1
|
Heck F, Grunenberg L, Schnabel N, Heilmaier A, Sottmann T, Yao L, Lotsch BV. Solvothermal Template-Induced Hierarchical Porosity in Covalent Organic Frameworks: A Pathway to Enhanced Diffusivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415882. [PMID: 39838724 DOI: 10.1002/adma.202415882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/18/2024] [Indexed: 01/23/2025]
Abstract
The rapid advancement of covalent organic frameworks (COFs) in recent years has firmly established them as a new class of molecularly precise and highly tuneable porous materials. However, compared to other porous materials, such as zeolites and metal-organic frameworks, the successful integration of hierarchical porosity into COFs remains largely unexplored. The challenge lies in identifying appropriate synthetic methods to introduce secondary pores without compromising the intrinsic structural porosity of COFs. In this study, a template-induced synthetic methodology is realized to facilitate the construction of hierarchically porous COFs (hCOFs). This novel approach utilizes commercially available zinc oxide nanoparticles as a hard template, enabling to increase the total pore volume of a series of β-ketoenamine-linked COFs as well as an imine-based COF while preserving their surface areas. In addition to transmission electron microscopy and gas adsorption analyses, small-angle X-ray scattering and pulsed field gradient nuclear magnetic resonance techniques are employed to investigate the hierarchical porosity and diffusivity of guest molecules within hCOFs. This study demonstrates that the hierarchically porous nature of hCOFs significantly reduces diffusion limitations, thus leading to simultaneous enhancements in adsorption capacity, diffusivity, and catalytic performance.
Collapse
Affiliation(s)
- Fabian Heck
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377, Munich, Germany
- Collaborative Research Center 1333, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Lars Grunenberg
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377, Munich, Germany
| | - Nadine Schnabel
- Collaborative Research Center 1333, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Amelie Heilmaier
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377, Munich, Germany
| | - Thomas Sottmann
- Collaborative Research Center 1333, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Liang Yao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Centre of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377, Munich, Germany
- Collaborative Research Center 1333, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Li Y, Jiang Q, Yang X, Zhang S, Cao W, Ma Y, Wei W, Guo L. Enhanced photo-fermentative hydrogen production by constructing Rhodobacter capsulatus-ZnO/ZnS hybrid system. BIORESOURCE TECHNOLOGY 2024; 414:131632. [PMID: 39401660 DOI: 10.1016/j.biortech.2024.131632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
This study incorporated ZnO/ZnS nanoparticles with Rhodobacter capsulatus SB1003, forming a hybrid system to promote photo-fermentative hydrogen production. The results indicate that the material's photocatalytic activity and concentration significantly affected hydrogen yield. The addition of ZnO/ZnS exhibited a more significant auxiliary effect than ZnO and achieved an approximately 30% increase in hydrogen production compared to the control group. ZnO/ZnS enhanced the production of extracellular polymers, thereby strengthening the synergy between the nanomaterials and the bacteria. The photogenerated electrons from ZnO/ZnS were utilized by the photosynthetic bacteria. Furthermore, the activity of nitrogenase was enhanced, resulting in improved hydrogen production performance. This study provides insights into hydrogen production by photosynthetic bacteria with the assistance of inorganic semiconductor nanomaterials.
Collapse
Affiliation(s)
- Yanjing Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Qiushi Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Xueying Yang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Sihu Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Wen Cao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China.
| | - Yu Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Wenwen Wei
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China.
