1
|
Ayub AR, Akram W, Yaqoob U, Salba, Maqsood N, Rafiq S, Nabat KY, Anwer A, Somaily HH, Alansari A, Iqbal J. Optoelectronic analysis of designed semi-circular shaped thiophene-based bridged Y-series NFAs for organic solar cell applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:125022. [PMID: 39186876 DOI: 10.1016/j.saa.2024.125022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The highly adaptable optoelectronic and morphological properties of non-fullerene acceptors (NFAs) have made them a prominent research topic in the organic solar cell (OSC) field. This work describes the design of new molecules and investigates the potential optoelectronic aspects of remodified Y-series NFAs endowing with five new semi-circular shaped derivatives (BTPB1-BTPB5) based on the DFT-based quantum simulations. The designed molecules possess higher-lying LUMO energy levels with narrowed bandgaps and excellent coherence between the acceptor and core via inserted bridges. The molecules demonstrate a significant red shift and a wide-ranging absorption spectrum extending from 400 nm to 1500 nm, with the most extensive absorption occurring in the near-infrared (NIR) region. Effective π-π stacking and drastically lower binding energy certify facile charge dissociation and transmission rate. Thiophene-based bridge modification decreased reorganization energy by 47 % which results in facile charge transmission and high current density. Theoretically, simulated PCE is achieved as high as 31.49 % owing to the higher-lying LUMOs. The results demonstrate the value of designing systems and exploring new possibilities for developing effective Y-series NFAs-based high-performance organic solar cells.
Collapse
Affiliation(s)
- Ali Raza Ayub
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Waqas Akram
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Umer Yaqoob
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Salba
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Nimra Maqsood
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, 23002 Anhui, PR China
| | - Sidra Rafiq
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Karim Youssef Nabat
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Arslan Anwer
- Department of Chemistry, University of Education, Lahore, Punjab 54770, Pakistan
| | - H H Somaily
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Abdulkarim Alansari
- Mechanical Engineering Department, College of Engineering, Northern Border University, Arar, Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
2
|
Zhang AA, Wang ZX, Fang ZB, Li JL, Liu TF. Long-Range π-π Stacking Brings High Electron Delocalization for Enhanced Photocatalytic Activity in Hydrogen-Bonded Organic Framework. Angew Chem Int Ed Engl 2024; 63:e202412777. [PMID: 39113321 DOI: 10.1002/anie.202412777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 09/25/2024]
Abstract
Unlike many studies that regulate transport and separation behaviour of photogenerated charge carriers through controlling the chemical composite, our work demonstrates this goal can be achieved through simply tuning the molecular π-π packing from short-range to long-range within hydrogen-bonded organic frameworks (HOFs) without altering the building blocks or network topology. Further investigations reveal that the long-range π-π stacking significantly promotes electron delocalization and enhances electron density, thereby effectively suppressing electron-hole recombination and augmenting the charge transfer rate. Simultaneously, acting as a porous substrate, it boosts electron density of Pd nanoparticle loaded on its surfaces, resulting in remarkable CO2 photoreduction catalytic activity (CO generation rate: 48.1 μmol/g/h) without the need for hole scavengers. Our study provide insight into regulating the charge carrier behaviours in molecular assemblies based on hydrogen bonds, offering a new clue for efficient photocatalyst design.
Collapse
Affiliation(s)
- An-An Zhang
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of the Chinese Academy of Sciences Beijing 100049, China
| | - Zi-Xiang Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhi-Bin Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of the Chinese Academy of Sciences Beijing 100049, China
| | - Jin-Lin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Tian-Fu Liu
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of the Chinese Academy of Sciences Beijing 100049, China
| |
Collapse
|
3
|
Huang F, Ma J, Nie J, Xu B, Huang X, Lu G, Winnik MA, Feng C. A Versatile Strategy toward Donor-Acceptor Nanofibers with Tunable Length/Composition and Enhanced Photocatalytic Activity. J Am Chem Soc 2024; 146:25137-25150. [PMID: 39207218 DOI: 10.1021/jacs.4c08415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Living crystallization-driven self-assembly (CDSA) has emerged as an efficient strategy to generate nanofibers of π-conjugated polymers (CPNFs) in a controlled fashion. However, reports of donor-acceptor (D-A) heterojunction CPNFs are extremely rare. The preparation of these materials remains a challenge due to the lack of rational design guidelines for the D-A π-conjugated units. Herein, we report a versatile CDSA strategy based upon carefully designed D-A-co-oligomers in which electron-deficient benzothiadiazole (BT) or dibenzo[b,d]thiophene 5,5-dioxide (FSO) units are attached to the two ends of an oligo(p-phenylene ethynylene) heptamer [BT-OPE7-BT, FSO-OPE7-FSO]. This arrangement with the electron-deficient groups at the two ends of the oligomer enhances the stacking interaction of the A-D-A π-conjugated structure. In contrast, D-A-D structures with a single BT in the middle of a string of OPE units disrupt the packing. We employed oligomers with a terminal alkyne to synthesize diblock copolymers BT-OPE7-BT-b-P2VP and BT-OPE7-BT-b-PNIPAM (P2VP = poly(2-vinylpyridine), PNIPAM = poly(N-isopropylacrylamide)) and FSO-OPE7-FSO-b-P2VP and FSO-OPE7-FSO-b-PNIPAM. CDSA experiments with these copolymers in ethanol were able to generate CPNFs of controlled length by both self-seeding and seeded growth as well as block comicelles with precisely tunable length and composition. Furthermore, the D-A CPNFs with a BT-OPE7-BT-based core demonstrate photocatalytic activity for the photooxidation of sulfide to sulfoxide and benzylamine to N-benzylidenebenzylamine. Given the scope of the oligomer compositions examined and the range of structures formed, we believe that the living CDSA strategy with D-A-based co-oligomers opens future opportunities for the creation of D-A CPNFs with programmable architectures as well as diverse functionalities and applications.
Collapse
Affiliation(s)
- Fengfeng Huang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Junyu Ma
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jiucheng Nie
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Guolin Lu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
4
|
Ramakrishnan R, Madhu M, Babu HC, Sebastian E, Hariharan M. Excited-State Dynamics in Segregated Donor-Acceptor Stacks Versus a Peri-Bisdonor-Acceptor System. Chemistry 2024; 30:e202401969. [PMID: 38956975 DOI: 10.1002/chem.202401969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
The investigation of impact of through-space/through-bond electronic interaction among chromophores on photoexcited-state properties has immense potential owing to the distinct emergent photophysical pathways. Herein, the photoexcited-state dynamics of homo-sorted π-stacked aggregates of a naphthalenemonoimide and perylene-based acceptor-donor (NI-Pe) system and a fork-shaped acceptor-bisdonor (NI-Pe2) system possessing integrally stacked peri-substituted donors was examined. Femtosecond transient absorption (fsTA) spectra of NI-Pe monomer recorded in chloroform displayed spectroscopic signatures of the singlet state of Pe; 1Pe*, the charge-separated state; NI-⋅-Pe+⋅, and the triplet state of Pe; 3Pe*. The examination of ultrafast excited-state processes of NI-Pe aggregate in chloroform revealed faster charge recombination (τ C R a ${{\tau }_{CR}^{a}}$ =1.75 ns) than the corresponding monomer (τ C R m ${{\tau }_{CR}^{m}}$ =2.46 ns) which was followed by observation of a broad structureless band attributed to an excimer-like state. The fork-shaped NI-Pe2 displayed characteristic spectroscopic features of the NI radical anion (λmax~450 nm) and perylene dimer radical cation (λmax~520 nm) upon photoexcitation in non-polar toluene solvent in the nanosecond transient absorption (nsTA) spectroscopy. The investigation highlights the significance of intrinsic close-stacked arrangement of donors in ensuring a long-lived photoinduced charge-separated state (τ C R ${{\tau }_{CR}}$ =1.35 μs) in non-polar solvents via delocalization of radical cation between the donors.
Collapse
Affiliation(s)
- Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education, Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., 695551, Vithura, Thiruvananthapuram, Kerala, India
| | - Meera Madhu
- School of Chemistry, Indian Institute of Science Education, Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., 695551, Vithura, Thiruvananthapuram, Kerala, India
| | - Hruidya C Babu
- School of Chemistry, Indian Institute of Science Education, Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., 695551, Vithura, Thiruvananthapuram, Kerala, India
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education, Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., 695551, Vithura, Thiruvananthapuram, Kerala, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education, Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., 695551, Vithura, Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Fang X, Choi JY, Stodolka M, Pham HTB, Park J. Advancing Electrically Conductive Metal-Organic Frameworks for Photocatalytic Energy Conversion. Acc Chem Res 2024; 57:2316-2325. [PMID: 39110102 DOI: 10.1021/acs.accounts.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
ConspectusPhotocatalytic energy conversion is a pivotal process for harnessing solar energy to produce chemicals and presents a sustainable alternative to fossil fuels. Key strategies to enhance photocatalytic efficiency include facilitating mass transport and reactant adsorption, improving light absorption, and promoting electron and hole separation to suppress electron-hole recombination. This Account delves into the potential advantages of electrically conductive metal-organic frameworks (EC-MOFs) in photocatalytic energy conversion and examines how manipulating electronic structures and controlling morphology and defects affect their unique properties, potentially impacting photocatalytic efficiency and selectivity. Moreover, with a proof-of-concept study of photocatalytic hydrogen peroxide production by manipulating the EC-MOF's electronic structure, we highlight the potential of the strategies outlined in this Account.EC-MOFs not only possess porosity and surface areas like conventional MOFs, but exhibit electronic conductivity through d-p conjugation between ligands and metal nodes, enabling effective charge transport. Their narrow band gaps also allow for visible light absorption, making them promising candidates for efficient photocatalysts. In EC-MOFs, the modular design of metal nodes and ligands allows fine-tuning of both the electronic structure and physical properties, including controlling the particle morphology, which is essential for optimizing band positions and improving charge transport to achieve efficient and selective photocatalytic energy conversion.Despite their potential as photocatalysts, modulating the electronic structure or controlling the morphology of EC-MOFs is nontrivial, as their fast growth kinetics make them prone to defect formation, impacting mass and charge transport. To fully leverage the photocatalytic potential of EC-MOFs, we discuss our group's efforts to manipulate their electronic structures and develop effective synthetic strategies for morphology control and defect healing. For tuning electronic structures, diversifying the combinations of metals and linkers available for EC-MOF synthesis has been explored. Next, we suggest that synthesizing ligand-based solid solutions will enable continuous tuning of the band positions, demonstrating the potential to distinguish between photocatalytic reactions with similar redox potentials. Lastly, we present incorporating a donor-acceptor system in an EC-MOF to spatially separate photogenerated carriers, which could suppress electron-hole recombination. As a synthetic strategy for morphology control, we demonstrated that electrosynthesis can modify particle morphology, enhancing electrochemical surface area, which will be beneficial for reactant adsorption. Finally, we suggest a defect healing strategy that will enhance charge transport by reducing charge traps on defects, potentially improving the photocatalytic efficiency.Our vision in this Account is to introduce EC-MOFs as an efficient platform for photocatalytic energy conversion. Although EC-MOFs are a new class of semiconductor materials and have not been extensively studied for photocatalytic energy conversion, their inherent light absorption and electron transport properties indicate significant photocatalytic potential. We envision that employing modular molecular design to control electronic structures and applying effective synthetic strategies to customize morphology and defect repair can promote charge separation, electron transfer to potential reactants, and mass transport to realize high selectivity and efficiency in EC-MOF-based photocatalysts. This effort not only lays the foundation for the rational design and synthesis of EC-MOFs, but has the potential to advance their use in photocatalytic energy conversion.
