan R, Xie J, Neyerlin KC, Myers DJ, Cullen DA. Recreating Fuel Cell Catalyst Degradation in Aqueous Environments for Identical-Location Scanning Transmission Electron Microscopy Studies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20418-20429. [PMID: 35230077 DOI: 10.1021/acsami.1c23281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The recent surge in interest of proton exchange membrane fuel cells (PEMFCs) for heavy-duty vehicles increases the demand on the durability of oxygen reduction reaction electrocatalysts used in the fuel cell cathode. This prioritizes efforts aimed at understanding and subsequently controlling catalyst degradation. Identical-location scanning transmission electron microscopy (IL-STEM) is a powerful method that enables precise characterization of degradation processes in individual catalyst nanoparticles across various stages of cycling. Recreating the degradation processes that occur in PEMFC membrane electrode assemblies (MEAs) within the aqueous cell used for IL-STEM experiments is vital for generating an accurate understanding of these processes. In this work, we investigate the type and degree of catalyst degradation achieved by cycling in an aqueous cell compared to a PEMFC MEA. While significant degradation is observed in IL-STEM experiments performed on a traditional Pt catalyst using the standard accelerated stress test potential window (0.6-0.95 VRHE), degradation of a PtCo catalyst designed for heavy-duty vehicle use is very limited compared to that observed in MEAs. We therefore explore various experimental parameters such as temperature, acid type, acid concentration, ionomer content, and potential window to identify conditions that reproduce the degradation observed in MEAs. We find that by extending the cycling potential window to 0.4-1.0 VRHE in an electrolyte containing Pt ions, the degraded particle size distribution and alloy composition better match that observed in MEAs. In particular, these conditions increase the relative contribution of Ostwald ripening, which appears to play a more significant role in the degradation of larger alloy particles supported on high-surface-area carbons than coalescence. Results from this work highlight the potential for discrepancies between ex situ aqueous experiments and MEA tests. While different catalysts may require a unique modification to the AST protocol, strategies provided in this work enable future in situ and identical-location experiments that will play an important role in the development of robust catalysts for heavy-duty vehicle applications.
Collapse
Affiliation(s)
- Haoran Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Chenzhao Li
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Leiming Hu
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Nancy N Kariuki
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Rangachary Mukundan
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jian Xie
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Kenneth C Neyerlin
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Deborah J Myers
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David A Cullen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
50
|
Liu H, Hu L, Cai W, Feng X, Zhang F, Shao R, Wang L, Wang B. Ultrafine Pt Nanoparticles Supported on Ultrathin Nanobowl‐shaped N‐doped Carbon for Remarkable Oxygen Reduction Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Liu
- Beijing Institute of Technology Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials CHINA
| | - Linyu Hu
- Beijing Institute of Technology Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials CHINA
| | - Wenjun Cai
- Beijing Institute of Technology Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials CHINA
| | - Xiao Feng
- Beijing Institute of Technology Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials CHINA
| | - Fang Zhang
- Beijing Institute of Technology Analysis and Testing Center CHINA
| | - Ruiwen Shao
- Beijing Institute of Technology Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine CHINA
| | - Lu Wang
- Beijing Institute of Technology Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials CHINA
| | - Bo Wang
- Beijing Institute of Technology Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials 5 S. Zhongguancun Ave,Central Building Rm. 108 100081 Beijing CHINA
| |
Collapse
|