| |
Collapse
|
3
|
Shang L, Ni Y, Wang Y, Yang W, Wang L, Li H, Zhang K, Yan Z, Chen J. Single-Nanometer Spinel with Precise Cation Distribution for Enhanced Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413141. [PMID: 39436100 DOI: 10.1002/adma.202413141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Designing spinel nanocrystals (NCs) with tailored structural composition and cation distribution is crucial for superior catalytic performance but remarkably challenging due to their intricate nature. Here, an aggregation growth restricted hot-injection method is presented by meticulously investigating the fundamental nucleation and aggregation-driven growth kinetics governing spinel NC formation to address this challenge. Through controlled collision probability of nuclei during growth, this approach enables the synthesis of spinel NCs with unprecedented, single nanometer (1.2 nm). Single-nanometer CoMn2O4 spinel via this method exhibits a highly tailored structure with a maximized population of highly active octahedral Mn atoms, thereby optimizing oxygen intermediate adsorption during oxygen reduction reaction (ORR). Consequently, it exhibits a remarkable half-wave potential of 0.88 V in ORR and leads to a superior power density (170.9 mW cm-2) in zinc-air battery, outperforming commercial Pt/C and most reported spinel oxides, revealing a clear structure-property relationship. This structure design strategy is readily adaptable for the precise synthesis and engineering of various spinel structures, opening new avenues for developing advanced electrocatalysts and energy storage materials.
Collapse
Affiliation(s)
- Long Shang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Youxuan Ni
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuankun Wang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wenxuan Yang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Linyue Wang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Haixia Li
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kai Zhang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenhua Yan
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
Ansari AA, Lv R, Gai S, Parchur AK, Solanki PR, Archana, Ansari Z, Dhayal M, Yang P, Nazeeruddin M, Tavakoli MM. ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev 2024; 515:215942. [DOI: 10.1016/j.ccr.2024.215942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Ali Ansari S, Parveen N, Aljaafari A, Alshoaibi A, Alsulaim GM, Waqas Alam M, Zahid Ansari M. Novel furfural-complexed approach to synthesizing carbon-Doped ZnO with breakthrough photocatalytic efficacy. J Adv Res 2024:S2090-1232(24)00357-6. [PMID: 39128701 DOI: 10.1016/j.jare.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION The efficiency of zinc oxide (ZnO) nanoparticles for environmental decontamination is limited by their reliance on ultraviolet (UV) light and rapid charge carrier recombination. Carbon doping has been proposed to address these challenges by potentially enhancing visible light absorption and charge separation. OBJECTIVES This study aims to introduce a novel, single-step synthesis method for carbon-doped ZnO (C-Z) nanoparticles, leveraging the decomposition of zinc nitrate hexahydrate and furfural under a nitrogen atmosphere to improve photocatalytic activity under visible light. METHODS A series of C-Z variants (C-Z-1 to C-Z-5) and an undoped sample (ZnO-0) were synthesized. The influence of furfural on the synthesis process and doping mechanism was analyzed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy (DRS). RESULTS XPS confirmed the integration of carbon within the ZnO matrix, and XRD indicated increased lattice dimensions owing to doping. DRS revealed bandgap narrowing, suggesting enhanced charge separation. Among the variants, C-Z-3 significantly outperformed the others, showing a 12-fold increase in the photocatalytic degradation rate of Rhodamine B compared to undoped ZnO. CONCLUSION The developed single-step synthesis method for C-Z nanoparticles represents a major advancement in materials engineering for ecological applications. The enhanced photocatalytic activity under visible light, as demonstrated by C-Z-3, underscores the potential of these nanoparticles for environmental decontamination.
Collapse
Affiliation(s)
- Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia.
| | - Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia.
| | - Abdullah Aljaafari
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Ghayah M Alsulaim
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Zahid Ansari
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| |
Collapse
|
6
|
Olejnik-Fehér N, Jędrzejewska M, Wolska-Pietkiewicz M, Lee D, Paëpe GD, Lewiński J. On the Fate of Lithium Ions in Sol-Gel Derived Zinc Oxide Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309984. [PMID: 38497489 DOI: 10.1002/smll.202309984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Among diverse chemical synthetic approaches to zinc oxide nanocrystals (ZnO NCs), ubiquitous inorganic sol-gel methodology proved crucial for advancements in ZnO-based nanoscience. Strikingly, unlike the exquisite level of control over morphology and size dispersity achieved in ZnO NC syntheses, the purity of the crystalline phase, as well as the understanding of the surface structure and the character of the inorganic-organic interface, have been limited to vague descriptors until very recently. Herein, ZnO NCs applying the standard sol-gel synthetic protocol are synthesized with zinc acetate and lithium hydroxide and tracked the integration of lithium (Li) cations into the interior and exterior of nanoparticles by combining various techniques, including advanced solid-state NMR methods. In contrast to common views, it is demonstrated that Li+ ions remain kinetically trapped in the inorganic core, enter into a shallow subsurface layer, and generate "swelling" of the surface and interface regions. Thus, this work enabled both the determination of the NCs' structural imperfections and an in-depth understanding of the unappreciated role of the Li+ ions in impacting the doping and the passivation of sol-gel-derived ZnO nanomaterials.
