1
|
Wu XG, Jing Y, Zhong H. In Situ Fabricated Perovskite Quantum Dots: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412276. [PMID: 39552009 DOI: 10.1002/adma.202412276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Due to the low formation enthalpy and high defect tolerance, in situ fabricated perovskite quantum dots offer advantages such as easy fabrication and superior optical properties. This paper reviews the methodologies, functional materials of in situ fabricated perovskite quantum dots, including polymer nanocomposites, quantum dots doped glasses, mesoporous nanocomposites, quantum dots-embedded single crystals, and electroluminescent films. This study further highlights the industrial breakthroughs of in situ fabricated perovskite quantum dots, especially the scale-up fabrication and stability enhancement. Finally, the fundamental challenges in developing perovskite quantum dots for industrial applications are discussed, with a focus on photoinduced degradation under high-intensity light irradiation, ion migration under electrical bias and thermal quenching at high temperature.
Collapse
Affiliation(s)
- Xian-Gang Wu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuyu Jing
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Dana J, Ajayakumar MR, Efimov A, Weckman T, Honkala K, Tkachenko NV. Structure dependent activation of a Co molecular catalyst through photoinduced electron transfer from CdTe quantum dots. NANOSCALE 2024; 16:20725-20737. [PMID: 39436211 DOI: 10.1039/d4nr02521k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Complexes of quantum dots with molecular catalysts are promising building blocks for photo-catalytic applications. Herein, we report the formation of stable complexes between colloidal CdTe quantum dots (CQDs) and two synthesized structurally different cobalt porphyrin derivatives (CoPp and CoPm, with phenyl and mesityl groups attached at the meso positions, respectively) through a sulfur bridge. Using both spectroscopy and computational methods, we found that the porphyrin adopts a "flat" binding mode on the CQD surface. We observed the coordination of the Co center on the CQD surface. This coordination is stronger for CoPp than for CoPm, resulting in a larger red shift in the absorption band. In addition, we measured a four fold increase in the electron transfer (ET) rate from the CQD to CoPp compared to that with CoPm by a transient absorption study and the charge recombination extended to tens of nanoseconds or longer depending on the structure of the porphyrin periphery. A spectrum measured after the ET points to a loss of coordination between the Co and CQD in a CoP/CQD complex. The experimental results are in agreement with density functional theory calculation results on the CoP complexes on CdTe surfaces, pointing to the porphyrin preferring to align along the CQD surface in the ground state. The change of porphyrin alignment from flat alignment before the excitation to upright alignment after the ET is a likely cause for the extended lifetime of the charge-separated (CS) state, due to an increase in the CS distance. Furthermore, the spectrum of the CS state can be assigned to catalytically active CoIP, proposing the applicability of the complexes in CO2 reduction.
Collapse
Affiliation(s)
- Jayanta Dana
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| | - M R Ajayakumar
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| | - Alexander Efimov
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| | - Timo Weckman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| |
Collapse
|
3
|
Hu Z, Cheng M, Zhang Y, Zhang L, Xu H, Zhu X. A Sensitive and Quick Fluorescent Sensor for the "Turn-On" Detection and Imaging of Glutathione Based on Sulfur Quantum Dots and MnO 2 Nanosheets. LUMINESCENCE 2024; 39:e4929. [PMID: 39508153 DOI: 10.1002/bio.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Glutathione (GSH) is one of the most abundant bioethanol antioxidants in living cells. Here, a fluorescent probe based on MnO2 nanosheets and sulfur quantum dots (SQDs) was fabricated. Because of the synergistic effect of IFE and FRET, the fluorescence from SQDs was quenched by MnO2 nanosheets. In the presence of GSH, the fluorescence of SQDs could be recovered because of the reduction of MnO2 nanosheets by GSH. The method can detect GSH in the concentration range of 5 ~ 1000 μM with the detection limit as low as 1.26 μM. This quick, easy, and cost-effective sensor could be used for the quantification of GSH in serum samples and the imaging of GSH in Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Zhenlin Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Min Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanyan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leyao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huifeng Xu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xi Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Samuthirapandi K, Durairaj P, Sarkar S. Interfacial Charge Transfer in Photoexcited QD-Molecule Composite of Tetrahedral CdSe Quantum Dot Coupled with Carbazole. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31045-31055. [PMID: 38857441 DOI: 10.1021/acsami.4c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Photoexcited charge transfer dynamics in CdSe quantum dots (QDs) coupled with carbazole were explored to model QD-molecule systems for light-harvesting applications. The absorption spectra of QDs with different sizes, i.e., Cd35Se20X30L30 (T1), Cd56Se35X42L42 (T2), and Cd84Se56X56L56 (T3) were simulated with quantum dynamical methods, which qualitatively match the reported experimental spectra. The carbazole is attached with a 3-amino group at the apex position of T1 (namely T1-3A-Cz), establishing proper electronic communication between T1 and carbazole. The spectra of T1-3A-Cz is 0.22 eV red-shifted compared to T1. A time-dependent perturbation was applied in tune with the lowest energy peak (3.63 eV) of T1-3A-Cz to investigate the charge transfer dynamics, which revealed an ultrafast charge separation within the femtosecond time scale. The electronic structure showed a favorable energy alignment between T1 and carbazole in T1-3A-Cz. The LUMO of carbazole was situated below the conduction band of the QD, while the HOMO of carbazole mixed perfectly with the top of the valence band of the QD, developing the interfacial charge transfer states. These states promoted the photoexcited electron transfer directly from the CdSe core to carbazole. A rapid and enhanced charge separation occurred with the laser field strength increasing from 0.001 to 0.005 V/Å. However, T1 connected to the other positions of carbazole did not show charge separation effectively. The photoinduced charge transfer is negligible in the case of T2-carbazole systems due to poor electronic coupling, and it is not observed in T3-carbazole systems. So, the T1-3A-Cz model acts as a perfect donor-acceptor QD-molecule nanocomposite that can harvest photon energy efficiently. Further enhancement of charge transfer can be achieved by coupling more carbazoles to the T1 QD (e.g., T1-3A-Cz2) due to the extension of hole delocalization between T1 and the carbazoles.
Collapse
Affiliation(s)
| | - Pandiselvi Durairaj
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Sunandan Sarkar
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
5
|
Cortés-Villena A, Bellezza D, Cunha C, Rosa-Pardo I, Seijas-Da Silva Á, Pina J, Abellán G, Seixas de Melo JS, Galian RE, Pérez-Prieto J. Engineering Metal Halide Perovskite Nanocrystals with BODIPY Dyes for Photosensitization and Photocatalytic Applications. J Am Chem Soc 2024; 146:14479-14492. [PMID: 38572736 PMCID: PMC11140745 DOI: 10.1021/jacs.3c14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
The sensitization of surface-anchored organic dyes on semiconductor nanocrystals through energy transfer mechanisms has received increasing attention owing to their potential applications in photodynamic therapy, photocatalysis, and photon upconversion. Here, we investigate the sensitization mechanisms through visible-light excitation of two nanohybrids based on CsPbBr3 perovskite nanocrystals (NC) functionalized with borondipyrromethene (BODIPY) dyes, specifically 8-(4-carboxyphenyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BDP) and 8-(4-carboxyphenyl)-2,6-diiodo-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (I2-BDP), named as NC@BDP and NC@I2-BDP, respectively. The ability of I2-BDP dyes to extract hot hole carriers from the perovskite nanocrystals is comprehensively investigated by combining steady-state and time-resolved fluorescence as well as femtosecond transient absorption spectroscopy with spectroelectrochemistry and quantum chemical theoretical calculations, which together provide a complete overview of the phenomena that take place in the nanohybrid. Förster resonance energy transfer (FRET) dominates (82%) the photosensitization of the singlet excited state of BDP in the NC@BDP nanohybrid with a rate constant of 3.8 ± 0.2 × 1010 s-1, while charge transfer (64%) mediated by an ultrafast charge transfer rate constant of 1.00 ± 0.08 × 1012 s-1 from hot states and hole transfer from the band edge is found to be mainly responsible for the photosensitization of the triplet excited state of I2-BDP in the NC@I2-BDP nanohybrid. These findings suggest that the NC@I2-BDP nanohybrid is a unique energy transfer photocatalyst for oxidizing α-terpinene to ascaridole through singlet oxygen formation.
Collapse
Affiliation(s)
- Alejandro Cortés-Villena
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Delia Bellezza
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Carla Cunha
- CQC-IMS,
Department of Chemistry, University of Coimbra, Coimbra P-3004-535, Portugal
| | - Ignacio Rosa-Pardo
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Álvaro Seijas-Da Silva
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - João Pina
- CQC-IMS,
Department of Chemistry, University of Coimbra, Coimbra P-3004-535, Portugal
| | - Gonzalo Abellán
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | | | - Raquel E. Galian
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
6
|
Li Q, Wu K, Zhu H, Yang Y, He S, Lian T. Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals. Chem Rev 2024; 124:5695-5763. [PMID: 38629390 PMCID: PMC11082908 DOI: 10.1021/acs.chemrev.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/09/2024]
Abstract
The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.
