1
|
Liu X, Guo Y, Pan J, Wu T, Zhao B, Wei S, Jiang W, Liu Y. Nanoparticles constructed from natural polyphenols are used in acute kidney injury. J Mater Chem B 2024; 12:8883-8896. [PMID: 39177039 DOI: 10.1039/d4tb00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Acute kidney injury (AKI) is a severe clinical syndrome characterized by rapid deterioration of renal function caused by a variety of pathogeneses. Natural polyphenols have been considered to have potential in the treatment of AKI due to their powerful antioxidant and anti-inflammatory activities, but their low bioavailability in vivo limits their efficacy. Polyphenol nanoparticles based on a nano-delivery system show good effects in reducing kidney injury, improving renal function and promoting renal tissue repair, and brings new hope and possibility for the treatment of AKI. This review provides an overview of the common characteristics, treatments, and associated adverse effects of AKI. The classification and bioavailability of polyphenols as well as their therapeutic role in AKI and potential possible effects are outlined. The potential therapeutic effects of polyphenol-based nanoparticles on AKI and the underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Xiaohua Liu
- Henan Science and Technology Innovation Promotion Center, Zhengzhou 450046, China
| | - Yike Guo
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangpeng Pan
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Tingting Wu
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Bing Zhao
- Henan Finance University, Zhengzhou 450046, China
| | - Shuyi Wei
- Plastic Surgery Department, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.
| | - Wei Jiang
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Triantafyllopoulou E, Perinelli DR, Forys A, Pantelis P, Gorgoulis VG, Lagopati N, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Unveiling the Performance of Co-Assembled Hybrid Nanocarriers: Moving towards the Formation of a Multifunctional Lipid/Random Copolymer Nanoplatform. Pharmaceutics 2024; 16:1204. [PMID: 39339240 PMCID: PMC11434724 DOI: 10.3390/pharmaceutics16091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the comprehensive study of their features by multiple advanced characterization techniques. Both biomaterials are amphiphilic, including two phospholipids (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and a statistical copolymer of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA). We examined the design parameters, including the lipid composition, the % comonomer ratio, and the lipid-to-polymer ratio that could be critical for their behavior. The structures were also probed in different conditions. To the best of the authors' knowledge, this is the first time that P(OEGMA-co-DIPAEMA)/lipid hybrid colloidal dispersions have been investigated from a membrane mechanics, biophysical, and morphological perspective. Among other parameters, the copolymer architecture and the hydrophilic to hydrophobic balance are deemed fundamental parameters for the biomaterial co-assembly, having an impact on the membrane's fluidity, morphology, and thermodynamics. Exploiting their unique characteristics, the most promising candidates were utilized for methotrexate (MTX) loading to explore their encapsulation capability and potential antitumor efficacy in vitro in various cell lines.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Nefeli Lagopati
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
3
|
Brodszkij E, Städler B. Advances in block copolymer-phospholipid hybrid vesicles: from physical-chemical properties to applications. Chem Sci 2024; 15:10724-10744. [PMID: 39027291 PMCID: PMC11253165 DOI: 10.1039/d4sc01444h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024] Open
Abstract
Hybrid vesicles, made of lipids and amphiphilic block copolymers, have become increasingly popular thanks to their versatile properties that enable the construction of intricate membranes mimicking cellular structures. This tutorial review gives an overview over the different hybrid vesicle designs, and provides a detailed analysis of their properties, including their composition, membrane fluidity, membrane homogeneity, permeability, stability. The review puts emphasis on the application of these hybrid vesicles in bottom-up synthetic biology and aims to offer an overview of design guidelines, particularly focusing on composition, to eventually realize the intended applications of these hybrid vesicles.
