1
|
Truong-Phuoc L, Duong-Viet C, Nhut JM, Pappa A, Zafeiratos S, Pham-Huu C. Induction Heating for the Electrification of Catalytic Processes. CHEMSUSCHEM 2024:e202402335. [PMID: 39714867 DOI: 10.1002/cssc.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
The increasing availability of electrical energy generated from clean, low-carbon, renewable sources like solar and wind power is paving the way for a more sustainable future. This has resulted in a growing trend in the chemical industry to increase the share of electricity use in chemical processes, particularly catalytic ones. This shift towards electrifying catalytic processes offers significant environmental benefits. Current practices rely heavily on fossil fuel-based burners, primarily using natural gas, which contribute significantly to greenhouse gas emissions. Therefore, replacing fossil fuels with electricity can significantly reduce the carbon footprint associated with chemical production. Additionally, the energy-intensive production of metal catalysts used in these processes further exacerbates the environmental impact. This review focuses on the electrification of chemical processes, particularly using induction heating (IH), as a method to reduce the environmental impact of both catalyst production and operation. IH shows promise compared to conventional heating methods, since it offers a cleaner, more efficient, and precise way to heat catalysts in chemical processes by directly generating heat within the catalyst itself. It can potentially even enhance the reaction performance through its influence on the reaction mechanism. By exploring recent advancements in IH-driven catalytic processes, the review delves into how this method is revolutionizing catalysis by enhancing performance, selectivity, and sustainability. It highlights recent breakthroughs and discusses perspectives for further exploration in this rapidly developing field.
Collapse
Affiliation(s)
- Lai Truong-Phuoc
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
- BlackLeaf SAS, 210 rue Geiler de Kayserberg, 67400, Illkirch, France
| | - Cuong Duong-Viet
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
- BlackLeaf SAS, 210 rue Geiler de Kayserberg, 67400, Illkirch, France
| | - Jean-Mario Nhut
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Anastasia Pappa
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Spyridon Zafeiratos
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| |
Collapse
|
2
|
Chen S, Bao D, Zhang L, Xu Y, Peng Y, Liu J, Li T, Zhou X, Yan C, Qian T. Ligand Effect-Induced Electronic Structure Manipulation of Media-Entropy Alloy for Remarkable Stability over 50,000 Cycles in Oxygen Reduction. Inorg Chem 2024. [PMID: 39561406 DOI: 10.1021/acs.inorgchem.4c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Modulating the "trade-off" between activity and durability of Pd-based alloys while eliminating the dissolution of the nonprecious metal element issue is highly significant for the advancement of commercializing anion-exchange membrane fuel cells (AEMFCs). Herein, by harmonizing composition and ligand effects and targeting the stability concerns of Pd-based alloys, we propose PdRhNi ternary medium-entropy-alloy (MEA) networks (PdRhNi ANs) as exceptionally efficient oxygen reduction reaction (ORR) electrocatalysts via ligand effect. The results of theoretical calculations provide compelling evidence that the ligand effect of Ni in PdRhNi ANs, which can endow an inductive effect to reshape the electronic configuration to induce a reduced energy barrier in the rate-determining steps, optimizes the adsorption energy of O-related intermediates and lowers the d-band center of metal species, collectively boosting the anti-CO capacity and the ORR efficiency. Consequently, the as-made PdRhNi ANs not only demonstrate significantly enhanced electrocatalytic properties with a half-wave potential of 0.85 V and excellent resistance to CO toxicity, in contrast to those of commercial Pt/C and binary counterparts, but also exhibit a negligible half-wave potential decline after 50,000 cycle stability examination. More excitingly, the homemade AEMFC with a PdRhNi AN air cathode delivers a higher power density of 109 mW cm-2, surpassing that of the PdRh AN-based battery, highlighting promising prospects for implementing MEA materials with ligand engineering in AEMFC environments.