Collapse
Affiliation(s)
- Qiuyang Li
- Department
of Physics, University of Michigan, 450 Church St, Ann Arbor, Michigan 48109, United States
| | - Kaifeng Wu
- State
Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiming Zhu
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ye Yang
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM
(Collaborative Innovation Center of Chemistry for Energy Materials),
College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng He
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Zhong W, Shang L. Photoswitching the fluorescence of nanoparticles for advanced optical applications. Chem Sci 2024; 15:6218-6228. [PMID: 38699274 PMCID: PMC11062085 DOI: 10.1039/d4sc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
The dynamic optical response properties and the distinct features of nanomaterials make photoswitchable fluorescent nanoparticles (PF NPs) attractive candidates for advanced optical applications. Over the past few decades, the design of PF NPs by coupling photochromic and fluorescent motifs at the nanoscale has been actively pursued, and substantial efforts have been made to exploit their potential applications. In this perspective, we critically summarize various design principles for fabricating these PF NPs. Then, we discuss their distinct optical properties from different aspects by highlighting the capability of NPs in fabricating new, robust photoswitch systems. Afterwards, we introduce the pivotal role of PF NPs in advanced optical applications, including sensing, anti-counterfeiting and imaging. Finally, current challenges and future development of PF NPs are briefly discussed.
Collapse
Affiliation(s)
- Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518057 China
- Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University Chongqing 401135 China
| |
Collapse
|
8
|
Grega MN, Gan J, Noman M, Asbury JB. Reversible Ligand Detachment from CdSe Quantum Dots Following Photoexcitation. J Phys Chem Lett 2024; 15:3987-3995. [PMID: 38573308 DOI: 10.1021/acs.jpclett.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The nanocrystal-ligand boundaries of colloidal quantum dots (QDs) mediate charge and energy transfer processes that underpin photochemical and photocatalytic transformations at their surfaces. We used time-resolved infrared spectroscopy combined with transient electronic spectroscopy to probe vibrational modes of the carboxylate anchoring groups of stearate ligands attached to cadmium selenide (CdSe) QDs that were optically excited in solid nanocrystal films. The vibrational frequencies of surface-bonded carboxylate groups revealed their interactions with surface-localized holes in the excited states of the QDs. We also observed transient and reversible photoinduced ligand detachment from CdSe nanocrystals within their excited state lifetime. By probing both surface charge distributions and ligand dynamics on QDs in their excited states, we open a pathway to explore how the nanocrystal-ligand boundary can be understood and controlled for the design of QD architectures that most effectively drive charge transfer processes in solar energy harvesting and photoredox catalysis applications.
Collapse
Affiliation(s)
- McKenna N Grega
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jianing Gan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Muhammad Noman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John B Asbury
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Intercollege Materials Science and Engineering Program, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Ye C, Zhang DS, Chen B, Tung CH, Wu LZ. Interfacial Charge Transfer Regulates Photoredox Catalysis. ACS CENTRAL SCIENCE 2024; 10:529-542. [PMID: 38559307 PMCID: PMC10979487 DOI: 10.1021/acscentsci.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
Photoredox catalytic processes offer the potential for precise chemical reactions using light and materials. The central determinant is identified as interfacial charge transfer, which simultaneously engenders distinctive behavior in the overall reaction. An in-depth elucidation of the main mechanism and highlighting of the complexity of interfacial charge transfer can occur through both diffusive and direct transfer models, revealing its potential for sophisticated design in complex transformations. The fundamental photophysics uncover these comprehensive applications and offer a clue for future development. This research contributes to the growing body of knowledge on interfacial charge transfer in photoredox catalysis and sets the stage for further exploration of this fascinating area of research.
Collapse
Affiliation(s)
- Chen Ye
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
New Cornerstone Laboratory, Technical Institute
of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - De-Shan Zhang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
New Cornerstone Laboratory, Technical Institute
of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
New Cornerstone Laboratory, Technical Institute
of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
New Cornerstone Laboratory, Technical Institute
of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
New Cornerstone Laboratory, Technical Institute
of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Bagnall A, Eliasson N, Hansson S, Chavarot-Kerlidou M, Artero V, Tian H, Hammarström L. Ultrafast Electron Transfer from CuInS 2 Quantum Dots to a Molecular Catalyst for Hydrogen Production: Challenging Diffusion Limitations. ACS Catal 2024; 14:4186-4201. [PMID: 38510668 PMCID: PMC10949191 DOI: 10.1021/acscatal.3c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Systems integrating quantum dots with molecular catalysts are attracting ever more attention, primarily owing to their tunability and notable photocatalytic activity in the context of the hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR). CuInS2 (CIS) quantum dots (QDs) are effective photoreductants, having relatively high-energy conduction bands, but their electronic structure and defect states often lead to poor performance, prompting many researchers to employ them with a core-shell structure. Molecular cobalt HER catalysts, on the other hand, often suffer from poor stability. Here, we have combined CIS QDs, surface-passivated with l-cysteine and iodide from a water-based synthesis, with two tetraazamacrocyclic cobalt complexes to realize systems which demonstrate high turnover numbers for the HER (up to >8000 per catalyst), using ascorbate as the sacrificial electron donor at pH = 4.5. Photoluminescence intensity and lifetime quenching data indicated a large degree of binding of the catalysts to the QDs, even with only ca. 1 μM each of QDs and catalysts, linked to an entirely static quenching mechanism. The data was fitted with a Poissonian distribution of catalyst molecules over the QDs, from which the concentration of QDs could be evaluated. No important difference in either quenching or photocatalysis was observed between catalysts with and without the carboxylate as a potential anchoring group. Femtosecond transient absorption spectroscopy confirmed ultrafast interfacial electron transfer from the QDs and the formation of the singly reduced catalyst (CoII state) for both complexes, with an average electron transfer rate constant of ≈ (10 ps)-1. These favorable results confirm that the core tetraazamacrocyclic cobalt complex is remarkably stable under photocatalytic conditions and that CIS QDs without inorganic shell structures for passivation can act as effective photosensitizers, while their smaller size makes them suitable for application in the sensitization of, inter alia, mesoporous electrodes.
Collapse
Affiliation(s)
- Andrew
J. Bagnall
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie
des Métaux, 17
rue des Martyrs, F-38054 Grenoble, Cedex, France
| | - Nora Eliasson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Sofie Hansson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Murielle Chavarot-Kerlidou
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie
des Métaux, 17
rue des Martyrs, F-38054 Grenoble, Cedex, France
| | - Vincent Artero
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie
des Métaux, 17
rue des Martyrs, F-38054 Grenoble, Cedex, France
| | - Haining Tian
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Leif Hammarström
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| |
Collapse
|
11
|
Qin C, Wang X, Zhou Z, Song J, Jia G, Ma S, Zhang J, Jiao Z, Zheng S. Ultrafast energy transfer dynamics in CsPbBr 3 nanoplatelets-BODIPY heterostructure. OPTICS EXPRESS 2024; 32:9306-9315. [PMID: 38571168 DOI: 10.1364/oe.516679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 04/05/2024]
Abstract
Understanding and directing the energy transfer in nanocrystals-chromophore heterostructure is critical to improve the efficiency of their photocatalytic and optoelectronic applications. In this work, we studied the energy transfer process between inorganic-organic molecular complexes composed of cesium halide perovskite nanoplatelets (CsPbBr3 NPLs) and boron dipyrromethene (BODIPY) by photoluminescence spectroscopy (PL), time-correlated single photon-counting (TCSPC) and femtosecond transient absorption spectroscopy. The quenching of PL in CsPbBr3 NPLs occurred simultaneously with the PL enhancement of BODIPY implied the singlet energy transfer process. The rate of energy transfer has been determined by transient absorption spectrum as kET = 3.8 × 109 s-1. The efficiency of Förster energy transfer (FRET) has been quantitatively calculated up to 70%. Our work advances the understanding of the interaction between BODIPY and perovskite nanoplatelets, providing a new solution based on their optoelectronic and photocatalytic applications.
Collapse
|
12
|
Rose MJ. Semiconductor Band Structure, Symmetry, and Molecular Interface Hybridization for the Chemist. J Am Chem Soc 2024; 146:5735-5748. [PMID: 38407043 DOI: 10.1021/jacs.3c07740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Merging molecular bonding concepts with semiconductor- and materials-based concepts of band structure is challenging due to the mutually exclusive historical development and notations used in those respective fields: symmetry adapted linear combinations (SALCs) and Mulliken terms for molecules, versus k space and Bloch sums for materials. This lack of commonality brings the issue of hybridization (aka electronic coupling) between molecules and materials to the forefront in many aspects of modern chemical research─including nanocrystal properties, solar energy conversion, and molecular computing. It is thus critical to establish a holistic approach to hybridizing orbital (molecule) and plane-wave (semiconductor/material) systems to better describe symmetry-based molecule|material bonding and the corresponding symmetry-adapted molecular orbital (MO) diagrams. Such a unified approach would enable the construction of testable hypotheses about the role of symmetry and electronic structure in determining the extent of electronic coupling between molecular orbitals and semiconductor band structure. This Perspective provides an analysis and compendium of "translations" between the physics and chemistry language of group theory. In this vein, this approach describes the symmetries─and corresponding point groups─that occur in k space along the available descent in symmetry pathways (k space vectors). As a result, chemists may arrive at a more intuitive understanding of the band symmetries of semiconductors, as well as insights into the corresponding algebraic formulations. This analysis can ultimately generate MO diagrams for hybrid molecule|material systems. Lastly, an Outlook provides some context to the application of this analysis to modern problems at the interface of molecular and materials chemistry.
