1
|
Lukasevics L, Oh GN, Wang X, Grigorjeva L, Daugulis O. Mechanistic Investigations of Cobalt-Catalyzed, Aminoquinoline-Directed C(sp 2)-H Bond Functionalization. J Am Chem Soc 2025. [PMID: 39792956 DOI: 10.1021/jacs.4c13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp2)-H bond functionalization. A number of organometallic Co(III) intermediates have been isolated and structurally characterized, including, for the first time in the aminoquinoline system, complexes arising from migratory insertion into cobalt-carbon bonds. The catalytic and stoichiometric reactions of cobalt(III) aryls with alkenes, alkynes, carbon monoxide, cyclic secondary amines, and aminoquinoline benzamides have been explored. The oxidation state of cobalt intermediates in the product-forming step depends on the nature of the coupling component. Specifically, annulation with alkynes and carbonylation with CO likely proceed via a Co(I)/Co(III) catalytic cycle. Carbon-hydrogen bond functionalization with alkenes and amines, as well as benzamide homocoupling, likely proceed via a (formally) Co(IV) species and involve oxidatively induced reductive elimination.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - George N Oh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Xiqu Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | | | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
2
|
Mishra DR, Mishra NP. Recent breakthroughs in ring-opening annulation reactions of aziridines. Org Biomol Chem 2025. [PMID: 39791905 DOI: 10.1039/d4ob01577k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aziridines, characterized by their highly constrained three-membered nitrogen-containing heterocyclic ring system, serve as compelling synthetic intermediates for synthesizing numerous naturally occurring alkaloids and pharmaceuticals. The distinct ring strain arising from the geometric constraints of these sp3-rich trigonal rings imparts high reactivity, thereby offering a wealth of intriguing synthetic opportunities. Recent advances in the chemistry and reactivity of aziridines have unveiled significant progress in preparing more complex heterocycles. This review consolidates and examines recent publications on the ring-opening annulation reactions of aziridines, highlighting the latest breakthroughs, emerging trends, and future directions in this dynamic field.
Collapse
Affiliation(s)
- Deepak Ranjan Mishra
- Department of Chemistry, Kamala Nehru Women's College, Bhubaneswar, Odisha, 751001, India.
| | | |
Collapse
|
3
|
Cheng SJ, Zhang XL, Yang ZX, Wang AH, Ye ZS. Palladium-Catalyzed N-Allylic Alkylation of Pyrazoles and Unactivated Vinylcyclopropanes. Org Lett 2025; 27:46-50. [PMID: 39704564 DOI: 10.1021/acs.orglett.4c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An efficient palladium-catalyzed N-allylic alkylation of pyrazoles and unactivated vinylcyclopropanes is demonstrated, affording various N-alkyl pyrazoles in ≤99% yield. This protocol displays high atom economy, a broad range of substrates, and excellent regioselectivity and stereoselectivity. Late-stage modification of bioactive molecules, scaled-up reaction, and divergent derivatization documented the practicability of this methodology. The preliminary mechanistic investigation hinted that the Pd-H species promotes the ring opening of cyclopropanes.
Collapse
Affiliation(s)
- Shao-Jie Cheng
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin-Li Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhen-Xu Yang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ai-Hua Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi-Shi Ye
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Yang Y, Huang X, Jin Y. Photoinduced ligand-to-metal charge transfer (LMCT) in organic synthesis: reaction modes and research advances. Chem Commun (Camb) 2025. [PMID: 39760393 DOI: 10.1039/d4cc06099g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In recent years, visible light-induced ligand-to-metal charge transfer (LMCT) has emerged as an attractive approach for synthesizing a range of functionalized molecules. Compared to conventional photoredox reactions, photoinduced LMCT activation does not depend on redox potential and offers diverse reaction pathways, making it particularly suitable for the activation of inert bonds and the functional modification of complex organic molecules. This review highlights the indispensable role of photoinduced LMCT in synthetic chemistry, with a focus on recent advancements in LMCT-mediated hydrogen atom transfer (HAT), C-C bond cleavage, decarboxylative transformations, and radical ligand transfer (RLT) reactions.