Collapse
Affiliation(s)
- Xiaoyu Fang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael Stodolka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hoai T B Pham
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Daniel J, Satheesh AP, Kartha Kalathil K. Self-Assembly of Discrete Multi-Chromophoric Systems. Chemistry 2024; 30:e202401278. [PMID: 38803092 DOI: 10.1002/chem.202401278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Self-assembly of chromophoric systems is a prerequisite to create well-ordered, processable nanomaterials with multiple functionalities. In the past two decades, the field of functional organic materials has primarily focused on systems featuring only one type of dye/π-conjugated unit. Consequently, many reports with mechanistic insights on the self-assembly of the dyes featuring different molecular packing have been reported. Subsequently, we have witnessed several attempts to organize the multi-chromophoric systems in solution and solid-state via different approaches using self-assembly as a tool. Incorporation of more than one dye is important in creating materials with tuneable optoelectronic properties. Consequently, self-assembly of more than one chromophoric systems have been investigated to some extent. This review aims to discuss the self-assembled materials derived from discrete π-conjugated systems comprising more than one dye units connected through covalent bonding (multi-chromophoric systems). Molecular design of various multi-chromophoric systems leading to the formation of crystals, liquid crystals and supramolecular polymers have been correlated with corresponding properties. We envisage that classification of self-assembled multi-chromophoric systems, with a note on tuneable optoelectronic properties, can provide a deeper understanding on the molecular design strategies, which is important in the fabrication of functional organic materials with optimum performances.
Collapse
Affiliation(s)
- Jomol Daniel
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, 686560, Kottayam, Kerala, India
| | - Ashwin P Satheesh
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, 686560, Kottayam, Kerala, India
| | - Krishnan Kartha Kalathil
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, 686560, Kottayam, Kerala, India
| |
Collapse
|
7
|
Wang C, Wu B, Li Y, Zhou S, Wu C, Dong T, Jiang Y, Hua Z, Song Y, Wen W, Tian J, Chai Y, Wen R, Wang C. Aggregation promotes charge separation in fullerene-indacenodithiophene dyad. Nat Commun 2024; 15:5681. [PMID: 38971813 PMCID: PMC11227505 DOI: 10.1038/s41467-024-50001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Fast photoinduced charge separation (CS) and long-lived charge-separated state (CSS) in small-molecules facilitate light-energy conversion, while simultaneous attainment of both remains challenging. Here we accomplish this through aggregation based on fullerene-indacenodithiophene dyads. Transient absorption spectroscopy reveals that, compared to solution, the CS time in aggregates is accelerated from 41.5 ps to 0.4 ps, and the CSS lifetime is prolonged from 311.4 ps to 40 μs, indicating that aggregation concomitantly promotes fast CS and long-lived CSS. Fast CS arises from the hot charge-transfer states dissociation, opening up additional resonant channels to free carriers (FCs); subsequently, charge recombination into intramolecular triplet CSS becomes favorable mediated by spin-uncorrelated FCs. Different from fullerene/indacenodithiophene blends, the unique CS mechanism in dyad aggregates reduces the long-lived CSS dependence on molecular order, resulting in a CSS lifetime 200 times longer than blends. This endows the dyad aggregates to exhibit both photoelectronic switch properties and superior photocatalytic capabilities.
Collapse
Affiliation(s)
- Chong Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yang Li
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing, 100876, China
| | - Shen Zhou
- College of Science, Hunan Key Laboratory of Mechanism and Technology of Quantum Information, National University of Defense Technology, Changsha, 410003, China
| | - Conghui Wu
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 511442, China
| | - Tianyang Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihui Hua
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yupeng Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Wen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianxin Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongqiang Chai
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Rui Wen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Zhang X, Liu B, Xu F, Ning L, Zhou Q, Zhang Q, Mai Y, Gong Q, Huang Y. pH-Modulated 1D Hierarchical Self-Assembly of a Brush-Like Poly-Para-Phenylene Homopolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400220. [PMID: 38366315 DOI: 10.1002/smll.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Indexed: 02/18/2024]
Abstract
The controllable self-assembly of conjugated homopolymers, especially homopolymers without other segments (a prerequisite for phase separation), which can afford chances to achieve tunable optical/electronic properties, remains a great challenge due to their poor solubility and has remained rarely documented. Herein, a conjugated homopolymer (DPPP-COOH) is synthesized, which has a unique brush-like structure with a conjugated dendritic poly-para-phenylene (DPPP) backbone and alkyl-carboxyl side chains at both edges of the backbone. The introduction of carboxyl makes the brush-like homopolymer exhibit pH-modulated 1D hierarchical self-assembly behavior in dilute solution, and allows for flexible morphological regulation of the assemblies, forming some uncommon superstructures including ultralong nanowires (at pH 7), superhelices (at pH 10) and "single-wall" nanotubes (at pH 13), respectively. Furthermore, the good aqueous dispersibility and 1D feature endow the superstructures formed in a high-concentration neutral solution with high broad-spectrum antibacterial performance superior to that of many conventional 1D materials.
Collapse
Affiliation(s)
- Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bohao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
9
|
Lee MW, Yoo S, Kim CW. Exploring the Potential of Linear π-Bridge Structures in a D-π-A Organic Photosensitizer for Improved Open-Circuit Voltage. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1106. [PMID: 38998711 PMCID: PMC11242973 DOI: 10.3390/nano14131106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
We present the design, synthesis, and evaluation of novel metal-free photosensitizers based on D-π-A structures featuring tri-arylamine as an electron donor, cyanoacrylic acid as an anchoring group, and substituted derivative π-bridges including 9,9-dimethyl-9H-fluorene, benzo[b]thiophene, or naphtho [1,2-b:4,3-b']dithiophene. The aim of the current research is to unravel the relationship between chemical structure and photovoltaic performance in solar cell applications by investigating the properties of these organic sensitizers. The newly developed photosensitizers displayed variations in HOMO-LUMO energy gaps and photovoltaic performances due to their distinct π-bridge structures and exhibited diverse spectral responses ranging from 343 to 490 nm. The t-shaped and short linear photosensitizers demonstrated interesting behaviors in dye-sensitized solar cells, such as the effect of the molecular size in electron recombination. The study showed that a t-shaped photosensitizer with a bulky structure reduced electron recombination, while short linear photosensitizers with a smaller molecular size resulted in a higher open-circuit voltage value and enhanced photovoltaic performance. Impedance analysis further supported the findings, highlighting the influence of dye loading and I3- ion surface passivation on the overall performance of solar cells. The molecular design methodology proposed in this study enables promising photovoltaic performance in solar cells, addressing the demand for highly efficient, metal-free organic photosensitizers.
Collapse
Affiliation(s)
- Min-Woo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Seunghyun Yoo
- R&D Team, The Day1Lab, #1007 Mario Tower, 28 Digital-ro 30-gil, Guro-gu, Seoul 08389, Republic of Korea
| | - Chang Woo Kim
- Department of Nanotechnology Engineering, College of Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
10
|
Huang Y, Shen M, Yan H, He Y, Xu J, Zhu F, Yang X, Ye YX, Ouyang G. Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport. Nat Commun 2024; 15:5406. [PMID: 38926358 PMCID: PMC11208529 DOI: 10.1038/s41467-024-49373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Efficiently converting solar energy into chemical energy remains a formidable challenge in artificial photosynthetic systems. To date, rarely has an artificial photosynthetic system operating in the open air surpassed the highest solar-to-biomass conversion efficiency (1%) observed in plants. In this study, we present a three-dimension polymeric photocatalyst achieving a solar-to-H2O2 conversion efficiency of 3.6% under ambient conditions, including real water, open air, and room temperature. The impressive performance is attributed to the efficient storage of electrons inside materials via expeditious intramolecular charge transfer, and the fast extraction of the stored electrons by O2 that can diffuse into the internal pores of the self-supporting three-dimensional material. This construction strategy suppresses the interlayer transfer of excitons, polarizers and carriers, effectively increases the utilization of internal excitons to 82%. This breakthrough provides a perspective to substantially enhance photocatalytic performance and bear substantial implications for sustainable energy generation and environmental remediation.