Collapse
Affiliation(s)
- Michael J Rose
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Hernandez F, Yang M, Nagelj N, Lee AY, Noh H, Hur KP, Fu X, Savoie CJ, Schwartzberg AM, Olshansky JH. The role of surface functionalization in quantum dot-based photocatalytic CO 2 reduction: balancing efficiency and stability. NANOSCALE 2024. [PMID: 38414382 DOI: 10.1039/d3nr06177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Photocatalytic CO2 reduction offers a promising strategy to produce hydrocarbons without reliance on fossil fuels. Visible light-absorbing colloidal nanomaterials composed of earth-abundant metals suspended in aqueous media are particularly attractive owing to their low-cost, ease of separation, and highly modifiable surfaces. The current study explores such a system by employing water-soluble ZnSe quantum dots and a Co-based molecular catalyst. Water solubilization of the quantum dots is achieved with either carboxylate (3-mercaptopropionic acid) or ammonium (2-aminoethanethiol) functionalized ligands to produce nanoparticles with either negatively or positively-charged surfaces. Photocatalysis experiments are performed to compare the effectiveness of these two surface functionalization strategies on CO2 reduction and ultrafast spectroscopy is used to reveal the underlying photoexcited charge dynamics. We find that the positively-charged quantum dots can support sub-picosecond electron transfer to the carboxylate-based molecular catalyst and also produce >30% selectivity for CO and >170 mmolCO gZnSe-1. However, aggregation reduces activity in approximately one day. In contrast, the negatively-charged quantum dots exhibit >10 ps electron transfer and substantially lower CO selectivity, but they are colloidally stable for days. These results highlight the importance of the quantum dot-catalyst interaction for CO2 reduction. Furthermore, multi-dentate catalyst molecules create a trade-off between photocatalytic efficiency from strong interactions and deleterious aggregation of quantum dot-catalyst assemblies.
Collapse
Affiliation(s)
- Frida Hernandez
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA.
| | - Maggie Yang
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA.
| | - Nejc Nagelj
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA.
| | - Autumn Y Lee
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA.
| | - Hasun Noh
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA.
| | - Kyle P Hur
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA.
| | - Xinyu Fu
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA.
| | - Caleb J Savoie
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA.
| | - Adam M Schwartzberg
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
14
|
Chon B, Lee HJ, Kang Y, Kim HW, Kim CH, Son HJ. Investigation of Interface Characteristics and Physisorption Mechanism in Quantum Dots/TiO 2 Composite for Efficient and Sustainable Photoinduced Interfacial Electron Transfer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9414-9427. [PMID: 38334708 DOI: 10.1021/acsami.3c16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Owing to their superior stability compared to those of conventional molecular dyes, as well as their high UV-visible absorption capacity, which can be tuned to cover the majority of the solar spectrum through size adjustment, quantum dot (QD)/TiO2 composites are being actively investigated as photosensitizing components for diverse solar energy conversion systems. However, the conversion efficiencies and durabilities of QD/TiO2-based solar cells and photocatalytic systems are still inferior to those of conventional systems that employ organic/inorganic components as photosensitizers. This is because of the poor adsorption of QDs onto the TiO2 surface, resulting in insufficient interfacial interactions between the two. The mechanism underlying QD adsorption on the TiO2 surface and its relationship to the photosensitization process remain unclear. In this study, we established that the surface characteristics of the TiO2 semiconductor and the QDs (i.e., surface defects of the metal oxide and the surface structure of the QD core) directly affect the QD adsorption capacity by TiO2 and the interfacial interactions between the QDs and TiO2, which relates to the photosensitization process from the photoexcited QDs to TiO2 (QD* → TiO2). The interfacial interaction between the QDs and TiO2 is maximized when the shape/thickness-modulated triangular QDs are composited with defect-rich anatase TiO2. Comprehensive investigations through photodynamic analyses and surface evaluation using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and photocatalysis experiments collectively validate that tuning the surface properties of QDs and modulating the TiO2 defect concentration can synergistically amplify the interfacial interaction between the QDs and TiO2. This augmentation markedly improved the efficiency of photoinduced electron transfer from the photoexcited QDs to TiO2, resulting in significantly increased photocatalytic activity of the QD/TiO2 composite. This study provides the first in-depth characterization of the physical adhesion of QDs dispersed on a heterogeneous metal-oxide surface. Furthermore, the prepared QD/TiO2 composite exhibits exceptional adsorption stability, resisting QD detachment from the TiO2 surface over a wide pH range (pH = 2-12) in aqueous media as well as in nonaqueous solvents during two months of immersion. These findings can aid the development of practical QD-sensitized solar energy conversion systems that require the long-term stability of the photosensitizing unit.
Collapse
Affiliation(s)
- Bumsoo Chon
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyung Joo Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Yun Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyun Woo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
15
|
Harvey SM, Olshansky JH, Li A, Panuganti S, Kanatzidis MG, Hupp JT, Wasielewski MR, Schaller RD. Ligand Desorption and Fragmentation in Oleate-Capped CdSe Nanocrystals under High-Intensity Photoexcitation. J Am Chem Soc 2024; 146:3732-3741. [PMID: 38301030 DOI: 10.1021/jacs.3c10232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Semiconductor nanocrystals (NCs) offer prospective use as active optical elements in photovoltaics, light-emitting diodes, lasers, and photocatalysts due to their tunable optical absorption and emission properties, high stability, and scalable solution processing, as well as compatibility with additive manufacturing routes. Over the course of experiments, during device fabrication, or while in use commercially, these materials are often subjected to intense or prolonged electronic excitation and high carrier densities. The influence of such conditions on ligand integrity and binding remains underexplored. Here, we expose CdSe NCs to laser excitation and monitor changes in oleate that is covalently attached to the NC surface using nuclear magnetic resonance as a function of time and laser intensity. Higher photon doses cause increased rates of ligand loss from the particles, with upward of 50% total ligand desorption measured for the longest, most intense excitation. Surprisingly, for a range of excitation intensities, fragmentation of the oleate is detected and occurs concomitantly with formation of aldehydes, terminal alkenes, H2, and water. After illumination, NC size, shape, and bandgap remain constant although low-energy absorption features (Urbach tails) develop in some samples, indicating formation of substantial trap states. The observed reaction chemistry, which here occurs with low photon to chemical conversion efficiency, suggests that ligand reactivity may require examination for improved NC dispersion stability but can also be manipulated to yield desired photocatalytically accessed chemical species.
Collapse
Affiliation(s)
- Samantha M Harvey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Jacob H Olshansky
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Alice Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shobhana Panuganti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
16
|
Chakkamalayath J, Martin LE, Kamat PV. Extending Infrared Emission via Energy Transfer in a CsPbI 3-Cyanine Dye Hybrid. J Phys Chem Lett 2024; 15:401-407. [PMID: 38176062 DOI: 10.1021/acs.jpclett.3c03144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Directing energy flow in light harvesting assemblies of nanocrystal-chromophore hybrid systems requires a better understanding of factors that dictate excited-state processes. In this study, we explore excited-state interactions within the CsPbI3-cyanine dye (IR125) hybrid assembly through a comprehensive set of steady-state and time-resolved absorption and photoluminescence (PL) experiments. Our photoluminescence investigations reveal the quenching of CsPbI3 emission alongside the simultaneous enhancement of IR125 fluorescence, providing evidence for a singlet energy transfer. The evaluation of both photoluminescence (PL) quenching and PL decay measurements yield ∼94% energy transfer efficiency for the CsPbI3-IR125 hybrid assembly. Transient absorption spectroscopy further unveils that this singlet energy transfer process operates on an ultrafast time scale, occurring within 400 ps with a rate constant of energy transfer of 1.4 × 1010 s-1. Our findings highlight the potential of the CsPbI3-IR125 hybrid assembly to extend the emission of halide perovskites into the infrared region, paving the way for light energy harvesting and display applications.
Collapse
Affiliation(s)
- Jishnudas Chakkamalayath
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lauren E Martin
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
17
|
Dabbous A, Bauer P, Marcucci C, Périé S, Gahlot S, Lombard C, Caillat S, Ravanat JL, Mouesca JM, Kodjikian S, Barbara A, Dubois F, Maurel V. Hybrid CdSe/ZnS Quantum Dot-Gold Nanoparticle Composites Assembled by Click Chemistry: Toward Affordable and Efficient Redox Photocatalysts Working with Visible Light. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56167-56180. [PMID: 38058110 DOI: 10.1021/acsami.3c12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A new modular, easy-to-synthesize photocatalyst was prepared by assembling colloidal CdSe/ZnS quantum dots (QD) and gold nanoparticles (AuNP) via their ligands thanks to copper-catalyzed azide to alkyne cycloaddition (CuAAC) click chemistry. The resulting composite (QD-AuNP) photocatalyst was tested with a benchmark photoredox system previously reported by our group, for which QD alone acted as a photocatalyst but with a modest quantum yield (QY = 0.06%) and turnover number (TON = 350 in 3 h) due to poor charge separation. After optimization, the QD-AuNP composites exhibited much improved photocatalytic performances: up to five times higher TON (2600 in 3 h) and up to 24 times faster reaction in the first 10 min of visible irradiation. Such an improvement is attributed to an efficient electron transfer from QD to AuNP in the photoexcited QD-AuNP composites, which ensures a much better charge separation than that in QD alone. This was confirmed by studying both (i) the quenching of the QD photoluminescence during the synthesis of the QD-AuNP composites and (ii) the blue shift of the AuNP plasmon absorption band due to the accumulation of up to 7400 electrons per AuNP in QD-AuNP composites under visible light irradiation in the presence of electron donors.