Collapse
Affiliation(s)
- Yingying Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| | - Xinxiang Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
5
|
Qi J, Wang C, Wang G, O'Neill P, Reddy Dubbaka S, Ting Ang H, Chen X, Wu J. Strain-Release-Driven Electrochemical Skeletal Rearrangement of Non-Biased Alkyl Cyclopropanes/Butanes. Angew Chem Int Ed Engl 2025; 64:e202413723. [PMID: 39264356 DOI: 10.1002/anie.202413723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/13/2024]
Abstract
Capitalizing the inherent strain energy within molecules, strain-release-driven reactions have been widely employed in organic synthesis. Small cycloalkanes like cyclopropanes and cyclobutanes, with their moderate ring strain, typically require dense functionalization to induce bias or distal activation of (hetero) aromatic rings via single-electron oxidation for relieving the tension. In this study, we present a pioneering direct activation of alkyl cyclopropanes/butanes through electrochemical oxidation. This approach not only showcases the potential for ring-opening of cyclopropane/butane under electrochemical conditions but also streamlines the synthesis of diverse oxazolines and oxazines. The applicability of our method is exemplified by its broad substrate scopes. Notably, the products derived from cyclobutanes undergo a formal ring contraction to cyclopropanes, introducing an intriguing aspect to our discoveries. These discoveries mark a significant advancement in strain-release-driven skeletal rearrangement reactions of moderately strained rings, offering sustainable and efficient synthetic pathways for future endeavours.
Collapse
Affiliation(s)
- Jing Qi
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, Singapore, 117544, Republic of Singapore
| | - Chu Wang
- Theoretical and Computational Photochemistry of the Chinese Ministry of Education, Chemistry College, Beijing Normal University, Beijing, 100875, P. R. China
| | - Gan Wang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, Singapore, 117544, Republic of Singapore
| | - Patrick O'Neill
- Pfizer Ireland Pharmaceuticals, Process Development Centre, Ringaskiddy, Co-Cork, Ireland, 637578
| | - Srinivas Reddy Dubbaka
- Pfizer Asia Manufacturing Pte Ltd, Manufacturing Technology Development Centre (MTDC), Synapse Building, #05-17, 3 Biopolis Drive, Singapore, 138623, Republic of Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, Singapore, 117544, Republic of Singapore
| | - Xuebo Chen
- Theoretical and Computational Photochemistry of the Chinese Ministry of Education, Chemistry College, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, Singapore, 117544, Republic of Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, 215123, P. R. China
| |
Collapse
|
6
|
Yang L, Li S, Ning L, Zhao H, Zhou L, Cao W, Feng X. Aza-[4 + 2]-cycloaddition of benzocyclobutenones into isoquinolinone derivatives enabled by photoinduced regio-specific C-C bond cleavage. Nat Commun 2024; 15:10866. [PMID: 39738103 DOI: 10.1038/s41467-024-55110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
The activation of C-C bond of benzocyclobutenones under mild reaction conditions remains a challenge. We herein report a photoinduced catalyst-free regio-specific C1-C8 bond cleavage of benzocyclobutenones, enabling the generation of versatile ortho-quinoid ketene methides for aza-[4 + 2]-cycloaddition with imines, which offers a facile route to isoquinolinone derivatives, including seven family members of protoberberine alkaloids, gusanlung A, B, D, 8-oxotetrahydroplamatine, tetrahydrothalifendine, tetrahydropalmatine, and xylopinine. Furthermore, the catalytic enantioselective version of this strategy is also realized by merging synergistic photocatalysis and chiral Lewis acid catalysis. Mechanistic studies provide compelling evidence to rationalize the photoisomerization/cycloaddition cascade process.