Collapse
Affiliation(s)
- Natalia Olejnik-Fehér
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
- Université Grenoble Alpes, CEA, IRIG, MEM, Grenoble, 38000, France
| | - Maria Jędrzejewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | | | - Daniel Lee
- Université Grenoble Alpes, CEA, IRIG, MEM, Grenoble, 38000, France
| | - Gaël De Paëpe
- Université Grenoble Alpes, CEA, IRIG, MEM, Grenoble, 38000, France
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
7
|
Iwasaki T, Suehisa G, Tadaoka H, Shiga K, Nozaki K. Linear, Planar, Orbicular, and Macrocyclic Multinuclear Zinc (Meth)acrylate Complexes. Chemistry 2024; 30:e202400586. [PMID: 38597595 DOI: 10.1002/chem.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
Zinc carboxylate complexes are widely utilized as artificial models of metalloenzymes and as secondary building units of PCPs/MOFs. However, the relationship between the structure of the monodentate carboxylato ligand and the molecular arrangement of multinuclear zinc carboxylate complexes is not fully understood because of the coordination flexibility of the Zn ion and carboxylato ligands. Herein, we report the structural analysis of a series of complexes derived from zinc (meth)acrylate which has a linear infinite chain structure. The molecular structure of μ4-oxido-bridged tetranuclear complexes [Zn4(μ4-O)(OCOR)6] revealed a distorted Zn4O core. Crystallization of zinc acrylate under aqueous conditions afforded a μ3-hydroxido-containing pentanuclear complex [Zn5(μ3-OH)2(OCOR)8] as the repeating unit of an infinite sheet-like structure in the solid state. It was also obtained by the hydrolysis of the μ4-oxido-bridged tetranuclear complex. In sharp contrast, the methacrylate analog retained the methacrylato ligands under aqueous crystallization conditions to form a macrocyclic dodecanuclear complex with methacrylato as the sole ligand.
Collapse
Affiliation(s)
- Takanori Iwasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Gaito Suehisa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Tadaoka
- Research Department II, Research & Development HQ, Sumitomo Rubber Industries, Ltd., 2-1-1 Tsutsui-cho, Chuo-ku, Kobe, Hyogo, 651-0071, Japan
| | - Kazuyoshi Shiga
- Planning & Administration DEPT., Research & Development HQ, Sumitomo Rubber Industries, Ltd., 2-1-1 Tsutsui-cho, Chuo-ku, Kobe, Hyogo, 651-0071, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
8
|
Ma S, Cao F, Jia G, Wu Q, Wang S, Yang X. Blue ZnSeTe quantum dot light-emitting diodes with low efficiency roll-off enabled by an in situ hybridization of ZnMgO nanoparticles and amino alcohol molecules. NANOSCALE 2024; 16:10441-10447. [PMID: 38742531 DOI: 10.1039/d4nr01515k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
ZnSeTe quantum dots (QDs) have been employed as promising emitters for blue QD-based light-emitting diodes (QLEDs) due to their unique optoelectronic properties and environmental friendliness. However, such QLEDs usually suffer from serious efficiency roll-off primarily stemming from exciton loss at the interface of the QD layer and the ZnMgO (ZMO) electron transport layer (ETL), which remarkably hinders their application in flat-panel displays. Herein, we propose an in situ hybridization strategy that involves the pre-introduction of amino alcohols into the reaction solution. This strategy effectively suppresses the nucleophilic condensation process by facilitating the coordination of ammonium and hydroxyl groups with metal cations (M2+, i.e. Zn2+ and Mg2+). It slows down the growth rate of ZMO nanoparticles (NPs) while simultaneously facilitating M-O coordination, resulting in the synthesis of small-sized and low-defect ZMO NPs. Notably, this in situ hybridization approach not only alleviates emission quenching at the QDs/ETL interface but also elevates the energy level of the ETL for enhancing carrier injection. We further investigated the impact of amino alcohols with varying carbon-chain lengths on the performance of ZMO NPs and the corresponding LED devices. The optimal blue ZnSeTe QLED demonstrates an impressive EQE of 8.6% with only an ∼11% drop when the current density is increased to 200 mA cm-2, and the device operating lifetime extends to over 1300 h. Conversely, the device utilizing traditionally post-treated ZMO NPs as the ETL exhibits 45% efficiency roll-off and device lifetime of merely 190 h.