Collapse
Affiliation(s)
- Yuyan Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minhui Shen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huijie Yan
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yingge He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianqiao Xu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519082, China.
| | - Gangfeng Ouyang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China.
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519082, China.
| |
Collapse
|
11
|
Yan H, Peng Y, Huang Y, Shen M, Wei X, Zou W, Tong Q, Zhou N, Xu J, Zhang Y, Ye YX, Ouyang G. Enhancing Photosynthesis Efficiency of Hydrogen Peroxide by Modulating Side Chains to Facilitate Water Oxidation at Low-Energy Barrier Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311535. [PMID: 38278520 DOI: 10.1002/adma.202311535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Hydrogen peroxide (H2O2) is a crucial oxidant in advanced oxidation processes. In situ, photosynthesis of it in natural water holds the promise of practical application for water remediation. However, current photosynthesis of H2O2 systems primarily relies on oxygen reduction, leading to limited performance in natural water with low dissolved oxygen or anaerobic conditions found in polluted water. Herein, a novel photocatalyst based on conjugated polymers with alternating electron donor-acceptor structures and electron-withdrawing side chains on electron donors is introduced. Specifically, carbazole functions as the electron donor, triazine serves as the electron acceptor, and cyano acts as the electron-withdrawing side chain. Notably, the photocatalyst exhibits a remarkable solar-to-chemical conversion of 0.64%, the highest reported in natural water. Furthermore, even in anaerobic conditions, it achieves an impressive H2O2 photosynthetic efficiency of 1365 µmol g-1 h-1, surpassing all the reported photosynthetic systems of H2O2. This remarkable improvement is attributed to the effective relocation of the water oxidation active site from a high-energy carbazole to a low-energy acetylene site mediated by the side chains, resulting in enhanced O2 or H2O2 generation from water. This breakthrough offers a new avenue for efficient water remediation using advanced oxidation technologies in oxygen-limited environments, holding significant implications for environmental restoration.
Collapse
Affiliation(s)
- Huijie Yan
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
| | - Yuan Peng
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Yuyan Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Minhui Shen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaoqian Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing, 210023, China
| | - Weixin Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing, 210023, China
| | - Qing Tong
- Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing, 210023, China
| | - Ningbo Zhou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Jianqiao Xu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuxia Zhang
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
12
|
Ramakrishna Y, Naresh M, Mrinalini M, Pravallika N, Kumari P, Bhavani B, Giribabu L, Prasanthkumar S. Narcissistic self-sorting in Zn(II) porphyrin derived semiconducting nanostructures. NANOSCALE 2024. [PMID: 38683187 DOI: 10.1039/d4nr00991f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The narcissistic self-sorted phenomenon is explicitly attributed to the structural similarities in organic molecules. Although such relevant materials are rarely explored, self-sorted structures from macrocyclic π-conjugated-based p- and n-type organic semiconductors facilitate the increase of exciton dissociation and charge separation in bulk heterojunction solar cells. Herein, we report two extended π-conjugated derivatives consisting of zinc-porphyrin-linked benzothiadiazole acting as an acceptor (PB) and anthracene as a donor (PA). Despite having the same porphyrin π-conjugated core in PA and PB, variations in donor and acceptor moieties make the molecular packing form one-dimensional (1D) self-assembled nanofibers via H- and J-type aggregates. Interestingly, a dissimilar aggregate of PA and PB exists as a mixture (PA + PB), promoting narcissistic self-sorted structures. Electrochemical impedance investigation reveals that the electronic characteristics of self-sorting assemblies are influenced by the difference in electrostatic potentials for PA and PB, resulting in a transitional electrical conductivity of 0.14 S cm-1. Therefore, the design of such materials for the fabrication of effective photovoltaics is promoted by these extraordinary self-sorted behaviors in comparable organic π-conjugated molecules.
Collapse
Affiliation(s)
- Yelukula Ramakrishna
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Madarapu Naresh
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Madoori Mrinalini
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar - 751 013, Odisha, India
| | - Nagadatta Pravallika
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
| | - Priti Kumari
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
| | - Botta Bhavani
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Lingamallu Giribabu
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Seelam Prasanthkumar
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| |
Collapse
|
13
|
Brown PA, Kołacz J, Spillmann CM. Enhancing Charge Transport Using Boron and Nitrogen Substitutions into Triphenylene-Based Discotic Liquid Crystals. J Phys Chem B 2024; 128:3463-3474. [PMID: 38536772 PMCID: PMC11017245 DOI: 10.1021/acs.jpcb.3c05825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 04/12/2024]
Abstract
The substitution of p-block heteroatoms into polyaromatic hydrocarbons offers the potential for introducing enhanced molecular properties and advancing material development for electro-optical applications. Using density functional theory, we characterize the substitution of boron and nitrogen atoms into a 2,3,6,7,10,11-hexakis(hexathiol)triphenylene (TTP) core, a precursor for a material with a discotic liquid crystal phase, to determine the strength of exciton dissociation and the influence doping has on the formation of a heterojunction with graphene. The substitution of nitrogen and boron into the TTP motif enables tunability of both electron and hole coupling between hetero- and homodyads. The coupling is found to far exceed that of TTP and varied transport behavior with different combinations of doped cores of nitrogen-TTP and boron-TTP is reported. Heterodyads of nitrogen-TTP with boron-TTP appear to be ambipolar in electron/hole coupling, whereas heterodyads of boron- or nitrogen-TTP with TTP form strong electron coupling dyads and homodyads of nitrogen-TTP and boron-TTP form strong hole coupling. Finally, we describe the heterojunction of nitrogen- or boron-TTP with monolayer graphene and observe Ohmic contacts with large hole transport barriers. The presence of induced dipoles occurs at the interface in all heterojunctions, suggesting the possibility of tuning the junction with external potentials and improving exciton dissociation.
Collapse
Affiliation(s)
- Paul A. Brown
- Center for Bio/Molecular
Science and Engineering, United States Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Jakub Kołacz
- Center for Bio/Molecular
Science and Engineering, United States Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Christopher M. Spillmann
- Center for Bio/Molecular
Science and Engineering, United States Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| |
Collapse
|
14
|
Wakchaure VC, Channareddy G, Babu SS. Solvent-Free Organic Liquids: An Efficient Fluid Matrix for Unexplored Functional Hybrid Materials. Acc Chem Res 2024; 57:670-684. [PMID: 38350079 DOI: 10.1021/acs.accounts.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
ConspectusThe invention of solvent-free organic liquids (SOLs) was serendipitous. However, the curiosity-driven research in the later stage delivered new soft materials with exciting optical, and optoelectronic properties along with appealing physical characteristics suitable for the futuristic applications. A slight change in the molecular design resulted in a drastic change in the physical state of molecules demonstrating monomer-like features in the bulk. The basic idea of core isolation has been successful in delivering new SOLs with attractive functional properties. The unique fluid matrix associated with SOLs offers a tremendous opportunity for making hybrid materials by simple mixing. The chance to study the fundamentally important electron transfer, energy transfer, charge transfer interactions, triplet-state emissions, and even detailed NMR experiments in the solvent-free neat state is the major attraction of SOLs. Usually, solvents and their polarity control such molecular properties, and in the case of SOLs, it avoids the use of solvents to study such fundamentally important properties. Besides, SOLs protect the triplet emitters and excited state processes involving triplet states from quenchers and make the analysis possible under ambient conditions.Our effort in this direction was focused on tuning the ground and excited state properties by transforming conventional organic molecules to SOLs and further value addition by preparing the hybrid SOLs. We developed a series of hybrid SOLs, exploring room-temperature phosphorescence, thermally activated delayed fluorescence, charge or energy transfer between donor and acceptor SOLs, selective explosive sensing, etc. A slight variation in the chemical structure or optoelectronic properties of the individual components imparted exciting optical features for the hybrid SOLs. It includes nonemissive charge transfer, tunable emission exciplex, room temperature phosphorescence, and thermally activated delayed fluorescence SOLs. The liquid matrix of donor SOLs accommodated varying amounts of acceptor SOLs to tune the ground and excited state features. In all examples of donor-acceptor-based hybrid SOLs, even a low amount of acceptor, such as a donor-acceptor ratio of 1000:1, can cause pronounced optical properties. Hence, the evaluation of the optical properties of SOLs, especially, in the absence of solvents is so special that it avoids the interference of solvent molecules. Still, the major drawback of SOLs remains unsolved until we report polymerizable SOLs. Although a large variety of SOLs have been reported in the literature, the long-lasting problem of surface stickiness of SOLs was resolved by polymerizable SOLs. It enabled the development of flexible, foldable, and stretchable large-area luminescent films suitable for lighting and display devices. In this Account, we summarize our work on SOLs, hybrid SOLs, polymerizable SOLs, and the application of SOLs in selective sensing of explosives. Finally, an outlook on the feasibility of luminescent polymerizable SOLs in futuristic applications is provided.
