1
|
Chen J, Jin Y, Fu J, Jiang C, Ding Z. Synthesis of Dioxo-Azabicyclo[3.2.1]octanes via Hypervalent Iodine-Mediated Domino Reaction. J Org Chem 2024; 89:15884-15892. [PMID: 39412824 DOI: 10.1021/acs.joc.4c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Bicyclo[3.2.1]octane (BCO) skeleton widely exists in natural products and biologically active molecules, whereas the development of convenient approaches to construct this structure remains a challenge. Herein, we describe a cascade reaction to synthesize 6,8-dioxa-3-azabicycle[3.2.1]octane derivatives from β-keto allylamines via an oxidation-cyclization reaction. A series of dioxo-azabicyclo[3.2.1]octanes bearing a quaternary carbon center were obtained in good yields under mild reaction conditions. Moreover, the mechanistic rationale for this novel domino reaction is supported by control experiments.
Collapse
Affiliation(s)
- Jingjing Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Jin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jialing Fu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenhua Ding
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Wu HR, Zhang CN, Dou BQ, Chen NY, Gao DF, Zou PS, Pan CX, Gu JH, Mo DL, Su JC. Identification of O-arylated huperzinines as novel cholinergic anti-inflammatory pathway agonists against gout arthritis. Bioorg Chem 2024; 152:107716. [PMID: 39178707 DOI: 10.1016/j.bioorg.2024.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
Lycodine alkaloids are important natural products with diverse biological effects. In this manuscript, we set out the first structural optimization of the 2-pyridone moiety of Lycodine alkaloid via selective O-arylation under metal-free conditions and obtained a series of potent bioactive molecules against monosodium urate (MSU)-induced IL-1β production. Further investigations demonstrated that these natural product derivatives could activate the neuro-immunomodulatory cholinergic anti-inflammatory pathway (CAP) to block the initial phase of NLRP3 inflammasome activation. Compared with the clinical drugs hydrocortisone and indomethacin, as well as commercially available CAP agonists GTS-21 and pnu282987, 3k and 3q possessed greater potency against MSU-induced IL-1β production. Meanwhile, these molecules possessed less cytotoxicity against promonocytic THP-1 macrophages when compared with colchicine. This work reports a concise strategy for direct modification of 2-pyridone moiety from natural Lycodine alkaloids, and provides novel frameworks for discovering CAP activators and drugs for gout arthritis.
Collapse
Affiliation(s)
- Hao-Ran Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Cai-Neng Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Bo-Qiang Dou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - De-Feng Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Pei-Sen Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ji-Hong Gu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
3
|
Dong X, Shao Y, Liu Z, Huang X, Xue XS, Chen Y. Radical 6-Endo Addition Enables Pyridine Synthesis under Metal-Free Conditions. Angew Chem Int Ed Engl 2024; 63:e202410297. [PMID: 39031447 DOI: 10.1002/anie.202410297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Metal-free synthesis of heterocycles is highly sought after in the pharmaceutical industry and has garnered widespread attention due to eliminating the need to remove trace metal catalysts from the reaction. We report a radical 6-endo addition method for pyridine synthesis from cyclopropylamides and alkynes under metal-free conditions. Various terminal and substituted alkynes are inserted as C2 units into cyclopropylamides to synthesize versatile pyridines with 57 examples. Mechanistic investigations and computational studies indicate the unprecedented 6-endo-trig addition of vinyl radicals to the imine nitrogen atom rather than the conventional 5-exo-trig addition to the imine carbon atom, in which the hypervalent iodine(III) plays a critical role. This reaction easily scales up with excellent functional group compatibility and suits the late-stage pyridine installation on complex molecules.
Collapse
Affiliation(s)
- Xiaojuan Dong
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yingbo Shao
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xia Huang
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai, 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
4
|
West JG. Building Catalytic Reactions One Electron at a Time. Acc Chem Res 2024; 57:3068-3078. [PMID: 39317431 DOI: 10.1021/acs.accounts.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
ConspectusClassical education in organic chemistry and catalysis, not the least my own, has centered on two-electron transformations, from nucleophilic attack to oxidative addition. The focus on two-electron chemistry is well-founded, as this brand of chemistry has enabled incredible feats of synthesis, from the development of life-saving pharmaceuticals to the production of ubiquitous commodity chemicals. With that said, this approach is in many ways complementary to the approach of nature, where enzymes frequently make use of single-electron "radical" steps to achieve challenging reactions with exceptional selectivity, including light detection and C-H hydroxylation. While the power of radical elementary steps is undeniable, the fundamental understanding of─and ability to apply─these in catalysis remains underdeveloped, constraining the palette with which chemists can make new reactions.Motivation to remedy this traditional underemphasis on radical catalysis has been intensified by the runaway success of outer-sphere photoredox catalysis, not only confirming the versatility of radicals in anthropogenic catalysis but also teaching the value of robust and well-understood catalytic cycles for reaction design. Indeed, I would argue the success of outer-sphere photoredox catalysis has been fueled by strong fundamental understanding of its underlying radical elementary steps, with consideration of single-electron transfer (SET) energetics allowing new reactions to be designed de novo with enviable confidence. However, outer-sphere photoredox catalysis is an outlier in this regard, with other mechanistic approaches remaining underexplored.Our research group is part of a growing movement to expand the vocabulary of synthetic radical catalysis beyond the traditional outer-sphere photoredox SET manifold, assembling new cycles comprised of hydrogen atom transfer (HAT), light-induced homolysis (LIH), and radical ligand transfer (RLT) steps in new combinations to achieve challenging transformations. These efforts have been made possible by the ever-growing understanding of these radical elementary steps and discovery of catalyst systems with significant mechanistic flexibility, most recently iron/thiol (Fe/S) cocatalysis.In this Account, I will focus on our efforts applying HAT and LIH steps in Fe/S cocatalysis, sharing broad guidelines we have found helpful for using these steps and demonstrating how they can be combined to make new reactions using three case studies: radical hydrogenation (HAT + HAT), decarboxylative protonation (LIH + HAT), and alkene hydrofluoroalkylation (LIH + HAT, with an intervening radical alkene addition). These efforts have highlighted the importance of several key parameters, including bond dissociation energy (BDE) and radical polarity, and I hope our findings similarly provide a valuable framework to others designing new radical catalytic reactions.
Collapse
Affiliation(s)
- Julian G West
- Department of Chemistry, Rice University, 6100 Main St, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
6
|
Gupta A, Bhatti P, Laha JK, Manna S. Skeletal Editing by Hypervalent Iodine Mediated Nitrogen Insertion. Chemistry 2024; 30:e202401993. [PMID: 39046292 DOI: 10.1002/chem.202401993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Hypervalent iodine reagents are versatile and readily accessible reagents that have been extensively applied in contemporary synthesis in modern organic chemistry. Among them, iodonitrene (ArI=NR), is a powerful reactive species, widely used for a single-nitrogen-atom insertion reaction, and skeletal editing to construct N-heterocycles. Skeletal editing with reactive iodonitrene components has recently emerged as an exciting approach in modern chemical transformation. These reagents have been extensively used to produce biologically relevant heterocycles and functionalized molecular architectures. Recently, the insertion of a nitrogen-atom into hydrocarbons to generate N-heterocyclic compounds using hypervalent iodine reagents has been a significant focus in the field of molecular editing reactions. In this review, we discuss the rapidly emerging field of nitrene insertion, including skeletal editing and nitrogen insertion, using hypervalent iodine reagents to access nitrogen-containing heterocycles, and the current mechanistic understanding of these processes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Pratibha Bhatti
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Srimanta Manna
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| |
Collapse
|
7
|
Rajat, Rajput S, Grover N, Jain N. Photocatalyst-free regioselective sulfonamidation of N-(2-hydroxyaryl)amides in visible-light. Org Biomol Chem 2024. [PMID: 39377558 DOI: 10.1039/d4ob01393j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In this work, we report a regioselective sulfonamidation of N-(2-hydroxyaryl)amides with iminoiodinanes and iodine in visible light at room temperature. The method does not require a strong oxidant, metal or photocatalyst and enables direct functionalization of a C-H bond to a C-N bond. Mechanistic investigations suggest in situ generation of an N-centered radical from N,N-diiodo-sulfonamide by homolytic N-I bond cleavage followed by its site-specific addition to N-(2-hydroxyaryl)amides to furnish para-sulfonamide derivatives.
