1
|
Tanaka S, Hattori S, Shinozaki K. Sequential H/D Exchanges Resulting from Rollover-Cyclometallation during Photoirradiation of Rhodium(III) Complex in Methanol-d 4. Chemistry 2024; 30:e202402067. [PMID: 39080830 DOI: 10.1002/chem.202402067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Indexed: 10/30/2024]
Abstract
We present the photoreaction of newly prepared bis(6,6'-dimethyl-2,2'-bipyridine)(oxalato)rhodium(III) ([Rh(N N)2(ox)]+) in CD3OD. Photoirradiation of this complex causes the dissociation of ox, followed by the formation of the unprecedented Rh(III) complex with Rh-H and Rh-C σ bonds, [Rh(N N)(C N)(H)(CD3OD)]+ (C N=[6,6'-dimethyl-2,2'-bipyridine]-3-yl-κC3,κN1'). This hydride formation and cyclometallation spontaneously proceed owing to the conflict between the steric hindrance arising from the methyl groups of N N and the driving force for the structural change due to [Rh(N N)2]+ formation. Although [Rh(N N)(C N)(H)(CD3OD)]+ is initially converted to [Rh(N N)2]+ by photoirradiation, it is immediately regenerated by the rollover cyclometallation of the [Rh(N N)2]+ complex. [Rh(N N)(C N)(H)(CD3OD)]+ undergoes H/D exchange for the H atoms in the Rh-H bond and at the 3, 3'-positions of the N N ligand during the photoirradiation. DFT calculations predict with reasonable certainty the spontaneous structural change of [Rh(N N)2]+ to [Rh(N N)(C N)(H)(CD3OD)]+ and the subsequent photodriven Rh-C bond rupture leading to the formation of [Rh(N N)2]+ accompanied by H/D exchange reactions.
Collapse
Affiliation(s)
- Shota Tanaka
- Department of Materials Sciences, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Shingo Hattori
- Department of Materials Sciences, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Kazuteru Shinozaki
- Department of Materials Sciences, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| |
Collapse
|
2
|
Sun H, Sun Z, Wang XB. Probing Noncovalent Interaction Strengths of Host-Guest Complexes Using Negative Ion Photoelectron Spectroscopy. Chemistry 2024:e202402766. [PMID: 39302815 DOI: 10.1002/chem.202402766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Noncovalent interactions (NCIs) are crucial for the formation and stability of host-guest complexes, which have wide-ranging implications across various fields, including biology, chemistry, materials science, pharmaceuticals, and environmental science. However, since NCIs are relatively weak and sensitive to bulk perturbation, direct and accurate measurement of their absolute strength has always been a significant challenge. This concept article aims to demonstrate the gas-phase electrospray ionization (ESI)-negative ion photoelectron spectroscopy (NIPES) as a direct and precise technique to measure the absolute interaction strength, probe nature of NCIs, and reveal the electronic structural information for host-guest complexes. Our recent studies in investigating various host-guest complexes that involve various types of NCIs such as anion-π, (di)hydrogen bonding, charge-separated ionic interactions, are overviewed. Finally, a summary and outlook are provided for this field.
Collapse
Affiliation(s)
- Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington, 99352, USA
| |
Collapse
|
3
|
Dongmo EG, Haque S, Kreuter F, Wulf T, Jin J, Tonner-Zech R, Heine T, Asmis KR. Direct evidence for ligand-enhanced activity of Cu(i) sites. Chem Sci 2024; 15:14635-14643. [PMID: 39381432 PMCID: PMC11460435 DOI: 10.1039/d4sc04582c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 10/10/2024] Open
Abstract
Little is known about the strong mediating effect of the ligand sphere and the coordination geometry on the strength and isotopologue selectivity of hydrogen adsorption on the undercoordinated copper(i) site. Here, we explore this effect using gas-phase complexes Cu+(H2O)(H2) n (with n ≤ 3) as model systems. Cu+(H2O) attracts dihydrogen (82 kJ mol -1) more strongly than bare Cu+ (64 kJ mol -1) does. Combining experimental and computational methods, we demonstrate a high isotopologue selectivity in dihydrogen binding to Cu+(H2O), which results from a large difference in the adsorption zero-point energies (2.8 kJ mol-1 between D2 and H2, including an anharmonic contribution of 0.4 kJ mol-1). We investigate its origins and the bond strengthening between Cu+ and H2 upon addition of a single H2O ligand. We discuss the role of the environment and the coordination geometry of the adsorption site in achieving a high selectivity and the ramifications for identifying and designing future materials for adsorptive dihydrogen isotopologue separation.
Collapse
Affiliation(s)
- Elvira Gouatieu Dongmo
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf Permoserstr. 15 04318 Leipzig Germany
| | - Shabnam Haque
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
| | - Florian Kreuter
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
| | - Toshiki Wulf
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden 01062 Dresden Germany
| | - Jiaye Jin
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
| | - Ralf Tonner-Zech
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
| | - Thomas Heine
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf Permoserstr. 15 04318 Leipzig Germany
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden 01062 Dresden Germany
- Department of Chemistry and ibs for Nanomedicine, Yonsei University Seodaemun-gu Seoul 120-749 Republic of Korea
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
| |
Collapse
|
4
|
George MAR, Dopfer O. IR spectrum of SiH 3OH 2+SiH 4: cationic OH⋯HSi dihydrogen bond versus charge-inverted SiH⋯Si hydrogen bond. Phys Chem Chem Phys 2024; 26:22931-22940. [PMID: 39171378 DOI: 10.1039/d4cp02428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The low electronegativity of Si gives rise to a variety of nonconventional intermolecular interactions in clusters of silanes and their derivatives, which have not been well characterized yet. Herein, we characterize the structures of various isomers of bare and Ar-tagged SiH3OH2+SiH4 dimers composed of protonated silanol and silane by infrared photodissociation (IRPD) of mass-selected ions and dispersion-corrected density functional calculations (B3LYP-D3/aug-cc-pVTZ). The analysis of the IRPD spectra recorded in the OH stretch range reveals the competition between two types of nonconventional hydrogen bonds (H-bonds). The first one represents a OH⋯HSi ionic dihydrogen bond (DHB), in which SiH4 interacts with the H2O moiety of SiH3OH2+. The second one represents a charge-inverted SiH⋯Si ionic H-bond (CIHB), in which the SiH4 ligand interacts with the SiH3 moiety of SiH3OH2+. The latter may also be considered as a weak three-centre two-electron (3c-2e) bond. Although both types of H-bonds are computed to have comparable interaction strengths for SiH3OH2+SiH4 (D0 ≈ 35-40 kJ mol-1), DHB isomers dominate the population in the supersonic plasma expansion, while the abundance of CIHB isomers is roughly one order of magnitude lower, probably as a result of entropic factors.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin 10623, Germany.