Collapse
Affiliation(s)
- Ali Dabbous
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Pierre Bauer
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Coralie Marcucci
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Sandy Périé
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Sapna Gahlot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Christian Lombard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Sylvain Caillat
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Stéphanie Kodjikian
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Aude Barbara
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Fabien Dubois
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Vincent Maurel
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| |
Collapse
|
18
|
Cao W, Zhang W, Dong L, Ma Z, Xu J, Gu X, Chen Z. Progress on quantum dot photocatalysts for biomass valorization. EXPLORATION (BEIJING, CHINA) 2023; 3:20220169. [PMID: 38264688 PMCID: PMC10742202 DOI: 10.1002/exp.20220169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 01/25/2024]
Abstract
Biomass with abundant reproducible carbon resource holds great promise as an intriguing substitute for fossil fuels in the manufacture of high-value-added chemicals and fuels. Photocatalytic biomass valorization using inexhaustible solar energy enables to accurately break desired chemical bonds or selectively functionalize particular groups, thus emerging as an extremely creative and low carbon cost strategy for relieving the dilemma of the global energy. Quantum dots (QDs) are an outstandingly dynamic class of semiconductor photocatalysts because of their unique properties, which have achieved significant successes in various photocatalytic applications including biomass valorization. In this review, the current development rational design for QDs photocatalytic biomass valorization effectively is highlighted, focusing on the principles of tuning their particle size, structure, and surface properties, with special emphasis on the effect of the ligands for selectively broken chemical bonds (C─O, C─C) of biomass. Finally, the present issues and possibilities within that exciting field are described.
Collapse
Affiliation(s)
- Weijing Cao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Wenjun Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Lin Dong
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Zhuang Ma
- Leibniz‐Institut für Katalyse e.V.RostockGermany
| | - Jingsan Xu
- School of Chemistry and Physics and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Xiaoli Gu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Zupeng Chen
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| |
Collapse
|
19
|
Chen B, Zheng W, Chun F, Xu X, Zhao Q, Wang F. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chem Soc Rev 2023; 52:8374-8409. [PMID: 37947021 DOI: 10.1039/d3cs00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper indium sulfide (CuInS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap with a high absorption coefficient. In attempts to explore their practical applications, nanoscale CuInS2 has been synthesized with crystal sizes down to the quantum confinement regime. The merits of CuInS2 nanocrystals (NCs) include wide emission tunability, a large Stokes shift, long decay time, and eco-friendliness, making them promising candidates in photoelectronics and photovoltaics. Over the past two decades, advances in wet-chemistry synthesis have achieved rational control over cation-anion reactivity during the preparation of colloidal CuInS2 NCs and post-synthesis cation exchange. The precise nano-synthesis coupled with a series of hybridization strategies has given birth to a library of CuInS2 NCs with highly customizable photophysical properties. This review article focuses on the recent development of CuInS2 NCs enabled by advanced synthetic and hybridization techniques. We show that the state-of-the-art CuInS2 NCs play significant roles in optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
20
|
Wang Z, Ma H, Zhang J, Lan Y, Liu JX, Yuan SF, Zhou XP, Li X, Qin C, Li DS, Wu T. The interface microenvironment mediates the emission of a semiconductor nanocluster via surface-dopant-involving direct charge transfer. Chem Sci 2023; 14:10308-10317. [PMID: 37772105 PMCID: PMC10530896 DOI: 10.1039/d3sc03091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
The interface microenvironment of doped quantum dots (QDs) is crucial in optimizing the properties associated with the photogenerated excitons. However, the imprecision of QDs' surface structures and compositions impedes a thorough understanding of the modulation mechanism caused by the complex interface microenvironment, particularly distinguishing the contribution of surface dopants from inner ones. Herein, we investigated interface-mediated emission using a unique model of an atomically precise chalcogenide semiconductor nanocluster containing uniform near-surface Mn2+ dopants. Significantly, we discovered that Mn2+ ions can directly transfer charges with hydrogen-bonding-bound electron-rich alkylamines with matched molecular configurations and electronic structures at the interface. This work provides a new pathway, the use of atomically precise nanoclusters, for analyzing and enhancing the interface-dependent properties of various doped QDs, including chalcogenides and perovskites.
Collapse
Affiliation(s)
- Zhiqiang Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Hao Ma
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 China
| | - Jiaxu Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Yingjia Lan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Jia-Xing Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 China
| | - Shang-Fu Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 China
| | - Xiaohong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Chaochao Qin
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University Xinxiang 453007 China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang Hubei 443002 China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
21
|
Sowa JK, Roberts ST, Rossky PJ. Exploring Configurations of Nanocrystal Ligands Using Machine-Learned Force Fields. J Phys Chem Lett 2023; 14:7215-7222. [PMID: 37552568 DOI: 10.1021/acs.jpclett.3c01618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Semiconducting nanocrystals passivated with organic ligands have emerged as a powerful platform for light harvesting, light-driven chemical reactions, and sensing. Due to their complexity and size, little structural information is available from experiments, making these systems challenging to model computationally. Here, we develop a machine-learned force field trained on DFT data and use it to investigate the surface chemistry of a PbS nanocrystal interfaced with acetate ligands. In doing so, we go beyond considering individual local minimum energy geometries and, importantly, circumvent a precarious issue associated with the assumption of a single assigned atomic partial charge for each element in a nanocrystal, independent of its structural position. We demonstrate that the carboxylate ligands passivate the metal-rich surfaces by adopting a very wide range of "tilted-bridge" and "bridge" geometries and investigate the corresponding ligand IR spectrum. This work illustrates the potential of machine-learned force fields to transform computational modeling of these materials.
Collapse
Affiliation(s)
- Jakub K Sowa
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Adapting Flaws into Features, Rice University, Houston, Texas 77005, United States
| | - Sean T Roberts
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Adapting Flaws into Features, Rice University, Houston, Texas 77005, United States
| | - Peter J Rossky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Adapting Flaws into Features, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
22
|
Zhu LB, Bao N, Zhang Q, Ding SN. Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO 2 Heterojunction. Molecules 2023; 28:5437. [PMID: 37513309 PMCID: PMC10385498 DOI: 10.3390/molecules28145437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Lower light absorption and faster carrier recombination are significant challenges in photocatalysis. This study introduces a novel approach to address these challenges by anchoring cadmium sulfide quantum dots (CdS QDs) on inverse opal (IO)-TiO2, which increases light absorption and promotes carriers' separation by coupling slow-photon effect with Z-scheme charge transfer. Specifically, the IO-TiO2 was created by etching a polystyrene opal template, which resulted in a periodic structure that enhances light absorption by reflecting light in the stop band. The size of CdS quantum dots (QDs) was regulated to achieve appropriate alignment of energy bands between CdS QDs and IO-TiO2, promoting carrier transfer through alterations in charge transfer modes and resulting in synergistic-amplified photocatalysis. Theoretical simulations and electrochemical investigations demonstrated the coexistence of slow-photon effects and Z-scheme transfer. The system's photodegradation performance was tested using rhodamine B as a model. This novel hierarchical structure of the Z-scheme heterojunction exhibits degradability 7.82 and 4.34 times greater than pristine CdS QDs and IO-TiO2, respectively. This study serves as a source of inspiration for enhancing the photocatalytic capabilities of IO-TiO2 and broadening its scope of potential applications.
Collapse
Affiliation(s)
- Li-Bang Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong 226019, China
| | - Qing Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Shou-Nian Ding
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
23
|
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int J Mol Sci 2023; 24:ijms24108605. [PMID: 37239950 DOI: 10.3390/ijms24108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
24
|
Munusamy S, Mandlimath TR, Swetha P, Al-Sehemi AG, Pannipara M, Koppala S, Paramasivam S, Boonyuen S, Pothu R, Boddula R. Nitrogen-doped carbon dots: Recent developments in its fluorescent sensor applications. ENVIRONMENTAL RESEARCH 2023; 231:116046. [PMID: 37150390 DOI: 10.1016/j.envres.2023.116046] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Doped carbon dots have attracted great attention from researchers across disciplines because of their unique characteristics, such as their low toxicity, physiochemical stability, photostability, and outstanding biocompatibility. Nitrogen is one of the most commonly used elements for doping because of its sizeable atomic radius, strong electronegativity, abundance, and availability of electrons. This distinguishes them from other atoms and allows them to perform distinctive roles in various applications. Here, we have reviewed the most current breakthroughs in nitrogen-doped CDs (N-CDs) for fluorescent sensor applications in the last five years. The first section of the article addresses several synthetic and sustainable ways of making N-CDs. Next, we briefly reviewed the fluorescent features of N-CDs and their sensing mechanism. Furthermore, we have thoroughly reviewed their fluorescent sensor applications as sensors for cations, anions, small molecules, enzymes, antibiotics, pathogens, explosives, and pesticides. Finally, we have discussed the N-CDs' potential future as primary research and how that may be used. We hope that this study will contribute to a better understanding of the principles of N-CDs and the sensory applications that they can serve.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Angkok, 10330, Pathumwan, Thailand.