Collapse
Affiliation(s)
- Sijie Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Dingwen Bao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Luping Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yue Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yukun Peng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
3
|
Gonçalves L, Gimello O, Bouchmella K, Hesemann P, Alauzun JG. Titanium dioxide functionalized silicon carbide phases as heterogeneous epoxidation catalysts. NANOSCALE ADVANCES 2024:d4na00575a. [PMID: 39478994 PMCID: PMC11520354 DOI: 10.1039/d4na00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/05/2024] [Indexed: 11/02/2024]
Abstract
We report silicon carbide (SiC) based epoxidation catalysts constituted of a silicon carbide core and a silica/titania (SiO2/TiO2) shell. The catalysts were obtained via surface modification of SiC microparticles and were used as heterogeneous catalysts for the epoxidation of cyclohexene using tert-butyl hydroperoxide or cumyl hydroperoxide as the oxidant. Conversions up to 83% and selectivities of more than 90% were obtained.
Collapse
Affiliation(s)
- Léa Gonçalves
- ICGM, Univ Montpellier-CNRS-ENSCM 1919, Route de Mende Montpellier Cedex 05 34293 France
| | - Olinda Gimello
- ICGM, Univ Montpellier-CNRS-ENSCM 1919, Route de Mende Montpellier Cedex 05 34293 France
| | - Karim Bouchmella
- ICGM, Univ Montpellier-CNRS-ENSCM 1919, Route de Mende Montpellier Cedex 05 34293 France
| | - Peter Hesemann
- ICGM, Univ Montpellier-CNRS-ENSCM 1919, Route de Mende Montpellier Cedex 05 34293 France
| | - Johan G Alauzun
- ICGM, Univ Montpellier-CNRS-ENSCM 1919, Route de Mende Montpellier Cedex 05 34293 France
| |
Collapse
|
4
|
Wang M, Ou WC, Yu ZT. Porous Silicon-Supported Catalytic Materials for Energy Conversion and Storage. CHEMSUSCHEM 2024:e202401459. [PMID: 39269735 DOI: 10.1002/cssc.202401459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Porous silicon (Si) has a tetrahedral structure similar to that of sp3-hybridized carbon atoms in a typical diamond structure, which affords it unique chemical and physical properties including an adjustable intrinsic bandgap, a high-speed carrier transfer efficiency. It has shown great potential in photocatalysis, rechargeable batteries, solar cells, detectors, and electrocatalysis. This review introduces various porous Si-supported electrocatalysts and analyzes the reasons why porous Si is used as a new carrier/active sites from the perspectives of its molecular structure, electronic properties, synthesis methods, etc. The electrochemical applications of porous Si-based electrocatalysts in energy conversion reactions such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and total water decomposition together with lithium-ion battery and supercapacitor in energy storage are summarized. The challenges and future research directions for porous Si are also discussed. This review aims to deepen the understanding of porous Si and promote the development and applications of this new type of Si material.