| |
Collapse
|
5
|
Yao X, Ji Y, Huang ZQ, Zhao Z, Gao P, Guo M, Liu X, Meng C, Fu Q, Chang CR, Bao X, Hou G. Nondissociative Activated Dihydrogen Binding on CeO 2 Revealed by High-Pressure Operando Solid-State NMR Spectroscopy. J Am Chem Soc 2024; 146:24609-24618. [PMID: 39178352 DOI: 10.1021/jacs.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Dihydrogen complexes, which retain the H-H bond, have been extensively studied in molecular science and found to be prevalent in homogeneous and enzymatic catalysis. However, their counterparts in heterogeneous catalysis, specifically nondissociative chemisorbed dihydrogen binding on the catalyst surface, are rarely reported experimentally. This scarcity is due to the complexity of typical material surfaces and the lack of effective characterization techniques to prove and distinguish various dihydrogen binding modes. Herein, using high-pressure operando solid-state NMR technology, we report the first unambiguous experimental observation of activated dihydrogen binding on a reduced ceria catalyst through interactions with surface oxygen vacancies. By employing versatile NMR structural and dynamical analysis methods, we establish a proportional relationship between the degree of ceria surface reduction and dihydrogen binding, as evidenced by NMR observations of H-D through-bond coupling (JHD), T1 relaxation, and proton isotropic chemical shifts. In situ NMR analysis further reveals the participation of bound dihydrogen species in a room-temperature ethylene hydrogenation reaction. The remarkable similarities between surface-activated dihydrogen in heterogeneous catalysis and dihydrogen model molecular complexes can provide valuable insights into the hydrogenation mechanism for many other solid catalysts, potentially enhancing hydrogen utilization.
Collapse
Affiliation(s)
- Xinlong Yao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Meiling Guo
- Energy Innovation Laboratory, BP (China) Dalian Office, Dalian 116023, China
| | - Xuebin Liu
- Energy Innovation Laboratory, BP (China) Dalian Office, Dalian 116023, China
| | - Caixia Meng
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
6
|
Saetta C, Barlocco I, Liberto GD, Pacchioni G. Key Ingredients for the Screening of Single Atom Catalysts for the Hydrogen Evolution Reaction: The Case of Titanium Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401058. [PMID: 38671564 DOI: 10.1002/smll.202401058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Indexed: 04/28/2024]
Abstract
A computational screening of Single Atom Catalysts (SACs) bound to titanium nitride (TiN) is presented, for the Hydrogen Evolution Reaction (HER), based on density functional theory. The role of fundamental ingredients is explored to account for a reliable screening of SACs. Namely, the formation of H2-complexes besides the classical H* one impacts the predicted HER activity, in line with previous studies on other SACs. Also, the results indicate that one needs to adopt self-interaction-corrected functionals. Finally, predicting an active catalyst is of little help without an assessment of its stability. Thus, it is included in the theoretical framework the analysis of the stability of the SACs in working conditions of pH and voltage. Once unconventional intermediates and stability are considered in a self-interaction corrected scheme, the number of potential good catalysts for HER is strongly reduced since i) some potentially good catalysts are not stable against dissolution and ii) the formation of unconventional intermediates leads to thermodynamic barriers. This study highlights the importance of including ingredients for the prediction of new systems, such as the formation of unconventional intermediates, estimating the stability of SACs, and the adoption of self-interaction corrected functionals. Also, this study highlights some interesting candidates deserving of dedicated work.
Collapse
Affiliation(s)
- Clara Saetta
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Ilaria Barlocco
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| |
Collapse
|
7
|
Cabeza JA, Esteruelas MA, Fernández I, Izquierdo S, Oñate E. A Lead-μ 2-Tetrylide Complex with Osmium(IV) Terminal Components. Inorg Chem 2024; 63:15563-15567. [PMID: 39102521 DOI: 10.1021/acs.inorgchem.4c02520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A bare lead atom is a σ-donor ligand capable of linearly bonding and stabilizing two units of a classical polyhydride complex, with a high-valent metal center. As a proof of concept, we have prepared and characterized the μ2-tetrylide complex (PiPr3)2H4Os═Pb═OsH4(PiPr3)2 in the reaction of OsH6(PiPr3)2 with Pb{N(SiMe3)2}2. Although the Pb-Os bonds exhibit electrostatic interaction, the main orbital interactions result from two dative σ bonds from the lead atom to the osmium centers. The latter also provide much weaker π-backdonations.
Collapse
Affiliation(s)
- Javier A Cabeza
- Departamento de Química Orgánica e Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33071 Oviedo, Spain
| | - Miguel A Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Susana Izquierdo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Brackbill IJ, Rajeshkumar T, Douair I, Maron L, Boreen MA, Bergman RG, Arnold J. Covalency-Driven Differences in the Hydrogenation Chemistry of Lanthanide- and Actinide-Based Frustrated Lewis Pairs. J Am Chem Soc 2024; 146:21932-21947. [PMID: 39051942 DOI: 10.1021/jacs.4c06777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The electronic organization of Frustrated Lewis Pairs (FLPs) allows them to activate strong bonds in mechanisms that are usually free of redox events at the Lewis acidic site. The unique 6d/5f manifold of uranium could serve as an interesting FLP acceptor site, but to date FLP-like catalysis with actinide ions is unknown. In this paper, the catalytic, FLP-like hydrogenation reactivity of trivalent uranium complexes is explored in the presence of base-stabilized silylenes. Comparison to isoelectronic, isostructural lanthanide and thorium complexes lends insight into the electronic factors governing dihydrogen activation. Mechanistic studies of the uranium- and lanthanide-catalyzed hydrogenations are presented, including discussion of likely intermediates. Computational modeling of the f-element complexes, combined with experimental comparison to p-block Lewis acids, elucidates the relevance of steric hindrance to productive reactivity with dihydrogen. Consideration of the complete experimental and theoretical evidence provides a clear picture of the electronic and steric factors governing dihydrogen activation by these FLPs.
Collapse
Affiliation(s)
- I Joseph Brackbill
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, United States
| | - Thayalan Rajeshkumar
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Iskander Douair
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, United States
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, United States
| |
Collapse
|
9
|
Pu Z, Fu X, Qin J, Yang H, Shuai M, Li F. Spectroscopic and Theoretical Insights into H 2 Activation on Uranium Monoxide: Homolytic H 2 Cleavage Mediated by Intermediate OU(η 2-H 2). Inorg Chem 2024; 63:13304-13310. [PMID: 38986152 DOI: 10.1021/acs.inorgchem.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Elucidating molecular-level interactions between dihydrogen (H2) and uranium oxides reveals fundamental insights into the intrinsic H2 activation mechanisms underlying processes such as heterogeneous catalysis over uranium oxides and corrosion of uranium induced by H2. Herein, the reactions of H2 with uranium monoxide (UO) molecules have been investigated via a combination of matrix-isolation infrared spectroscopy and quantum chemical calculations. A side-on bonded H2 complex, OU(η2-H2), is identified at 3733.7 and 800.3 cm-1. This species is regarded as a crucial intermediate along H2 activation pathways. Bonding analysis reveals cooperative U(π5f/6d) → H2(σ*) π// backdonation and U ← H2(σ) σ donation in OU(η2-H2) that facilitate the activation of the H2 moiety. Upon λ > 550 nm photoirradiation, OU(η2-H2) isomerizes into H2UO, indicating the homolytic H2 cleavage on UO. Mechanistic details of H2 adsorption and dissociation on UO molecules have been further elucidated.