Collapse
Affiliation(s)
- Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustave Wieds Vej 14 8000 Aarhus C Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustave Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
4
|
Liang T, Liu X, Tong Y, Ding Q, Yang M, Ning H. Recent Advances in Targeted Therapies for Infantile Hemangiomas. Int J Nanomedicine 2024; 19:6127-6143. [PMID: 38911507 PMCID: PMC11193998 DOI: 10.2147/ijn.s463119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Targeted therapy for infantile hemangiomas (IHs) has been extensively studied as they can concentrate drugs, increase therapeutic efficacy and reduce drug dosage. Meanwhile, they can extend drug release times, enhance drug stability, decrease dosing frequency, and improve patient compliance. Moreover, carriers made from biocompatible materials reduced drug immunogenicity, minimizing adverse reactions. However, current targeted formulations still face numerous challenges such as the non-absolute safety of carrier materials; the need to further increase drug loading capacity; the limitation of animal hemangioma models in fully replicating the biological properties of human infantile hemangiomas; the establishment of models for deep-seated hemangiomas with high incidence rates; and the development of more specific targets or markers. In this review, we provided a brief overview of the characteristics of IHs and summarized the past decade's advances, advantages, and targeting strategies of targeted drug delivery systems for IHs and discussed their applications in the treatment of IHs. Furthermore, the goal is to provide a reference for further research and application in this field.
Collapse
Affiliation(s)
- Tiantian Liang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Xianbin Liu
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Yujun Tong
- Department of Breast Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Qian Ding
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, People’s Republic of China
| | - Min Yang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Hong Ning
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| |
Collapse
|
5
|
Triantafyllopoulou E, Forys A, Perinelli DR, Balafouti A, Karayianni M, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Deciphering the Lipid-Random Copolymer Interactions and Encoding Their Properties to Design a Hybrid System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11936-11946. [PMID: 38797979 PMCID: PMC11190979 DOI: 10.1021/acs.langmuir.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Lipid/copolymer colloidal systems are deemed hybrid materials with unique properties and functionalities. Their hybrid nature leads to complex interfacial phenomena, which have not been fully encoded yet, navigating their properties. Moving toward in-depth knowledge of such systems, a comprehensive investigation of them is imperative. In the present study, hybrid lipid/copolymer structures were fabricated and examined by a gamut of techniques, including dynamic light scattering, fluorescence spectroscopy, cryogenic transmission electron microscopy, microcalorimetry, and high-resolution ultrasound spectroscopy. The biomaterials that were mixed for this purpose at different ratios were 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine and four different linear, statistical (random) amphiphilic copolymers, consisting of oligo(ethylene glycol) methyl ether methacrylate as the hydrophilic comonomer and lauryl methacrylate as the hydrophobic one. The colloidal dispersions were studied for lipid/copolymer interactions regarding their physicochemical, morphological, and biophysical behavior. Their membrane properties and interactions with serum proteins were also studied. The aforementioned techniques confirmed the hybrid nature of the systems and the location of the copolymer in the structure. More importantly, the random architecture of the copolymers, the hydrophobic-to-hydrophilic balance of the nanoplatforms, and the lipid-to-polymer ratio are highlighted as the main design-influencing factors. Elucidating the lipid/copolymer interactions would contribute to the translation of hybrid nanoparticle performance and, thus, their rational design for multiple applications, including drug delivery.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Aleksander Forys
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Diego Romano Perinelli
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Anastasia Balafouti
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Maria Karayianni
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Giulia Bonacucina
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Georgia Valsami
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Natassa Pippa
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15771, Athens 157 72, Greece
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
6
|
Kambar N, Go YK, Snyder C, Do MN, Leal C. Structural characterization of lateral phase separation in polymer-lipid hybrid membranes. Methods Enzymol 2024; 700:235-273. [PMID: 38971602 DOI: 10.1016/bs.mie.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Hierarchic self-assembly is the main mechanism used to create diverse structures using soft materials. This is a case for both synthetic materials and biomolecular systems, as exemplified by the non-covalent organization of lipids into membranes. In nature, lipids often assemble into single bilayers, but other nanostructures are encountered, such as bilayer stacks and tubular and vesicular aggregates. Synthetic block copolymers can be engineered to recapitulate many of the structures, forms, and functions of lipid systems. When block copolymers are amphiphilic, they can be inserted or co-assembled into hybrid membranes that exhibit synergistic structural, permeability, and mechanical properties. One example is the emergence of lateral phase separation akin to the raft formation in biomembranes. When higher-order structures, such as hybrid membranes, are formed, this lateral phase separation can be correlated across membranes in the stack. This chapter outlines a set of important methods, such as X-ray Scattering, Atomic Force Microscopy, and Cryo-Electron Microscopy, that are relevant to characterizing and evaluating lateral and correlated phase separation in hybrid membranes at the nano and mesoscales. Understanding the phase behavior of polymer-lipid hybrid materials could lead to innovative advancements in biomimetic membrane separation systems.