Collapse
Affiliation(s)
- Man Wang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Wei-Cheng Ou
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| |
Collapse
|
5
|
Zhang X, Yu J, Zhao C, Si Y. Elastic SiC Aerogel for Thermal Insulation: A Systematic Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311464. [PMID: 38511588 DOI: 10.1002/smll.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Indexed: 03/22/2024]
Abstract
SiC aerogels with their lightweight nature and exceptional thermal insulation properties have emerged as the most ideal materials for thermal protection in hypersonic vehicles; However, conventional SiC aerogels are prone to brittleness and mechanical degradation when exposed to complex loads such as shock and mechanical vibration. Hence, preserving the structural integrity of aerogels under the combined influence of thermal and mechanical external forces is crucial not only for stabling their thermal insulation performance but also for determining their practicality in harsh environments. This review focuses on the optimization of design based on the structure-performance of SiC aerogels, providing a comprehensive review of the inherent correlations among structural stability, mechanical properties, and insulation performance. First, the thermal transfer mechanism of aerogels from a microstructural perspective is studied, followed by the relationship between the building blocks of SiC aerogels (0D particles, 1D nanowires/nanofibers) and their compression performance (including compressive resilience, compressive strength, and fatigue resistance). Moreover, the strategy to improve the high-temperature oxidation resistance and insulation performance of SiC aerogels is explored. Lastly, the challenges and future breakthrough directions for SiC aerogels are presented.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Cunyi Zhao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
6
|
Xiao Y, Huang X, Li H, Han QW, Zhang Y, Tian F, Xu M. Insight to the Catalytic Activity of Atomically Precise Ag 4Ni 2 Nanoclusters on Silicon Carbide for Nitroarene Reduction. Inorg Chem 2024; 63:8958-8969. [PMID: 38687123 DOI: 10.1021/acs.inorgchem.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Atomically precise Ag4Ni2 nanoclusters with 2,4-dimethylbenzenethiol as the ligands were synthesized and characterized as a cocatalyst of SiC for the selective hydrogenation of nitroarenes to arylamine in the presence of NaBH4. The obtained Ag4Ni2/SiC samples exhibited extraordinary catalytic activity, and a self-accelerated catalytic process was observed with the reduction of nitrophenol to aminophenol as the model reaction. Experimental comparison between the Ag4Ni2/SiC samples before and after the catalysis showed that the transformation of Ag4Ni2 clusters to polydisperse Ag particles as well as amorphous NiOx on the surface of SiC in the catalysis was the key to their high activity. AIMD calculations revealed that the transformation of Ag4Ni2 was driven by the presence of multiple hydrides on the cluster, which induced the detachment of the thiol ligand of the nanoclusters.
Collapse
Affiliation(s)
- Yutong Xiao
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiaofei Huang
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hou Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qing-Wen Han
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Yu Zhang
- Department of Water Resources, Shandong Water Conservancy Vocational College, Rizhao, Shandong 276826, P. R. China
| | - Fan Tian
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Man Xu
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
7
|
Liu Y, Li G, Huan L, Cao S. Advancements in silicon carbide-based supercapacitors: materials, performance, and emerging applications. NANOSCALE 2024; 16:504-526. [PMID: 38108473 DOI: 10.1039/d3nr05050e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Silicon carbide (SiC) nanomaterials have emerged as promising candidates for supercapacitor electrodes due to their unique properties, which encompass a broad electrochemical stability range, exceptional mechanical strength, and resistance to extreme conditions. This review offers a comprehensive overview of the latest advancements in SiC nanomaterials for supercapacitors. It encompasses diverse synthesis methods for SiC nanomaterials, including solid-state, gas-phase, and liquid-phase synthesis techniques, while also discussing the advantages and challenges associated with each method. Furthermore, this review places a particular emphasis on the electrochemical performance of SiC-based supercapacitors, highlighting the pivotal role of SiC nanostructures and porous architectures in enhancing specific capacitance and cycling stability. A deep dive into SiC-based composite materials, such as SiC/carbon composites and SiC/metal oxide hybrids, is also included, showcasing their potential to elevate energy density and cycling stability. Finally, the paper outlines prospective research directions aimed at surmounting existing challenges and fully harnessing SiC's potential in the development of next-generation supercapacitors.