Collapse
Affiliation(s)
- Zhen Pu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Xiaoguo Fu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Jianwei Qin
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Hu Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, PR China
| | - Maobing Shuai
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Fang Li
- School of Materials and Chemistry, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, PR China
| |
Collapse
|
10
|
Sansores-Paredes MLG, Lutz M, Moret ME. Cooperative H 2 activation at a nickel(0)-olefin centre. Nat Chem 2024; 16:417-425. [PMID: 38052947 DOI: 10.1038/s41557-023-01380-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023]
Abstract
Catalytic olefin hydrogenation is ubiquitous in organic synthesis. In most proposed homogeneous catalytic cycles, reactive M-H bonds are generated either by oxidative addition of H2 to a metal centre or by deprotonation of a non-classical metal dihydrogen (M-H2) intermediate. Here we provide evidence for an alternative H2-activation mechanism that instead involves direct ligand-to-ligand hydrogen transfer (LLHT) from a metal-bound H2 molecule to a metal-coordinated olefin. An unusual pincer ligand that features two phosphine ligands and a central olefin supports the formation of a non-classical Ni-H2 complex and the Ni(alkyl)(hydrido) product of LLHT, in rapid equilibrium with dissolved H2. The usefulness of this cooperative H2-activation mechanism for catalysis is demonstrated in the semihydrogenation of diphenylacetylene. Experimental and computational mechanistic investigations support the central role of LLHT for H2 activation and catalytic semihydrogenation. The product distribution obtained is largely determined by the competition between (E)-(Z) isomerization and catalyst degradation by self-hydrogenation.
Collapse
Affiliation(s)
- María L G Sansores-Paredes
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marc-Etienne Moret
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
12
|
Brackbill IJ, Rajeshkumar T, Maron L, Bergman RG, Arnold J. Spectroscopic and Computational Evidence of Uranium Dihydrogen Complexes. J Am Chem Soc 2024; 146:1257-1261. [PMID: 38189272 DOI: 10.1021/jacs.3c12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dihydrogen complexation, a phenomenon with robust precedent in the transition metal series, is spectroscopically detected for a uranium(III) complex and thereby extended for the first time to the 5f series. The vacant coordination site and low valence of (C5H4SiMe3)3U prove to be key to the reversible formation of (C5H4SiMe3)3U-H2 (complex 1), and the paramagnetism of the f3 center facilitates the detection of complex 1 by NMR spectroscopy. Density functional theory calculations reveal that the delocalization of the 5f electron density from (C5H4SiMe3)3U onto the side-on dihydrogen ligand is crucial to complex formation, an unusual bonding situation for an actinide acid-base complex. The spectroscopic and computational results are compared to those reported for lanthanide metallocenes to yield insight into the nature of─and future possibilities for─f-element dihydrogen complexation.
Collapse
Affiliation(s)
- I Joseph Brackbill
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, United States
| | - Thayalan Rajeshkumar
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, United States
| |
Collapse
|
13
|
Hosseinmardi S, Scheurer A, Heinemann FW, Marigo N, Munz D, Meyer K. Closed Synthetic Cycle for Nickel-Based Dihydrogen Formation. Chemistry 2023; 29:e202302063. [PMID: 37615237 DOI: 10.1002/chem.202302063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Dihydrogen evolution was observed in a two-step protonation reaction starting from a Ni0 precursor with a tripodal N-heterocyclic carbene (NHC) ligand. Upon the first protonation, a NiII monohydride complex was formed, which was isolated and fully characterized. Subsequent protonation yields H2 via a transient intermediate (INT) and an isolable NiII acetonitrile complex. The latter can be reduced to regenerate its Ni0 precursor. The mechanism of H2 formation was investigated by using a deuterated acid and scrutinized by 1 H NMR spectroscopy and gas chromatography. Remarkably, the second protonation forms a rare nickel dihydrogen complex, which was detected and identified in solution and characterized by 1 H NMR spectroscopy. DFT-based computational analyses were employed to propose a reaction profile and a molecular structure of the Ni-H2 complex. Thus, a dihydrogen-evolving, closed-synthetic cycle is reported with a rare Ni-H2 species as a key intermediate.
Collapse
Affiliation(s)
- Soosan Hosseinmardi
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Nicola Marigo
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany
| | - Dominik Munz
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| |
Collapse
|
14
|
Nguyen VT, Lai Q, Witayapaisitsan N, Bhuvanesh N, Surawatanawong P, Ozerov OV. Migration of Hydride, Methyl, and Chloride Ligands between Al and M in (PAlP)M Pincer Complexes (M = Rh or Ir). Organometallics 2023; 42:3120-3129. [PMID: 38357656 PMCID: PMC10863399 DOI: 10.1021/acs.organomet.3c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Indexed: 02/16/2024]
Abstract
Protolysis of AlMe3 or AlBui3 with 2-diisopropylphosphinopyrrole (1) yields molecules containing two flanking phosphines and a central Al-Me (2-Me), Al-iBu (2-iBu), or Al-H (2-H) unit. The reactions of 2-Me with [L2MCl]2 (L = cyclooctene or 1/2 1,5-cyclooctadiene and M = Rh or Ir) in the presence of pyridine produces PAlClP pincer complexes (3-Rh and 3-Ir) with Al-Cl and M-Me bonds. The analogous reaction of a mixture of 2-iBu and 2-H with [L2MCl]2 and pyridine resulted in the formation of analogous Rh-H (4-Rh) and Ir-H (4-Ir) complexes. Treatment of 3-Rh with NaBEt3H produced compound 5-Rh with an Al-Me and a Rh-H bond; the analogous reaction of 3-Ir did not result in a clean product. 4-Ir accepted an equivalent of H2 to produce 6-Ir with two terminal Ir-H bonds and one bridging Al-H-Ir moiety, whereas 4-Rh did not react with H2. The density functional theoretical treatment is in accord with this finding, highlights the likely mechanism for the H2 addition, and supports the bonding picture in 6-Ir arising from NMR and X-ray diffraction (XRD) observations. Spectroscopic data and XRD studies are consistent with distorted square-pyramidal structures (about Rh or Ir) for compounds 3-5, with an alane occupying the apical position. Complexes 3 and 4 possess some of the shortest known Rh-Al or Ir-Al distances.