| | - Triveni Rajashekhar Mandlimath
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, G-30, Inavolu, Besides AP Secretariat Amaravati, Andhra Pradesh, India
| | - Puchakayala Swetha
- Department of Chemistry, Oakland University, Rochester, MI, 48309, United States
| | | | | | - Sivasankar Koppala
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - Shanmugam Paramasivam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Ramyakrishna Pothu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University Doha, 2713, Qatar.
| |
Collapse
|
25
|
Yu YQ, Chen WQ, Li XH, Liu M, He XH, Liu Y, Jiang FL. Quantum Dots Meet Enzymes: Hydrophobicity of Surface Ligands and Size Do Matter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3967-3978. [PMID: 36877959 DOI: 10.1021/acs.langmuir.2c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Colloidal quantum dots (QDs) are a class of representative fluorescent nanomaterials with tunable, bright, and sharp fluorescent emission, with promising biomedical applications. However, their effects on biological systems are not fully elucidated. In this work, we investigated the interactions between QDs with different surface ligands and different particle sizes and α-chymotrypsin (ChT) from the thermodynamic and kinetic perspectives. Enzymatic activity experiments demonstrated that the catalytic activity of ChT was strongly inhibited by QDs coated with dihydrolipoic acid (DHLA-QDs) with noncompetitive inhibitions, whereas the QDs coated with glutathione (GSH-QDs) had weak effects. Furthermore, kinetics studies showed that different particle sizes of DHLA-QDs all had high suppressive effects on the catalytic activity of ChT. It was found that DHLA-QDs with larger particle sizes had stronger inhibition effects because more ChT molecules were bound onto the surface of QDs. This work highlights the importance of hydrophobic ligands and particle sizes of QDs, which should be considered as the primary influencing factors in the assessment of biosafety. Meanwhile, the results herein can also inspire the design of nano inhibitors.
Collapse
Affiliation(s)
- Ying-Qi Yu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Han Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Meng Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Hang He
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
26
|
Zhang LX, Qi MY, Tang ZR, Xu YJ. Heterostructure-Engineered Semiconductor Quantum Dots toward Photocatalyzed-Redox Cooperative Coupling Reaction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0073. [PMID: 36930756 PMCID: PMC10013965 DOI: 10.34133/research.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Semiconductor quantum dots have been emerging as one of the most ideal materials for artificial photosynthesis. Here, we report the assembled ZnS-CdS hybrid heterostructure for efficient coupling cooperative redox catalysis toward the oxidation of 1-phenylethanol to acetophenone/2,3-diphenyl-2,3-butanediol (pinacol) integrated with the reduction of protons to H2. The strong interaction and typical type-I band-position alignment between CdS quantum dots and ZnS quantum dots result in efficient separation and transfer of electron-hole pairs, thus distinctly enhancing the coupled photocatalyzed-redox activity and stability. The optimal ZnS-CdS hybrid also delivers a superior performance for various aromatic alcohol coupling photoredox reaction, and the ratio of electrons and holes consumed in such redox reaction is close to 1.0, indicating a high atom economy of cooperative coupling catalysis. In addition, by recycling the scattered light in the near field of a SiO2 sphere, the SiO2-supported ZnS-CdS (denoted as ZnS-CdS/SiO2) catalyst can further achieve a 3.5-fold higher yield than ZnS-CdS hybrid. Mechanistic research clarifies that the oxidation of 1-phenylethanol proceeds through the pivotal radical intermediates of •C(CH3)(OH)Ph. This work is expected to promote the rational design of semiconductor quantum dots-based heterostructured catalysts for coupling photoredox catalysis in organic synthesis and clean fuels production.
Collapse
Affiliation(s)
- Lin-Xing Zhang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
27
|
Lu S, Morrow DJ, Li Z, Guo C, Yu X, Wang H, Schultz JD, O'Connor JP, Jin N, Fang F, Wang W, Cui R, Chen O, Su C, Wasielewski MR, Ma X, Li X. Encapsulating Semiconductor Quantum Dots in Supramolecular Cages Enables Ultrafast Guest-Host Electron and Vibrational Energy Transfer. J Am Chem Soc 2023; 145:5191-5202. [PMID: 36745391 DOI: 10.1021/jacs.2c11981] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the field of supramolecular chemistry, host-guest systems have been extensively explored to encapsulate a wide range of substrates, owing to emerging functionalities in nanoconfined space that cannot be achieved in dilute solutions. However, host-guest chemistry is still limited to encapsulation of small guests. Herein, we construct a water-soluble metallo-supramolecular hexagonal prism with a large hydrophobic cavity by anchoring multiple polyethylene glycol chains onto the building blocks. Then, assembled prisms are able to encapsulate quantum dots (QDs) with diameters of less than 5.0 nm. Furthermore, we find that the supramolecular cage around each QD strongly modifies the photophysics of the QD by universally increasing the rates of QD relaxation processes via ultrafast electron and vibrational energy transfer. Taken together, these efforts expand the scope of substrates in host-guest systems and provide a new approach to tune the optical properties of QDs.
Collapse
Affiliation(s)
- Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Darien J Morrow
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Center for Molecular Quantum Transduction, Northwestern-Argonne Institute of Science and Engineering, 2205 Tech Drive, Evanston, Illinois 60208, United States.,Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
28
|
Shulenberger KE, Jilek MR, Sherman SJ, Hohman BT, Dukovic G. Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods. Chem Rev 2023; 123:3852-3903. [PMID: 36881852 DOI: 10.1021/acs.chemrev.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The cylindrical quasi-one-dimensional shape of colloidal semiconductor nanorods (NRs) gives them unique electronic structure and optical properties. In addition to the band gap tunability common to nanocrystals, NRs have polarized light absorption and emission and high molar absorptivities. NR-shaped heterostructures feature control of electron and hole locations as well as light emission energy and efficiency. We comprehensively review the electronic structure and optical properties of Cd-chalcogenide NRs and NR heterostructures (e.g., CdSe/CdS dot-in-rods, CdSe/ZnS rod-in-rods), which have been widely investigated over the last two decades due in part to promising optoelectronic applications. We start by describing methods for synthesizing these colloidal NRs. We then detail the electronic structure of single-component and heterostructure NRs and follow with a discussion of light absorption and emission in these materials. Next, we describe the excited state dynamics of these NRs, including carrier cooling, carrier and exciton migration, radiative and nonradiative recombination, multiexciton generation and dynamics, and processes that involve trapped carriers. Finally, we describe charge transfer from photoexcited NRs and connect the dynamics of these processes with light-driven chemistry. We end with an outlook that highlights some of the outstanding questions about the excited state properties of Cd-chalcogenide NRs.
Collapse
Affiliation(s)
| | - Madison R Jilek
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Skylar J Sherman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin T Hohman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States.,Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
29
|
Lee AY, Colleran TA, Jain A, Niklas J, Rugg BK, Mani T, Poluektov OG, Olshansky JH. Quantum Dot-Organic Molecule Conjugates as Hosts for Photogenerated Spin Qubit Pairs. J Am Chem Soc 2023; 145:4372-4377. [PMID: 36753287 DOI: 10.1021/jacs.2c11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The inherent spin polarization present in photogenerated spin-correlated radical pairs makes them promising candidates for quantum computing and quantum sensing applications. The spin states of these systems can be probed and manipulated with microwave pulses using electron paramagnetic resonance spectrometers. However, to date, there are no reports on magnetic resonance-based spin measurements of photogenerated spin-correlated radical pairs hosted on quantum dots. In the current work, we prepare dye molecule-inorganic quantum dot conjugates and show that they can produce photogenerated spin-polarized states. The dye molecule, D131, is chosen for its ability to undergo efficient charge separation, and the nanoparticle materials, ZnO quantum dots, are chosen for their promising spin properties. Transient and steady state optical spectroscopy performed on ZnO quantum dot-D131 conjugates shows that reversible photogenerated charge separation is occurring. Transient and pulsed electron paramagnetic resonance experiments are then performed on the photogenerated radical pair, which demonstrate that (1) the radical pair is polarized at moderate temperatures and well modeled by existing theories and (2) the spin states can be accessed and manipulated with microwave pulses. This work opens the door to a new class of promising qubit materials that can be photogenerated in polarized states and hosted by highly tailorable inorganic nanoparticles.