Collapse
Affiliation(s)
- Yangwen Liu
- School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Guanghuan Li
- School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Li Huan
- Department of Library, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Sheng Cao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Tian F, Pang Z, Hu S, Zhang X, Wang F, Nie W, Xia X, Li G, Hsu HY, Xu Q, Zou X, Ji L, Lu X. Recent Advances in Electrochemical-Based Silicon Production Technologies with Reduced Carbon Emission. RESEARCH (WASHINGTON, D.C.) 2023; 6:0142. [PMID: 37214200 PMCID: PMC10194053 DOI: 10.34133/research.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Sustainable and low-carbon-emission silicon production is currently one of the main focuses for the metallurgical and materials science communities. Electrochemistry, considered a promising strategy, has been explored to produce silicon due to prominent advantages: (a) high electricity utilization efficiency; (b) low-cost silica as a raw material; and (c) tunable morphologies and structures, including films, nanowires, and nanotubes. This review begins with a summary of early research on the extraction of silicon by electrochemistry. Emphasis has been placed on the electro-deoxidation and dissolution-electrodeposition of silica in chloride molten salts since the 21st century, including the basic reaction mechanisms, the fabrication of photoactive Si films for solar cells, the design and production of nano-Si and various silicon components for energy conversion, as well as storage applications. Besides, the feasibility of silicon electrodeposition in room-temperature ionic liquids and its unique opportunities are evaluated. On this basis, the challenges and future research directions for silicon electrochemical production strategies are proposed and discussed, which are essential to achieve large-scale sustainable production of silicon by electrochemistry.
Collapse
Affiliation(s)
- Feng Tian
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Zhongya Pang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Shen Hu
- State Key Laboratory of ASIC and System,
School of Microelectronics,Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xueqiang Zhang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Fei Wang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Wei Nie
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Xuewen Xia
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Guangshi Li
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering,
City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Qian Xu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Li Ji
- State Key Laboratory of ASIC and System,
School of Microelectronics,Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Wu J, Zhang L, Wang W, Su R, Gao X, Li S, Wang G, He R. Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16072861. [PMID: 37049155 PMCID: PMC10096359 DOI: 10.3390/ma16072861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100-200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (RL) was -48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum RL of -27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications.
Collapse
Affiliation(s)
- Jianqin Wu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Lu Zhang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wenqing Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruyue Su
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiong Gao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Suwen Li
- Anhui Key Laboratory of High-Performance Non-Ferrous Metal Materials, Anhui Polytechnic University, Wuhu 241000, China
| | - Gang Wang
- Anhui Key Laboratory of High-Performance Non-Ferrous Metal Materials, Anhui Polytechnic University, Wuhu 241000, China
| | - Rujie He
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
Azmy A, Li S, Angeli GK, Welton C, Raval P, Li M, Zibouche N, Wojtas L, Reddy GNM, Guo P, Trikalitis PN, Spanopoulos I. Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H 2 O Vapor Sorption. Angew Chem Int Ed Engl 2023; 62:e202218429. [PMID: 36656785 DOI: 10.1002/anie.202218429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
In this work we report a strategy for generating porosity in hybrid metal halide materials using molecular cages that serve as both structure-directing agents and counter-cations. Reaction of the [2.2.2] cryptand (DHS) linker with PbII in acidic media gave rise to the first porous and water-stable 2D metal halide semiconductor (DHS)2 Pb5 Br14 . The corresponding material is stable in water for a year, while gas and vapor-sorption studies revealed that it can selectively and reversibly adsorb H2 O and D2 O at room temperature (RT). Solid-state NMR measurements and DFT calculations verified the incorporation of H2 O and D2 O in the organic linker cavities and shed light on their molecular configuration. In addition to porosity, the material exhibits broad light emission centered at 617 nm with a full width at half-maximum (FWHM) of 284 nm (0.96 eV). The recorded water stability is unparalleled for hybrid metal halide and perovskite materials, while the generation of porosity opens new pathways towards unexplored applications (e.g. solid-state batteries) for this class of hybrid semiconductors.