Collapse
Affiliation(s)
- Vinh T. Nguyen
- Department of Chemistry, Texas A&M
University, 3255 TAMU, College Station, Texas 77842, United States
| | - Qingheng Lai
- Department of Chemistry, Texas A&M
University, 3255 TAMU, College Station, Texas 77842, United States
| | - Naphol Witayapaisitsan
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M
University, 3255 TAMU, College Station, Texas 77842, United States
| | - Panida Surawatanawong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Oleg V. Ozerov
- Department of Chemistry, Texas A&M
University, 3255 TAMU, College Station, Texas 77842, United States
| |
Collapse
|
15
|
Kalkuhl TL, Qin L, Zhao L, Frenking G, Hadlington TJ. On the σ-complex character of bis(gallyl)/digallane transition metal species. Chem Sci 2023; 14:11088-11095. [PMID: 37860650 PMCID: PMC10583741 DOI: 10.1039/d3sc03772j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
σ-complexes of homoatomic E-E bonds are key intermediates in catalytically relevant oxidative addition reactions, but are as yet unknown for the group 13 elements. Here, stable species best described as σ-complexes of a 1,2-dichlorodigallane derivative with Ni and Pd are reported. They are readily accessed through the combination of a 1,2-dichlorodigallane derivative, which features chelating phosphine functionalities, with Ni0 and Pd0 synthons. In-depth computational analyses of these complexes importantly reveal considerable Ga-Ga bonding interactions in both Ni and Pd complexes, despite the expected elongation of the Ga-Ga bond upon complexation, suggestive of σ-complex character as opposed to more commonly described bis(gallyl) character. Finally, the well-defined disproportion of the Ni complex is described, leading to a unique GaI-nickel complex, with concomitant expulsion of uncomplexed GaIII species.
Collapse
Affiliation(s)
- Till L Kalkuhl
- Fakultät für Chemie, Technische Universität München Lichtenberg Strasse 4 85747 Garching Germany
| | - Lei Qin
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing China
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing China
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse D-35043 Marburg Germany
| | - Terrance J Hadlington
- Fakultät für Chemie, Technische Universität München Lichtenberg Strasse 4 85747 Garching Germany
| |
Collapse
|
16
|
Fielicke A. Probing the binding and activation of small molecules by gas-phase transition metal clusters via IR spectroscopy. Chem Soc Rev 2023. [PMID: 37162518 DOI: 10.1039/d2cs00104g] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Isolated transition metal clusters have been established as useful models for extended metal surfaces or deposited metal particles, to improve the understanding of their surface chemistry and of catalytic reactions. For this objective, an important milestone has been the development of experimental methods for the size-specific structural characterization of clusters and cluster complexes in the gas phase. This review focusses on the characterization of molecular ligands, their binding and activation by small transition metal clusters, using cluster-size specific infrared action spectroscopy. A comprehensive overview and a critical discussion of the experimental data available to date is provided, reaching from the initial results obtained using line-tuneable CO2 lasers to present-day studies applying infrared free electron lasers as well as other intense and broadly tuneable IR laser sources.
Collapse
Affiliation(s)
- André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
17
|
Netam KD, Pal AK, Nethaji M, Jagirdar BR. Agostic interaction versus small molecule binding in [RuH(CO)(PPhNiPrPPh)]BAr4F complex. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Oliveira BGD. Why much of Chemistry may be indisputably non-bonded? SEMINA: CIÊNCIAS EXATAS E TECNOLÓGICAS 2023. [DOI: 10.5433/1679-0375.2022v43n2p211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this compendium, the wide scope of all intermolecular interactions ever known has been revisited, in particular giving emphasis the capability of much of the elements of the periodic table to form non-covalent contacts. Either hydrogen bonds, dihydrogen bonds, halogen bonds, pnictogen bonds, chalcogen bonds, triel bonds, tetrel bonds, regium bonds, spodium bonds or even the aerogen bond interactions may be cited. Obviously that experimental techniques have been used in some works, but it was through the theoretical methods that these interactions were validate, wherein the QTAIM integrations and SAPT energy partitions have been useful in this regard. Therefore, the great goal concerns to elucidate the interaction strength and if the intermolecular system shall be total, partial or non-covalently bonded, wherein this last one encompasses the most majority of the intermolecular interactions what leading to affirm that chemistry is debatably non-bonded.
Collapse
|
19
|
Freindorf M, McCutcheon M, Beiranvand N, Kraka E. Dihydrogen Bonding-Seen through the Eyes of Vibrational Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010263. [PMID: 36615456 PMCID: PMC9822382 DOI: 10.3390/molecules28010263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
In this work, we analyzed five groups of different dihydrogen bonding interactions and hydrogen clusters with an H3+ kernel utilizing the local vibrational mode theory, developed by our group, complemented with the Quantum Theory of Atoms-in-Molecules analysis to assess the strength and nature of the dihydrogen bonds in these systems. We could show that the intrinsic strength of the dihydrogen bonds investigated is primarily related to the protonic bond as opposed to the hydridic bond; thus, this should be the region of focus when designing dihydrogen bonded complexes with a particular strength. We could also show that the popular discussion of the blue/red shifts of dihydrogen bonding based on the normal mode frequencies is hampered from mode-mode coupling and that a blue/red shift discussion based on local mode frequencies is more meaningful. Based on the bond analysis of the H3+(H2)n systems, we conclude that the bond strength in these crystal-like structures makes them interesting for potential hydrogen storage applications.
Collapse
|
20
|
Lovitt CF, Capra NE, Lastowski RJ, Girolami GS. Steric and Electronic Analyses of Ligand Effects on the Stability of σ-Methane Coordination Complexes: A DFT Study. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Charity Flener Lovitt
- School of Science, Technology, Engineering & Mathematics, University of Washington Bothell, 18115 Campus Way NE, Bothell, Washington 98011, United States
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nicolas E. Capra
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - R. Joseph Lastowski
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Gregory S. Girolami
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Ortega-Lepe I, Sánchez P, Santos LL, Lara P, Rendón N, López-Serrano J, Salazar-Pereda V, Álvarez E, Paneque M, Suárez A. Catalytic Nitrous Oxide Reduction with H 2 Mediated by Pincer Ir Complexes. Inorg Chem 2022; 61:18590-18600. [PMID: 36346983 PMCID: PMC10441893 DOI: 10.1021/acs.inorgchem.2c02963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Reduction of nitrous oxide (N2O) with H2 to N2 and water is an attractive process for the decomposition of this greenhouse gas to environmentally benign species. Herein, a series of iridium complexes based on proton-responsive pincer ligands (1-4) are shown to catalyze the hydrogenation of N2O under mild conditions (2 bar H2/N2O (1:1), 30 °C). Among the tested catalysts, the Ir complex 4, based on a lutidine-derived CNP pincer ligand having nonequivalent phosphine and N-heterocyclic carbene (NHC) side donors, gave rise to the highest catalytic activity (turnover frequency (TOF) = 11.9 h-1 at 30 °C, and 16.4 h-1 at 55 °C). Insights into the reaction mechanism with 4 have been obtained through NMR spectroscopy. Thus, reaction of 4 with N2O in tetrahydrofuran-d8 (THF-d8) initially produces deprotonated (at the NHC arm) species 5NHC, which readily reacts with H2 to regenerate the trihydride complex 4. However, prolonged exposure of 4 to N2O for 6 h yields the dinitrogen Ir(I) complex 7P, having a deprotonated (at the P-arm) pincer ligand. Complex 7P is a poor catalytic precursor in the N2O hydrogenation, pointing out to the formation of 7P as a catalyst deactivation pathway. Moreover, when the reaction of 4 with N2O is carried out in wet THF-d8, formation of a new species, which has been assigned to the hydroxo species 8, is observed. Finally, taking into account the experimental results, density functional theory (DFT) calculations were performed to get information on the catalytic cycle steps. Calculations are in agreement with 4 as the TOF-determining intermediate (TDI) and the transfer of an apical hydrido ligand to the terminal nitrogen atom of N2O as the TOF-determining transition state (TDTS), with very similar reaction rates for the mechanisms involving either the NHC- or the P-CH2 pincer methylene linkers.