Collapse
Affiliation(s)
- Rajat
- Department of Chemistry, Indian Institute of Technology Delhi-110016, New Delhi, India.
| | - Shruti Rajput
- Department of Chemistry, Indian Institute of Technology Delhi-110016, New Delhi, India.
| | - Nitika Grover
- Department of Chemistry, Indian Institute of Technology Delhi-110016, New Delhi, India.
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology Delhi-110016, New Delhi, India.
| |
Collapse
|
8
|
Scherkus A, Gudkova A, Čada J, Müller BH, Bystron T, Francke R. Low-Cost, Safe, and Anion-Flexible Method for the Electrosynthesis of Diaryliodonium Salts. J Org Chem 2024; 89:14129-14134. [PMID: 39300781 PMCID: PMC11460726 DOI: 10.1021/acs.joc.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
An electrochemical approach toward the synthesis of diaryliodonium salts based on anodic C-I coupling between aryl iodides and arenes is presented. In contrast to previous protocols, our method requires no chemical oxidants, strong acids, or fluorinated solvents. A further advantage is that by use of the appropriate supporting electrolyte, the counterion of choice can be introduced, which is time- and cost-saving as compared to postsynthesis ion exchange. This "anion-flexibility" is particularly interesting when considering the pronounced effect of the counterion on the reactivity of diaryliodonium species in aryl transfer reactions. The scope of our method comprises 24 examples with isolated yields of up to 99%. Scalability was demonstrated by the synthesis on a gram scale. Furthermore, it was shown that the diaryliodonium-containing post-electrolysis solution can be used without further workup as a reactive medium for O-arylation reactions. Finally, a series of para-substituted diaryliodonium compounds was studied using linear sweep voltammetry on a microelectrode and analyzed with respect to the influence of the electronic structure on the redox behavior.
Collapse
Affiliation(s)
- Anton Scherkus
- Leibniz
Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Aija Gudkova
- Leibniz
Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jan Čada
- Department
of Inorganic Technology, University of Chemistry
and Technology, Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Bernd H. Müller
- Leibniz
Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Tomas Bystron
- Department
of Inorganic Technology, University of Chemistry
and Technology, Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Robert Francke
- Leibniz
Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
9
|
Feng J, Xi LL, Lu CJ, Liu RR. Transition-metal-catalyzed enantioselective C-N cross-coupling. Chem Soc Rev 2024; 53:9560-9581. [PMID: 39171573 DOI: 10.1039/d4cs00102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Chiral amine scaffolds are among the most important building blocks in natural products, drug molecules, and functional materials, which have prompted chemists to focus more on their synthesis. Among the accomplishments in chiral amine synthesis, transition-metal-catalyzed enantioselective C-N cross-coupling is considered one of the most efficient protocols. This approach combines traditional C(sp2)-N cross-coupling methods (such as the Buchwald-Hartwig reaction Ullmann-type reaction, and Chan-Evans-Lam reaction), aryliodonium salt chemistry and radical chemistry, providing an attractive pathway to a wide range of structurally diverse chiral amines with high enantioselectivity. This review summarizes the established protocols and offers a comprehensive outlook on the promising enantioselective C-N cross-coupling reaction.
Collapse
Affiliation(s)
- Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
- Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, China
- College of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
10
|
Butt SE, Kepski K, Sotiropoulos JM, Moran WJ. Hypervalent iodine-mediated cyclization of bishomoallylamides to prolinols. Beilstein J Org Chem 2024; 20:2455-2460. [PMID: 39376490 PMCID: PMC11457059 DOI: 10.3762/bjoc.20.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
A change in mechanism was observed in the hypervalent iodine-mediated cyclization of N-alkenylamides when the carbon chain between the alkene and the amide increased from two to three atoms. In the latter case, cyclization at the amide nitrogen to form the pyrrolidine ring was favored over cyclization at the amide oxygen. A DFT study was undertaken to rationalize the change in mechanism of this cyclization process. In addition, reaction conditions were developed, and the scope of this cyclization studied.
Collapse
Affiliation(s)
- Smaher E Butt
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Konrad Kepski
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Jean-Marc Sotiropoulos
- Université de Pau et des Pays de l’Adour, IPREM (CNRS-UMR 5254), Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Wesley J Moran
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5JX, United Kingdom
| |
Collapse
|
11
|
Prabhakar NS, Kishor K, Singh KN. Easy Access to α-Ketothioamides via Oxidative Amidation of Bunte Salts Using Electrolysis or Hypervalent Iodine. J Org Chem 2024; 89:13329-13337. [PMID: 39255445 DOI: 10.1021/acs.joc.4c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Two new protocols leveraging electrochemical and hypervalent iodine-mediated synthesis of α-ketothioamides have been developed by using easily accessible and cost-effective Bunte salts and secondary amines. The methods are efficient, simple, and straightforward, and showcase the formation of C-N bonds across diverse substrates under ambient conditions.
Collapse
Affiliation(s)
- Neha Sharma Prabhakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Kaushal Kishor
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
12
|
Singhal R, Mehra MK, Malik B, Pilania M. Iodine/DMSO-catalyzed oxidative deprotection of N-tosylhydrazone for benzoic acid synthesis. RSC Adv 2024; 14:30482-30486. [PMID: 39318462 PMCID: PMC11421529 DOI: 10.1039/d4ra05849f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
An oxidative deprotection of tosylhyrdazones has been demonstrated to afford benzoic acids using iodine and DMSO system. This efficient oxidative deprotection protocol offers exceptional functional group toleration under mild reaction conditions without any initiators or bases. Notably, the tosylhydrazone with the heteroaryl ring or with the aryl ring having base-sensitive hydroxyl and ester functional groups smoothly afforded the corresponding benzoic acid analogues under developed conditions. Moreover, this method features short reaction times, high product yields and easy purification by avoiding column-chromatographic purification.
Collapse
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry, Manipal University Jaipur Jaipur (Rajasthan) VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur Rajasthan 303007 India
| | - Manish K Mehra
- Department of Chemistry, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur Jaipur (Rajasthan) VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur Rajasthan 303007 India
| | - Meenakshi Pilania
- Department of Chemistry, Manipal University Jaipur Jaipur (Rajasthan) VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur Rajasthan 303007 India
| |
Collapse
|
13
|
Patra K, Dey MP, Baidya M. Metal-free site-selective functionalization with cyclic diaryl λ 3-chloranes: suppression of benzyne formation for ligand-coupling reactions. Chem Sci 2024:d4sc04108a. [PMID: 39309097 PMCID: PMC11414830 DOI: 10.1039/d4sc04108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
While hypervalent halogens are versatile reagents enabling diverse reactions in organic synthesis, the utility of hypervalent chlorine compounds, particularly cyclic λ3-chloranes, remains underdeveloped despite their unique electronic properties and innate enhanced reactivity. Herein, we illustrate the elusive ligand coupling reaction of cyclic λ3-chloranes that suppresses the more facile competing reaction modality involving benzyne intermediates. The methodology can be performed in three-component as well as two-component fashions, offering direct access to a wide range of unsymmetrically substituted biaryl molecules in very high yields and excellent ortho-regioselectivity. The reactions were scalable, and the versatility was demonstrated by constructing different types of C-S and C-N bonds under mild conditions. The reaction outcomes were also compared with those of corresponding λ3-iodanes and λ3-bromanes, demonstrating the superiority of cyclic λ3-chloranes in ligand-coupling reactions under metal-free conditions.