Collapse
Affiliation(s)
- Vivek Chandrakant Wakchaure
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Goudappagouda Channareddy
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
15
|
Wang L, Wang L, Xu Y, Sun G, Nie W, Liu L, Kong D, Pan Y, Zhang Y, Wang H, Huang Y, Liu Z, Ren H, Wei T, Himeda Y, Fan Z. Schottky Junction and D-A 1 -A 2 System Dual Regulation of Covalent Triazine Frameworks for Highly Efficient CO 2 Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309376. [PMID: 37914405 DOI: 10.1002/adma.202309376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Indexed: 11/03/2023]
Abstract
Covalent triazine frameworks (CTFs) are emerging as a promising molecular platform for photocatalysis. Nevertheless, the construction of highly effective charge transfer pathways in CTFs for oriented delivery of photoexcited electrons to enhance photocatalytic performance remains highly challenging. Herein, a molecular engineering strategy is presented to achieve highly efficient charge separation and transport in both the lateral and vertical directions for solar-to-formate conversion. Specifically, a large π-delocalized and π-stacked Schottky junction (Ru-Th-CTF/RGO) that synergistically knits a rebuilt extended π-delocalized network of the D-A1 -A2 system (multiple donor or acceptor units, Ru-Th-CTF) with reduced graphene oxide (RGO) is developed. It is verified that the single-site Ru units in Ru-Th-CTF/RGO act as effective secondary electron acceptors in the lateral direction for multistage charge separation/transport. Simultaneously, the π-stacked and covalently bonded graphene is regarded as a hole extraction layer, accelerating the separation/transport of the photogenerated charges in the vertical direction over the Ru-Th-CTF/RGO Schottky junction with full use of photogenerated electrons for the reduction reaction. Thus, the obtained photocatalyst has an excellent CO2 -to-formate conversion rate (≈11050 µmol g-1 h-1 ) and selectivity (≈99%), producing a state-of-the-art catalyst for the heterogeneous conversion of CO2 to formate without an extra photosensitizer.
Collapse
Affiliation(s)
- Lu Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Lin Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuankang Xu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wenchao Nie
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Linghao Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Debin Kong
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuheng Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yichao Huang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zheng Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Tong Wei
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuichiro Himeda
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8569, Japan
| | - Zhuangjun Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
16
|
Kalita KJ, Mondal S, Reddy CM, Vijayaraghavan RK. Thermally activated delayed fluorescence in a mechanically soft charge-transfer complex: role of the locally excited state. Chem Sci 2023; 14:13870-13878. [PMID: 38075669 PMCID: PMC10699582 DOI: 10.1039/d3sc03267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 10/16/2024] Open
Abstract
Molecular design for thermally activated delayed fluorescence (TADF) necessitates precise molecular geometric requirements along with definite electronic states to ensure high intersystem crossing (ISC) rate and photoluminescence quantum yield (PLQY). Achieving all these requirements synchronously while maintaining ease of synthesis and scalability is still challenging. To circumvent this, our strategy of combining a crystal engineering approach with basic molecular quantum mechanical principles appears promising. A holistic, non-covalent approach for achieving efficient TADF in crystalline materials with distinct mechanical properties is highlighted here. Charge transfer (CT) co-crystals of two carbazole-derived donors (ETC and DTBC) with an acceptor (TFDCNB) molecule are elaborated as a proof-of-concept. Using temperature-dependent steady-state and time-resolved photoluminescence techniques, we prove the need for a donor-centric triplet state (3LE) to ensure efficient TADF. Such intermediate states guarantee a naturally forbidden, energetically uphill reverse intersystem crossing (RISC) process, which is paramount for effective TADF. A unique single-crystal packing feature with isolated D-A-D trimeric units ensured minimal non-radiative exciton loss, leading to a high PLQY and displaying interesting mechanical plastic bending behaviour. Thus, a comprehensive approach involving a non-covalent strategy to circumvent the conflicting requirements of a small effective singlet-triplet energy offset and a high oscillator strength for efficient TADF emitters is achieved here.
Collapse
Affiliation(s)
- Kalyan Jyoti Kalita
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| | - Saikat Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| |
Collapse
|
17
|
Zou W, Cheng Y, Ye YX, Wei X, Tong Q, Dong L, Ouyang G. Metal-Free Photocatalytic CO 2 Reduction to CH 4 and H 2 O 2 under Non-sacrificial Ambient Conditions. Angew Chem Int Ed Engl 2023; 62:e202313392. [PMID: 37853513 DOI: 10.1002/anie.202313392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Photocatalytic CO2 reduction to CH4 requires photosensitizers and sacrificial agents to provide sufficient electrons and protons through metal-based photocatalysts, and the separation of CH4 from by-product O2 has poor applications. Herein, we successfully synthesize a metal-free photocatalyst of a novel electron-acceptor 4,5,9,10-pyrenetetrone (PT), to our best knowledge, this is the first time that metal-free catalyst achieves non-sacrificial photocatalytic CO2 to CH4 and easily separable H2 O2 . This photocatalyst offers CH4 product of 10.6 μmol ⋅ g-1 ⋅ h-1 under non-sacrificial ambient conditions (room temperature, and only water), which is two orders of magnitude higher than that of the reported metal-free photocatalysts. Comprehensive in situ characterizations and calculations reveal a multi-step reaction mechanism, in which the long-lived oxygen-centered radical in the excited PT provides as a site for CO2 activation, resulting in a stabilized cyclic carbonate intermediate with a lower formation energy. This key intermediate is thermodynamically crucial for the subsequent reduction to CH4 product with the electronic selectivity of up to 90 %. The work provides fresh insights on the economic viability of photocatalytic CO2 reduction to easily separable CH4 in non-sacrificial and metal-free conditions.
Collapse
Affiliation(s)
- Weixin Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Yingyi Cheng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Xiaoqian Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Gangfeng Ouyang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
18
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
19
|
Liu S, Liu SS, Tang XM, Liu XY, Yang JJ, Cui G, Li L. Solvent effects on the photoinduced charge separation dynamics of directly linked zinc phthalocyanine-perylenediimide dyads: a nonadiabatic dynamics simulation with an optimally tuned screened range-separated hybrid functional. Phys Chem Chem Phys 2023; 25:28452-28464. [PMID: 37846460 DOI: 10.1039/d3cp03517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Herein, we have employed a combination of the optimally tuned screened range-separated hybrid (OT-SRSH) functional, the polarizable continuum model (PCM), and nonadiabatic dynamics (NAMD) simulations to investigate the photoinduced dynamics of directly linked donor-acceptor dyads formed using zinc phthalocyanine (ZnPc) and perylenediimide (PDI), in which ZnPc is the donor while PDI is the acceptor. Our simulations aim to analyze the behavior of these dyads upon local excitation of the ZnPc moiety in the gas phase and in benzonitrile. Our findings indicate that the presence of a solvent can significantly influence the excited state dynamics of ZnPc-PDI dyads. Specifically, the polar solvent benzonitrile effectively lowers the vertical excitation energies of the charge transfer (CT) state from ZnPc to PDI. As a result, the energetic order of the locally excited (LE) states of ZnPc and the CT states is reversed compared to the gas phase. Consequently, the photoinduced electron transfer (PET) dynamics from ZnPc to PDI, which is absent in the gas phase, takes place in benzonitrile with a time constant of 10.4 ps. Importantly, our present work not only qualitatively agrees with experimental results but also provides in-depth insights into the underlying mechanisms responsible for the photoinduced dynamics of ZnPc-PDI. Moreover, this study emphasizes the importance of appropriately considering solvent effects in NAMD simulation of organic donor-acceptor systems, taking into account the distinct excited state dynamics observed in the gas phase and benzonitrile. Furthermore, the combination of the OT-SRSH functional, the PCM solvent model, and nonadiabatic dynamics simulations shows promise as a strategy for investigating the complex excited state dynamics of organic donor-acceptor systems in solvents. These findings will be valuable for the future design of novel organic donor-acceptor structures with improved performance.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Sha-Sha Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiao-Mei Tang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Jia-Jia Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Hefei National Laboratory, Hefei 230088, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
20
|
Li J, Yang S, Deng Z, Islam A, Wu S, He J, Ni S, Dang L, Li MD. Uncovering the substituted-position effect on excited-state evolution of benzophenone-phenothiazine dyads. J Chem Phys 2023; 159:144502. [PMID: 37818997 DOI: 10.1063/5.0166630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Photofunctional materials based on donor-acceptor molecules have drawn intense attention due to their unique optical properties. Importantly, Systematic investigation of substitution effects on excited-state charge transfer dynamics of donor-acceptor molecules is a powerful approach for identifying application-relevant design principles. Here, by coupling phenothiazine (PTZ) at the ortho-, meta-, and para-positions of the benzene ring of benzophenone (BP), three regioisomeric BP-PTZ dyads were designed to understand the relationship between substituted positions and excited-state evolution channels. Ultrafast transient absorption is used to detect and trace the transient species and related evolution channels of BP-PTZ dyads at excited state. In a non-polar solvent, BP-o-PTZ undergoes the through-space charge transfer process to produce a singlet charge-transfer (1CT) state, which subsequently proceeds the intersystem crossing process and transforms into a triplet charge-transfer (3CT) state; BP-m-PTZ experiences intramolecular charge transfer (ICT) process to generate the 1CT state, which subsequently transforms into the 3CT state by the intersystem crossing (ISC) and finally converts into the local-excited triplet (3LE) state; as for BP-p-PTZ, only 3LE states can be detected after the ISC process from the 1CT state. On the other hand, the twisted ICT states are generated via twisted motion between the donor and acceptor for all BP-PTZ dyads or planarization of the PTZ unit in high polar solvents. The excited-state theoretical calculations unveil that the features of ICT and intramolecular interaction between the three dyads play a decisive role in determining the through-bond charge transfer and through-space charge transfer processes. Also, these results demonstrate that the excited-state evolution channels of PTZ derivatives could be modified by tuning the substituted positions of the donor-acceptor dyads. This study provides a deep perspective for the substitute-position effect on donor-acceptor-type PTZ derivatives.