Collapse
Affiliation(s)
- Isabel Ortega-Lepe
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), CSIC-Universidad
de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Práxedes Sánchez
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), CSIC-Universidad
de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Laura L. Santos
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), CSIC-Universidad
de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Patricia Lara
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), CSIC-Universidad
de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Nuria Rendón
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), CSIC-Universidad
de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Joaquín López-Serrano
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), CSIC-Universidad
de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Verónica Salazar-Pereda
- Área
Académica de Químicas, Universidad
Autónoma del Estado de Hidalgo, 42184 Mineral de la Reforma, Hidalgo, Mexico
| | - Eleuterio Álvarez
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), CSIC-Universidad
de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Margarita Paneque
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), CSIC-Universidad
de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Andrés Suárez
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), CSIC-Universidad
de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
22
|
Jiang Y, Yuan Q, Cao W, Hu Z, Yang Y, Zhong C, Yang T, Sun H, Wang XB, Sun Z. Unraveling hydridic-to-protonic dihydrogen bond predominance in monohydrated dodecaborate clusters. Chem Sci 2022; 13:9855-9860. [PMID: 36128244 PMCID: PMC9430482 DOI: 10.1039/d2sc03986a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
Hydridic-to-protonic dihydrogen bonds (DHBs) are involved in comprehensive structural and energetic evolution, and significantly affect reactivity and selectivity in solution and solid states. Grand challenges exist in understanding DHBs' bonding nature and strength, and how to harness DHBs. Herein we launched a combined photoelectron spectroscopy and multiscale theoretical investigation using monohydrated closo-dodecaborate clusters B12X12 2-·H2O (X = H, F, I) to address such challenges. For the first time, a consistent and unambiguous picture is unraveled demonstrating that B-H⋯H-O DHBs are superior to the conventional B-X⋯H-O HBs, being 1.15 and 4.61 kcal mol-1 stronger than those with X = F and I, respectively. Energy decomposition analyses reveal that induction and dispersion terms make pronounced contributions resulting in a stronger B-H⋯H-O DHB. These findings call out more attention to the prominent roles of DHBs in water environments and pave the way for efficient and eco-friendly catalytic dihydrogen production based on optimized hydridic-to-protonic interactions.
Collapse
Affiliation(s)
- Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battelle Boulevard, P. O. Box 999, MS K8-88 Richland Washington 99352 USA
- Department of Chemistry, Anhui University Hefei Anhui 230601 China
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battelle Boulevard, P. O. Box 999, MS K8-88 Richland Washington 99352 USA
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
| | - Cheng Zhong
- College of Chemistry & Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Tao Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battelle Boulevard, P. O. Box 999, MS K8-88 Richland Washington 99352 USA
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| |
Collapse
|
23
|
Hidalgo N, Moreno JJ, García‐Rubio I, Campos J. Enhanced Dihydrogen Activation by Mononuclear Iridium(II) Compounds: A Mechanistic Study. Angew Chem Int Ed Engl 2022; 61:e202206831. [PMID: 35737594 PMCID: PMC9545596 DOI: 10.1002/anie.202206831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Nereida Hidalgo
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Juan José Moreno
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Inés García‐Rubio
- Centro Universitario de la Defensa Ctra de Huesca s/n 50090 Zaragoza Spain
- Department of Condensed Matter Physics Faculty of Sciences University of Zaragoza Calle Pedro Cerbuna 50009 Zaragoza Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
24
|
Patil RD, Dutta M, Pratihar S. Hydrogenation Involving Two Different Proton- and Hydride-Transferring Reagents through Metal–Ligand Cooperation: Mechanism and Scope. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rahul Daga Patil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Manali Dutta
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
25
|
Jouffroy M, Nguyen T, Cordier M, Blot M, Roisnel T, Gramage‐Doria R. Iridium‐Catalyzed Direct Reductive Amination of Ketones and Secondary Amines: Breaking the Aliphatic Wall. Chemistry 2022; 28:e202201078. [DOI: 10.1002/chem.202201078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Matthieu Jouffroy
- Chemical Process R&D Discovery Process Research Janssen Pharmaceutica N.V. Turnhoutseweg 30 2340 Beerse Belgium
| | - Thi‐Mo Nguyen
- Université de Rennes CNRS, ISCR-UMR6226 Rennes 35000 France
| | - Marie Cordier
- Université de Rennes CNRS, ISCR-UMR6226 Rennes 35000 France
| | - Marielle Blot
- Université de Rennes CNRS, ISCR-UMR6226 Rennes 35000 France
| | | | | |
Collapse
|
26
|
Hidalgo N, Moreno JJ, Garcia-Rubio I, Campos J. Enhanced Dihydrogen Activation by Mononuclear Iridium(II) Compounds: A Mechanistic Study. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nereida Hidalgo
- CSIC: Consejo Superior de Investigaciones Cientificas IIQ SPAIN
| | - Juan J Moreno
- CSIC: Consejo Superior de Investigaciones Cientificas IIQ SPAIN
| | - Ines Garcia-Rubio
- Universidad de Zaragoza Department of Condensed Matter Physics SPAIN
| | - Jesus Campos
- Consejo Superior de Investigaciones Cientificas Institute of Chemical Research Av. Americo Vespucio 49, Isla de la 41092 Sevilla SPAIN
| |
Collapse
|
27
|
Lassalle S, Petit J, Falconer RL, Hérault V, Jeanneau E, Thieuleux C, Camp C. Reactivity of Tantalum/Iridium and Hafnium/Iridium Alkyl Hydrides with Alkyl Lithium Reagents: Nucleophilic Addition, Alpha-H Abstraction, or Hydride Deprotonation? Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sébastien Lassalle
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Julien Petit
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Rosalyn L. Falconer
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Valentin Hérault
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
28
|
Turner JJ, George MW, Poliakoff M, Perutz RN. Photochemistry of transition metal carbonyls. Chem Soc Rev 2022; 51:5300-5329. [PMID: 35708003 DOI: 10.1039/d1cs00826a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this Tutorial Review is to outline the fundamental photochemistry of metal carbonyls, and to show how the advances in technology have increased our understanding of the detailed mechanisms, particularly how relatively simple experiments can provide deep understanding of complex problems. We recall some important early experiments that demonstrate the key principles underlying current research, concentrating on the binary carbonyls and selected substituted metal carbonyls. At each stage, we illustrate with examples from recent applications. This review first considers the detection of photochemical intermediates in three environments: glasses and matrices; gas phase; solution. It is followed by an examination of the theory underpinning these observations. In the final two sections, we briefly address applications to the characterization and behaviour of complexes with very labile ligands such as N2, H2 and alkanes, concentrating on key mechanistic points, and also describe some principles and examples of photocatalysis.