Collapse
Affiliation(s)
- Liangkun Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shiyang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lichao Ning
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hansen Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Liang Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
7
|
Li S, Hu C, Leo Liu L, Wu L. Selective Hydroboration of C-C Single Bonds without Transition-Metal Catalysis. Angew Chem Int Ed Engl 2024; 63:e202412368. [PMID: 39090033 DOI: 10.1002/anie.202412368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Selective hydroboration of C-C single bonds presents a fundamental challenge in the chemical industry. Previously, only catalytic systems utilizing precious metals Ir and Rh, in conjunction with N- and P- ligands, could achieve this, ensuring bond cleavage and selectivity. In sharp contrast, we discovered an unprecedented and general transition-metal-free system for the hydroboration of C-C single bonds. This methodology is transition-metal and ligand-free and surpasses the transition-metal systems regarding chemo- and regioselectivities, substrate versatility, or yields. In addition, our system tolerates various functional groups such as Ar-X (X=halides), heterocyclic rings, ketones, esters, amides, nitro, nitriles, and C=C double bonds, which are typically susceptible to hydroboration in the presence of transition metals. As a result, a diverse range of γ-boronated amines with varied structures and functions has been readily obtained. Experimental mechanistic studies, density functional theory (DFT), and intrinsic bond orbital (IBO) calculations unveiled a hydroborane-promoted C-C bond cleavage and hydride-shift reaction pathway. The carbonyl group of the amide suppresses dehydrogenation between the free N-H and hydroborane. The lone pair on the nitrogen of the amide facilitates the cleavage of C-C bonds in cyclopropanes.
Collapse
Affiliation(s)
- Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
8
|
Kim D, Ju H, Lee W, Hong S. Photocatalytic 1,3-oxyheteroarylation of aryl cyclopropanes with azine N-oxides. Chem Sci 2024; 15:20433-20439. [PMID: 39583564 PMCID: PMC11580519 DOI: 10.1039/d4sc06723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Cyclopropanes, valuable C3 building blocks in organic synthesis, possess high strain energy and inherent stability. We present an efficient, environmentally benign 1,3-oxyheteroarylation of aryl cyclopropanes using azine N-oxides as bifunctional reagents under visible light irradiation. This metal-free method yields β-pyridyl ketones under mild conditions. Mechanistic studies reveal a photo-induced radical pathway involving single-electron oxidation of both aryl cyclopropanes and azine N-oxides, followed by stepwise ring opening. The dual oxidation mechanism accommodates diverse cyclopropane and azine N-oxide combinations based on their oxidation potentials. This green chemistry method enhances the synthetic utility of aryl cyclopropanes while introducing an efficient strategy for their difunctionalization. The methodology aligns with sustainable organic synthesis principles, offering an environmentally conscious route to valuable synthetic intermediates.
Collapse
Affiliation(s)
- Doyoung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Hyewon Ju
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Wooseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
9
|
Zhu YS, Guo YL, Zhu YY, Su B. Enantioselective 1,4-Borylamination via Copper-Catalyzed Cascade Hydroborylation and Hydroamination of Arylidenecyclopropanes. J Am Chem Soc 2024; 146:32283-32291. [PMID: 39535431 DOI: 10.1021/jacs.4c12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Compounds bearing both boryl and amino groups at distal positions are invaluable synthons for synthesizing pharmaceuticals, drug candidates, and natural products, but their catalytic enantioselective synthesis remains rarely explored. We report the first enantioselective 1,4-borylamination reaction through a copper-catalyzed cascade hydroborylation and hydroamination of arylidenecyclopropanes. This reaction combines four readily available components in a highly chemo-, site-, and enantioselective fashion (>20:1 r.r. and up to 99% ee), yielding a diverse array of synthetically valuable enantioenriched 4-amino alkylboronates. The versatile utility of these products is highlighted by their diverse transformations and wide applications in pharmaceutical synthesis and drug discovery. Preliminary mechanistic studies were conducted to elucidate the operative reaction pathway, intermediates, and origins of its high chemo- and site-selectivity.