Collapse
Affiliation(s)
- Jiayu Li
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Sirui Yang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, People's Republic of China
| | - Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Amjad Islam
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Shiqi Wu
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Jiaxing He
- Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Shaofei Ni
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Li Dang
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, People's Republic of China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, People's Republic of China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, People's Republic of China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, People's Republic of China
| |
Collapse
|
21
|
Zubair H, Mahmood RF, Waqas M, Ishtiaq M, Iqbal J, Ibrahim MAA, Sayed SRM, Noor S, Khera RA. Effect of tailoring π-linkers with extended conjugation on the SJ-IC molecule for achieving high VOC and improved charge mobility towards enhanced photovoltaic applications. RSC Adv 2023; 13:26050-26068. [PMID: 37664200 PMCID: PMC10472344 DOI: 10.1039/d3ra03317a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
The problem of low efficiency of organic solar cells can be solved by improving the charge mobility and open circuit voltage of these cells. The current research aims to present the role of π-linkers, having extended conjugation, between the donor and acceptor moieties of indacenodithiophene core-based A-π-D-π-A type SJ-IC molecule to improve the photovoltaic performance of pre-existing SJ-IC. Several crucial photovoltaic parameters of SJ-IC and seven newly proposed molecules were studied using density functional theory. Surprisingly, this theoretical framework manifested that the tailoring of SJ-IC by replacing its π-linker with linkers having extended π-conjugation gives a redshift in maximum absorption coefficient in the range of 731.69-1112.86 nm in a solvent. In addition, newly designed molecules exhibited significantly narrower bandgaps (ranging from 1.33 eV to 1.93 eV) than SJ-IC having a bandgap of 2.01 eV. Similarly, newly designed molecules show significantly less excitation energy in gaseous and solvent phases than SJ-IC. Furthermore, the reorganization energies of DL1-DL7 are much lower than that of SJ-IC, indicating high charge mobility in these molecules. DL6 and DL7 have shown considerably improved open circuit voltage (VOC), reaching 1.49 eV and 1.48 eV, respectively. Thus, the modification strategy employed herein has been fruitful with productive effects, including better tuning of the energy levels, lower bandgaps, broader absorption, improved charge mobility, and increased VOC. Based on these results, it can be suggested that these newly presented molecules can be considered for practical applications in the future.
Collapse
Affiliation(s)
- Hira Zubair
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rana Farhat Mahmood
- Department of Chemistry, Division of Science and Technology, University of Education Township Lahore 54770 Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Mariam Ishtiaq
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
- School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4000 South Africa
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Sadia Noor
- Department of Chemistry, University of Hohenheim Stuttgart 70599 Germany
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
22
|
Liu X, Bi RX, Yu FT, Zhang CR, Luo QX, Liang RP, Qiu JD. D-π-A array structure of Bi 4Ti 3O 12-triazine-aldehyde group benzene skeleton for enhanced photocatalytic uranium (VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131189. [PMID: 36933503 DOI: 10.1016/j.jhazmat.2023.131189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic reduction of UVI to UIV can help remove U from the environment and thus reduce the harmful impacts of radiation emitted by uranium isotopes. Herein, we first synthesized Bi4Ti3O12 (B1) particles, then B1 was crosslinked with 6-chloro-1,3,5-triazine-diamine (DCT) to afford B2. Finally, B3 was formed using B2 and 4-formylbenzaldehyde (BA-CHO) to investigate the utility of the D-π-A array structure for photocatalytic UVI removal from rare earth tailings wastewater. B1 lacked adsorption sites and displayed a wide band gap. The grafted triazine moiety in B2 introduced active sites and narrowed the band gap. Notably, B3, a Bi4Ti3O12 (donor)-triazine unit (π-electron bridge)-aldehyde benzene (acceptor) molecule, effectively formed the D-π-A array structure, which formed multiple polarization fields and further narrowed the band gap. Therefore, UVI was more likely to capture electrons at the adsorption site of B3 and be reduced to UIV due to energy level matching effects. UVI removal capacity of B3 under simulated sunlight was 684.9 mg g-1, 2.5 times greater than B1 and 1.8 times greater than B2. B3 was still active after multiple reaction cycles, and UVI removal from tailings wastewater reached 90.8%. Overall, B3 provides an alternative design scheme for enhancing photocatalytic performance.
Collapse
Affiliation(s)
- Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Rui-Xiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Feng-Tao Yu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China
| | - Cheng-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China.
| |
Collapse
|
23
|
Wei YC, Kuo KH, Chi Y, Chou PT. Efficient Near-Infrared Luminescence of Self-Assembled Platinum(II) Complexes: From Fundamentals to Applications. Acc Chem Res 2023; 56:689-699. [PMID: 36882976 DOI: 10.1021/acs.accounts.2c00827] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
ConspectusDesigning bright and efficient near-infrared (NIR) emitters has drawn much attention due to numerous applications ranging from biological imaging, medical therapy, optical communication, and night-vision devices. However, polyatomic organic and organometallic molecules with energy gaps close to the deep red and NIR regime are subject to dominant nonradiative internal conversion (IC) processes, which drastically reduces the emission intensity and exciton diffusion length of organic materials and hence hampers the optoelectronic performances. To suppress nonradiative IC rates, we suggested two complementary approaches to solve the issues: exciton delocalization and molecular deuteration. First, exciton delocalization efficiently suppresses the molecular reorganization energy through partitioning to all aggregated molecules. According to the IC theory together with the effect of exciton delocalization, the simulated nonradiative rates with the energy gap ΔE = 104 cm-1 decrease by around 104 fold when the exciton delocalization length equals 5 (promoting vibronic frequency ωl = 1500 cm-1). Second, molecular deuterations reduce Franck-Condon vibrational overlaps and vibrational frequencies of promoting modes, which decreases IC rates by 1 order of magnitude in comparison to the rates of nondeuterated molecules under ΔE of 104 cm-1. Although deuteration of molecules has long been attempted to increase emission intensity, the results have been mixed. Here, we provide a robust derivation of the IC theory to demonstrate its validity, especially to emission in the NIR region.The concepts are experimentally verified by the strategic design and synthesis of a class of square-planar Pt(II) complexes, which form crystalline aggregates in vapor deposited thin films. The packing geometries are well characterized by the grazing angle X-ray diffraction (GIXD), showing domino-like packing arrangements with the short ππ separation of 3.4-3.7 Å. Upon photoexcitation, such closely packed assemblies exhibit intense NIR emission maximized in the 740-970 nm region through metal-metal-to-ligand charge transfer (MMLCT) transition with unprecedented photoluminescent quantum yield (PLQY) of 8-82%. To validate the existence of exciton delocalization, we applied time-resolved step-scan Fourier transform UV-vis spectroscopy to probe the exciton delocalization length of Pt(II) aggregates, which is 5-9 molecules (2.1-4.5 nm) assuming that excitons mainly delocalized along the direction of ππ stacking. According to the dependence of delocalization length vs simulated IC rates, we verify that the observed delocalization lengths contribute to the high NIR PLQY of the aggregated Pt(II) complexes. To probe the isotope effect, both partially and completely deuterated Pt(II) complexes were synthesized. For the case of the 970 nm Pt(II) emitter, the vapor deposited films of per-deuterated Pt(II) complexes exhibit the same emission peak as that of the nondeuterated one, whereas PLQY increases ∼50%. To put the fundamental studies into practice, organic light-emitting diodes (OLEDs) were fabricated with a variety of NIR Pt(II) complexes as the emitting layer, showing the outstanding external quantum efficiencies (EQEs) of 2-25% and the remarkable radiances 10-40 W sr-1 m-2 at 740-1002 nm. The prominent device performances not only successfully prove our designed concept but also reach a new milestone for highly efficient NIR OLED devices.This Account thus summarizes our approaches about how to boost the efficiency of the NIR emission of organic molecules from an in-depth fundamental basis, i.e., molecular design, photophysical characterization, and device fabrication. The concept of the exciton delocalization and molecular deuteration may also be applicable to a single molecular system to achieve efficient NIR radiance, which is worth further investigation in the future.
Collapse
Affiliation(s)
- Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| | - Kai-Hua Kuo
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon Tong, 999077 Hong Kong SAR
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| |
Collapse
|
24
|
Ansteatt S, Uthe B, Mandal B, Gelfand RS, Dunietz BD, Pelton M, Ptaszek M. Engineering giant excitonic coupling in bioinspired, covalently bridged BODIPY dyads. Phys Chem Chem Phys 2023; 25:8013-8027. [PMID: 36876508 DOI: 10.1039/d2cp05621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Strong excitonic coupling in photosynthetic systems is believed to enable efficient light absorption and quantitative charge separation, motivating the development of artificial multi-chromophore arrays with equally strong or even stronger excitonic coupling. However, large excitonic coupling strengths have typically been accompanied by fast non-radiative recombination, limiting the potential of the arrays for solar energy conversion as well as other applications such as fluorescent labeling. Here, we report giant excitonic coupling leading to broad optical absorption in bioinspired BODIPY dyads that have high photostability, excited-state lifetimes at the nanosecond scale, and fluorescence quantum yields of nearly 50%. Through the synthesis, spectroscopic characterization, and computational modeling of a series of dyads with different linking moieties, we show that the strongest coupling is obtained with diethynylmaleimide linkers, for which the coupling occurs through space between BODIPY units with small separations and slipped co-facial orientations. Other linkers allow for broad tuning of both the relative through-bond and through-space coupling contributions and the overall strength of interpigment coupling, with a tradeoff observed in general between the strength of the two coupling mechanisms. These findings open the door to the synthesis of molecular systems that function effectively as light-harvesting antennas and as electron donors or acceptors for solar energy conversion.