Collapse
Affiliation(s)
- Shaolin Ma
- Shanghai University Microelectronic R&D Center, Shanghai University, Shanghai 201900, P. R. China
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, P. R. China.
| | - Fan Cao
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, P. R. China.
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Qianqian Wu
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, P. R. China.
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, P. R. China.
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, P. R. China.
| |
Collapse
|
9
|
Wan S, Gao Y, Zhang Z, Wu F, Zheng Z, Chen H, Xi X, Yang D, Li T, Nie Z, Dong A. Oriented Linear Self-Assembly of Colloidal Nanocrystals through Regioselective Formation of Hydrogen-Bonded Supramolecular Bridges. J Am Chem Soc 2024; 146:14225-14234. [PMID: 38717289 DOI: 10.1021/jacs.4c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The linear assembly of nanocrystals (NCs) with orientational order presents a significant challenge in the field of colloidal assembly. This study presents an efficient strategy for assembling oleic acid (OAH)-capped, faceted rare earth NCs─such as nanorods, nanoplates, and nanodumbbells─into flexible chain-like superstructures. Remarkably, these NC chains exhibit a high degree of particle orientation even with an interparticle distance reaching up to 15 nm. Central to this oriented assembly method is the facet-selective adsorption of low-molecular-weight polyethylene glycol (PEG), such as PEG-400 (Mn = 400), onto specific facets of NCs. This regioselectivity is achieved by exploiting the lower binding affinity of OAH ligands on the (100) facets of rare earth NCs, enabling facet-specific ligand displacement and subsequent PEG attachment. By adjusting the solvent polarity, the linear assembly of NCs is induced by the solvophobic effect, which simultaneously promotes the formation of hydrogen-bonded PEG supramolecular bridges. These supramolecular bridges effectively connect NCs and exhibit sufficient robustness to maintain the structural integrity of the chains, despite the large interparticle spacing. Notably, even when coassembling different types of NCs, the resulting multicomponent chains still feature highly selective facet-to-facet connections. This work not only introduces a versatile method for fabricating well-aligned linear superstructures but also provides valuable insights into the fundamental principles governing the facet-selective assembly of NCs in solution.
Collapse
Affiliation(s)
- Siyu Wan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Yutong Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Zhebin Zhang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Fangyue Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Ziyue Zheng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Hushui Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Tongtao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Zhihong Nie
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Jiao Y, Pan Y, Yang M, Li Z, Yu J, Fu R, Man B, Zhang C, Zhao X. Micro-nano hierarchical urchin-like ZnO/Ag hollow sphere for SERS detection and photodegradation of antibiotics. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:307-318. [PMID: 39633674 PMCID: PMC11501311 DOI: 10.1515/nanoph-2023-0659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 12/07/2024]
Abstract
Hollow urchin-like substrates have been widely interested in the field of surface-enhanced Raman scattering (SERS) and photocatalysis. However, most reported studies are simple nanoscale urchin-like substrate with limited light trapping range and complicated preparation process. In this paper, a simple and effective controllable synthesis strategy based on micro-nano hierarchical urchin-like ZnO/Ag hollow spheres was prepared. Compared with the 2D structure and solid spheres, the 3D urchin-like ZnO/Ag hollow sphere has higher laser utilization and more exposed specific surface area due to its special hollow structure, which resulted in excellent SERS and photocatalytic performance, and successfully realize the detection and photodegradation of antibiotics. The limited of detection of metronidazole can reach as low as 10-9 M, and degradation rate achieve 89 % within 120 min. The experimental and theoretical results confirm that the ZnO/Ag hollow spheres can be used in the development of ZnO heterostructure for the detection and degradation of antibiotics, which open new avenues for the development of novel ZnO-based substrate in SERS sensing and catalytic application to address environmental challenges.