Collapse
Affiliation(s)
- Koushik Patra
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | - Manas Pratim Dey
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| |
Collapse
|
14
|
Thai P, Patel L, Manna D, Powers DC. Hydrogen-bond activation enables aziridination of unactivated olefins with simple iminoiodinanes. Beilstein J Org Chem 2024; 20:2305-2312. [PMID: 39290207 PMCID: PMC11406056 DOI: 10.3762/bjoc.20.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Iminoiodinanes comprise a class of hypervalent iodine reagents that is often encountered in nitrogen-group transfer (NGT) catalysis. In general, transition metal catalysts are required to effect efficient NGT to unactivated olefins because iminoiodinanes are insufficiently electrophilic to engage in direct aziridination chemistry. Here, we demonstrate that 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) activates N-arylsulfonamide-derived iminoiodinanes for the metal-free aziridination of unactivated olefins. 1H NMR and cyclic voltammetry (CV) studies indicate that hydrogen-bonding between HFIP and the iminoiodinane generates an oxidant capable of direct NGT to unactivated olefins. Stereochemical scrambling during aziridination of 1,2-disubstituted olefins is observed and interpreted as evidence that aziridination proceeds via a carbocation intermediate that subsequently cyclizes. These results demonstrate a simple method for activating iminoiodinane reagents, provide analysis of the extent of activation achieved by H-bonding, and indicate the potential for chemical non-innocence of fluorinated alcohol solvents in NGT catalysis.
Collapse
Affiliation(s)
- Phong Thai
- Department of Chemistry, Texas A&M University, College Station TX, 77843, USA
| | - Lauv Patel
- Department of Chemistry, Texas A&M University, College Station TX, 77843, USA
| | - Diyasha Manna
- Department of Chemistry, Texas A&M University, College Station TX, 77843, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station TX, 77843, USA
| |
Collapse
|
15
|
Jiang P, Liu T, Lei C, Wang H, Li J, Shi M, Xu C, He X, Liang X. Energetic Hypervalent Organoiodine Electrochemistry for Aqueous Zinc Batteries. J Am Chem Soc 2024; 146:25108-25117. [PMID: 39190645 DOI: 10.1021/jacs.4c08145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Hypervalent organoiodine compounds have been extensively utilized in organic synthesis, yet their electrochemical properties remain unexplored despite their theoretically high redox potential compared with inorganic iodine, which primarily relies on the I-/I0 redox couple in battery applications. Here, the fundamental redox mechanism of hypervalent organoiodine in a ZnCl2 aqueous electrolyte is established for the first time using the simplest iodobenzene (PhI) as a model compound. We validated that the PhI to PhICl2 transition is a single-step and reversible reaction, enabling two-electron transfer of I+/I3+ redox chemistry (1.9 V vs Zn2+/Zn) with high capacity (422 mAh giodine-1, and 262.6 mAh g-1 based on PhI) and high theoretical energy density (801.8 Wh kg-1). It was also elucidated that such organoiodine electrochemistry exhibits rich tunability in terms of the global reactivity of various PhI derivatives, including multiple iodine-substituted isomers and functional substituents. Additionally, the stabilizing anion ligands affect the reversibility and stability of trivalent organoiodine compounds. By limiting side reactions and improving the stability of trivalent organoiodine at low temperatures, the zinc-PhI battery demonstrated the feasibility of I+/I3+ conversion and sustained stable performance over 400 cycles. This work bridges the gap between hypervalent organoiodine chemistry and battery technology, highlighting the potential for future high-performance battery applications.
Collapse
Affiliation(s)
- Pengjie Jiang
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Tingting Liu
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Chengjun Lei
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Huijian Wang
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jinye Li
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Min Shi
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Chen Xu
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xin He
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiao Liang
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
16
|
An S, Hao A, Xing P. Hypervalent Iodine (III)-Based Complexation for Chiroptical Supramolecular Glass, Deep Eutectic Solvent and Luminescent Switch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402314. [PMID: 39014909 DOI: 10.1002/adma.202402314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Indexed: 07/18/2024]
Abstract
Hypervalent iodine(III) have widely been utilized for organic synthetic reagents. They are also recognized as positive charge-assisted, exceptionally robust biaxial halogen bond donors, while their potential in supramolecular materials is barely explored. This work reports a cyclic diaryliodonium ion as biaxial halogen bonding donor that displays remarkable binding affinity toward phenanthroline or acridine acceptors with chiral pendants. Biaxial halogen bonding enables chiroptical evolution in solution, allowing for rational control over supramolecular chirality. Leveraging their strong binding affinity, the halogen bonding complexes manifested amorphous properties and deep eutectic behavior in the solid state. Capitalizing on these attributes, this work achieves the successful preparation of supramolecular glasses and deep eutectic solvents. Additionally, halogen bonding appended light irradiation-triggered luminescence through a hydrogen atom transfer process, showing applications in anti-counterfeit and display.
Collapse
Affiliation(s)
- Shuguo An
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
17
|
Arockiaraj M, Rajeshkumar V. Iodine-promoted sequential C(sp 3)-H oxidation and cyclization of aryl methyl ketones with 2-(2-aminophenyl)quinazolin-4(3 H)-ones. Org Biomol Chem 2024; 22:7052-7058. [PMID: 39145634 DOI: 10.1039/d4ob01146e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
An I2-promoted, metal-free protocol has been developed for the one-pot synthesis of 6-aroyl-5,6-dihydro-8H-quinazolino[4,3-b]quinazolin-8-ones from readily accessible substrates. This reaction involves the in situ sp3 C-H oxidation of aryl methyl ketones to phenylglyoxal, followed by imine formation and intramolecular nucleophilic addition, resulting in the formation of two new C-N bonds. Furthermore, the method is applicable to a wide range of aryl methyl ketones, including heterocycles and drug-derived substrates, yielding the desired products with yields ranging from 62% to 93%. Additionally, the practical utility of this approach was demonstrated through gram-scale synthesis.
Collapse
Affiliation(s)
- Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India.
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India.
| |
Collapse
|
18
|
Zhu Y, Yi F, Zhou N, Zhang Y, Zhang Y, Zhao X, Lu K. Photochemical tandem reaction of nitrogen containing heterocycles, bicyclo[1.1.1]pentane, and difluoroiodane(III) reagents. Org Biomol Chem 2024; 22:7024-7034. [PMID: 39143911 DOI: 10.1039/d4ob01020e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A visible light-induced difluoroalkylation/heteroarylation of [1.1.1]propellane with nitrogen containing heterocycles and difluoroiodane(III) reagents was achieved. Various heteroarenes and difluoroiodane(III) reagents exhibited good compatibility, yielding the desired products in moderate to good yields. The accessibility of the reagents and the mild reaction conditions establish this method as an alternative and practical strategy for accessing diverse 1-difluoroalkyl-3-heteroaryl bicyclo[1.1.1]pentanes (BCPs).