Collapse
Affiliation(s)
- Sara Ansteatt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Brian Uthe
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Bikash Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Rachel S Gelfand
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Matthew Pelton
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. .,Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
25
|
Sebastian E, Hariharan M. A Symmetry-Broken Charge-Separated State in the Marcus Inverted Region. Angew Chem Int Ed Engl 2023; 62:e202216482. [PMID: 36697363 DOI: 10.1002/anie.202216482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
We report a long-lived charge-separated state in a chromophoric pair (DC-PDI2 ) that uniquely integrates the advantages of fundamental processes of photosynthetic reaction centers: i) Symmetry-breaking charge-separation (SB-CS) and ii) Marcus-inverted-region dependence. The near-orthogonal bichromophoric DC-PDI2 manifests an ultrafast evolution of the SB-CS state with a time constant of τ S B - C S ${{\tau }_{{\rm S}{\rm B}-{\rm C}{\rm S}}}$ =0.35±0.02 ps and a slow charge recombination (CR) kinetics with τ C R ${{\tau }_{{\rm C}{\rm R}}}$ =4.09±0.01 ns in ACN. The rate constant of CR of DC-PDI2 is 11 686 times slower than SB-CS in ACN, as the CR of the PDI radical ion-pair occurs in the deep inverted region of the Marcus parabola ( - Δ G C R ${{-{\rm \Delta }G}_{{\rm C}{\rm R}}}$ >λ). In contrast, an analogous benzyloxy (BnO)-substituted DC-BPDI2 showcases a ≈10-fold accelerated CR kinetics with τ C R / τ S B - C S ${{\tau }_{{\rm C}{\rm R}}/{\tau }_{{\rm S}{\rm B}-{\rm C}{\rm S}}}$ lowering to ≈1536 in ACN, by virtue of a decreased CR driving force. The present investigation demonstrates a control of molecular engineering to tune the energetics and kinetics of the SB-CS material, which is essential for next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram, 695551, Kerala, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram, 695551, Kerala, India
| |
Collapse
|
26
|
Sebastian E, Sunny J, Hariharan M. Excimer evolution hampers symmetry-broken charge-separated states. Chem Sci 2022; 13:10824-10835. [PMID: 36320683 PMCID: PMC9491171 DOI: 10.1039/d2sc04387d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 08/26/2023] Open
Abstract
Achieving long-lived symmetry-broken charge-separated states in chromophoric assemblies is quintessential for enhanced performance of artificial photosynthetic mimics. However, the occurrence of energy trap states hinders exciton and charge transport across photovoltaic devices, diminishing power conversion efficiency. Herein, we demonstrate unprecedented excimer formation in the relaxed excited-state geometry of bichromophoric systems impeding the lifetime of symmetry-broken charge-separated states. Core-annulated perylenediimide dimers (SC-SPDI2 and SC-NPDI2) prefer a near-orthogonal arrangement in the ground state and a π-stacked foldamer structure in the excited state. The prospect of an excimer-like state in the foldameric arrangement of SC-SPDI2 and SC-NPDI2 has been rationalized by fragment-based excited state analysis and temperature-dependent photoluminescence measurements. Effective electronic coupling matrix elements in the Franck-Condon geometry of SC-SPDI2 and SC-NPDI2 facilitate solvation-assisted ultrafast symmetry-breaking charge-separation (SB-CS) in a high dielectric environment, in contrast to unrelaxed excimer formation (Ex*) in a low dielectric environment. Subsequently, the SB-CS state dissociates into an undesired relaxed excimer state (Ex) due to configuration mixing of a Frenkel exciton (FE) and charge-separated state in the foldamer structure, downgrading the efficacy of the charge-separated state. The decay rate constant of the FE to SB-CS (k FE→SB-CS) in polar solvents is 8-17 fold faster than that of direct Ex* formation (k FE→Ex*) in non-polar solvent (k FE→SB-CS≫k FE→Ex*), characterized by femtosecond transient absorption (fsTA) spectroscopy. The present investigation establishes the impact of detrimental excimer formation on the persistence of the SB-CS state in chromophoric dimers and offers the requisite of conformational rigidity as one of the potential design principles for developing advanced molecular photovoltaics.
Collapse
Affiliation(s)
- Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Jeswin Sunny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
27
|
Hu Z, Sun X. All-Atom Nonadiabatic Semiclassical Mapping Dynamics for Photoinduced Charge Transfer of Organic Photovoltaic Molecules in Explicit Solvents. J Chem Theory Comput 2022; 18:5819-5836. [PMID: 36073792 DOI: 10.1021/acs.jctc.2c00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct all-atom simulation of nonadiabatic dynamics in disordered condensed phases like liquid solutions and amorphous solids has been challenging. The first all-atom simulation of the photoinduced charge-transfer dynamics of a prototypical organic photovoltaic carotenoid-porphyrin-C60 molecular triad in explicit tetrahydrofuran is presented. Based on the Meyer-Miller mapping Hamiltonian, various semiclassical and mixed quantum-classical dynamics are employed, including the linearized semiclassical, symmetrical quasiclassical, mean-field Ehrenfest, classical mapping model, and spin-mapping model approaches. The all-atom nonadiabatic dynamics were compared to multi-state harmonic models with a globally shared bath, and the models built using the ensemble averages on the initial electronic state could reproduce the all-atom results. The solvent effect was found to be critical for the photoinduced charge transfer, and the time-dependent solute-solvent radial distribution functions revealed that only the nonadiabatic dynamics started with the effective forces on the initial electronic state could capture the correct nuclear dynamics. The proposed strategy for modeling condensed-phase nonadiabatic dynamics with atomistic details is readily applied to complex condensed-phase systems.
Collapse
Affiliation(s)
- Zhubin Hu
- Division of Arts and Sciences, New York University Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xiang Sun
- Division of Arts and Sciences, New York University Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
28
|
Funabiki K, Yamada K, Arisawa Y, Watanabe A, Agou T, Kubota Y, Inuzuka T, Miwa Y, Udagawa T, Kutsumizu S. Design, Regioselective Synthesis, and Photophysical Properties of Perfluoronaphthalene-Based Donor-Acceptor-Donor Fluorescent Dyes. J Org Chem 2022; 87:11751-11765. [PMID: 36001449 DOI: 10.1021/acs.joc.2c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-step route to a series of perfluoronaphthalene-based donor (D)-acceptor (A)-D fluorescent dyes with various electron-donating groups was developed. The perfluoronaphthalene moiety in the D-A-D dyes served as a good electron-accepting aromatic ring with excellent intramolecular charge transfer properties, as determined by density functional theory calculations and measurements of the fluorescence properties in solution, in poly(methyl methacrylate) (PMMA) films, and in crystal form. Notably, replacing the naphthalene ring with perfluoronaphthalene in the D-A-D dyes carrying the phenothiazine moiety not only stabilized the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels but also reduced the energy band gap to change the emission color from blue to yellow. Among the four synthesized perfluoronaphthalene D-A-D dyes, those bearing diphenylamino groups afforded the best fluorescence quantum yields in Et2O solution (0.60) and in PMMA film (0.65) because the propeller structure of the diphenylamino group that acts as a donor substituent effectively suppresses radiation-free deactivation. In contrast, in the crystalline state, the carbazoyl-bearing D-A-D dye provided the best fluorescence quantum yield (0.35) because the radiation-free inactivation was suppressed by π-πF stacking at the donor site, which was confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Kengo Yamada
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yuta Arisawa
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Arina Watanabe
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Tomohiro Agou
- Department of Biomolecular Functional Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yohei Miwa
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
29
|
Li P, Hou S, Alharbi B, Wu Q, Chen Y, Zhou L, Gao T, Li R, Yang L, Chang X, Dong G, Liu X, Decurtins S, Liu SX, Hong W, Lambert CJ, Jia C, Guo X. Quantum Interference-Controlled Conductance Enhancement in Stacked Graphene-like Dimers. J Am Chem Soc 2022; 144:15689-15697. [PMID: 35930760 DOI: 10.1021/jacs.2c05909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stacking interactions are of significant importance in the fields of chemistry, biology, and material optoelectronics because they determine the efficiency of charge transfer between molecules and their quantum states. Previous studies have proven that when two monomers are π-stacked in series to form a dimer, the electrical conductance of the dimer is significantly lower than that of the monomer. Here, we present a strong opposite case that when two anthanthrene monomers are π-stacked to form a dimer in a scanning tunneling microscopic break junction, the conductance increases by as much as 25 in comparison with a monomer, which originates from a room-temperature quantum interference. Remarkably, both theory and experiment consistently reveal that this effect can be reversed by changing the connectivity of external electrodes to the monomer core. These results demonstrate that synthetic control of connectivity to molecular cores can be combined with stacking interactions between their π systems to modify and optimize charge transfer between molecules, opening up a wide variety of potential applications ranging from organic optoelectronics and photovoltaics to nanoelectronics and single-molecule electronics.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Bader Alharbi
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.,Department of Physics, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Ruihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lan Yang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Xinyue Chang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Gang Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xunshan Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.,Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China.,Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China.,Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| |
Collapse
|
30
|
Hong Y, Rudolf M, Kim M, Kim J, Schembri T, Krause AM, Shoyama K, Bialas D, Röhr MIS, Joo T, Kim H, Kim D, Würthner F. Steering the multiexciton generation in slip-stacked perylene dye array via exciton coupling. Nat Commun 2022; 13:4488. [PMID: 35918327 PMCID: PMC9345863 DOI: 10.1038/s41467-022-31958-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Dye arrays from dimers up to larger oligomers constitute the functional units of natural light harvesting systems as well as organic photonic and photovoltaic materials. Whilst in the past decades many photophysical studies were devoted to molecular dimers for deriving structure-property relationship to unravel the design principles for ideal optoelectronic materials, they fail to accomplish the subsequent processes of charge carrier generation or the detachment of two triplet species in singlet fission (SF). Here, we present a slip-stacked perylene bisimide trimer, which constitutes a bridge between hitherto studied dimer and solid-state materials, to investigate SF mechanisms. This work showcases multiple pathways towards the multiexciton state through direct or excimer-mediated mechanisms by depending upon interchromophoric interaction. These results suggest the comprehensive role of the exciton coupling, exciton delocalization, and excimer state to facilitate the SF process. In this regard, our observations expand the fundamental understanding the structure-property relationship in dye arrays. Understanding structure-property relationship of dye arrays is of great importance for designing organic photonic and photovoltaic materials. Here, authors present a slip-stacked perylene bisimide array as a model system to investigate singlet fission mechanisms by depending upon interchromophoric interaction.