Collapse
Affiliation(s)
- Ali Azmy
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | - Giasemi K Angeli
- Department of Chemistry, University of Crete, 71003, Heraklion, Greece
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Min Li
- West Campus Materials Characterization Core, Yale University, New Haven, CT 06520, USA
| | | | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | | | | |
Collapse
|
11
|
Wu Q, Zhang H, Zhou Y, Tang Z, Li B, Fu T, Zhang Y, Zhu H. Core-Shell Structured Carbon@Al 2O 3 Membrane with Enhanced Acid Resistance for Acid Solution Treatment. MEMBRANES 2022; 12:1246. [PMID: 36557154 PMCID: PMC9784977 DOI: 10.3390/membranes12121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ceramic membrane has an important application prospect in industrial acid solution treatment. Enhancement of the acid resistance is the key strategy to optimize the membrane treatment effect. This work reports a core-shell structured membrane fabricated on alumina ceramic substrates via a one-step in situ hydrothermal method. The acid resistance of the modified membrane was significantly improved due to the protection provided by a chemically stable carbon layer. After modification, the masses lost by the membrane in the hydrochloric acid solution and the acetic acid solution were sharply reduced by 90.91% and 76.92%, respectively. Kinetic models and isotherm models of adsorption were employed to describe acid adsorption occurring during the membrane process and indicated that the modified membrane exhibited pseudo-second-order kinetics and Langmuir model adsorption. Compared to the pristine membrane, the faster adsorption speed and the lower adsorption capacity were exhibited by the modified membrane, which further had a good performance with treating various kinds of acid solutions. Moreover, the modified membrane could be recycled without obvious flux decay. This modification method provides a facile and efficient strategy for the fabrication of acid-resistant membranes for use in extreme conditions.
Collapse
Affiliation(s)
- Qianlian Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huimiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhishu Tang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources, Shaanxi University of Chinese Medicine, Xianyang 712038, China
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingming Fu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
12
|
Dai L, Zhou N, Lv Y, Cobb K, Chen P, Wang Y, Liu Y, Zou R, Lei H, Mohamed BA, Ruan R, Cheng Y. Catalytic reforming of polyethylene pyrolysis vapors to naphtha range hydrocarbons with low aromatic content over a high silica ZSM-5 zeolite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157658. [PMID: 35908703 DOI: 10.1016/j.scitotenv.2022.157658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, the microwave-assisted pyrolysis coupled with ex-situ catalytic reforming of polyethylene for naphtha range hydrocarbons, with low aromatic content, was investigated. Experimental results revealed that ZSM-5 zeolites with low SiO2/Al2O3 ratios led to high aromatic selectivity, while an extremely high SiO2/Al2O3 ratio significantly reduced the aromatic selectivity. The high selectivity of C5-C12 hydrocarbons (98.9 %) with low selectivity of C5-C12 aromatics (28.5 %) was obtained over a high silica ZSM-5 zeolite at a pyrolysis temperature of 500 °C, catalytic cracking temperature of 460 °C, and a weight hourly space velocity of 7 h-1. The liquid oil produced was mainly composed of C5-C12 olefins that can be easily converted into paraffin-rich naphtha by hydrogenation or hydrogen transfer reactions as the feedstock for new plastic manufacturing. 8 cycles of regeneration-reaction cycles were carried out successfully with little change on the product distribution, showing the great potential for continuous production of low-aromatic liquid oil. Catalyst characterization showed that the catalyst deactivation was primarily caused by coke deposition (approximately 16.0 wt%) on the surface of the catalysts, and oxidative regeneration was able to recover most of the pore structure and acidity of the zeolite by effectively removing coke. This study provides a better understanding for the plastic-to-naphtha process and even for scale-up studies.
Collapse
Affiliation(s)
- Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA; State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Nan Zhou
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yuancai Lv
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Rongge Zou
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza, Egypt
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA.