Collapse
Affiliation(s)
- Yang Jiao
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Yuanyuan Pan
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Moru Yang
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Zhen Li
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Rong Fu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng252000, China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Chao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Xiaofei Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| |
Collapse
|
11
|
Li Z, Wang J, Liu J, Yu J, Wang J, Wang H, Wei Q, Liu M, Xu M, Feng Z, Zhong T, Zhang X. Multifunctional ZnO@DOX/ICG-LMHP Nanoparticles for Synergistic Multimodal Antitumor Activity. J Funct Biomater 2024; 15:35. [PMID: 38391888 PMCID: PMC10889406 DOI: 10.3390/jfb15020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Multifunctional nanoparticles are of significant importance for synergistic multimodal antitumor activity. Herein, zinc oxide (ZnO) was used as pH-sensitive nanoparticles for loading the chemotherapy agent doxorubicin (DOX) and the photosensitizer agent indocyanine green (ICG), and biocompatible low-molecular-weight heparin (LMHP) was used as the gatekeepers for synergistic photothermal therapy/photodynamic therapy/chemotherapy/immunotherapy. ZnO was decomposed into cytotoxic Zn2+ ions, leading to a tumor-specific release of ICG and DOX. ZnO simultaneously produced oxygen (O2) and reactive oxygen species (ROS) for photodynamic therapy (PDT). The released ICG under laser irradiation produced ROS for PDT and raised the tumor temperature for photothermal therapy (PTT). The released DOX directly caused tumor cell death for chemotherapy. Both DOX and ICG also induced immunogenic cell death (ICD) for immunotherapy. The in vivo and in vitro results presented a superior inhibition of tumor progression, metastasis and recurrence. Therefore, this study could provide an efficient approach for designing multifunctional nanoparticles for synergistic multimodal antitumor therapy.
Collapse
Affiliation(s)
- Zhuoyue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingru Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junwei Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianming Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingwen Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingchao Wei
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Man Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meiqi Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenhan Feng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ting Zhong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
12
|
Naor T, Gigi S, Waiskopf N, Jacobi G, Shoshani S, Kam D, Magdassi S, Banin E, Banin U. ZnO Quantum Photoinitiators as an All-in-One Solution for Multifunctional Photopolymer Nanocomposites. ACS NANO 2023; 17:20366-20375. [PMID: 37787507 PMCID: PMC10604079 DOI: 10.1021/acsnano.3c06518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Nanocomposites are constructed from a matrix material combined with dispersed nanosized filler particles. Such a combination yields a powerful ability to tailor the desired mechanical, optical, electrical, thermodynamic, and antimicrobial material properties. Colloidal semiconductor nanocrystals (SCNCs) are exciting potential fillers, as they display size-, shape-, and composition-controlled properties and are easily embedded in diverse matrices. Here we present their role as quantum photoinitiators (QPIs) in acrylate-based polymer, where they act as a catalytic radical initiator and endow the system with mechanical, photocatalytic, and antimicrobial properties. By utilizing ZnO nanorods (NRs) as QPIs, we were able to increase the tensile strength and elongation at break of poly(ethylene glycol) diacrylate (PEGDA) hydrogels by up to 85%, unlike the use of the same ZnO NRs acting merely as fillers. Simultaneously, we endowed the PEGDA hydrogels with post-polymerization photocatalytic and antimicrobial activities and showed their ability to decompose methylene blue and significantly eradicate antibiotic-resistant bacteria and viral pathogens. Moreover, we demonstrate two fabrication showcase methods, traditional molding and digital light processing printing, that can yield hydrogels with complex architectures. These results position SCNC-based systems as promising candidates to act as all-in-one photoinitiators and fillers in nanocomposites for diverse biomedical applications, where specific and purpose-oriented characteristics are required.