Collapse
Affiliation(s)
- Yaqing Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Fengchao Yi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Yi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Ying Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Xia Zhao
- College of Chemistry, TianJin Key Laboratory of Structure and Performance for Functional Molecules, TianJin Normal University, TianJin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| |
Collapse
|
19
|
Meher P, Parida SK, Mahapatra SK, Roy L, Murarka S. Overriding Cage Effect in Electron Donor-Acceptor Photoactivation of Diaryliodonium Reagents: Synthesis of Chalcogenides. Chemistry 2024:e202402969. [PMID: 39183717 DOI: 10.1002/chem.202402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
In recent times, diaryliodonium reagents (DAIRs) have witnessed a resurgence as arylating reagents, especially under photoinduced conditions. However, reactions proceeding through electron donor-acceptor (EDA) complex formation with DAIRs are restricted to electron-rich reacting partners serving as donors due to the well-known cage effect. We discovered a practical and high-yielding visible-light-induced EDA platform to generate aryl radicals from the corresponding DAIRs and use them to synthesize key chalcogenides. In this process, an array of DAIRs and dichalcogenides react in the presence of 1,4 diazabicyclo[2.2.2]octane (DABCO) as a cheap and readily available donor, furnishing a variety of di(hetero)aryl and aryl/alkyl chalcogenides in good yields. The method is scalable, features a broad scope with good yields, and operates under open-to-air conditions. The photoinduced chalcogenation technology is suitable for late-stage functionalizations and disulfide bioconjugations and facilitates access to biologically relevant thioesters, dithiocarbamates, sulfoximines, and sulfones. Moreover, the method applies to synthesizing diverse pharmaceuticals, such as vortioxetine, promazine, mequitazine, and dapsone, under amenable conditions.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sanat Kumar Mahapatra
- IOC Odisha Campus Bhubaneswar, Institute of Chemical Technology Mumbai, Bhubaneswar, 751013, India
| | - Lisa Roy
- IOC Odisha Campus Bhubaneswar, Institute of Chemical Technology Mumbai, Bhubaneswar, 751013, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| |
Collapse
|
20
|
Mondal S, Gunschera B, Olofsson B. Transition-Metal-Free C-Diarylations to Reach All-Carbon Quaternary Centers. JACS AU 2024; 4:2832-2837. [PMID: 39211612 PMCID: PMC11350576 DOI: 10.1021/jacsau.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Herein, we disclose a convenient protocol for the α-diarylation of carbon nucleophiles to yield heavily functionalized quaternary products. Diaryliodonium salts are utilized to transfer both aryl groups under transition-metal-free conditions, which enables an atom-efficient and high-yielding method with broad functional group tolerance. The methodology is amenable to a wide variety of carbon nucleophiles and can be utilized in late-stage functionalization of complex arenes. Furthermore, it is compatible with a new class of zwitterionic iodonium reagents, which gives access to phenols with an ortho-quaternary center. The diarylated products bear an ortho-iodo substituent that can be utilized in further transformations, including the formation of novel, functionalized six-membered cyclic iodonium salts.
Collapse
Affiliation(s)
- Shobhan Mondal
- Department of Organic Chemistry, Arrhenius
Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Benjamin Gunschera
- Department of Organic Chemistry, Arrhenius
Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry, Arrhenius
Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Alshehri S, Abboud M. Synthesis and characterization of mesoporous silica supported metallosalphen-azobenzene complexes: efficient photochromic heterogeneous catalysts for the oxidation of cyclohexane to produce KA oil. RSC Adv 2024; 14:26971-26994. [PMID: 39193295 PMCID: PMC11348846 DOI: 10.1039/d4ra04698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The oxidation of cyclohexane to produce KA oil (cyclohexanone and cyclohexanol) is important industrially but faces challenges such as low cyclohexane conversion at high KA oil selectivity, and difficult catalyst recyclability. This work reports the synthesis and evaluation of new heterogeneous catalysts consisting of Co(ii), Mn(ii), Ni(ii) and Cu(ii) salphen-azobenzene complexes [ML1] immobilized on amino-functionalized mesoporous silica (SBA-15, MCM-41, MCM-48) through coordination bonding. In the first step, the salphen-azobenzene ligand was synthesized and complexed with Co, Mn, Ni and Cu metal ions. In the second step, aminopropyltriethoxysilane (APTES) was grafted onto the surface of different types of commercial mesoporous silica. The immobilization of [ML1] onto the mesoporous silica surface and the thermal stability of the obtained materials were confirmed using different characterization techniques such as FT-IR, powder XRD, SEM, TEM, BET, and TGA. The obtained results revealed high dispersion of [ML1] through the silica surface. The catalytic activity of the prepared materials Silica-N-ML1 was evaluated on the cyclohexane oxidation to produce KA oil using various oxidants. The cis-trans isomerization of the azobenzene upon UV irradiation was found to affect the catalytic performance of Silica-N-ML1. The cis isomer of SBA-15-N-CoL1 exhibited the highest cyclohexane conversion (93%) and KA selectivity (92%) under mild conditions (60 °C, 6 h) using m-CPBA as oxidant. Moreover, The SBA-15-N-CoL1 showed high stability during four successive cycles.
Collapse
Affiliation(s)
- Salimah Alshehri
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia +966 53 48 46 782
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia +966 53 48 46 782
| |
Collapse
|
22
|
Kano T, Uozumi R, Maruyama T, Tada N, Itoh A. Modular Synthesis of Tripeptide Analogs with an Aminobitriazole Skeleton Using Diynyl Benziodoxolone as a Trivalent Platform. J Org Chem 2024; 89:11761-11765. [PMID: 39082689 DOI: 10.1021/acs.joc.4c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A new synthesis method of tripeptide analogs with an aminobitriazole skeleton was proposed. The method involves assembling three amino acid-derived modules at the amino group site and onto a triisopropylsilyl diynyl benziodoxolone by copper-catalyzed electrophilic diynylation of amino acid-derived sulfonamides, chemoselective azide-alkyne cycloadditions with amino acid-derived azides, and deprotection. Various complex aminobitriazoles substituted with pyrene, nucleoside, and N-acetylglucosamine were also synthesized. The produced aminobitriazoles have three sp3 chiral centers and a C-N axial chirality.
Collapse
Affiliation(s)
- Takashi Kano
- Laboratory of Pharmaceutical Synthetic Chemistry, Faculty of Pharmaceutical Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Ryusei Uozumi
- Laboratory of Pharmaceutical Synthetic Chemistry, Faculty of Pharmaceutical Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | | | - Norihiro Tada
- Laboratory of Pharmaceutical Synthetic Chemistry, Faculty of Pharmaceutical Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Faculty of Pharmaceutical Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
23
|
Zhang WW, Feng Z, You SL, Zheng C. Electrophile-Arene Affinity: An Energy Scale for Evaluating the Thermodynamics of Electrophilic Dearomatization Reactions. J Org Chem 2024; 89:11487-11501. [PMID: 39077910 DOI: 10.1021/acs.joc.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rational design and development of organic reactions are lofty goals in synthetic chemistry. Quantitative description of the properties of molecules and reactions by physical organic parameters plays an important role in this regard. In this Article, we report an energy scale, namely, electrophile-arene affinity (EAA), for evaluating the thermodynamics of electrophilic dearomatization reactions, a class of important transformations that can rapidly build up molecular complexity and structural diversity by converting planar aromatic compounds into three-dimensional cyclic molecules. The acquisition of EAA data can be readily achieved by theoretically calculating the enthalpy changes (ΔH) of the hypothetical reactions of various (cationic) electrophiles with aromatic systems (taking the 1-methylnaphthalen-2-olate ion as an example in this study). Linear correlations are found between the calculated ΔH values and established physical organic parameters such as the percentage of buried volume %VBur (steric effect), Hammett's σ or Brown's σ+ (electronic effect), and Mayr's E (reaction kinetics). Careful analysis of the ΔH values leads to the rational design of a dearomative alkynylation reaction using alkynyl hypervalent iodonium reagents as the electrophiles.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Shanghai-Hong Kong Joint Laboratory of Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
24
|
Liu XY, Mykhailenko O, Faraone A, Waser J. Hypervalent Iodine Amino Acid Building Blocks for Bioorthogonal Peptide Macrocyclization. Angew Chem Int Ed Engl 2024; 63:e202404747. [PMID: 38807563 DOI: 10.1002/anie.202404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Ethynylbenziodoxol(on)es (EB(X)xs) reagents have emerged as useful reagents for peptide/protein modification due to their versatile reactivity and high selectivity. Herein, we report the successful introduction of ethynylbenziodoxoles (EBxs) on different amino acid building blocks (Lys/Orn/Dap), and show their compatibility with both solid phase peptide synthesis (SPPS) and solution phase peptide synthesis (SPS). The selective incorporation of the EBx core into peptide sequences enable efficient macrocyclizations under mild conditions for the synthesis of topologically unique cyclic and bicyclic peptides.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Olha Mykhailenko
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Adriana Faraone
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
25
|
Hoque MA, Jiang T, Poole DL, Stahl SS. Manganese-Mediated Electrochemical Oxidation of Thioethers to Sulfoxides Using Water as the Source of Oxygen Atoms. J Am Chem Soc 2024; 146:21960-21967. [PMID: 39042816 PMCID: PMC11409814 DOI: 10.1021/jacs.4c07058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Oxygen-atom transfer reactions are a prominent class of synthetic redox reactions that often use high-energy oxygen-atom donor reagents. Electrochemical methods can bypass these reagents by using water as the source of oxygen atoms through pathways involving direct or indirect (mediated) electrolysis. Here, manganese porphyrins and related mediators are shown to be effective molecular electrocatalysts for selective oxidation of thioethers to sulfoxides, without overoxidation to the sulfone. The reactions proceed by proton-coupled oxidation of a MnIII-OH2 species to generate a MnIV-OH and MnV═O species. This methodology is compared to direct electrolysis methods initiated by single-electron oxidation of the thioether, and chloride-mediated electrochemical oxidation of thioethers. The Mn-mediated reactions operate at lower applied potential and exhibit improved substrate scope and functional group compatibility relative to direct electrolysis, and the tunability of the Mn-based mediators allows for improved performance relative to chloride-mediated electrolysis. An electrochemical parallel screening platform is developed and applied to a library of pharmaceutically relevant thioethers.