Collapse
Affiliation(s)
- Autumn Y Lee
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Troy A Colleran
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Amisha Jain
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Brandon K Rugg
- Chemistry and Nanosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jacob H Olshansky
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| |
Collapse
|
30
|
He S, Du J, Liang W, Zhang B, Liang G, Wu K. Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202217287. [PMID: 36517417 DOI: 10.1002/anie.202217287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
As an analogue to thermally activated delayed fluorescence (TADF) of organic molecules, thermally activated delayed photoluminescence (TADPL) observed in molecule-functionalized semiconductor nanocrystals represents an exotic mechanism to harvest energy from dark molecular triplets and to obtain controllable, long-lived PL from nanocrystals. The reported TADPL systems have successfully covered the visible spectrum. However, TADF molecules already emit very efficiently in the visible, diminishing the technological impact of the less-efficient nanocrystal-molecule TADPL. Here we report bright, near-infrared TADPL in lead-free CuInSe2 nanocrystals functionalized with carboxylated tetracene ligands, which results from efficient triplet energy transfer from photoexcited nanocrystals to ligands, followed with thermally activated reverse energy transfer from ligand triplets back to nanocrystals. This strategy prolonged the nanocrystal exciton lifetime from 100 ns to 60 μs at room temperature.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jun Du
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenfei Liang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Boyu Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
31
|
Talha-Dean T, Chen K, Mastroianni G, Gesuele F, Mol J, Palma M. Nanoscale Control of DNA-Linked MoS 2-Quantum Dot Heterostructures. Bioconjug Chem 2023; 34:78-84. [PMID: 35969686 PMCID: PMC9853502 DOI: 10.1021/acs.bioconjchem.2c00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Indexed: 01/24/2023]
Abstract
The ability to control the assembly of mixed-dimensional heterostructures with nanoscale control is key for the fabrication of novel nanohybrid systems with new functionalities, particularly for optoelectronics applications. Herein we report a strategy to control the assembly of heterostructures and tune their electronic coupling employing DNA as a linker. We functionalized MoS2 nanosheets (NSs) with biotin-terminated dsDNA employing three different chemical strategies, namely, thiol, maleimide, and aryl diazonium. This allowed us to then tether streptavidinated quantum dots (QDs) to the DNA functionalized MoS2 surface via biotin-avidin recognition. Nanoscale control over the separation between QDs and NSs was achieved by varying the number of base pairs (bp) constituting the DNA linker, between 10, 20, and 30 bp, corresponding to separations of 3.4, 6.8, and 13.6 nm, respectively. Spectroscopic data confirmed the successful functionalization, while atomic force and transmission electron microscopy were employed to image the nanohybrids. In solution steady-state and time-resolved photoluminescence demonstrated the electronic coupling between the two nanostructures, that in turn was observed to progressively scale as a function of DNA linker employed and hence distance between the two nanomoieties in the hybrids.
Collapse
Affiliation(s)
- Teymour Talha-Dean
- Department
of Physics and Astronomy, Queen Mary University
of London, London, E1 4NS, United Kingdom
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 138634, Singapore
| | - Kai Chen
- Department
of Chemistry, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Giulia Mastroianni
- School
of Biological and Behavioral Sciences, Queen
Mary University of London, London, E1 4NS, United Kingdom
| | - Felice Gesuele
- Department
of Physics “Ettore Pancini”, University of Naples “Federico II”, Via Cinthia, 21 Ed. 6, 80126 Napoli, Italy
| | - Jan Mol
- Department
of Physics and Astronomy, Queen Mary University
of London, London, E1 4NS, United Kingdom
| | - Matteo Palma
- Department
of Chemistry, Queen Mary University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
32
|
Zhao G, Ma W, Yu S, Zhang J, Wu K. Orbital Mixing between Colloidal Quantum Dots and Surface-Bound Molecules. J Phys Chem Lett 2022; 13:11892-11898. [PMID: 36524775 DOI: 10.1021/acs.jpclett.2c03538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Orbital mixing is paramount to chemistry as it plays a central role in bond formation. It is also important for technologies such as molecular doping of polymers, where the concept of fractional charge transfer is essentially orbital mixing between dopants and hosts. Likewise, it would be both fundamentally interesting and technologically relevant to investigate orbital mixing in emerging hybrid materials containing both inorganic and organic moieties. Here we report experimental observation of orbital mixing between valence band levels of strongly confined PbS quantum dots (QDs) and lowest unoccupied molecular levels of surface-bound high-electron affinity molecules (F4TCNQ), manifested as both an absorption blue-shift of PbS and the emergence of visible and infrared signatures of the fractional charge-transfer species of F4TCNQ. The degree of mixing can be controlled by varying the QD size or by varying the molecule/QD ratio for a specific QD size and can be quantitatively reproduced by a nondegenerate, two-level perturbation model.
Collapse
Affiliation(s)
- Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Wenkai Ma
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei430074, China
| | - Shuwen Yu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, China
| | - Jianbing Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei430074, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
33
|
Privitera A, Macaluso E, Chiesa A, Gabbani A, Faccio D, Giuri D, Briganti M, Giaconi N, Santanni F, Jarmouni N, Poggini L, Mannini M, Chiesa M, Tomasini C, Pineider F, Salvadori E, Carretta S, Sessoli R. Direct detection of spin polarization in photoinduced charge transfer through a chiral bridge. Chem Sci 2022; 13:12208-12218. [PMID: 36349110 PMCID: PMC9601404 DOI: 10.1039/d2sc03712b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/03/2022] [Indexed: 12/26/2022] Open
Abstract
It is well assessed that the charge transport through a chiral potential barrier can result in spin-polarized charges. The possibility of driving this process through visible photons holds tremendous potential for several aspects of quantum information science, e.g., the optical control and readout of qubits. In this context, the direct observation of this phenomenon via spin-sensitive spectroscopies is of utmost importance to establish future guidelines to control photo-driven spin selectivity in chiral structures. Here, we provide direct proof that time-resolved electron paramagnetic resonance (EPR) can be used to detect long-lived spin polarization generated by photoinduced charge transfer through a chiral bridge. We propose a system comprising CdSe quantum dots (QDs), as a donor, and C60, as an acceptor, covalently linked through a saturated oligopeptide helical bridge (χ) with a rigid structure of ∼10 Å. Time-resolved EPR spectroscopy shows that the charge transfer in our system results in a C60 radical anion, whose spin polarization maximum is observed at longer times with respect to that of the photogenerated C60 triplet state. Notably, the theoretical modelling of the EPR spectra reveals that the observed features may be compatible with chirality-induced spin selectivity, but the electronic features of the QD do not allow the unambiguous identification of the CISS effect. Nevertheless, we identify which parameters need optimization for unambiguous detection and quantification of the phenomenon. This work lays the basis for the optical generation and direct manipulation of spin polarization induced by chirality.
Collapse
Affiliation(s)
- Alberto Privitera
- Department of Chemistry and NIS Centre, University of Torino Via Giuria 7 Torino I-10125 Italy
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
| | - Emilio Macaluso
- Department of Mathematical, Physical and Computer Sciences, University of Parma & UdR INSTM I-43124 Parma Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma I-43124 Parma Italy
| | - Alessandro Chiesa
- Department of Mathematical, Physical and Computer Sciences, University of Parma & UdR INSTM I-43124 Parma Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma I-43124 Parma Italy
| | - Alessio Gabbani
- Department of Chemistry and Industrial Chemistry, University of Pisa & UdR INSTM Pisa Via Moruzzi 13 Pisa I-56124 Italy
| | - Davide Faccio
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via Selmi 2 Bologna I-40126 Italy
| | - Demetra Giuri
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via Selmi 2 Bologna I-40126 Italy
| | - Matteo Briganti
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
| | - Niccolò Giaconi
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
- Department of Industrial Engineering (DIEF), University of Florence & UdR INSTM Firenze Via Santa Marta 3 Firenze I-50139 Italy
| | - Fabio Santanni
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
| | - Nabila Jarmouni
- Department of Chemistry and Industrial Chemistry, University of Pisa & UdR INSTM Pisa Via Moruzzi 13 Pisa I-56124 Italy
| | - Lorenzo Poggini
- CNR-ICCOM Via Madonna del Piano 10 Sesto Fiorentino I-50019 Italy
| | - Matteo Mannini
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
| | - Mario Chiesa
- Department of Chemistry and NIS Centre, University of Torino Via Giuria 7 Torino I-10125 Italy
| | - Claudia Tomasini
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via Selmi 2 Bologna I-40126 Italy
| | - Francesco Pineider
- Department of Chemistry and Industrial Chemistry, University of Pisa & UdR INSTM Pisa Via Moruzzi 13 Pisa I-56124 Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre, University of Torino Via Giuria 7 Torino I-10125 Italy
| | - Stefano Carretta
- Department of Mathematical, Physical and Computer Sciences, University of Parma & UdR INSTM I-43124 Parma Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma I-43124 Parma Italy
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
| |
Collapse
|
34
|
Kim J, Kim Y, Park K, Boeffel C, Choi HS, Taubert A, Wedel A. Ligand Effect in 1-Octanethiol Passivation of InP/ZnSe/ZnS Quantum Dots-Evidence of Incomplete Surface Passivation during Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203093. [PMID: 36069261 DOI: 10.1002/smll.202203093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol, is demonstrated. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanethiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bind on the incomplete QD surface. These systematic chemical analyses, such as thermogravimetric analysis-mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD-LEDs). It is believed that this better understanding can lead to industrially feasible QD-LEDs.