Collapse
Affiliation(s)
- Nurila Kambar
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yoo Kyung Go
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Corey Snyder
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Minh N Do
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Cecília Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
7
|
Otrin N, Otrin L, Bednarz C, Träger TK, Hamdi F, Kastritis PL, Ivanov I, Sundmacher K. Protein-Rich Rafts in Hybrid Polymer/Lipid Giant Unilamellar Vesicles. Biomacromolecules 2024; 25:778-791. [PMID: 38190609 PMCID: PMC10865357 DOI: 10.1021/acs.biomac.3c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Considerable attention has been dedicated to lipid rafts due to their importance in numerous cell functions such as membrane trafficking, polarization, and signaling. Next to studies in living cells, artificial micrometer-sized vesicles with a minimal set of components are established as a major tool to understand the phase separation dynamics and their intimate interplay with membrane proteins. In parallel, mixtures of phospholipids and certain amphiphilic polymers simultaneously offer an interface for proteins and mimic this segregation behavior, presenting a tangible synthetic alternative for fundamental studies and bottom-up design of cellular mimics. However, the simultaneous insertion of complex and sensitive membrane proteins is experimentally challenging and thus far has been largely limited to natural lipids. Here, we present the co-reconstitution of the proton pump bo3 oxidase and the proton consumer ATP synthase in hybrid polymer/lipid giant unilamellar vesicles (GUVs) via fusion/electroformation. Variations of the current method allow for tailored reconstitution protocols and control of the vesicle size. In particular, mixing of protein-free and protein-functionalized nanosized vesicles in the electroformation film results in larger GUVs, while separate reconstitution of the respiratory enzymes enables higher ATP synthesis rates. Furthermore, protein labeling provides a synthetic mechanism for phase separation and protein sequestration, mimicking lipid- and protein-mediated domain formation in nature. The latter means opens further possibilities for re-enacting phenomena like supercomplex assembly or symmetry breaking and enriches the toolbox of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Nika Otrin
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Lado Otrin
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Claudia Bednarz
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Toni K. Träger
- Interdisciplinary
Research Center HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, 06120 Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary
Research Center HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, 06120 Halle/Saale, Germany
| | - Panagiotis L. Kastritis
- Interdisciplinary
Research Center HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, 06120 Halle/Saale, Germany
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 11635 Athens, Greece
| | - Ivan Ivanov
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Kai Sundmacher
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|
8
|
Cardellini J, Balestri A, Comparini L, Lonetti B, Brucale M, Valle F, Berti D, Montis C. Controlling plasmonic suprastructures through self-assembly of gold nanoparticles with hybrid copolymer-lipid vesicles. J Colloid Interface Sci 2024; 654:848-858. [PMID: 37898069 DOI: 10.1016/j.jcis.2023.10.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Hybrid lipid membranes incorporating amphiphilic copolymers have gained significant attention due to their potential applications in various fields, including drug delivery and sensing. By combining the properties of copolymers and lipid membranes, such as enhanced chemical tunability and stability, environmental responsiveness, and multidomain nature, novel membrane architectures have been proposed. In this study, we investigated the potentialities of hybrid membranes made of two distinct components: the rigid fully saturated phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the soft copolymer poly(butadiene-b-ethyleneoxide) (PBD-b-PEO). The objective was to explore the interaction of citrate-coated gold nanoparticles (AuNPs) and the hybrid membrane, aiming at constructing AuNPs-hybrid vesicles suprastructures with controlled and adjustable plasmonic properties. A series of experimental techniques were employed to investigate hybrid free-standing and supported membranes. The results revealed that the incorporation of the copolymer into the lipid membrane promotes AuNPs clustering, demonstrating a distinctive aggregative phenomenon of citrate-coated AuNPs on multidomain membranes. Importantly, we show that the size and morphology of AuNPs clusters can be precisely controlled in non-homogeneous membranes, enabling the formation of hybrid suprastructures with controlled patch properties. These results highlight the potential of lipid-copolymer hybrid membranes for designing functional materials with tailored plasmonic properties, with potential applications in nanomedicine and sensing.