Collapse
Affiliation(s)
- Md Asmaul Hoque
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tianxiao Jiang
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Darren L Poole
- Molecular Modalities Capabilities, GSK Medicines Research Centre, Gunnels Wood Rd., Stevenage SG1 2NY, U.K
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Yu D, Yang W, Chen S, Zhou CY, Guo Z. Photocatalyst-Free Visible Light-Induced C(sp 2)-H Arylation of Quinoxalin-2(1H)-ones and Coumarins. Chemistry 2024; 30:e202401371. [PMID: 38825569 DOI: 10.1002/chem.202401371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Herein, we describe a visible light-induced C(sp2)-H arylation method for quinoxalin-2(1H)-ones and coumarins using iodonium ylides without the need for external photocatalysts. The protocol demonstrates a broad substrate scope, enabling the arylation of diverse heterocycles through a simple and mild procedure. Furthermore, the photochemical reaction showcases its applicability in the efficient synthesis of biologically active molecules. Computational investigations at the CASPT2//CASSCF/PCM level of theory revealed that the excited state of quinoxalin-2(1H)-one facilitates electron transfer from its π bond to the antibonding orbital of the C-I bond in the iodonium ylide, ultimately leading to the formation of an aryl radical, which subsequently participates in the C-H arylation process. In addition, our calculations reveal that during the single-electron transfer (SET) process, the C-I bond cleavage in iodonium ylide and new C-C bond formation between resultant aryl radical and cationic quinoxaline species take place in a concerned manner. This enables the arylation reaction to efficiently proceed along an energy-efficient route.
Collapse
Affiliation(s)
- Dingzhe Yu
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Wenjing Yang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Shuicai Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| |
Collapse
|
27
|
Upadhyaya K, Dubbu S. Advancing carbohydrate functionality: The role of hypervalent iodine. Carbohydr Res 2024; 542:109175. [PMID: 38865797 DOI: 10.1016/j.carres.2024.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Hypervalent iodine reagents have undergone significant development and widespread application in the functionalization of carbohydrates. This is primarily attributed to their exceptional properties, including mildness, ease of handling, high selectivity, environmental friendliness, and stability. This review aims to emphasize the utilization of hypervalent iodine compounds in the functionalization of carbohydrates. The present article covers various aspects, including glycal functionalization, C-H or N-H insertion reactions, O-arylations, C-2 deoxy-2-iodo glycoconjugates, iminosugars, and C3-oxo-glycals, achieved through the use of hypervalent iodine reagents/catalysts. Additionally, it explores hypervalent iodine-mediated bioactive 1,3,5-trioxocane synthesis followed by rare sugars synthesis.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Sateesh Dubbu
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
28
|
Patra T, Arepally S, Seitz J, Wirth T. Electrocatalytic continuous flow chlorinations with iodine(I/III) mediators. Nat Commun 2024; 15:6329. [PMID: 39068163 PMCID: PMC11283512 DOI: 10.1038/s41467-024-50643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Electrochemistry offers tunable, cost effective and environmentally friendly alternatives to carry out redox reactions with electrons as traceless reagents. The use of organoiodine compounds as electrocatalysts is largely underdeveloped, despite their widespread application as powerful and versatile reagents. Mechanistic data reveal that the hexafluoroisopropanol assisted iodoarene oxidation is followed by a stepwise chloride ligand exchange for the catalytic generation of the dichloroiodoarene mediator. Here, we report an environmentally benign iodine(I/III) electrocatalytic platform for the in situ generation of dichloroiodoarenes for different reactions such as mono- and dichlorinations as well as chlorocyclisations within a continuous flow setup.
Collapse
Affiliation(s)
- Tuhin Patra
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, Cymru/Wales, UK
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, India
| | - Sagar Arepally
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, Cymru/Wales, UK
| | - Jakob Seitz
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, Cymru/Wales, UK
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, Cymru/Wales, UK.
| |
Collapse
|
29
|
Iazzetti A, Arcadi A, Chiarini M, Fabrizi G, Goggiamani A, Marrone F, Serraiocco A, Zoppoli R. Palladium-Catalyzed Tsuji-Trost-Type Reaction of 3-Indolylmethylacetates with O, and S Soft Nucleophiles. Molecules 2024; 29:3434. [PMID: 39065012 PMCID: PMC11280231 DOI: 10.3390/molecules29143434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The chemical valorization of widespread molecules in renewable sources is a field of research widely investigated in the last decades. In this context, we envisaged that indole-3-carbinol, present in different Cruciferae plants, could be a readily available building block for the synthesis of various classes of indoles through a palladium-catalyzed Tsuji-Trost-type reaction with O and S soft nucleophiles. The regiochemical outcome of this high-yielding functionalization shows that the nucleophilic substitution occurs only at the benzylic position. Interestingly, with this protocol, the sulfonyl unit could be appended to the indole nucleus, providing convenient access to new classes of molecules with potential bioactivity.
Collapse
Affiliation(s)
- Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L. go Francesco Vito 1, 00168 Rome, RM, Italy
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, RM, Italy
| | - Antonio Arcadi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L’Aquila, Via Vetoio, 67100 Coppito, AQ, Italy;
| | - Marco Chiarini
- Dipartimento di Bioscienze e Tecnologie Agro-Alimentari e Ambientali, Università di Teramo, Via R. Balzarini, 64100 Teramo, TE, Italy;
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Federico Marrone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Andrea Serraiocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Roberta Zoppoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| |
Collapse
|
30
|
Wang Y, Yu JN, Wang Y, Shi F. Intermolecular α-Functionalization of Benzylamides with N-Nucleophiles via Oxidative Umpolung: Synthesis of Tetrasubstituted 3,3'-Oxindoles. Org Lett 2024; 26:6041-6046. [PMID: 38973673 DOI: 10.1021/acs.orglett.4c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A hypervalent iodine-mediated intermolecular α-umpolung reaction between α-aryl- or alkyl-substituted amides and benzotriazoles or purine derivatives as N-centered nucleophiles has been established. The reaction involves sequential intra/intermolecular oxidative C-N couplings in a controlled manner, affording tetrasubstituted 3,3'-oxindoles in moderate to good yields. This approach efficiently addresses the challenges in constructing tetrasubstituted carbon centers via α-umpolung functionalizations of carbonyl compounds and serves as a new strategy for synthesizing biologically important 3,3'-disubstituted oxindoles.