Collapse
Affiliation(s)
- Yongseok Hong
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Maximilian Rudolf
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Munnyon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Juno Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tim Schembri
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Ana-Maria Krause
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - David Bialas
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Merle I S Röhr
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea. .,Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Frank Würthner
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany. .,Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| |
Collapse
|
31
|
Wu C, Teng Z, Yang C, Chen F, Yang HB, Wang L, Xu H, Liu B, Zheng G, Han Q. Polarization Engineering of Covalent Triazine Frameworks for Highly Efficient Photosynthesis of Hydrogen Peroxide from Molecular Oxygen and Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110266. [PMID: 35524761 DOI: 10.1002/adma.202110266] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Two-electron oxygen photoreduction to hydrogen peroxide (H2 O2 ) is seriously inhibited by its sluggish charge kinetics. Herein, a polarization engineering strategy is demonstrated by grafting (thio)urea functional groups onto covalent triazine frameworks (CTFs), giving rise to significantly promoted charge separation/transport and obviously enhanced proton transfer. The thiourea-functionalized CTF (Bpt-CTF) presents a substantial improvement in the photocatalytic H2 O2 production rate to 3268.1 µmol h-1 g-1 with no sacrificial agents or cocatalysts that is over an order of magnitude higher than unfunctionalized CTF (Dc-CTF), and a remarkable quantum efficiency of 8.6% at 400 nm. Mechanistic studies reveal the photocatalytic performance is attributed to the prominently enhanced two-electron oxygen reduction reaction by forming endoperoxide at the triazine unit and highly concentrated holes at the thiourea site. The generated O2 from water oxidation is subsequently consumed by the oxygen reduction reaction (ORR), thereby boosting overall reaction kinetics. The findings suggest a powerful functional-groups-mediated polarization engineering method for the development of highly efficient metal-free polymer-based photocatalysts.
Collapse
Affiliation(s)
- Chongbei Wu
- Key Laboratory of Cluster Science, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhenyuan Teng
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, 804-8550, Japan
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Fangshuai Chen
- Key Laboratory of Cluster Science, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hong Bin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230022, P. R. China
| | - Hangxun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230022, P. R. China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Qing Han
- Key Laboratory of Cluster Science, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
32
|
Yang SY, Qu YK, Liao LS, Jiang ZQ, Lee ST. Research Progress of Intramolecular π-Stacked Small Molecules for Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104125. [PMID: 34595783 DOI: 10.1002/adma.202104125] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Organic semiconductors can be designed and constructed in π-stacked structures instead of the conventional π-conjugated structures. Through-space interaction (TSI) occurs in π-stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π-stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation-induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room-temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π-stacked molecules have exhibited very promising performance, with some of them exceeding π-conjugated analogues. Recently, reports on various organic π-stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π-stacked systems could stimulate more attention on through-space charge transfer the well-known through-bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yang-Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
33
|
Yan H, Shen M, Shen Y, Wang XD, Lin W, Pan J, He J, Ye YX, Yang(杨欣) X, Zhu F, Xu J, He J, Ouyang G. Spontaneous exciton dissociation in organic photocatalyst under ambient conditions for highly efficient synthesis of hydrogen peroxide. Proc Natl Acad Sci U S A 2022; 119:e2202913119. [PMID: 35605116 PMCID: PMC9295752 DOI: 10.1073/pnas.2202913119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceHydrogen peroxide is a highly competitive ready-to-use product for solar energy transformation. Nevertheless, the contemporary photosynthetic systems are not efficient enough, due to severe charge recombination caused by high activation energy and binding energy of the exciton. Herein, we achieve spontaneous exciton dissociation at room temperature. Moreover, the photosynthesis of H2O2 reaches between 9,366 and 12,324 µmol·g-1 from 9 AM to 4 PM in ambient conditions, that is, sunlight irradiation, real water including fresh water and seawater, room temperature, and open air. The ultrahigh photocatalytic efficiency in ambient conditions allows the solar-to-chemical conversion in a real cost-effective and sustainable way, which represents an important step toward real applications.
Collapse
Affiliation(s)
- Huijie Yan
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Minhui Shen
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Shen
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xu-Dong Wang
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Lin
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Jinhui Pan
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian He
- State Key Laboratory of Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Xin Ye
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Yang(杨欣)
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianqiao Xu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
34
|
Mukhopadhyay A, Liu K, Paulino V, Olivier JH. Modulating the Conduction Band Energies of Si Electrode Interfaces Functionalized with Monolayers of a Bay-Substituted Perylene Bisimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4266-4275. [PMID: 35353503 DOI: 10.1021/acs.langmuir.1c03423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The confinement of π-conjugated chromophores on silicon (Si) electrode surfaces is a powerful approach to engineer electroresponsive monolayers relevant to microelectronics, electrocatalysis, and information storage and processing. While common strategies to functionalize Si interfaces exploit molecularly dissolved building blocks, only a handful number of studies have leveraged the structure-function relationships of π-aggregates to tune the electronic structures of hybrid monolayers at Si interfaces. Herein, we show that the semiconducting properties of n-type monolayers constructed on Si electrodes are intimately correlated to the initial aggregation state of π-conjugated chromophore precursors derived from bay-substituted perylene bisimide (PBI) units. Specifically, our study unravels that for n-type monolayers engineered using PBI π-aggregates, the cathodic reduction potentials required to inject negative charge carriers into the conduction bands can be stabilized by 295 mV through reversible switching of the maximum anodic potential (MAP) that is applied during the oxidative cycles (+0.5 or +1.5 V vs Ag/AgCl). This redox-assisted stabilization effect is not observed with n-type monolayers derived from molecularly dissolved PBI cores and monolayers featuring a low surface density of the redox-active probes. These findings unequivocally point to the crucial role played by PBI π-aggregates in modulating the conduction band energies of n-type monolayers where a high MAP of +1.5 V enables the formation of electronic trap states that facilitate electron injection when sweeping back to cathodic potentials. Because the structure-function relationships of PBI π-aggregates are shown to modulate the semiconducting properties of hybrid n-type monolayers constructed at Si interfaces, our results hold promising opportunities to develop redox-switchable monolayers for engineering nonvolatile electronic memory devices.
Collapse
Affiliation(s)
- Arindam Mukhopadhyay
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kaixuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Victor Paulino
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Jean-Hubert Olivier
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
35
|
Kapse DM, Singh PS, Ghadiyali M, Chacko S, Kamble RM. Blue-red emitting materials based on a pyrido[2,3- b]pyrazine backbone: design and tuning of the photophysical, aggregation-induced emission, electrochemical and theoretical properties. RSC Adv 2022; 12:6888-6905. [PMID: 35424617 PMCID: PMC8981966 DOI: 10.1039/d2ra00128d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022] Open
Abstract
Pyrido[2,3-b]pyrazine-based donor-acceptor-donor (D-A-D) molecules were designed by altering donor amines and synthesized using the Buchwald-Hartwig C-N coupling reaction. Further, the tunable opto-electrochemical properties of the dyes were studied in detail. The dye possesses intramolecular charge transfer (ICT) transition (412-485 nm), which marked the D-A architecture and induces a broad range of emissions from blue to red (486-624 nm) in the solution and solid state. Some of the dyes show aggregation-induced emission (AIE) features and formation of nanoparticles in the THF/H2O mixture, as confirmed by DLS and FEG-SEM (of 7) analysis. The AIE characteristics indicate its solid/aggregate-state application in organic electronics. The molecules exhibit high thermal stability, low band gap (1.67-2.36 eV) and comparable HOMO (-5.34 to -5.97 eV) and LUMO (-3.61 to -3.70 eV) energy levels with those of reported ambipolar materials. The relationship between the geometrical structure and optoelectronic properties of the dyes, as well as their twisted molecular conformation and small singlet and triplet excitation energy difference (ΔE ST = 0.01-0.23 eV) were analyzed using the DFT/TDDFT method. Thus, potential applications of the dyes are proposed for optoelectronic devices.
Collapse
Affiliation(s)
- Deepak M Kapse
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400 098 India
| | - Pooja S Singh
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400 098 India
| | - Mohammed Ghadiyali
- Department of Physics, University of Mumbai Santacruz (E) Mumbai 400 098 India
| | - Sajeev Chacko
- Department of Physics, University of Mumbai Santacruz (E) Mumbai 400 098 India
| | - Rajesh M Kamble
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400 098 India
| |
Collapse
|
36
|
Chen WK, Cui G, Liu XY. Solvent effects on excited-state relaxation dynamics of paddle-wheel BODIPY-Hexaoxatriphenylene conjugates: Insights from non-adiabatic dynamics simulations. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Understanding the excited state dynamics of donor-acceptor (D-A) complexes is of fundamental importance both experimentally and theoretically. Herein, we have first explored the photoinduced dynamics of a recently synthesized paddle-wheel BODIPY-hexaoxatriphenylene (BODIPY is the abbreviation for BF2-chelated dipyrromethenes) conjugates D-A complexes with the combination of both electronic structure calculations and non-adiabatic dynamics simulations. On the basis of computational results, we concluded that the BODIPY-hexaoxatriphenylene (BH) conjugates will be promoted to the local excited (LE) states of the BODIPY fragments upon excitation, which is followed by the ultrafast exciton transfer from LE state to charge transfer (CT). Instead of the photoinduced electron transfer process proposed in previous experimental work, such a exciton transfer process is accompanied with the photoinduced hole transfer from BODIPY to hexaoxatriphenylene. Additionally, solvent effects are found to play an important role in the photoinduced dynamics. Specifically, the hole transfer dynamics is accelerated by the acetonitrile solvent, which can be ascribed to significant influences of the solvents on the charge transfer states, i.e. the energy gaps between LE and CT excitons are reduced greatly and the non-adiabatic couplings are increased in the meantime. Our present work not only provides valuable insights into the underlying photoinduced mechanism of BH, but also can be helpful for the future design of novel donor-acceptor conjugates with better optoelectronic performance.