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA; Biochemical Engineering College, Beijing Union University, No. 18, Fatouxili 3 Area, Chaoyang District, Beijing 100023, China.
| |
Collapse
|
13
|
A general method for rapid synthesis of refractory carbides by low-pressure carbothermal shock reduction. Proc Natl Acad Sci U S A 2022; 119:e2121848119. [PMID: 36067324 PMCID: PMC9477234 DOI: 10.1073/pnas.2121848119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Refractory carbides are attractive candidates for support materials in heterogeneous catalysis because of their high thermal, chemical, and mechanical stability. However, the industrial applications of refractory carbides, especially silicon carbide (SiC), are greatly hampered by their low surface area and harsh synthetic conditions, typically have a very limited surface area (<200 m2 g-1), and are prepared in a high-temperature environment (>1,400 °C) that lasts for several or even tens of hours. Based on Le Chatelier's principle, we theoretically proposed and experimentally verified that a low-pressure carbothermal reduction (CR) strategy was capable of synthesizing high-surface area SiC (569.9 m2 g-1) at a lower temperature and a faster rate (∼1,300 °C, 50 Pa, 30 s). Such high-surface area SiC possesses excellent thermal stability and antioxidant capacity since it maintained stability under a water-saturated airflow at 650 °C for 100 h. Furthermore, we demonstrated the feasibility of our strategy for scale-up production of high-surface area SiC (460.6 m2 g-1), with a yield larger than 12 g in one experiment, by virtue of an industrial viable vacuum sintering furnace. Importantly, our strategy is also applicable to the rapid synthesis of refractory metal carbides (NbC, Mo2C, TaC, WC) and even their emerging high-entropy carbides (VNbMoTaWC5, TiVNbTaWC5). Therefore, our low-pressure CR method provides an alternative strategy, not merely limited to temperature and time items, to regulate the synthesis and facilitate the upcoming industrial applications of carbide-based advanced functional materials.
Collapse
|
14
|
Foam gel-casting preparation of SiC bonded ZrB2 porous ceramics for high-performance thermal insulation. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wei X, Ge G, Yu W, Guo H, Guo X, Song C, Zhao Z. Plastering Sponge with Nanocarbon-Containing Slurry to Construct Mechanically Robust Macroporous Monolithic Catalysts for Direct Dehydrogenation of Ethylbenzene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19315-19323. [PMID: 35437981 DOI: 10.1021/acsami.1c24731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanocarbons have shown great potential as a sustainable alternative to metal catalysts, but their powder form limits their industrial applications. The preparation of nanocarbon-based monolithic catalysts is a practical approach for overcoming the resulting pressure drop associated with their powder form. In our previous work, a ploycation-mediated approach was used to successfully prepare nanocarbon-containing monoliths. Unfortunately, because there are no macropores in the monolith, it needs to be crashed into millimeter-sized particles before application. Therefore, developing a facile method for preparing mechanically robust nanocarbon-based macroporous monolithic catalysts is vital but still challenging. Herein, evoked by swallows building their nests, we report an approach for successfully preparing a mechanically robust nanodiamond-based macroporous monolith catalyst by plastering melamine sponge (MS) with a slurry composed of nanodiamonds (NDs) and poly(imidazolium-methylene) chloride (PImM) followed by an annealing process. The macroporous monolith catalyst (ND/NCMS-NCPImM) containing NDs well dispersed in N-doped carbon is mechanically robust with enriched macroscopic pores. It exhibits outstanding catalysis toward ethylbenzene to styrene through a direct dehydrogenation reaction with a high styrene rate in a steady state (5.50 mmol g-1 h-1) and high styrene selectivity (99.5%). ND/NCMS-NCPImM shows much higher activity than powder ND by 1.9 fold. In addition, this work solves the significant problem of large pressure drop encountered with conventional powdered nanocarbon catalysts in the flow reactor. This work not only creates an excellent nanodiamond-based macroporous monolithic ethylbenzene direct dehydrogenation catalyst but also presents a promising avenue for preparing other macroporous monolithic catalysts for diverse transformations.