Collapse
Affiliation(s)
- Jacopo Cardellini
- Department of Chemistry, University of Florence, and CSGI, Florence, Italy
| | - Arianna Balestri
- Department of Chemistry, University of Florence, and CSGI, Florence, Italy
| | - Luca Comparini
- Department of Chemistry, University of Florence, and CSGI, Florence, Italy
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS, Toulouse 31062, France
| | | | | | - Debora Berti
- Department of Chemistry, University of Florence, and CSGI, Florence, Italy
| | - Costanza Montis
- Department of Chemistry, University of Florence, and CSGI, Florence, Italy.
| |
Collapse
|
9
|
Hwang SW, Lim CM, Huynh CT, Moghimianavval H, Kotov NA, Alsberg E, Liu AP. Hybrid Vesicles Enable Mechano-Responsive Hydrogel Degradation. Angew Chem Int Ed Engl 2023; 62:e202308509. [PMID: 37607024 PMCID: PMC10600738 DOI: 10.1002/anie.202308509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/22/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Stimuli-responsive hydrogels are intriguing biomimetic materials. Previous efforts to develop mechano-responsive hydrogels have mostly relied on chemical modifications of the hydrogel structures. Here, we present a simple, generalizable strategy that confers mechano-responsive behavior on hydrogels. Our approach involves embedding hybrid vesicles, composed of phospholipids and amphiphilic block copolymers, within the hydrogel matrix to act as signal transducers. Under mechanical stress, these vesicles undergo deformation and rupture, releasing encapsulated compounds that can control the hydrogel network. To demonstrate this concept, we embedded vesicles containing ethylene glycol tetraacetic acid (EGTA), a calcium chelator, into a calcium-crosslinked alginate hydrogel. When compressed, the released EGTA sequesters calcium ions and degrades the hydrogel. This study provides a novel method for engineering mechano-responsive hydrogels that may be useful in various biomedical applications.
Collapse
Affiliation(s)
- Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Man Lim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cong Truc Huynh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | | | - Nicholas A. Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Departments of Biomedical Engineering, Macromolecular Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
- Departments of Orthopedic Surgery, Pharmacology and Regenerative Medicine, and Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Departments of Biomedical Engineering, Biophysics, Cellular and Molecular Biology Program, Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Wong CK, Lai RY, Stenzel MH. Dynamic metastable polymersomes enable continuous flow manufacturing. Nat Commun 2023; 14:6237. [PMID: 37802997 PMCID: PMC10558441 DOI: 10.1038/s41467-023-41883-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
Polymersomes are polymeric analogues of liposomes with exceptional physical and chemical properties. Despite being dubbed as next-generation vesicles since their inception nearly three decades ago, polymersomes have yet to experience translation into the clinical or industrial settings. This is due to a lack of reliable methods to upscale production without compromising control over polymersome properties. Herein we report a continuous flow methodology capable of producing near-monodisperse polymersomes at scale (≥3 g/h) with the possibility of performing downstream polymersome manipulation. Unlike conventional polymersomes, our polymersomes exhibit metastability under ambient conditions, persisting for a lifetime of ca. 7 days, during which polymersome growth occurs until a dynamic equilibrium state is reached. We demonstrate how this metastable state is key to the implementation of downstream processes to manipulate polymersome size and/or shape in the same continuous stream. The methodology operates in a plug-and-play fashion and is applicable to various block copolymers.
Collapse
Affiliation(s)
- Chin Ken Wong
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia.
| | - Rebecca Y Lai
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia.