Collapse
Affiliation(s)
- Jiyong Kim
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, 14476, Potsdam, Germany
| | - Yohan Kim
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, 14476, Potsdam, Germany
| | - Kyoungwon Park
- Display Research Center, Korea Electronics Technology Institute, Seongnam-si, Gyeonggi-do, 05658, Korea
| | - Christine Boeffel
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, 14476, Potsdam, Germany
| | - Hyung-Seok Choi
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, 14476, Potsdam, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Armin Wedel
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, 14476, Potsdam, Germany
| |
Collapse
|
35
|
Bi X, Li L, Luo L, Liu X, Li J, You T. A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chem 2022; 385:132657. [DOI: 10.1016/j.foodchem.2022.132657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 12/26/2022]
|
36
|
Jasrasaria D, Weinberg D, Philbin JP, Rabani E. Simulations of nonradiative processes in semiconductor nanocrystals. J Chem Phys 2022; 157:020901. [PMID: 35840368 DOI: 10.1063/5.0095897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The description of carrier dynamics in spatially confined semiconductor nanocrystals (NCs), which have enhanced electron-hole and exciton-phonon interactions, is a great challenge for modern computational science. These NCs typically contain thousands of atoms and tens of thousands of valence electrons with discrete spectra at low excitation energies, similar to atoms and molecules, that converge to the continuum bulk limit at higher energies. Computational methods developed for molecules are limited to very small nanoclusters, and methods for bulk systems with periodic boundary conditions are not suitable due to the lack of translational symmetry in NCs. This perspective focuses on our recent efforts in developing a unified atomistic model based on the semiempirical pseudopotential approach, which is parameterized by first-principle calculations and validated against experimental measurements, to describe two of the main nonradiative relaxation processes of quantum confined excitons: exciton cooling and Auger recombination. We focus on the description of both electron-hole and exciton-phonon interactions in our approach and discuss the role of size, shape, and interfacing on the electronic properties and dynamics for II-VI and III-V semiconductor NCs.
Collapse
Affiliation(s)
- Dipti Jasrasaria
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel Weinberg
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John P Philbin
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
37
|
DuBose JT, Kamat PV. Energy Versus Electron Transfer: Managing Excited-State Interactions in Perovskite Nanocrystal-Molecular Hybrids. Chem Rev 2022; 122:12475-12494. [PMID: 35793168 DOI: 10.1021/acs.chemrev.2c00172] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Energy and electron transfer processes in light harvesting assemblies dictate the outcome of the overall light energy conversion process. Halide perovskite nanocrystals such as CsPbBr3 with relatively high emission yield and strong light absorption can transfer singlet and triplet energy to surface-bound acceptor molecules. They can also induce photocatalytic reduction and oxidation by selectively transferring electrons and holes across the nanocrystal interface. This perspective discusses key factors dictating these excited-state pathways in perovskite nanocrystals and the fundamental differences between energy and electron transfer processes. Spectroscopic methods to decipher between these complex photoinduced pathways are presented. A basic understanding of the fundamental differences between the two excited deactivation processes (charge and energy transfer) and ways to modulate them should enable design of more efficient light harvesting assemblies with semiconductor and molecular systems.
Collapse
Affiliation(s)
- Jeffrey T DuBose
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
38
|
Fort MJ, Click SM, Robinson EH, He FMC, Bernhardt PV, Rosenthal SJ, Macdonald JE. Minimizing the Reorganization Energy of Cobalt Redox Mediators Maximizes Charge Transfer Rates from Quantum Dots. Angew Chem Int Ed Engl 2022; 61:e202202322. [DOI: 10.1002/anie.202202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Madeleine J. Fort
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Sophia M. Click
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Evan H. Robinson
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Felix M. C. He
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane Queensland 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane Queensland 4072 Australia
| | - Sandra J. Rosenthal
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Janet E. Macdonald
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| |
Collapse
|
39
|
Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. J Am Chem Soc 2022; 144:12229-12246. [PMID: 35772053 DOI: 10.1021/jacs.2c03235] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI2 are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li0 and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases, low stability of catalytic intermediates can limit turnover numbers. Herein, we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue light-emitting diodes (LEDs) and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs SCE are photoreductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small-molecule catalysts, QDs are stable under these conditions and turnover numbers up to 47 500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of benzyl-protected alcohols, and reductive ring opening of cyclopropane carboxylic acid derivatives.
Collapse
Affiliation(s)
- Jonas K Widness
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | - Daniel G Enny
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | | | - Mahilet T Miedenbauer
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Daniel J Weix
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
40
|
Ballabio M, Cánovas E. Electron Transfer at Quantum Dot–Metal Oxide Interfaces for Solar Energy Conversion. ACS NANOSCIENCE AU 2022; 2:367-395. [PMID: 36281255 PMCID: PMC9585894 DOI: 10.1021/acsnanoscienceau.2c00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Electron transfer
at a donor–acceptor quantum dot–metal
oxide interface is a process fundamentally relevant to solar energy
conversion architectures as, e.g., sensitized solar cells and solar
fuels schemes. As kinetic competition at these technologically relevant
interfaces largely determines device performance, this Review surveys
several aspects linking electron transfer dynamics and device efficiency;
this correlation is done for systems aiming for efficiencies up to
and above the ∼33% efficiency limit set by Shockley and Queisser
for single gap devices. Furthermore, we critically comment on common
pitfalls associated with the interpretation of kinetic data obtained
from current methodologies and experimental approaches, and finally,
we highlight works that, to our judgment, have contributed to a better
understanding of the fundamentals governing electron transfer at quantum
dot–metal oxide interfaces.
Collapse
Affiliation(s)
- Marco Ballabio
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| | - Enrique Cánovas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| |
Collapse
|
41
|
Zhou Y, Garoufalis CS, Baskoutas S, Zeng Z, Jia Y. Twisting Enabled Charge Transfer Excitons in Epitaxially Fused Quantum Dot Molecules. NANO LETTERS 2022; 22:4912-4918. [PMID: 35639504 DOI: 10.1021/acs.nanolett.2c01459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A heterojunction with type-II band alignment has long been considered as a prerequisite to realize charge transfer (CT) excitons which are highly appealing for exploration of quantum many-body phenomena, such as excitonic Bose-Einstein condensation and superfluidity. Herein, we have shown CT excitons can be activated via twisting in epitaxially fused heterodimer quantum dot (QD) molecules with quasi type-II band alignment, and even in QD homodimer molecules, therefore breaking the constraint of band alignment. The enabling power of twisting has been revealed. It modulates the orbital spatial localization toward charge separation that is mandatory for CT excitons. Meanwhile, it manifests an effective band offset that counterbalances the distinct many-body effects felt by excitons of different nature, thus ensuring the successful generation of CT excitons. The present work extends the realm of twistroincs into zero-dimensional materials and opens a novel pathway of manipulating the properties of QD materials and closely related molecular systems.
Collapse
Affiliation(s)
- Yamei Zhou
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, and School of Materials Science and Engineering, Henan University, Kaifeng, Henan 475001, China
| | | | - Sotirios Baskoutas
- Materials Science Department, University of Patras, 26504 Patras, Greece
| | - Zaiping Zeng
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, and School of Materials Science and Engineering, Henan University, Kaifeng, Henan 475001, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, and School of Materials Science and Engineering, Henan University, Kaifeng, Henan 475001, China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
42
|
Fort MJ, Click SM, Robinson EH, He FMC, Bernhardt PV, Rosenthal SJ, Macdonald JE. Minimizing the Reorganization Energy of Cobalt Redox Mediators Maximizes Charge Transfer Rates from Quantum Dots. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Madeleine J. Fort
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Sophia M. Click
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Evan H. Robinson
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Felix M. C. He
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane Queensland 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane Queensland 4072 Australia
| | - Sandra J. Rosenthal
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Janet E. Macdonald
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| |
Collapse
|
43
|
Ning K, Sun Y, Liu J, Fu Y, Ye K, Liang J, Wu Y. Research Update of Emergent Sulfur Quantum Dots in Synthesis and Sensing/Bioimaging Applications. Molecules 2022; 27:2822. [PMID: 35566170 PMCID: PMC9100340 DOI: 10.3390/molecules27092822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Due to their unique optical property, low toxicity, high hydrophilicity, and low cost, sulfur quantum dots (SQDs), an emerging luminescent nanomaterial, have shown great potential in various application fields, such as sensing, bioimaging, light emitting diode, catalysis, and anti-bacteria. This minireview updates the synthetic methods and sensing/bioimaging applications of SQDs in the last few years, followed by discussion of the potential challenges and prospects in their synthesis and sensing/bioimaging applications, with the purpose to provide some useful information for researchers in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiangong Liang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; (K.N.); (Y.S.); (J.L.); (Y.F.); (K.Y.)
| | - Yuan Wu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; (K.N.); (Y.S.); (J.L.); (Y.F.); (K.Y.)
| |
Collapse
|
44
|
Nagelj N, Brumberg A, Peifer S, Schaller RD, Olshansky JH. Compositionally Tuning Electron Transfer from Photoexcited Core/Shell Quantum Dots via Cation Exchange. J Phys Chem Lett 2022; 13:3209-3216. [PMID: 35377650 DOI: 10.1021/acs.jpclett.2c00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is critical to find methods to control the thermodynamic driving force for photoexcited charge transfer from quantum dots (QDs) and explore how this affects charge transfer rates, since the efficiency of QD-based photovoltaic and photocatalysis technologies depends on both this rate and the associated energetic losses. In this work, we introduce a single-pot shell growth and Cu-catalyzed cation exchange method to synthesize CdxZn1-xSe/CdyZn1-yS QDs with tunable driving forces for electron transfer. Functionalizing them with two molecular electron acceptors─naphthalenediimide (NDI) and anthraquinone (AQ)─allowed us to probe nearly 1 eV of driving forces. For AQ, at lower driving forces, we find that higher Zn content results in a 130-fold increase of electron transfer rate constants. However, at higher driving forces electron transfer dynamics are unaltered. The data are understood using an Auger-assisted electron transfer model and analyzed with computational work to determine approximate binding geometries of these electron acceptors. Our work provides a method to tune QD reducing power and produces useful metrics for optimizing QD charge transfer systems that maximize rates of electron transfer while minimizing energetic losses.