Collapse
Affiliation(s)
- Xiaojing Wei
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Guifang Ge
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Weiwei Yu
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Hongchen Guo
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
- EMS Energy Institute, Department of Energy & Mineral Engineering and of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
16
|
Zhao X, Yang Y, Xu J, Guo Y, Zhou J, Wang X. Ni 12P 5/P-N-C Derived from Natural Single-Celled Chlorella for Catalytic Depolymerization of Lignin into Monophenols. ACS OMEGA 2022; 7:13134-13143. [PMID: 35474806 PMCID: PMC9026055 DOI: 10.1021/acsomega.2c00564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Lignin is exceptionally abundant in nature and is regarded as a renewable, cheap, and environmentally friendly resource for the manufacture of aromatic chemicals. A novel Ni12P5/P-N-C catalyst for catalytic hydrogenolysis of lignin was synthesized. The catalysts were prepared by simple impregnation and carbonization using the nonprecious metal Ni taken up by the cell wall of Chlorella in Ni(NO3)2 solution. There were only two steps in this process, making the whole process very simple, efficient, and economical. Ni12P5 was uniformly distributed in the catalyst. During the hydrogenolysis of lignin, after 4 h reaction at 270 °C, the yield of bio-oil reached 65.26%, the yield of monomer reached 9.60%, and the selectivity to alkylphenol reached 76.15%. The mixed solvent of ethanol/isopropanol (1:1, v/v) is used as the solvent for the hydrogenolysis of lignin, which not only had excellent hydrogen transferability but also improved the yield of bio-oil, inhibiting the generation of char. No external hydrogen was used, thus avoiding safety issues in hydrogen transport and storage.
Collapse
Affiliation(s)
- Xin Zhao
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
| | - Yingying Yang
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
| | - Jingyu Xu
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
| | - Yanzhu Guo
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
- Guangxi
Key Laboratory of Clean Pulp & Papermaking and Pollution Control,
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jinghui Zhou
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
| | - Xing Wang
- Liaoning
Key Laboratory of Pulp and Paper Engineering, School of Light Industry
and Chemical Engineering, Dalian Polytechnic
University, Dalian 116034, PR China
- Guangxi
Key Laboratory of Clean Pulp & Papermaking and Pollution Control,
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
17
|
Wu Z, Cheng HW, Jin C, Yang B, Xu C, Pei K, Zhang H, Yang Z, Che R. Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107538. [PMID: 34755916 DOI: 10.1002/adma.202107538] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Indexed: 05/17/2023]
Abstract
Electromagnetic (EM) wave absorption materials possess exceptionally high EM energy loss efficiency. With vigorous developments in nanotechnology, such materials have exhibited numerous advanced EM functions, including radiation prevention and antiradar stealth. To achieve improved EM performance and multifunctionality, the elaborate control of microstructures has become an attractive research direction. By designing them as core-shell structures with different dimensions, the combined effects, such as interfacial polarization, conduction networks, magnetic coupling, and magnetic-dielectric synergy, can significantly enhance the EM wave absorption performance. Herein, the advances in low-dimensional core-shell EM wave absorption materials are outlined and a selection of the most remarkable examples is discussed. The derived key information regarding dimensional design, structural engineering, performance, and structure-function relationship are comprehensively summarized. Moreover, the investigation of the cutting-edge mechanisms is given particular attention. Additional applications, such as oxidation resistance and self-cleaning functions, are also introduced. Finally, insight into what may be expected from this rapidly expanding field and future challenges are presented.
Collapse
Affiliation(s)
- Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Han-Wen Cheng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chen Jin
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bintong Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Huibin Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ziqi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
18
|
Kulkarni SR, Velisoju VK, Tavares F, Dikhtiarenko A, Gascon J, Castaño P. Silicon carbide in catalysis: from inert bed filler to catalytic support and multifunctional material. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2025670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shekhar R Kulkarni
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| | - Vijay K. Velisoju
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| | - Fernanda Tavares
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| | - Alla Dikhtiarenko
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| | - Pedro Castaño
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
19
|
Guan Y, Zhou Y, Wang S, Zou R, Zhang J, Fan X, Jiao Y. Structured cobalt–manganese oxides on SiC nano-whisker modified SiC foams for catalytic combustion of toluene. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|