| |
Collapse
|
11
|
Seneviratne R, Coates G, Xu Z, Cornell CE, Thompson RF, Sadeghpour A, Maskell DP, Jeuken LJC, Rappolt M, Beales PA. High Resolution Membrane Structures within Hybrid Lipid-Polymer Vesicles Revealed by Combining X-Ray Scattering and Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206267. [PMID: 36866488 DOI: 10.1002/smll.202206267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/26/2023] [Indexed: 06/02/2023]
Abstract
Hybrid vesicles consisting of phospholipids and block-copolymers are increasingly finding applications in science and technology. Herein, small angle X-ray scattering (SAXS) and cryo-electron tomography (cryo-ET) are used to obtain detailed structural information about hybrid vesicles with different ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and poly(1,2-butadiene-block-ethylene oxide) (PBd22 -PEO14 , Ms = 1800 g mol-1 ). Using single particle analysis (SPA) the authors are able to further interpret the information gained from SAXS and cryo-ET experiments, showing that increasing PBd22 -PEO14 mole fraction increases the membrane thickness from 52 Å for a pure lipid system to 97 Å for pure PBd22 -PEO14 vesicles. Two vesicle populations with different membrane thicknesses in hybrid vesicle samples are found. As these lipids and polymers are reported to homogeneously mix, bistability is inferred between weak and strong interdigitation regimes of PBd22 -PEO14 within the hybrid membranes. It is hypothesized that membranes of intermediate structure are not energetically favorable. Therefore, each vesicle exists in one of these two membrane structures, which are assumed to have comparable free energies. The authors conclude that, by combining biophysical methods, accurate determination of the influence of composition on the structural properties of hybrid membranes is achieved, revealing that two distinct membranes structures can coexist in homogeneously mixed lipid-polymer hybrid vesicles.
Collapse
Affiliation(s)
- Rashmi Seneviratne
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Georgina Coates
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Zexi Xu
- School of Food Science and Nutrition, School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Caitlin E Cornell
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Rebecca F Thompson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Maskell
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, PC Box 9502, Leiden, 2300 RA, Netherlands
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Polo Fonseca L. From nano to the macro: tuning hierarchical aggregation of thermoresponsive PEG/PCL-based polyurethanes via molar mass/composition control. Macromol Res 2023. [DOI: 10.1007/s13233-023-00137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
AbstractAmphiphilic hyperbranched polyurethanes (HPUs) based on PEG and PCL are promising for several biomedical applications. However, the lack of control over the molar mass and composition hinders a deep understanding of the aqueous self-assembly of HPUs. In this paper, the control over the HPU molar mass and composition was provided by dynamic urea bond-mediated polymerization (DUBMP), enabling a careful evaluation of their aqueous self-assembly by 1H NMR, DLS, and Cryo-TEM. HPUs containing a single PCL block per chain self-assemble into nanoaggregates (Rh ≈ 10 nm) in water up to its cloud-point temperature (Tcp) of 34 °C. On the other hand, HPUs with more than one PCL block per chain self-assemble into nanoaggregates and their clusters below Tcp. In this case, the solution behavior can be tuned by the HPU molar mass. Increasing $$\overline{{\mathrm{M} }_{\mathrm{w}}}$$
M
w
¯
from 4 to 19 kDa, HPUs of similar composition can form colloidally stable cluster suspensions ($$\overline{{\mathrm{M} }_{\mathrm{w}}}$$
M
w
¯
= 4 kDa) and phase separate into a denser liquid aggregate–cluster phase ($$\overline{{\mathrm{M} }_{\mathrm{w}}}$$
M
w
¯
= 7 kDa) or into a highly viscous aggregate-network phase ($$\overline{{\mathrm{M} }_{\mathrm{w}}}$$
M
w
¯
= 19 kDa). This type of control over the hierarchical aggregation of HPUs was reported for the first time and is interesting for biomedical applications.
Graphical abstract
Collapse
|
13
|
Kambar N, Leal C. Microfluidic synthesis of multilayered lipid-polymer hybrid nanoparticles for the formulation of low solubility drugs. SOFT MATTER 2023; 19:1596-1605. [PMID: 36752169 PMCID: PMC10080587 DOI: 10.1039/d2sm01443b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hybrid phospholipid/block copolymer membranes where polymers and lipids are molecularly mixed or phase-separated into polymer-rich and lipid-rich domains are promising drug delivery materials. Harnessing the chemical diversity of polymers and the biocompatability of lipids is a compelling approach to design the next generation of drug carriers. Here, we report on the development of a microfluidics-based strategy analogous to produce lipid nanoparticles (LNPs) for the nanomanufacturing of multilayered hybrid nanoparticles (HNPs). Using X-ray scattering, Cryo-electron, and polarized microscopy we show that phosphatidylcholine (PC) and PBD-b-PEO (poly(butadiene-block-ethylene oxide)) hybrid membranes can be nanomanufactured by microfluidics into HNPs with dense and multilayered cores which are ideal carriers of low-solubility drugs of the Biopharmaceutical Classification System (BCS) II and IV such as antimalarial DSM265 and Paclitaxel, respectively.