Collapse
Affiliation(s)
- Tom Naor
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shira Gigi
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nir Waiskopf
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gila Jacobi
- The
Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials
and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sivan Shoshani
- The
Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials
and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Doron Kam
- Casali
Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Shlomo Magdassi
- Casali
Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Ehud Banin
- The
Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials
and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Uri Banin
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
13
|
Lustig DR, Buz E, Mulvey JT, Patterson JP, Kittilstved KR, Sambur JB. Characterizing the Ligand Shell Morphology of PEG-Coated ZnO Nanocrystals Using FRET Spectroscopy. J Phys Chem B 2023; 127:8961-8973. [PMID: 37802098 DOI: 10.1021/acs.jpcb.3c04900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Poly(ethylene glycol) (PEG) ligands can inhibit proteins and other biomolecules from adhering to underlying surfaces, making them excellent surface ligands for nanocrystal (NC)-based drug carriers. Quantifying the PEG ligand shell morphology is important because its structure determines the permeability of biomolecules through the shell to the NC surface. However, few in situ analytical tools can reveal whether the PEG ligands form either an impenetrable barrier or a porous coating surrounding the NC. Here, we present a Förster resonance energy transfer (FRET) spectroscopy-based approach that can assess the permeability of molecules through PEG-coated ZnO NCs. In this approach, ZnO NCs serve as FRET donors, and freely diffusing molecules in the bulk solution are FRET acceptors. We synthesized a series of variable chain length PEG-silane-coated ZnO NCs such that the longest chain length ligands far exceed the Förster radius (R0), where the energy transfer (EnT) efficiency is 50%. We quantified the EnT efficiency as a function of the ligand chain length using time-resolved photoluminescence lifetime (TRPL) spectroscopy within the framework of FRET theory. Unexpectedly, the longest PEG-silane ligand showed equivalent EnT efficiency as that of bare, hydroxyl-passivated ZnO NCs. These results indicate that the "rigid shell" model fails and the PEG ligand shell morphology is more likely porous or in a patchy "mushroom state", consistent with transmission electron microscopy data. While the spectroscopic measurements and data analysis procedures discussed herein cannot directly visualize the ligand shell morphology in real space, the in situ spectroscopy approach can provide researchers with valuable information regarding the permeability of species through the ligand shell under practical biological conditions.
Collapse
Affiliation(s)
- Danielle R Lustig
- Department of Chemistry, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523-1872, United States
| | - Enes Buz
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Justin T Mulvey
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697-2025, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697-2025, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Kevin R Kittilstved
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Justin B Sambur
- Department of Chemistry, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
14
|
Wang H, Tang X, Sun G, Chen D, Ye Z, Liu Y, Jin Y. All-Solution-Processed Perovskite Light-Emitting Diodes Based on a Thiol-Modified ZnO Electron-Transporting Layer. J Phys Chem Lett 2023:5827-5833. [PMID: 37339376 DOI: 10.1021/acs.jpclett.3c01428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
All-solution-processed perovskite light-emitting diodes (LEDs) have the potential to be inexpensive and easily manufactured on a large scale without requiring vacuum thermal deposition of the emissive and charge transport layers. Zinc oxide (ZnO), which possesses superior optical and electronic properties, is commonly used in all-solution-processed optoelectronic devices. However, the polar solvent of ZnO inks can corrode the perovskite layer and cause severe photoluminescence quenching. In this work, we report the successful dispersion of ZnO nanoparticles in nonpolar n-octane by controlling the surface ligands from acetates to thiols. The nonpolar ink prevents the destruction of perovskite films. In addition, thiol ligands upshift the conduction band energy level, which also helps inhibit exciton quenching. Consequently, we demonstrate the fabrication of high-performance all-solution-processed green perovskite LEDs with a brightness of 21 000 cd/m2 and an external quantum efficiency of 6.36%. Our work provides a ZnO ink for fabricating efficient all-solution-processed perovskite LEDs.