Collapse
Affiliation(s)
- Yue Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiang-Ning Yu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yang Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
31
|
Kuczmera TJ, Puylaert P, Nachtsheim BJ. Oxidation of benzylic alcohols to carbonyls using N-heterocyclic stabilized λ 3-iodanes. Beilstein J Org Chem 2024; 20:1677-1683. [PMID: 39076300 PMCID: PMC11285054 DOI: 10.3762/bjoc.20.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
We present N-heterocycle-stabilized iodanes (NHIs) as suitable reagents for the mild oxidation of activated alcohols. Two different protocols, both involving activation by chloride additives, were used to synthesize benzylic ketones and aldehydes without overoxidation in up to 97% yield. Based on MS experiments an activated hydroxy(chloro)iodane is proposed as the reactive intermediate.
Collapse
Affiliation(s)
- Thomas J Kuczmera
- Institute for Organic and Analytical Chemistry, University of Bremen, Bremen, Germany
| | - Pim Puylaert
- Institute for Inorganic Chemistry and Crystallography, University of Bremen, Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
32
|
Long L, Li X, Huang Z, Yu Z, Yu D, Luo W, Qiao L, Chen Z, Wang ZX. Hypervalent Iodine Promoted Selective [2 + 2 + 1] Cycloaddition of Aromatic Ketones and Methylamines: A One-Pot Access to 1-Pyrrolines. J Org Chem 2024; 89:9958-9971. [PMID: 38981120 DOI: 10.1021/acs.joc.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Herein, a versatile highly regioselective three-component annulation of simple aromatic ketones and methylamines using a hypervalent iodine reagent for polyarylated 1-pyrrolines has been described in good to excellent yields. Meanwhile, unsymmetrical 1-pyrroline isomers could be realized and synthesized. Such an intriguing one-pot two-step tandem assembly strategy with green conditions and high regioselectivity shows predictable inspiration in related annulation reactions.
Collapse
Affiliation(s)
- Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xin Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ziwen Huang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ziyi Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Daohong Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liang Qiao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Zhong-Xia Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
33
|
Juárez-Ornelas KA, Solís-Hernández M, Navarro-Santos P, Jiménez-Halla JOC, Solorio-Alvarado CR. Divergent role of PIDA and PIFA in the AlX 3 (X = Cl, Br) halogenation of 2-naphthol: a mechanistic study. Beilstein J Org Chem 2024; 20:1580-1589. [PMID: 39076287 PMCID: PMC11285080 DOI: 10.3762/bjoc.20.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
The reaction mechanism for the chlorination and bromination of 2-naphthol with PIDA or PIFA and AlX3 (X = Cl, Br), previously reported by our group, was elucidated via quantum chemical calculations using density functional theory. The chlorination mechanism using PIFA and AlCl3 demonstrated a better experimental and theoretical yield compared to using PIDA. Additionally, the lowest-energy chlorinating species was characterized by an equilibrium of Cl-I(Ph)-OTFA-AlCl3 and [Cl-I(Ph)][OTFA-AlCl3], rather than PhICl2 being the active species. On the other hand, bromination using PIDA and AlBr3 was more efficient, wherein the intermediate Br-I(Ph)-OAc-AlBr3 was formed as active brominating species. Similarly, PhIBr2 was higher in energy than our proposed species. The reaction mechanisms are described in detail in this work and were found to be in excellent agreement with the experimental yield. These initial results confirmed that our proposed mechanism was energetically favored and therefore more plausible compared to halogenation via PhIX2.
Collapse
Affiliation(s)
- Kevin A Juárez-Ornelas
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N 36050, Guanajuato, México
| | - Manuel Solís-Hernández
- CONAHCYT - Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N 58030, Morelia, Michoacán, México
| | - Pedro Navarro-Santos
- CONAHCYT - Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N 58030, Morelia, Michoacán, México
| | - J Oscar C Jiménez-Halla
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N 36050, Guanajuato, México
| | - César R Solorio-Alvarado
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N 36050, Guanajuato, México
| |
Collapse
|
34
|
Kumar R. Decennary Update on Oxidative-Rearrangement Involving 1,2-Aryl C-C Migration Around Alkenes: Synthetic and Mechanistic Insights. Chem Asian J 2024; 19:e202400053. [PMID: 38741472 DOI: 10.1002/asia.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (India
| |
Collapse
|
35
|
Yang Z, Xu J, Sun Y, Li X, Jia B, Du Y. Preparation of a benziodazole-type iodine(III) compound and its application as a nitrating reagent for synthesis of furazans via a copper-catalyzed cascade process. Commun Chem 2024; 7:155. [PMID: 38982259 PMCID: PMC11233585 DOI: 10.1038/s42004-024-01238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
The existing hypervalent I(III) reagents bearing ONO2 group are limited in types and their applications primarily focused on the nitrooxylation reactions featuring a fully-exo fashion. Herein, a benziodazole-type O2NO-I(III) compound was prepared and its reaction with β-monosubstituted enamines in the presence of CuI could trigger a radical nitration/cyclization/dehydration cascade to provide a series of less explored but biologically interesting furazan heterocycles. Mechanistically, the benziodazole-type O2NO-I(III) compound acts as a nitrating reagent and incorporates its NO moiety into the final furazan product in a fully-endo model, a process of which was proposed to involve nitration, cyclization and dehydration.
Collapse
Affiliation(s)
- Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jun Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuli Sun
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Bohan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
36
|
Guo G, Li W, Zheng J, Liu A, Zhang Q, Wang Y. PhI(OAc) 2-Promoted 1,2-Transfer Reaction between 1,1-Disubstituted Allylic Alcohols and Thiophenols. Molecules 2024; 29:3112. [PMID: 38999064 PMCID: PMC11243614 DOI: 10.3390/molecules29133112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The PhI(OAc)2-promoted 1,2-transfer reaction between allylic alcohols and thiophenols, conducted in an argon atmosphere, has proven to be effective in producing β-carbonyl sulfides from 1,1-disubstituted allylic alcohols in high yields. This method offers a fast and efficient way to synthesize β-carbonyl sulfides, which are valuable intermediates in organic synthesis. This discussion focuses on the effects of the oxidizer, temperature, and solvent on the reaction. A proposed tentative mechanism for this reaction is also discussed.
Collapse
Affiliation(s)
- Guozhe Guo
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Wenduo Li
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Jingjing Zheng
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Aping Liu
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Qi Zhang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Yatao Wang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| |
Collapse
|
37
|
Liu T, Li HB. Hypervalent Iodine-Catalyzed Fluorination of Diene-Containing Compounds: A Computational Study. Molecules 2024; 29:3104. [PMID: 38999056 PMCID: PMC11243597 DOI: 10.3390/molecules29133104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Studies have shown that the incorporation of fluorine into materials can improve their properties, but C-F bonds are not readily formed in nature. Although some researchers have studied the reaction of fluorinating alkenes catalyzed by hypervalent iodine, far too little attention has been paid to its reaction mechanism. This study aimed to explore the mechanism of the hypervalent iodine-catalyzed 1,4-difluorination of dienes. We found that the catalyst is favorable for the activation of C1=C2 double bonds through halogen bonds, and then two HFs interact with one F atom in the catalyst via hydrogen bonds, resulting in the cleavage of I-F bonds and the formation of [F-H∙∙∙F]-. Subsequently, the catalyst interacts with C1, and the roaming [F-H···F]- attacks C4 from the opposite side of the catalyst. After the fluorination step is completed, the nucleophile F- substitutes the catalyst via the SN2 mechanism. Our calculations demonstrated that the interaction between HF and F- is favorable for the stabilization of the transition state within the fluorination process for which the presence of two HFs in the reaction is the best. We also observed that [F-H∙∙∙F]- attacking C4 from the opposite side of the catalyst is more advantageous than attacking from the same side. This study therefore offers a novel perspective on the mechanism of the hypervalent iodine-catalyzed fluoridation of dienes.