Collapse
Affiliation(s)
- Yu-Shen Zhu
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ya-Lin Guo
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ying Zhu
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Bo Su
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
10
|
Wu L, Zhang L, Guo J, Gao J, Ding Y, Ke J, He C. Catalytic Asymmetric Construction of C- and Si-Stereogenic Silacyclopentanes via Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202413753. [PMID: 39138131 DOI: 10.1002/anie.202413753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
Silacycles have exhibited significant potential for application in the fields of medicinal chemistry, agrochemistry, and materials science. Accordingly, the development of effective methods for synthesizing these compounds has attracted increasing attention. Here, we report an efficient Cu-catalyzed enantioselective hydrosilylation of arylmethylenecyclopropanes with hydrosilanes, that allows the rapid assembly of various enantioenriched carbon- and silicon-stereogenic silacyclopentanes in good yields with excellent enantioselectivities and diastereoselectivities under mild conditions. Further stereospecific transformation of the Si-H bond on the chiral silicon center expands the diversity of these C- and Si-stereogenic silacyclopentanes.
Collapse
Affiliation(s)
- Liexin Wu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiandong Guo
- Institute for Innovative Materials and Energy School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Jihui Gao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yang Ding
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
11
|
Tan BB, Ge S. One-Pot Cobalt- or Copper-Catalyzed Asymmetric Ring-Opening Hydrosilylation/Hydroboration of Arylidenecyclopropanes. Angew Chem Int Ed Engl 2024:e202419522. [PMID: 39561038 DOI: 10.1002/anie.202419522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
An operationally convenient cobalt-catalyzed one-pot one-step hydrosilylation/hydroboration reaction of arylidenecyclopropanes is developed to access racemic 1,4-borylsilylalkanes. In addition, the corresponding asymmetric reaction is developed with a chiral copper catalyst to prepare 1,4-borylsilylalkanes with high enantioselectivity by a one-pot two-step procedure. Mechanistic studies reveal that this difunctionalization process begins with metal-hydride-catalyzed ring-opening hydrosilylation of arylidenecyclopropanes to generate homoallylsilane intermediates, followed by regio- or enantioselective metal-hydride-catalyzed hydroboration of homoallylsilanes to produce skipped borylsilylalkanes. Selective transformations of C-B and Si-H bonds in skipped borylsilylalkane products are also demonstrated.
Collapse
Affiliation(s)
- Boon Beng Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
12
|
Budnikov AS, Krylov IB, Shevchenko MI, Sokova LL, Liu Y, Yu B, Terent'ev AO. Synthesis of ω-functionalized ketones from strained cyclic alcohols by ring-opening and cross-recombination between alkyl and N-oxyl radicals. Org Biomol Chem 2024; 22:8755-8763. [PMID: 39385714 DOI: 10.1039/d4ob01490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Radical ring-opening oxyimidation of cyclobutanols and cyclopropanols with the formation of ω-functionalized ketones was discovered. The oxidative C-O coupling proceeds via the interception of a primary alkyl radical generated from a cyclic alcohol with a reactive radical generated in situ, which is an electron-deficient N-oxyl radical. The developed conditions allow for the balanced generation rates of carbon- and N-oxyl radicals, which are necessary for their selective cross-recombination. Thus, typical competitive dimerization processes of carbon-centered radicals, their intermolecular cyclization, and N-oxyl radical self-decay are suppressed. The method is applicable to a wide range of cyclobutanols and results in oxyimidated ketones in yields of up to 82%.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Lyubov' L Sokova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Yan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
13
|
Tsukiji K, Matsumoto A, Kanemoto K, Yoshikai N. Stereoselective Hydroxyallylation of Cyclopropenes with Cyclopropanols via NHC Catalysis of Transient Organozinc Species. Angew Chem Int Ed Engl 2024; 63:e202412456. [PMID: 39107239 DOI: 10.1002/anie.202412456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