Collapse
Affiliation(s)
- Hailong Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaoqi Tang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Guolong Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Desui Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials and Engineering, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Yizheng Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Kendall O, Melendez LV, Ren J, Ratnayake SP, Murdoch BJ, Mayes ELH, van Embden J, Gómez DE, Calzolari A, Della Gaspera E. Photoactive p-Type Spinel CuGa 2O 4 Nanocrystals. NANO LETTERS 2023; 23:2974-2980. [PMID: 36975136 DOI: 10.1021/acs.nanolett.3c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein we report the synthesis and characterization of spinel copper gallate (CuGa2O4) nanocrystals (NCs) with an average size of 3.7 nm via a heat-up colloidal reaction. CuGa2O4 NCs have a band gap of ∼2.5 eV and marked p-type character, in agreement with ab initio simulations. These novel NCs are demonstrated to be photoactive, generating a clear and reproducible photocurrent under blue light irradiation when deposited as thin films. Crucially, the ability to adjust the Cu/Ga ratio within the NCs, and the effect of this on the optical and electronic properties of the NCs, was also demonstrated. These results position CuGa2O4 NCs as a novel material for optoelectronic applications, including hole transport and light harvesting.
Collapse
Affiliation(s)
- Owen Kendall
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
| | - Lesly V Melendez
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
| | - Jiawen Ren
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
| | | | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne 3000, VIC, Australia
| | - Edwin L H Mayes
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne 3000, VIC, Australia
| | - Joel van Embden
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
| | - Daniel E Gómez
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
| | | | | |
Collapse
|
16
|
Gouveia AF, Lemos SCS, Leite ER, Longo E, Andrés J. Back to the Basics: Probing the Role of Surfaces in the Experimentally Observed Morphological Evolution of ZnO. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:978. [PMID: 36985873 PMCID: PMC10057894 DOI: 10.3390/nano13060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Although the physics and chemistry of materials are driven by exposed surfaces in the morphology, they are fleeting, making them inherently challenging to study experimentally. The rational design of their morphology and delivery in a synthesis process remains complex because of the numerous kinetic parameters that involve the effective shocks of atoms or clusters, which end up leading to the formation of different morphologies. Herein, we combined functional density theory calculations of the surface energies of ZnO and the Wulff construction to develop a simple computational model capable of predicting its available morphologies in an attempt to guide the search for images obtained by field-emission scanning electron microscopy (FE-SEM). The figures in this morphology map agree with the experimental FE-SEM images. The mechanism of this computational model is as follows: when the model is used, a reaction pathway is designed to find a given morphology and the ideal step height in the whole morphology map in the practical experiment. This concept article provides a practical tool to understand, at the atomic level, the routes for the morphological evolution observed in experiments as well as their correlation with changes in the properties of materials based solely on theoretical calculations. The findings presented herein not only explain the occurrence of changes during the synthesis (with targeted reaction characteristics that underpin an essential structure-function relationship) but also offer deep insights into how to enhance the efficiency of other metal-oxide-based materials via matching.
Collapse
Affiliation(s)
- Amanda F. Gouveia
- Department of Analytical and Physical Chemistry, Jaume I University (UJI), 12071 Castelló, Spain
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, Campinas 13083-970, SP, Brazil
| | - Samantha C. S. Lemos
- Department of Analytical and Physical Chemistry, Jaume I University (UJI), 12071 Castelló, Spain
| | - Edson R. Leite
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, Campinas 13083-970, SP, Brazil
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Juan Andrés
- Department of Analytical and Physical Chemistry, Jaume I University (UJI), 12071 Castelló, Spain
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, Campinas 13083-970, SP, Brazil
| |
Collapse
|