Collapse
Affiliation(s)
- Tianci Liu
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China;
| | - Hai-Bei Li
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China;
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
38
|
Shao Y, Ren Z, Han Z, Chen L, Li Y, Xue XS. Predicting bond dissociation energies of cyclic hypervalent halogen reagents using DFT calculations and graph attention network model. Beilstein J Org Chem 2024; 20:1444-1452. [PMID: 38952960 PMCID: PMC11216094 DOI: 10.3762/bjoc.20.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Although hypervalent iodine(III) reagents have become staples in organic chemistry, the exploration of their isoelectronic counterparts, namely hypervalent bromine(III) and chlorine(III) reagents, has been relatively limited, partly due to challenges in synthesizing and stabilizing these compounds. In this study, we conduct a thorough examination of both homolytic and heterolytic bond dissociation energies (BDEs) critical for assessing the chemical stability and functional group transfer capability of cyclic hypervalent halogen compounds using density functional theory (DFT) analysis. A moderate linear correlation was observed between the homolytic BDEs across different halogen centers, while a strong linear correlation was noted among the heterolytic BDEs across these centers. Furthermore, we developed a predictive model for both homolytic and heterolytic BDEs of cyclic hypervalent halogen compounds using machine learning algorithms. The results of this study could aid in estimating the chemical stability and functional group transfer capabilities of hypervalent bromine(III) and chlorine(III) reagents, thereby facilitating their development.
Collapse
Affiliation(s)
- Yingbo Shao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhiyuan Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhihui Han
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, P. R. China,
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, P. R. China,
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
39
|
Zheng DS, Zhao F, Gu Q, You SL. Rh(III)-catalyzed atroposelective C-H alkynylation of 1-aryl isoquinolines with hypervalent iodine-alkyne reagents. Chem Commun (Camb) 2024; 60:6753-6756. [PMID: 38863330 DOI: 10.1039/d4cc01785d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
An efficient Rh(III)-catalyzed enantioselective C-H alkynylation of isoquinolines is disclosed. The C-H alkynylation of 1-aryl isoquinolines with hypervalent iodine-alkyne reagents proceeded in DMA at room temperature in the presence of 2.5 mol% chiral SCpRh(III) complex along with 20 mol% AgSbF6, providing axially chiral alkynylated 1-aryl isoquinolines in excellent yields (up to 93%) and enantioselectivity (up to 95% ee). The diverse transformations of the product further enhance the potential utility of this reaction.
Collapse
Affiliation(s)
- Dong-Song Zheng
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
40
|
Chhikara A, Wu F, Kaur N, Baskaran P, Nguyen AM, Yin Z, Pham AH, Li W. Hypervalent iodine-catalyzed amide and alkene coupling enabled by lithium salt activation. Beilstein J Org Chem 2024; 20:1405-1411. [PMID: 38952958 PMCID: PMC11216091 DOI: 10.3762/bjoc.20.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Hypervalent iodine catalysis has been widely utilized in olefin functionalization reactions. Intermolecularly, the regioselective addition of two distinct nucleophiles across the olefin is a challenging process in hypervalent iodine catalysis. We introduce here a unique strategy using simple lithium salts for hypervalent iodine catalyst activation. The activated hypervalent iodine catalyst allows the intermolecular coupling of soft nucleophiles such as amides onto electronically activated olefins with high regioselectivity.
Collapse
Affiliation(s)
- Akanksha Chhikara
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Fan Wu
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Navdeep Kaur
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Prabagar Baskaran
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Alex M Nguyen
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Zhichang Yin
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Anthony H Pham
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Wei Li
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
41
|
Munda M, Mondal A, Roy NK, Murmu R, Niyogi S, Bisai A. Highly chemoselective oxidative dimerization of indolosesquiterpene alkaloids: a biomimetic approach to dixiamycin. Chem Sci 2024; 15:9164-9172. [PMID: 38903215 PMCID: PMC11186323 DOI: 10.1039/d4sc01396d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 06/22/2024] Open
Abstract
Dimeric indolosesquiterpene alkaloids, typically N-N- and C-N-linked xiamycin dimers, feature a pentacyclic framework with four contiguous stereogenic centers at the periphery of a trans-decalin scaffold to which a carbazole unit is attached. In comparison with actual biosynthetic dixiamycin derivatives, we designed C-C-linked xiamycin dimers, aiming to use them as a powerful tool to create unique scaffolds as drug candidates. In this work, we disclose the first synthetic route to access a C-C dimeric indolosesquiterpene skeleton, featuring a hypervalent iodine (PIFA)-catalyzed oxidative dimerization reaction in a single-step operation with overwhelming control over the chemoselectivity and regioselectivity. This strategy has been successfully applied to the synthesis of a C-C dimer of xiamycin A (3) and xiamycin A methyl ester (15) that demonstrates a new synthetic pathway for dimeric indolosesquiterpene alkaloids.
Collapse
Affiliation(s)
- Mintu Munda
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066 Madhya Pradesh India
| | - Ayan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus Kalyani Nadia 741 246 West Bengal India
| | - Nanda Kishore Roy
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus Kalyani Nadia 741 246 West Bengal India
| | - Ranjit Murmu
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus Kalyani Nadia 741 246 West Bengal India
| | - Sovan Niyogi
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus Kalyani Nadia 741 246 West Bengal India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066 Madhya Pradesh India
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus Kalyani Nadia 741 246 West Bengal India
| |
Collapse
|
42
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
43
|
Jadhav AP, Legault CY. Oxidative hydrolysis of aliphatic bromoalkenes: scope study and reactivity insights. Beilstein J Org Chem 2024; 20:1286-1291. [PMID: 38887587 PMCID: PMC11181184 DOI: 10.3762/bjoc.20.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
We have developed an operationally simple method for the synthesis of dialkyl α-bromoketones from bromoalkenes by utilizing a hypervalent iodine-catalyzed oxidative hydrolysis reaction. This catalytic process provides both symmetrical and unsymmetrical dialkyl bromoketones with moderate yields across a broad range of bromoalkene substrates. Our studies also reveal the formation of Ritter-type side products by an alternative reaction pathway.