Collapse
Affiliation(s)
- James J Turner
- School of Chemistry University of Nottingham, NG7 2RD, UK.
| | | | | | - Robin N Perutz
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
29
|
Biberger T, Nöthling N, Leutzsch M, Gordon CP, Copéret C, Fürstner A. An Anionic Dinuclear Ruthenium Dihydrogen Complex of Relevance for Alkyne gem-Hydrogenation. Angew Chem Int Ed Engl 2022; 61:e202201311. [PMID: 35363926 PMCID: PMC9322539 DOI: 10.1002/anie.202201311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/12/2022]
Abstract
During an investigation into the fate of ruthenium precatalysts used for light-driven alkyne gem-hydrogenation reactions with formation of Grubbs-type ruthenium catalysts, it was found that the reaction of [(IPr)(η6 -cymene)RuCl2 ] with H2 under UV-irradiation affords an anionic dinuclear σ-dihydrogen complex, which is thermally surprisingly robust. Not only are anionic σ-complexes in general exceedingly rare, but the newly formed species seems to be the first example lacking any structural attributes able to counterbalance the negative charge and, in so doing, prevent oxidative insertion of the metal centers into the ligated H2 from occurring.
Collapse
Affiliation(s)
- Tobias Biberger
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Christopher P. Gordon
- Department of Chemistry and Applied Biosciences, ETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
30
|
Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem Rev 2022; 122:12427-12474. [PMID: 35640056 DOI: 10.1021/acs.chemrev.1c01001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.
Collapse
|
31
|
Affiliation(s)
- Divakar R. Aireddy
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kunlun Ding
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
32
|
Biberger T, Nöthling N, Leutzsch M, Gordon CP, Copéret C, Fürstner A. An Anionic Dinuclear Ruthenium Dihydrogen Complex of Relevance for Alkyne gem‐Hydrogenation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tobias Biberger
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallc Chemistry 45470 Mülheim/Ruhr GERMANY
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Chemical Crystallography 45470 Mülheim/Ruhr GERMANY
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung NMR Spectroscopy 45470 Mülheim/Ruhr GERMANY
| | - Christopher P. Gordon
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Inorganic Chemistry 8093 Zürich SWITZERLAND
| | - Christophe Copéret
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Inorganic Chemistry 8093 Zürich SWITZERLAND
| | - Alois Fürstner
- Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim/Ruhr GERMANY
| |
Collapse
|
33
|
Dihydrogen attachment and dissociation reactions in Fe(H)2(H2)(PEtPh2)3: a DFT potential-energy scan. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Perutz RN, Sabo‐Etienne S, Weller AS. Metathesis by Partner Interchange in σ-Bond Ligands: Expanding Applications of the σ-CAM Mechanism. Angew Chem Int Ed Engl 2022; 61:e202111462. [PMID: 34694734 PMCID: PMC9299125 DOI: 10.1002/anie.202111462] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/13/2022]
Abstract
In 2007 two of us defined the σ-Complex Assisted Metathesis mechanism (Perutz and Sabo-Etienne, Angew. Chem. Int. Ed. 2007, 46, 2578-2592), that is, the σ-CAM concept. This new approach to reaction mechanisms brought together metathesis reactions involving the formation of a variety of metal-element bonds through partner-interchange of σ-bond complexes. The key concept that defines a σ-CAM process is a single transition state for metathesis that is connected by two intermediates that are σ-bond complexes while the oxidation state of the metal remains constant in precursor, intermediates and product. This mechanism is appropriate in situations where σ-bond complexes have been isolated or computed as well-defined minima. Unlike several other mechanisms, it does not define the nature of the transition state. In this review, we highlight advances in the characterization and dynamic rearrangements of σ-bond complexes, most notably alkane and zincane complexes, but also different geometries of silane and borane complexes. We set out a selection of catalytic and stoichiometric examples of the σ-CAM mechanism that are supported by strong experimental and/or computational evidence. We then draw on these examples to demonstrate that the scope of the σ-CAM mechanism has expanded to classes of reaction not envisaged in 2007 (additional σ-bond ligands, agostic complexes, sp2 -carbon, surfaces). Finally, we provide a critical comparison to alternative mechanisms for metathesis of metal-element bonds.
Collapse
Affiliation(s)
| | - Sylviane Sabo‐Etienne
- CNRSLCC (Laboratoire de Chimie de Coordination)205 route de Narbonne, BP 44099F-31077Toulouse Cedex 4France
| | | |
Collapse
|
35
|
Perutz RN, Sabo‐Etienne S, Weller AS. Metathesis by Partner Interchange in σ‐Bond Ligands: Expanding Applications of the σ‐CAM Mechanism. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Sylviane Sabo‐Etienne
- CNRS LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne, BP 44099 F-31077 Toulouse Cedex 4 France
| | | |
Collapse
|
36
|
Boonpalit K, Uthayopas C, Surawatanawong P. Insights into H2 Activation and Styrene Hydrogenation by Nickel–Borane and Nickel–Alane Bifunctional Catalysts. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kajjana Boonpalit
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Chayapat Uthayopas
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Sustainable Energy and Green Materials, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
37
|
Jones E, Inns DR, Dann SE, Silverwood IP, Kondrat SA. Characterisation of ethylene adsorption on model skeletal cobalt catalysts by inelastic and quasi-elastic neutron scattering. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Babón JC, Esteruelas MA, López AM. Homogeneous catalysis with polyhydride complexes. Chem Soc Rev 2022; 51:9717-9758. [DOI: 10.1039/d2cs00399f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review analyzes the role of transition metal polyhydrides as homogeneous catalysts for organic reactions. Discussed reactions involve nearly every main organic functional group.
Collapse
Affiliation(s)
- Juan C. Babón
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Ana M. López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
39
|
Albinati A, Grellier M, Ollivier J, Georgiev PA. On the energetics of binding and hydride exchange in the RuH 2(H 2) 2[P(C 5H 9) 3)] 2 complex as revealed by inelastic neutron scattering and DFT studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj02100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low temperature quantum rotation of dihydrogen in RuH2(H2)2[P(C5H9)3)]2 switched to a facile hydride exchange above 150 K.