Collapse
Affiliation(s)
- Nurila Kambar
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| | - Cecília Leal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
14
|
Song J, Vikulina AS, Parakhonskiy BV, Skirtach AG. Hierarchy of hybrid materials. Part-II: The place of organics- on-inorganics in it, their composition and applications. Front Chem 2023; 11:1078840. [PMID: 36762189 PMCID: PMC9905839 DOI: 10.3389/fchem.2023.1078840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Hybrid materials or hybrids incorporating organic and inorganic constituents are emerging as a very potent and promising class of materials due to the diverse but complementary nature of their properties. This complementarity leads to a perfect synergy of properties of the desired materials and products as well as to an extensive range of their application areas. Recently, we have overviewed and classified hybrid materials describing inorganics-in-organics in Part-I (Saveleva, et al., Front. Chem., 2019, 7, 179). Here, we extend that work in Part-II describing organics-on-inorganics, i.e., inorganic materials modified by organic moieties, their structure and functionalities. Inorganic constituents comprise of colloids/nanoparticles and flat surfaces/matrices comprise of metallic (noble metal, metal oxide, metal-organic framework, magnetic nanoparticles, alloy) and non-metallic (minerals, clays, carbons, and ceramics) materials; while organic additives can include molecules (polymers, fluorescence dyes, surfactants), biomolecules (proteins, carbohydtrates, antibodies and nucleic acids) and even higher-level organisms such as cells, bacteria, and microorganisms. Similarly to what was described in Part-I, we look at similar and dissimilar properties of organic-inorganic materials summarizing those bringing complementarity and composition. A broad range of applications of these hybrid materials is also presented whose development is spurred by engaging different scientific research communities.
Collapse
Affiliation(s)
- Junnan Song
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anna S. Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| | - Bogdan V. Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andre G. Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Phase separation in polymer-based biomimetic structures containing planar membranes. Biointerphases 2022; 17:060802. [PMID: 36575113 DOI: 10.1116/6.0002078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Phase separation in biological membranes is crucial for proper cellular functions, such as signaling and trafficking, as it mediates the interactions of condensates on membrane-bound organelles and transmembrane transport to targeted destination compartments. The separation of a lipid bilayer into phases and the formation of lipid rafts involve the restructuring of molecular localization, their immobilization, and local accumulation. By understanding the processes underlying the formation of lipid rafts in a cellular membrane, it is possible to reconstitute this phenomenon in synthetic biomimetic membranes, such as hybrids of lipids and polymers or membranes composed solely of polymers, which offer an increased physicochemical stability and unlimited possibilities of chemical modification and functionalization. In this article, we relate the main lipid bilayer phase transition phenomenon with respect to hybrid biomimetic membranes, composed of lipids mixed with polymers, and fully synthetic membranes. Following, we review the occurrence of phase separation in biomimetic hybrid membranes based on lipids and/or direct lipid analogs, amphiphilic block copolymers. We further exemplify the phase separation and the resulting properties and applications in planar membranes, free-standing and solid-supported. We briefly list methods leading to the formation of such biomimetic membranes and reflect on their improved overall stability and influence on the separation into different phases within the membranes. Due to the importance of phase separation and compartmentalization in cellular membranes, we are convinced that this compiled overview of this phenomenon will be helpful for any researcher in the biomimicry area.
Collapse
|
16
|
Reddy RR, Subramanian J, Phani Kumar BVN. NMR Studies on the Interaction of Anticancer Drug Doxorubicin with Membrane Mimetic SDS. J Phys Chem B 2022; 126:10237-10248. [PMID: 36383346 DOI: 10.1021/acs.jpcb.2c05909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the formulation of efficient drug delivery systems, it is essential to unravel the structural and dynamical aspects of the drug's interaction with biological membranes. This has been done for the anticancer drug-membrane system comprising doxorubicin hydrochloride (DOX), a water-soluble anticancer drug, and the micellar sodium dodecyl sulfate (SDS), the latter serving as a useful mimic for membrane proteins. Using a multimodal NMR approach involving 1H, 2H, and 13C as probe nuclei and through the determination of chemical shifts, spin-relaxation, nuclear Overhauser enhancements (NOE), and translational self-diffusion (SD), the binding characteristics of the DOX with SDS have been determined. The perturbation to 13C chemical shifts of SDS indicate the penetration of DOX into the SDS micelle, which is further revealed by 1H-1H NOESY and SD measurements. 2H spin-relaxation measurements and their analysis using a two-step model show DOX induced SDS micellar volume changes, which determine the correlation times involved in the DOX-SDS mobility.