Collapse
Affiliation(s)
- Amol P Jadhav
- Department of Chemistry, Centre in Green Chemistry and Catalysis, Université de Sherbrooke, Québec J1K 2R1, Canada
| | - Claude Y Legault
- Department of Chemistry, Centre in Green Chemistry and Catalysis, Université de Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
44
|
Li X, Wodrich MD, Waser J. Accessing elusive σ-type cyclopropenium cation equivalents through redox gold catalysis. Nat Chem 2024; 16:901-912. [PMID: 38783040 PMCID: PMC11164686 DOI: 10.1038/s41557-024-01535-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Cyclopropenes are the smallest unsaturated carbocycles. Removing one substituent from cyclopropenes leads to cyclopropenium cations (C3+ systems, CPCs). Stable aromatic π-type CPCs were discovered by Breslow in 1957 by removing a substituent on the aliphatic position. In contrast, σ-type CPCs-formally accessed by removing one substituent on the alkene-are unstable and relatively unexplored. Here we introduce electrophilic cyclopropenyl-gold(III) species as equivalents of σ-type CPCs, which can then react with terminal alkynes and vinylboronic acids. With catalyst loadings as low as 2 mol%, the synthesis of highly functionalized alkynyl- or alkenyl-cyclopropenes proceeded under mild conditions. A class of hypervalent iodine reagents-the cyclopropenyl benziodoxoles (CpBXs)-enabled the direct oxidation of gold(I) to gold(III) with concomitant transfer of a cyclopropenyl group. This protocol was general, tolerant to numerous functional groups and could be used for the late-stage modification of complex natural products, bioactive molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Xiangdong Li
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Wodrich
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
45
|
Su B, Zhang Z, Zhang S, Zhou Y, Tao H, Mai S. Rh-Catalyzed α-Arylation of Cyclic 1,3-Dicarbonyls with Benzocyclobutenols Enabled by a Cyclic Iodonium Ylide Strategy. Org Lett 2024; 26:4383-4387. [PMID: 38742769 DOI: 10.1021/acs.orglett.4c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
To date, the general and catalytic α-arylation of cyclic 1,3-dicarbonyls remains elusive. We now report the first Rh-catalyzed α-arylation of cyclic 1,3-dicarbonyls with benzocyclobutenols through a cyclic iodonium ylide strategy. Our strategy represents a good solution for the previously challenging α-arylation of cyclic 1,3-dicarbonyls with sterically demanding aryl partners, which is especially appropriate for structurally unique heteroaromatic 1,3-dicarbonyls. Our approach features mild conditions, readily available starting materials, high yields, excellent functional group-tolerance, and simple operation, providing expedient access toward medically important 2-aryl (hetero)cyclic 1,3-dicarbonyls. The practicality of this approach is demonstrated by the gram-scale synthesis, one-pot synthesis, and numerous downstream transformations.
Collapse
Affiliation(s)
- Borong Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenwei Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shangkun Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Shaoyu Mai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| |
Collapse
|
46
|
Wei L, Guo Y, Li Z, Jiang H, Qi C. Silver-Catalyzed Coupling of Ethynylbenziodoxolones with CO 2 and Amines to Afford O-β-Oxoalkyl Carbamates. Org Lett 2024. [PMID: 38780900 DOI: 10.1021/acs.orglett.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel three-component coupling reaction of ethynylbenziodoxolones (EBXs) with CO2 and amines has been achieved via silver catalysis, thereby providing an efficient method for the construction of a range of structurally diverse and valuable O-β-oxoalkyl carbamates. The transformation proceeds under mild reaction conditions and exhibits a wide substrate scope and good functional group compatibility. In addition, this strategy could be extended to the synthesis of α-acyloxyketones using carboxylic acids as the nucleophiles to react with EBXs.
Collapse
Affiliation(s)
- Li Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yanhui Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ziyang Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
47
|
Kanemoto K, Yoshimura K, Ono K, Ding W, Ito S, Yoshikai N. Amino- and Alkoxybenziodoxoles: Facile Preparation and Use as Arynophiles. Chemistry 2024; 30:e202400894. [PMID: 38494436 DOI: 10.1002/chem.202400894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
We report here on the facile synthesis of amino- and alkoxy-λ3-iodanes supported by a benziodoxole (BX) template and their use as arynophiles. The amino- and alkoxy-BX derivatives can be readily synthesized by reacting the respective amines or alcohols with chlorobenziodoxole in the presence of a suitable base. Unlike previously known nitrogen- and oxygen-bound iodane compounds, which have primarily been employed as electrophilic group transfer agents or oxidants, the present amino- and alkoxy-BX reagents manifest themselves as nucleophilic amino and alkoxy transfer agents toward arynes. This reactivity leads to the aryne insertion into the N-I(III) or O-I(III) bond to afford ortho-amino- and ortho-alkoxy-arylbenziodoxoles, iodane compounds nontrivial to procure by existing methods. The BX group in these insertion products exhibits excellent leaving group ability, enabling diverse downstream transformations.
Collapse
Affiliation(s)
- Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Ken Yoshimura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Koki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Wei Ding
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
48
|
Sarkar S, Pal S, Santra S, Zyryanov GV, Majee A. Visible-Light-Triggered Synthesis of N-α-Ketoacylated Sulfoximines by Denitrogenative and Oxidative Functionalization of Vinyl Azides. J Org Chem 2024. [PMID: 38757898 DOI: 10.1021/acs.joc.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We have introduced a sulfoximidation reaction initiated by visible light between α-phenyl vinyl azides and NH-sulfoximines. The cost-effective and readily accessible hypervalent iodine reagent (PIDA) easily promoted the oxidative sulfoximidation process to afford N-α-ketoacylated sulfoximines in good to high yields, involving the formation of two new C-O bonds and one C-N bond. Additionally, the protocol offers noteworthy advantages, including its metal-free and photocatalyst-free reaction and its broad substrate compatibility.
Collapse
Affiliation(s)
- Subhankar Sarkar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, Bolpur 731235, India
| | - Satyajit Pal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, Bolpur 731235, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation
| | - Grigory V Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russian Federation
| | - Adinath Majee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, Bolpur 731235, India
| |
Collapse
|
49
|
Pandey K, Arafin S, Jones E, Du Y, Kulkarni GC, Uddin A, Woods TJ, Plunkett KN. Assembly and Disassembly of Supramolecular Hypervalent Iodine Macrocycles via Anion Coordination. J Org Chem 2024. [PMID: 38742602 DOI: 10.1021/acs.joc.3c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This study explores the dynamic self-assembly and disassembly of hypervalent iodine-based macrocycles (HIMs) guided by secondary bonding interactions. The reversible disassembly and reassembly of HIMs are facilitated through anion binding via the addition of tetrabutylammonium (TBA) salts or removal of the anion by the addition of silver nitrate. The association constants for HIM monomers with TBA(Cl) and TBA(Br) are calculated and show a correlation with the strength of the iodine-anion bond. A unique tetracoordinate hypervalent iodine-based compound was identified as the disassembled monomer. Last, the study reveals the dynamic bonding nature of these macrocycles in solution, allowing for rearrangement and participation in dynamic bonding chemistry.
Collapse
Affiliation(s)
- Krishna Pandey
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Carbondale, Illinois 62901, United States
| | - Samsul Arafin
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Carbondale, Illinois 62901, United States
| | - Eli Jones
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Carbondale, Illinois 62901, United States
| | - Yachu Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Carbondale, Illinois 62901, United States
| | - Gajanan C Kulkarni
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Carbondale, Illinois 62901, United States
| | - Ain Uddin
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Carbondale, Illinois 62901, United States
| | - Toby J Woods
- George L. Clark X-ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyle N Plunkett
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Carbondale, Illinois 62901, United States
| |
Collapse
|
50
|
He Q, Zhang Q, Rolka AB, Suero MG. Alkoxy Diazomethylation of Alkenes by Photoredox-Catalyzed Oxidative Radical-Polar Crossover. J Am Chem Soc 2024; 146:12294-12299. [PMID: 38663863 PMCID: PMC11082901 DOI: 10.1021/jacs.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Herein, we present the discovery and development of the first photoredox-catalyzed alkoxy diazomethylation of alkenes with hypervalent iodine reagents and alcohols. This multicomponent process represents a new disconnection approach to diazo compounds and is featured by a broad scope, mild reaction conditions, and excellent selectivity. Key to the process was the generation of diazomethyl radicals, which engaged alkenes and alcohols in an inter- and intramolecular fashion by a photoredox-catalyzed oxidative radical-polar crossover leading to unexplored β-alkoxydiazo compounds. The synthetic utility of such diazo compounds was demonstrated with a series of transformations involving C-H, N-H, and O-H insertions as well as in the construction of complex sp3-rich heterocycles.
Collapse
Affiliation(s)
- Qiyuan He
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Quan Zhang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Alessa B. Rolka
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- ICREA,
Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|