Collapse
Affiliation(s)
- A. Albinati
- CNR – ICCOM, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- University of Milan, Milan, Italy
| | - M. Grellier
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, INPT 31077 Toulouse, France
| | - J. Ollivier
- Institute Laue-Langevin, 6 rue Jules Horovitz, BP156, F-38042 Grenoble Cedex 9, Grenoble, France
| | - P. A. Georgiev
- Department of Condensed Matter Physics and Microelectronics, The University of Sofia, J. Bourchier, 5, Sofia 1164, Bulgaria
| |
Collapse
|
40
|
Di Liberto G, Cipriano LA, Pacchioni G. Role of Dihydride and Dihydrogen Complexes in Hydrogen Evolution Reaction on Single-Atom Catalysts. J Am Chem Soc 2021; 143:20431-20441. [PMID: 34821146 PMCID: PMC8662730 DOI: 10.1021/jacs.1c10470] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 11/30/2022]
Abstract
The hydrogen evolution reaction (HER) has a key role in electrochemical water splitting. Recently a lot of attention has been dedicated to HER from single atom catalysts (SACs). The activity of SACs in HER is usually rationalized or predicted using the original model proposed by Nørskov where the free energy of a H atom adsorbed on an extended metal surface M (formation of an MH intermediate) is used to explain the trends in the exchange current for HER. However, SACs differ substantially from metal surfaces and can be considered analogues of coordination compounds. In coordination chemistry, at variance with metal surfaces, stable dihydride or dihydrogen complexes (HMH) can form. We show that the same can occur on SACs and that the formation of stable HMH intermediates, in addition to the MH one, may change the kinetics of the process. Extending the original kinetic model to the case of two intermediates (MH and HMH), one obtains a three-dimensional volcano plot for the HER on SACs. DFT numerical simulations on 55 models demonstrate that the new kinetic model may lead to completely different conclusions about the activity of SACs in HER. The results are validated against selected experimental cases. The work provides an example of the important analogies between the chemistry of SACs and that of coordination compounds.
Collapse
Affiliation(s)
| | - Luis A. Cipriano
- Dipartimento di Scienza dei
Materiali, Università di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | | |
Collapse
|
41
|
Zhou X, Malakar S, Dugan T, Wang K, Sattler A, Marler DO, Emge TJ, Krogh-Jespersen K, Goldman AS. Alkane Dehydrogenation Catalyzed by a Fluorinated Phebox Iridium Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoguang Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Santanu Malakar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Thomas Dugan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Kun Wang
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Aaron Sattler
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - David O. Marler
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
42
|
Su P, Li Y, Ke Z. Metal Effect Meets Volcano Plots: A DFT Study on Tris(phosphino)borane-Transition Metal Complexes Catalyzed H 2 Activation. Chem Asian J 2021; 16:3427-3436. [PMID: 34463040 DOI: 10.1002/asia.202100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Indexed: 11/07/2022]
Abstract
Bifunctional transition metal complexes are of particular interest in metal-ligand cooperative activation of small molecules. As a novel type of bifunctional catalyst, Lewis acid transition metal (LA-TM) complexes have attracted increasing interest in hydrogen activation and storage. To advance the catalyst design, herein the metal effect of LA-TM complexes on the hydrogen activation has been systematically studied with a series of tris(phosphino)borane (TPB) complexes with V, Cr, Mn, Fe, Co, and Ni as metal centers. The metal effect not only influences the mechanism of hydrogen activation, but also notably casts a volcano plot for the activity. TPB complexes of V, Cr, Mn, Fe, and Co tend to activate H2 through a stepwise mechanism, while TPB-Ni prefers a synergetic mechanism for H2 activation. More importantly, the metal effect significantly influences the activity of H2 activation and the formation of the LA-H-TM bridging hydride. The trend of changes in the LA-H-TM structures, the second-order perturbation stabilization energies, and the Laplacian bond orders, along with different metals (from V to Ni), are all interestingly constitute volcano plots for the performance of TPB-TM complexes catalyzed H2 activation. TPB-Mn and TPB-Fe are found to be the optimal catalysts among the discussed TPB-TM complexes. The volcano plots disclosed for the metal effects should be informative and instructive for homogeneous and heterogeneous LA-TM catalysts development.
Collapse
Affiliation(s)
- Peifeng Su
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yinwu Li
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
43
|
Li Y, Su P, Jiang J, Ke Z. Bifunctional Effect of a Triple-Bond Heterobimetallic Zr/Co System for Hydrogen Activation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Peifeng Su
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jingxing Jiang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
44
|
Uchida K, Kishimoto N, Noro SI, Iguchi H, Takaishi S. Reversible hydrogen adsorption at room temperature using a molybdenum-dihydrogen complex in the solid state. Dalton Trans 2021; 50:12630-12634. [PMID: 34545876 DOI: 10.1039/d1dt01404h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reversible H2 storage under mild conditions is one of the most important targets in the field of materials chemistry. Dihydrogen complexes are attractive materials for this target because they possess moderate adsorption enthalpy as well as adsorption without cleavage of the H-H bond. In spite of these advantages, H2 adsorption studies of dihydrogen complexes in the solid state are scarce. We herein present H2 adsorption properties of the 16-electron precursor complex ([Mo(PCy3)2(CO)3]) in the solid state synthesized by two procedures. One is the direct synthesis under an Ar atmosphere (1), and the other is removal of the N2-adduct under vacuum (2). 2 showed ideal Langmuir type reversible ad/desorption of H2 above room temperature, whereas 1 showed irreversible adsorption. The adsorption enthalpy of 2 was larger than that in THF solution. Using DFT calculation, this difference was explained by the absence of the agostic interaction in the solid state.
Collapse
Affiliation(s)
- Kaiji Uchida
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Naoki Kishimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Shin-Ichiro Noro
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
45
|
Ayyappan R, Saha K, Grellier M, Clot E, Vendier L, Ghosh S, Sabo-Etienne S, Bontemps S. Impact of the Alkali Metal on the Structural and Dynamic Properties of the Anionic Pentahydride Ruthenium Complexes [M(THF) x][RuH 5(PCy 3) 2] (M = Li, Na, K). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramaraj Ayyappan
- LCC−CNRS, Université de Toulouse, CNRS, F-31077 CEDEX 4 Toulouse, France
| | - Koushik Saha
- LCC−CNRS, Université de Toulouse, CNRS, F-31077 CEDEX 4 Toulouse, France
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Mary Grellier
- LCC−CNRS, Université de Toulouse, CNRS, F-31077 CEDEX 4 Toulouse, France
| | - Eric Clot
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Laure Vendier
- LCC−CNRS, Université de Toulouse, CNRS, F-31077 CEDEX 4 Toulouse, France
| | - Sundargopal Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | | | - Sébastien Bontemps
- LCC−CNRS, Université de Toulouse, CNRS, F-31077 CEDEX 4 Toulouse, France
| |
Collapse
|
46
|
Kireev NV, Kiryutin AS, Pavlov AA, Yurkovskaya AV, Musina EI, Karasik AA, Shubina ES, Ivanov KL, Belkova NV. Nickel(II) Dihydrogen and Hydride Complexes as the Intermediates of H
2
Heterolytic Splitting by Nickel Diazadiphosphacyclooctane Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nikolay V. Kireev
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Alexey S. Kiryutin
- International Tomography Center Novosibirsk State University Pirogova street 1 Novosibirsk 630090 Russia
| | - Alexander A. Pavlov
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center Novosibirsk State University Pirogova street 1 Novosibirsk 630090 Russia
| | - Elvira I. Musina
- A. E. Arbuzov Institute of Organic and Physical Chemistry Kazan Scientific Center Russian Academy of Sciences Arbuzov str. 8 420088 Kazan Russia
| | - Andrey A. Karasik
- A. E. Arbuzov Institute of Organic and Physical Chemistry Kazan Scientific Center Russian Academy of Sciences Arbuzov str. 8 420088 Kazan Russia
| | - Elena S. Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Konstantin L. Ivanov
- International Tomography Center Novosibirsk State University Pirogova street 1 Novosibirsk 630090 Russia
| | - Natalia V. Belkova
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| |
Collapse
|
47
|
Persaud RR, Fang Z, Zall CM, Appel AM, Dixon DA. Computational Study of Triphosphine-Ligated Cu(I) Catalysts for Hydrogenation of CO 2 to Formate. J Phys Chem A 2021; 125:6600-6610. [PMID: 34297558 DOI: 10.1021/acs.jpca.1c04050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalyzed hydrogenation of CO2 to formate via a triphosphine-ligated Cu(I) was studied computationally at the density functional theory level in the presence of a self-consistent reaction field. Of the four functionals benchmarked, M06 was generally in the best agreement with the available experimentally estimated values. Two bases, DBU and TBD, were studied in the context of two proposed mechanisms in the MeCN solvent. Activation of H2 was explored by using LCu(DBU)+ to form LCuH. Dissociation of a ligand arm results in higher barriers to form the key hydride complex, LCuH. The preferred mechanism passes through a transition state, where the H2 has one H atom interacting with the copper center and the other H atom interacting with the N atom of the base, similar to H2 insertion into a frustrated Lewis pair. There is no significant difference between the choice of a base, DBU or TBD, with respect to the proposed mechanisms. We propose that the experimentally observed differences between DBU and TBD reactivities for this mechanism are due to off-pathway changes.