A stereoselective hydroxyallylation reaction of cyclopropenes with cyclopropanols is achieved under zinc-mediated conditions, affording densely functionalized cyclopropanes with excellent diastereocontrol over three contiguous stereocenters within and outside the cyclopropane ring. A racemic variant of the reaction is synergistically promoted by catalytic N-heterocyclic carbene (NHC) and organic base, whereas chiral amino alcohol-derived bifunctional NHC enables a catalytic enantioselective variant. The reaction likely involves the generation of enolized zinc homoenolate via ring-opening of zinc cyclopropoxide and enolization of the resulting homoenolate, followed by its addition to the cyclopropene as a prochiral allylzinc nucleophile. Our mechanistic investigations highlighted the transient nature of enolized homoenolate, which, once generated from thermodynamically predominant cyclopropoxide, immediately proceeds to allylzincation with cyclopropene. The NHC not only promotes the rate-determining generation of enolized homoenolate but also engages in the allylzincation process. The resulting cyclopropylzinc species undergoes partial in situ protonation while partially remaining intact, thereby leaving an opportunity for trapping with an external electrophile.
Collapse
Affiliation(s)
- Kento Tsukiji
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, 980-8578, Sendai, Japan
| | - Arimasa Matsumoto
- Department of Chemistry, Biology, and Environmental Sciences, Nara Women's University, Kita-Uoya Nishi-machi, 630-8506, Nara, Japan
| | - Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, 980-8578, Sendai, Japan
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, 980-8578, Sendai, Japan
| |
Collapse
|
14
|
He KH, Jin N, Chen JC, Zheng YF, Pan F. Ketone Skeletal Modification via a Metallaphotoredox-Catalyzed Deacylation and Acylation Strategy. Org Lett 2024; 26:9503-9507. [PMID: 39465911 DOI: 10.1021/acs.orglett.4c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Herein, we describe a dual catalytic strategy that employs dihydroquinazolinones, derived from ketone analogs, as versatile intermediates for acylation via α C-C cleavage with 2-pyridyl esters, facilitating the efficient synthesis of a variety of ketones. The reaction accommodates a wide range of ketones and carboxylic acids, showing tolerance to various functional groups. The versatility of this synthetic technique is further highlighted through its application in the late-stage modification of pharmaceuticals and biologically active natural products.
Collapse
Affiliation(s)
- Ke-Han He
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Na Jin
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Jia-Cai Chen
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - You-Fen Zheng
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, People's Republic of China
| |
Collapse
|
15
|
Liu Y, Chen YW, Yang YX, Hartwig JF, He ZT. Asymmetric Amination of Unstrained C(sp 3)-C(sp 3) Bonds. J Am Chem Soc 2024; 146:29857-29864. [PMID: 39412244 DOI: 10.1021/jacs.4c11802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The asymmetric functionalization of unstrained C(sp3)-C(sp3) bonds could be a powerful strategy to stereoselectively reconstruct the backbone of an organic compound, but such reactions are rare. Although allylic substitutions have been used frequently to construct C-C bonds by the cleavage of more reactive C-X bonds (X is usually an O atom of an ester) by transition metals, the reverse process that involves the replacement of a C-C bond with a C-heteroatom bond is rare and generally considered thermodynamically unfavorable. We show that an unstrained, inert allylic C-C σ bond can be converted to a C-N bond stereoselectively via a designed solubility-control strategy, which makes the thermodynamically unfavorable process possible. The C-C bond amination occurs with a range of amine nucleophiles and cleaves multiple classes of alkyl C-C bonds in good yields with high enantioselectivity. A novel resolution strategy is also reported that transforms racemic allylic amines to the corresponding optically active allylic amine by the sequential conversion of a C-N bond to a C-C bond and back to a C-N bond. Mechanistic studies show that formation of the C-N bond is the rate-limiting step and is driven by the low solubility of the salt formed from the cleaved alkyl group in a nonpolar solvent.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ye-Wei Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yuan-Xiang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Ningbo Zhongke Creation Center of New Materials, Ningbo 315899, China