Collapse
Affiliation(s)
- R Ravikanth Reddy
- NMR, CATERS, CSIR-Central Leather Research Institute, Chennai600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201 002, India
| | - J Subramanian
- NMR, CATERS, CSIR-Central Leather Research Institute, Chennai600020, India
| | - Bandaru V N Phani Kumar
- NMR, CATERS, CSIR-Central Leather Research Institute, Chennai600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201 002, India
| |
Collapse
|
17
|
Steinkühler J, Jacobs ML, Boyd MA, Villaseñor CG, Loverde SM, Kamat NP. PEO- b-PBD Diblock Copolymers Induce Packing Defects in Lipid/Hybrid Membranes and Improve Insertion Rates of Natively Folded Peptides. Biomacromolecules 2022; 23:4756-4765. [PMID: 36318160 PMCID: PMC9667879 DOI: 10.1021/acs.biomac.2c00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/10/2022] [Indexed: 11/15/2022]
Abstract
Hybrid membranes assembled from biological lipids and synthetic polymers are a promising scaffold for the reconstitution and utilization of membrane proteins. Recent observations indicate that inclusion of small fractions of polymer in lipid membranes can improve protein folding and function, but the exact structural and physical changes a given polymer sequence imparts on a membrane often remain unclear. Here, we use all-atom molecular dynamics simulations to study the structure of hybrid membranes assembled from DOPC phospholipids and PEO-b-PBD diblock copolymers. We verified our computational model using new and existing experimental data and obtained a detailed picture of the polymer conformations in the lipid membrane that we can relate to changes in membrane elastic properties. We find that inclusion of low polymer fractions induces transient packing defects into the membrane. These packing defects act as insertion sites for two model peptides, and in this way, small amounts of polymer content in lipid membranes can lead to large increases in peptide insertion rates. Additionally, we report the peptide conformational space in both pure lipid and hybrid membranes. Both membranes support similar alpha helical peptide structures, exemplifying the biocompatibility of hybrid membranes.
Collapse
Affiliation(s)
- Jan Steinkühler
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois60208, United States
| | - Miranda L. Jacobs
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois60208, United States
| | - Margrethe A. Boyd
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois60208, United States
| | - Citlayi G. Villaseñor
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois60208, United States
| | - Sharon M. Loverde
- Department
of Chemistry, College of Staten Island, The City University of New York, Staten Island, New York10314, United States
| | - Neha P. Kamat
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois60657, United States
| |
Collapse
|
18
|
Chrysostomou V, Foryś A, Trzebicka B, Demetzos C, Pispas S. Amphiphilic Copolymer-Lipid Chimeric Nanosystems as DNA Vectors. Polymers (Basel) 2022; 14:polym14224901. [PMID: 36433029 PMCID: PMC9699196 DOI: 10.3390/polym14224901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Lipid-polymer chimeric (hybrid) nanosystems are promising platforms for the design of effective gene delivery vectors. In this regard, we developed DNA nanocarriers comprised of a novel poly[(stearyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate] [P(SMA-co-OEGMA)] amphiphilic random copolymer, the cationic 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP), and the zwitterionic L-α-phosphatidylcholine, hydrogenated soybean (soy) (HSPC) lipids. Chimeric HSPC:DOTAP:P[(SMA-co-OEGMA)] nanosystems, and pure lipid nanosystems as reference, were prepared in several molar ratios of the components. The colloidal dispersions obtained presented well-defined physicochemical characteristics and were further utilized for the formation of lipoplexes with a model DNA of linear topology containing 113 base pairs. Nanosized complexes were formed through the electrostatic interaction of the cationic lipid and phosphate groups of DNA, as observed by dynamic, static, and electrophoretic light scattering techniques. Ultraviolet-visible (UV-Vis) and fluorescence spectroscopy disclosed the strong binding affinity of the chimeric and also the pure lipid nanosystems to DNA. Colloidally stable chimeric/lipid complexes were formed, whose physicochemical characteristics depend on the N/P ratio and on the molar ratio of the building components. Cryogenic transmission electron microscopy (Cryo-TEM) revealed the formation of nanosystems with vesicular morphology. The results suggest the successful fabrication of these novel chimeric nanosystems with well-defined physicochemical characteristics, which can form stable lipoplexes.