Collapse
Affiliation(s)
- Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
37
|
Li M, Liu S, Bao H, Li Q, Deng YH, Sun TY, Wang L. Photoinduced Metal-Free Borylation of Aryl Halides Catalysed by in situ Formed Donor-Acceptor Complex. Chem Sci 2022; 13:4909-4914. [PMID: 35655877 PMCID: PMC9067585 DOI: 10.1039/d2sc00552b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Organoboron compounds are very important building blocks which can be applied in medicinal, biological and industrial fields. However, direct borylation in a metal free manner has been very rarely reported. Herein, we described the successful direct borylation of haloarenes under mild, operationally simple, catalyst-free conditions, promoted by irradiation with visible light. Mechanistic experiments and computational investigations indicate the formation of an excited donor–acceptor complex with a −3.12 V reduction potential, which is a highly active reductant and can facilitate single-electron-transfer (SET) with aryl halides to produce aryl radical intermediates. A two-step one-pot method was developed for site selective aromatic C–H bond borylation. The protocol's good functional group tolerance enables the functionalization of a variety of biologically relevant compounds, representing a new application of aryl radicals merged with photochemistry. We reported a facile metal-free conversion of aryl halides to the corresponding boronic esters catalysed by an in situ formed donor–acceptor complex. A two-step one-pot method was also developed for site selective aromatic C–H bond borylation.![]()
Collapse
Affiliation(s)
- Manhong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Siqi Liu
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Haoshi Bao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Qini Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Yi-Hui Deng
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Leifeng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| |
Collapse
|
38
|
Mao D, Chen XR, Li DH, Liu XY, Cui G, Li L. Ultrafast charge transfer in a nonfullerene all-small-molecule organic solar cell: a nonadiabatic dynamics simulation with optimally tuned range-separated functional. Phys Chem Chem Phys 2022; 24:27173-27183. [DOI: 10.1039/d2cp03822f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The combination of nonadiabatic dynamics simulation and optimally tuned range-separated functional might be a powerful tool for elucidating the ultrafast charge transfer in nonfullerene all-small-molecule organic solar cells.
Collapse
Affiliation(s)
- Dan Mao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xin-Rui Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Dong-Heng Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| |
Collapse
|
39
|
Chen L, Wu B, Qin L, Huang YY, Meng W, Kong R, Yu X, ChenChai K, Li C, Zhang G, Zhang X, Zhang D. Perylene Five-membered Ring Diimide for Organic Semiconductors and π-Expanded Conjugated Molecules. Chem Commun (Camb) 2022; 58:5100-5103. [DOI: 10.1039/d2cc01061e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perylene five-membered ring diimide PDI39 was developed as a new electron-deficient building block for n-type semiconductors. The π-expanded conjugated molecules entailing azulenes were synthesized from PDI39. These conjuagted molecules...
Collapse
|
40
|
Mazumder A, Sebastian E, Hariharan M. Solvent dielectric delimited nitro–nitrito photorearrangement in a perylenediimide derivative. Chem Sci 2022; 13:8860-8870. [PMID: 35975155 PMCID: PMC9350666 DOI: 10.1039/d2sc02979k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The discovery of vibrant excited-state dynamics and distinctive photochemistry has established nitrated polycyclic aromatic hydrocarbons as an exhilarating class of organic compounds. Herein, we report the atypical photorearrangement of nitro-perylenediimide (NO2-PDI) to nitrito-perylenediimide (ONO-PDI), triggered by visible-light excitation and giving rise to linkage isomers in the polar aprotic solvent acetonitrile. ONO-PDI has been isolated and unambiguously characterized using standard spectroscopic, spectrometric, and elemental composition techniques. Although nitritoaromatic compounds are conventionally considered to be crucial intermediates in the photodissociation of nitroaromatics, experimental evidence for this has not been observed heretofore. Ultrafast transient absorption spectroscopy combined with computational investigations revealed the prominence of a conformationally relaxed singlet excited-state (SCR1) of NO2-PDI in the photoisomerization pathway. Theoretical transition state (TS) analysis indicated the presence of a six-membered cyclic TS, which is pivotal in connecting the SCR1 state to the photoproduct state. This article addresses prevailing knowledge gaps in the field of organic linkage isomers and provides a comprehensive understanding of the unprecedented photoisomerization mechanism operating in the case of NO2-PDI. The unprecedented photorearrangement of nitro-perylenediimide (NO2-PDI) to nitrito-perylenediimide (ONO-PDI) is shown to occur through a cyclic six-membered transition state triggered by visible-light excitation.![]()
Collapse
Affiliation(s)
- Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
41
|
Bonardd S, Díaz Díaz D, Leiva A, Saldías C. Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers (Basel) 2021; 13:4404. [PMID: 34960954 PMCID: PMC8705239 DOI: 10.3390/polym13244404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Dendrimers (from the Greek dendros → tree; meros → part) are macromolecules with well-defined three-dimensional and tree-like structures. Remarkably, this hyperbranched architecture is one of the most ubiquitous, prolific, and recognizable natural patterns observed in nature. The rational design and the synthesis of highly functionalized architectures have been motivated by the need to mimic synthetic and natural-light-induced energy processes. Dendrimers offer an attractive material scaffold to generate innovative, technological, and functional materials because they provide a high amount of peripherally functional groups and void nanoreservoirs. Therefore, dendrimers emerge as excellent candidates since they can play a highly relevant role as unimolecular reactors at the nanoscale, acting as versatile and sophisticated entities. In particular, they can play a key role in the properties of light-energy harvesting and non-radiative energy transfer, allowing them to function as a whole unit. Remarkably, it is possible to promote the occurrence of the FRET phenomenon to concentrate the absorbed energy in photoactive centers. Finally, we think an in-depth understanding of this mechanism allows for diverse and prolific technological applications, such as imaging, biomedical therapy, and the conversion and storage of light energy, among others.
Collapse
Affiliation(s)
- Sebastián Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
- Institutfür Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Angel Leiva
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| | - César Saldías
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| |
Collapse
|
42
|
Leith GA, Shustova NB. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chem Commun (Camb) 2021; 57:10125-10138. [PMID: 34523630 DOI: 10.1039/d1cc02896k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Feature Article, we survey the advances made in the field of fulleretic materials over the last five years. Merging the intriguing characteristics of fulleretic molecules with hierarchical materials can lead to enhanced properties of the latter for applications in optoelectronic, biomaterial, and heterogeneous catalysis sectors. As there has been significant growth in the development of fullerene- and corannulene-containing materials, this article will focus on studies performed during the last five years exclusively, and highlight the recent trends in designing fulleretic compounds and understanding their properties, that has enriched the repertoire of carbon-rich functional materials.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
43
|
Abstract
Organic semiconductors are being pursued with vigor for the development of efficient and smart electronics. As a brief tutorial account, we traverse the fundamentals and advancements in the area and provide a crystal engineering perspective.
Collapse
Affiliation(s)
- Aijaz A. Dar
- Department of Chemistry, Inorganic Section, University of Kashmir, Hazratbal, Srinagar, J&K-190006, India
| | - Shahida Rashid
- Department of Chemistry, Inorganic Section, University of Kashmir, Hazratbal, Srinagar, J&K-190006, India
| |
Collapse
|
44
|
Zhou Y, Han L, Chen WJ. Inter-ligand charge-transfer interactions in a photochromic and redox active zinc–organic framework. CrystEngComm 2021. [DOI: 10.1039/d1ce00689d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel Zn(ii)–organic framework with 1D stair-like structure displays reversible photochromic and redox active properties. And inter-ligands charge-transfer interactions exist in this material.
Collapse
Affiliation(s)
- Yan Zhou
- Faculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, 188 Daxue East Road, Nanning, Guangxi 530006, P. R. China
| | - Lei Han
- Faculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Wen-Jie Chen
- Department of Material Chemistry, College of Chemical Engineering and Material, Quanzhou Normal University, Quanzhou, Fujian 362000, P. R. China
| |
Collapse
|
45
|
Manoj T, Kotha S, Paikaray B, Srideep D, Haldar A, Rao KV, Murapaka C. Giant spin pumping at the ferromagnet (permalloy) – organic semiconductor (perylene diimide) interface. RSC Adv 2021; 11:35567-35574. [PMID: 35493144 PMCID: PMC9043263 DOI: 10.1039/d1ra07349d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
Pure spin current based devices have attracted great interest in recent days. Spin current injection into non-magnetic materials is essential for the design and development of such pure spin current based devices. In this context, organic semiconductors (OSCs) can be potential non-magnetic materials over widely explored heavy metals. This is due to the relatively low spin–orbit coupling of OSCs, which is essential to host the spin current with a large spin diffusion length and long spin-relaxation time. This research work demonstrates the harvesting of spin currents at the perylene diimide (PDI)/permalloy (Py) based OSC interface. The observed high linewidth broadening of 2.18 mT from the ferromagnetic resonance spectra indicates the presence of giant spin pumping from Py to PDI. The resultant spin-mixing conductance, 1.54 × 1018 m−2 quantifies the amount of spin current injected from Py to PDI, which is in a similar range to ferromagnet/heavy metals. The spin injection from permalloy into an adjacent perylene diimide (PDI) layer is demonstrated via ferromagnetic resonance associated linewidth broadening. The spin mixing conductance is found to be 1.54×1018 m−2 in a similar range to FM/heavy metal.![]()
Collapse
Affiliation(s)
- Talluri Manoj
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
| | - Srinu Kotha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
| | - Bibekananda Paikaray
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
| | - Dasari Srideep
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
| | - Arabinda Haldar
- Department of Physics, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
| | - Kotagiri Venkata Rao
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
| | - Chandrasekhar Murapaka
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
| |
Collapse
|