Collapse
Affiliation(s)
- Nejc Nagelj
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Alexandra Brumberg
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shoshanna Peifer
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jacob H Olshansky
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| |
Collapse
|
45
|
Chen X, Li J, Zhong Y, Li X, Pan M, Qi H, Dong H, Zhang L. Highly Efficient and Stable CdZnSeS/ZnSeS Quantum Dots for Application in White Light-Emitting Diode. Front Chem 2022; 10:845206. [PMID: 35345537 PMCID: PMC8957214 DOI: 10.3389/fchem.2022.845206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Semiconductor quantum dots (QDs) are a promising luminescent phosphor for next-generation lightings and displays. In particular, QD-based white light-emitting diodes (WLEDs) are considered to be the candidate light sources with the most potential for application in displays. In this work, we synthesized quaternary/ternary core/shell alloyed CdZnSeS/ZnSeS QDs with high bright emission intensity. The QDs show good thermal stability by performing high temperature-dependent experiments that range from 295 to 433 K. Finally, the WLED based on the CdZnSeS/ZnSeS QDs exhibits a luminous efficiency (LE) of 28.14 lm/W, an external quantum efficiency (EQE) of 14.86%, and a warm bright sunlight close to the spectrum of daylight (Commission Internationale de l'éclairage (CIE) coordinates 0.305, 0.371). Moreover, the photoluminescence (PL) intensity, LE, EQE, and correlated color temperature (CCT) of as-prepared QD WLED remained relatively stable with only slight changes in the luminescence stability experiment.
Collapse
Affiliation(s)
- Xi Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingzhou Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- *Correspondence: Jingzhou Li, ; Mingzhong Pan, ; Hongxing Qi,
| | - Yichi Zhong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
| | - Xin Li
- University of Chinese Academy of Sciences, Beijing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
| | - Mingzhong Pan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- *Correspondence: Jingzhou Li, ; Mingzhong Pan, ; Hongxing Qi,
| | - Hongxing Qi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- *Correspondence: Jingzhou Li, ; Mingzhong Pan, ; Hongxing Qi,
| | - Hongxing Dong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- Shanghai Institute of Optics and Fine Mechanic, Chinese Academy of Sciences, Shanghai, China
| | - Long Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- Shanghai Institute of Optics and Fine Mechanic, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
46
|
Jiang Y, López-Arteaga R, Weiss EA. Quantum Dots Photocatalyze Intermolecular [2 + 2] Cycloadditions of Aromatic Alkenes Adsorbed to their Surfaces via van der Waals Interactions. J Am Chem Soc 2022; 144:3782-3786. [PMID: 35230100 DOI: 10.1021/jacs.2c00833] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Triplet excited state-initiated photochemistry is a mild and selective route to cycloadditions, radical rearrangements, couplings, fragmentations, and isomerizations. Colloidal quantum dots are proven visible-light photosensitizers and structural scaffolds for triplet-initiated reactions of molecules that are functionalized (with carboxylates) to anchor on the QD surface. Here, with the aid of polyaromatic energy shuttles that act as noncovalent adsorption sites for substrates on the QD surface, the scope of QD-photocatalyzed intermolecular [2 + 2] cycloadditions is extended to freely diffusing substrates (no anchoring groups). QD-shuttle complexes photocatalyze homo- and heterointermolecular [2 + 2] photocycloadditions of benzalacetone, chalcone and its derivatives with up to 94% yield; the yields for all reactions are comparable to those achieved by Ir(ppy)3 but with the advantages of a factor of 2.5 lower catalyst loading, superior stability, and the ability to recover the catalyst by simple centrifugation and reuse it for multiple reaction cycles. Experiments imply a two-step triplet-triplet energy transfer mechanism, one energy transfer from the QD to the energy shuttle followed by a second energy transfer from the shuttle to the transiently adsorbed substrate.
Collapse
Affiliation(s)
- Yishu Jiang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Rafael López-Arteaga
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
47
|
Kathiravan A. Investigation of photophysical insights into the CsPbBr3-porphyrazine system in solution. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Ciesler M, West D, Zhang S. Ligand-Assisted Charge-Transfer Mechanism: The Case of CdSe/Cysteine/MoS 2 Heterostructures. J Phys Chem Lett 2021; 12:12329-12335. [PMID: 34935388 DOI: 10.1021/acs.jpclett.1c03232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular linkers, such as cysteine, are used to stabilize colloidal quantum dots (QDs) and anchor them. Despite the typically large molecular HOMO/LUMO gap of linkers, they can increase the quantum yield and provide an effective charge-transfer channel. Through first-principles calculations, we investigate the ligand binding and the implications for charge transfer using a prototypical CdSe-Cysteine-MoS2 three-way heterostructure. We find that the deprotonated ligand interacts with both sides of the heterostructure, which allows for successful self-passivation of the cysteine ligand molecule and the formation of dative bonds with a greatly reduced molecular gap compared with the gas phase. This leads to the formation of a charge-transfer state that is delocalized across the ligand and can directly assist electron transfer from the conduction band of colloidal CdSe QDs to the underlying MoS2 substrate, which is a mechanism that could extend far beyond 0D-2D hybrid systems.
Collapse
Affiliation(s)
- Matthew Ciesler
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Damien West
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Shengbai Zhang
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
49
|
Harvey SM, Houck DW, Liu W, Liu Y, Gosztola DJ, Korgel BA, Wasielewski MR, Schaller RD. Synthetic Ligand Selection Affects Stoichiometry, Carrier Dynamics, and Trapping in CuInSe 2 Nanocrystals. ACS NANO 2021; 15:19588-19599. [PMID: 34806353 DOI: 10.1021/acsnano.1c06625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CuInSe2 nanocrystals exhibit tunable near-infrared bandgaps that bolster utility in photovoltaic applications as well as offer potential as substitutes for more toxic Cd- and Pb-based semiconductor compositions. However, they can present a variety of defect states and unusual photophysics. Here, we examine the effects of ligand composition (oleylamine, diphenylphosphine, and tributylphosphine) on carrier dynamics in these materials. Via spectroscopic measurements such as photoluminescence and transient absorption, we find that ligands present during the synthesis of CuInSe2 nanocrystals impart nonradiative electronic states which compete with radiative recombination and give rise to low photoluminescence quantum yields. We characterize the nature of these defect states (hole vs electron traps) and investigate whether they exist at the surface or interior of the nanocrystals. Carrier lifetimes are highly dependent on ligand identity where oleylamine-capped nanocrystals exhibit rapid trapping (<20 ps) followed by diphenylphosphine (<500 ps) and finally tributylphosphine (>2 ns). A majority of carrier population localizes at indium copper antisites (electrons), copper vacancies (holes), or surface traps (electrons and/or holes), all of which are nonemissive.
Collapse
Affiliation(s)
- Samantha M Harvey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel W Houck
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wen Liu
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
50
|
Jansen M, Juranyi F, Yarema O, Seydel T, Wood V. Ligand Dynamics in Nanocrystal Solids Studied with Quasi-Elastic Neutron Scattering. ACS NANO 2021; 15:20517-20526. [PMID: 34878757 DOI: 10.1021/acsnano.1c09073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanocrystal surfaces are commonly populated by organic ligands, which play a determining role in the optical, electronic, thermal, and catalytic properties of the individual nanocrystals and their assemblies. Understanding the bonding of ligands to nanocrystal surfaces and their dynamics is therefore important for the optimization of nanocrystals for different applications. In this study, we use temperature-dependent, quasi-elastic neutron scattering (QENS) to investigate the dynamics of different surface bound alkanethiols in lead sulfide nanocrystal solids. We select alkanethiols with mono- and dithiol terminations, as well as different backbone types and lengths. QENS spectra are collected both on a time-of-flight spectrometer and on a backscattering spectrometer, allowing us to investigate ligand dynamics in a time range from a few picoseconds to nanoseconds. Through model-based analysis of the QENS data, we find that ligands can either (1) precess around a central axis, while simultaneously rotating around their own molecular axis, or (2) only undergo uniaxial rotation with no precession. We establish the percentage of ligands undergoing each type of motion, the average relaxation times, and activation energies for these motions. We determine, for example, that dithiols which link facets of neighboring nanocrystals only exhibit uniaxial rotation and that longer ligands have higher activation energies and show smaller opening angles of precession due to stronger ligand-ligand interactions. Generally, this work provides insight into the arrangement and dynamics of ligands in nanocrystal solids, which is key to understanding their mechanical and thermal properties, and, more generally, highlights the potential of QENS for studying ligand behavior.
Collapse
Affiliation(s)
- Maximilian Jansen
- Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Fanni Juranyi
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Olesya Yarema
- Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Tilo Seydel
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Vanessa Wood
- Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| |
Collapse
|