Collapse
Affiliation(s)
- Varvara Chrysostomou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Correspondence: ; Tel.: +30-2107273824
| |
Collapse
|
19
|
Liu J, Pan Y, Xu J, Wang Z, Zhu H, Liu G, Zhong J, Jin W. Introducing amphipathic copolymer into intermediate layer to fabricate ultra-thin Pebax composite membrane for efficient CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Koner S, Tawfik J, Mashali F, Kennison KB, McClintic WT, Heberle FA, Tu YM, Kumar M, Sarles SA. Homogeneous hybrid droplet interface bilayers assembled from binary mixtures of DPhPC phospholipids and PB-b-PEO diblock copolymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183997. [PMID: 35718208 DOI: 10.1016/j.bbamem.2022.183997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Hybrid membranes built from phospholipids and amphiphilic block copolymers seek to capitalize on the benefits of both constituents for constructing biomimetic interfaces with improved performance. However, hybrid membranes have not been formed or studied using the droplet interface bilayer (DIB) method, an approach that offers advantages for revealing nanoscale changes in membrane structure and mechanics and offers a path toward assembling higher-order tissues. We report on hybrid droplet interface bilayers (hDIBs) formed in hexadecane from binary mixtures of synthetic diphytanoyl phosphatidylcholine (DPhPC) lipids and low molecular weight 1,2 polybutadiene-b-polyethylene oxide (PBPEO) amphiphilic block copolymers and use electrophysiology measurements and imaging to assess the effects of PBPEO in the membrane. This work reveals that hDIBs containing up to 15 mol% PBPEO plus DPhPC are homogeneously mixtures of lipids and polymers, remain highly resistive to ion transport, and are stable-including under applied voltage. Moreover, they exhibit hydrophobic thicknesses similar to DPhPC-only bilayers, but also have significantly lower values of membrane tension. These characteristics coincide with reduced energy of adhesion between droplets and the formation of alamethicin ion channels at significantly lower threshold voltages, demonstrating that even moderate amounts of amphiphilic block copolymers in a lipid bilayer provide a route for tuning the physical properties of a biomimetic membrane.
Collapse
Affiliation(s)
- Subhadeep Koner
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Joseph Tawfik
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Farzin Mashali
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kristen B Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Yu-Ming Tu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Sarles
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
21
|
Heuberger L, Korpidou M, Eggenberger OM, Kyropoulou M, Palivan CG. Current Perspectives on Synthetic Compartments for Biomedical Applications. Int J Mol Sci 2022; 23:5718. [PMID: 35628527 PMCID: PMC9145047 DOI: 10.3390/ijms23105718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano- and micrometer-sized compartments composed of synthetic polymers are designed to mimic spatial and temporal divisions found in nature. Self-assembly of polymers into compartments such as polymersomes, giant unilamellar vesicles (GUVs), layer-by-layer (LbL) capsules, capsosomes, or polyion complex vesicles (PICsomes) allows for the separation of defined environments from the exterior. These compartments can be further engineered through the incorporation of (bio)molecules within the lumen or into the membrane, while the membrane can be decorated with functional moieties to produce catalytic compartments with defined structures and functions. Nanometer-sized compartments are used for imaging, theranostic, and therapeutic applications as a more mechanically stable alternative to liposomes, and through the encapsulation of catalytic molecules, i.e., enzymes, catalytic compartments can localize and act in vivo. On the micrometer scale, such biohybrid systems are used to encapsulate model proteins and form multicompartmentalized structures through the combination of multiple compartments, reaching closer to the creation of artificial organelles and cells. Significant progress in therapeutic applications and modeling strategies has been achieved through both the creation of polymers with tailored properties and functionalizations and novel techniques for their assembly.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Maria Korpidou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Olivia M. Eggenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Myrto Kyropoulou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|