Collapse
Affiliation(s)
- Rudradatt R Persaud
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Zongtang Fang
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Christopher M Zall
- Department of Chemistry, Sam Houston State University, 1003 Bowers Boulevard, Huntsville, Texas 77341, United States
| | - Aaron M Appel
- Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
48
|
Ríos P, Fernández‐de‐Córdova FJ, Borge J, Curado N, Lledós A, Conejero S. Ligand Effects in Carbon−Boron Coupling Processes Mediated by σ‐BH Platinum Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pablo Ríos
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica, CSIC and Universidad de Sevilla Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Francisco José Fernández‐de‐Córdova
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica, CSIC and Universidad de Sevilla Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Javier Borge
- Departamento de Quimica Física y Analítica Centro de Innovación en Química Avanzada (ORFEO-CINQA) Facultad de Química Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Natalia Curado
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica, CSIC and Universidad de Sevilla Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Agustí Lledós
- Departament de Química Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universitat Autònoma de Barcelona Edifici Cn 08193 Cerdanyola del Vallés Spain
| | - Salvador Conejero
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica, CSIC and Universidad de Sevilla Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
49
|
Jaramillo DE, Jiang HZH, Evans HA, Chakraborty R, Furukawa H, Brown CM, Head-Gordon M, Long JR. Ambient-Temperature Hydrogen Storage via Vanadium(II)-Dihydrogen Complexation in a Metal-Organic Framework. J Am Chem Soc 2021; 143:6248-6256. [PMID: 33852299 PMCID: PMC10951977 DOI: 10.1021/jacs.1c01883] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The widespread implementation of H2 as a fuel is currently hindered by the high pressures or cryogenic temperatures required to achieve reasonable storage densities. In contrast, the realization of materials that strongly and reversibly adsorb hydrogen at ambient temperatures and moderate pressures could transform the transportation sector and expand adoption of fuel cells in other applications. To date, however, no adsorbent has been identified that exhibits a binding enthalpy within the optimal range of -15 to -25 kJ/mol for ambient-temperature hydrogen storage. Here, we report the hydrogen adsorption properties of the metal-organic framework (MOF) V2Cl2.8(btdd) (H2btdd, bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin), which features exposed vanadium(II) sites capable of backbonding with weak π acids. Significantly, gas adsorption data reveal that this material binds H2 with an enthalpy of -21 kJ/mol. This binding energy enables usable hydrogen capacities that exceed that of compressed storage under the same operating conditions. The Kubas-type vanadium(II)-dihydrogen complexation is characterized by a combination of techniques. From powder neutron diffraction data, a V-D2(centroid) distance of 1.966(8) Å is obtained, the shortest yet reported for a MOF. Using in situ infrared spectroscopy, the H-H stretch was identified, and it displays a red shift of 242 cm-1. Electronic structure calculations show that a main contribution to bonding stems from the interaction between the vanadium dπ and H2 σ* orbital. Ultimately, the pursuit of MOFs containing high densities of weakly π-basic metal sites may enable storage capacities under ambient conditions that far surpass those accessible with compressed gas storage.
Collapse
Affiliation(s)
- David E Jaramillo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hayden A Evans
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Romit Chakraborty
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Hiroyasu Furukawa
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
50
|
Dong Y, Xie S, Zhang P, Fan Q, Du X, Sun H, Li X, Fuhr O, Fenske D. Selectivity Reverse of Hydrosilylation of Aryl Alkenes Realized by Pyridine N-Oxide with [PSiP] Pincer Cobalt(III) Hydride as Catalyst. Inorg Chem 2021; 60:4551-4562. [PMID: 33677959 DOI: 10.1021/acs.inorgchem.0c03483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Six silyl cobalt(III) hydrides 1-6 with [PSiP] pincer ligands having different substituents at the P and Si atoms ([(2-Ph2PC6H4)2MeSiCo(H)(Cl)(PMe3)] (1), [(2-Ph2PC6H4)2HSiCo(H)(Cl)(PMe3)] (2), [(2-Ph2PC6H4)2PhSiCo(H)(Cl)(PMe3)] (3), [(2-iPr2PC6H4)2HSiCo(H)(Cl)(PMe3)] (4), [(2-iPr2PC6H4)2MeSiCo(H)(Cl)(PMe3)] (5), and [(2-iPr2PC6H4)2PhSiCo(H)(Cl)(PMe3)] (6)) were synthesized through the reactions of the ligands (L1-L6) with CoCl(PMe3)3 via Si-H bond cleavage. Compounds 1-6 have catalytic activity for alkene hydrosilylation, and among them, complex 3 is the best catalyst with excellent anti-Markovnikov regioselectivity. A silyl dihydrido cobalt(III) complex 7 from the reaction of 3 with Ph2SiH2 was isolated, and its catalytic activity is equivalent to that of complex 3. Complex 7 and its derivatives 10-12 could also be obtained through the reactions of complexes 3, 1, 4, and 5 with NaBHEt3. The molecular structure of 7 was indirectly verified by the structures of 10-12. To our delight, the addition of pyridine N-oxide reversed the selectivity of the reaction, from anti-Markovnikov to Markovnikov addition. At the same time, the reaction temperature was reduced from 70 to 30 °C on the premise of high yield and excellent selectivity. However, this catalytic system is only applicable to aromatic alkenes. On the basis of the experimental information, two reaction mechanisms are proposed. The molecular structures of cobalt(III) complexes 3-6 and 10-12 were determined by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xinyu Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|