| |
Collapse
|
16
|
Xu Y, Chen W, Pu R, Ding J, An Q, Yang Y, Liu W, Zuo Z. Selective monodeuteration enabled by bisphosphonium catalyzed ring opening processes. Nat Commun 2024; 15:9366. [PMID: 39477917 PMCID: PMC11526102 DOI: 10.1038/s41467-024-53728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
The selective incorporation of a deuterium atom into small molecules with high selectivity is highly valuable for medical and chemical research. Unfortunately, this remains challenging due to the complete deuteration caused by commonly used hydrogen isotope exchange strategies. We report the development of a photocatalytic selective monodeuteration protocol utilizing C-C bond as the unconventional functional handle. The synergistic combination of radical-mediated C-C bond scission and deuterium atom transfer processes enables the effective constructions of benzylic CDH moieties with high selectivity for monodeuteration. The combinational use of a bisphosphonium photocatalyst, thiol catalyst, and CH3OD deuteration agent provides operationally simple conditions for photocatalytic monodeuteration. Moreover, the photoinduced electron transfer process of the bisphosphonium photocatalyst is elucidated through a series of spectroscopy experiments, identifying a peculiar back electron transfer process that can be regulated by subsequent nucleophilic additions.
Collapse
Affiliation(s)
- Yuanli Xu
- Innovation Center for Chenguang High Performance Fluorine Material, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, 643000, Zigong, China
| | - Wenlong Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jia Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yi Yang
- Innovation Center for Chenguang High Performance Fluorine Material, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, 643000, Zigong, China.
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
17
|
Fu B, Wang L, Chen K, Yuan X, Yin J, Wang S, Shi D, Zhu B, Guan W, Zhang Q, Xiong T. Enantioselective Copper-Catalyzed Sequential Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202407391. [PMID: 39023320 DOI: 10.1002/anie.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Despite impressive advances in the construction of enantioenriched silacarbocycles featuring silicon-stereogenic centers via a selection of well-defined sila-synthons, the development of a more convenient and economic method with readily available starting materials is significantly less explored and remains a considerable challenge. Herein, we report the first example of copper-catalyzed sequential hydrosilylation of readily accessible methylenecyclopropanes (MCPs) and primary silanes, affording an efficient and convenient route to a wide range of chiral silacyclopentanes bearing consecutive silicon- and carbon-stereogenic centers with excellent enantio- and diastereoselectivities (generally ≥98 % ee, >25 : 1 dr). Mechanistic studies reveal that these reactions combine copper-catalyzed intermolecular ring-opening hydrosilylation of aryl MCPs and intramolecular asymmetric hydrosilylation of the resultant Z/E mixture of homoallylic silanes.
Collapse
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130024, China
| | - Lianghua Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
18
|
Li DJ, Liu XL, Liao YZ, Zhao Y, Pan F. Photocatalytic Regioselective Redox-Neutral 1,3-Oxypyridylation of Aryl Cyclopropanes. Org Lett 2024; 26:8063-8068. [PMID: 39283009 DOI: 10.1021/acs.orglett.4c02918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Pyridines and cyclopropanes are important structural units in chemistry. Herein, we introduce a photoredox-catalyzed approach for the ring opening and 1,3-oxypyridylation of aryl cyclopropanes using 4-cyanopyridines and carboxylic acids. This sequential process involves single-electron oxidation of the aryl cyclopropane, leading to nucleophilic ring opening and radical pyridylation at the benzylic position. The redox-neutral reaction exhibits high regioselectivity under mild reaction conditions, offering a broad substrate scope and wide applicability.
Collapse
Affiliation(s)
- Dong-Jie Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Xia-Ling Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - You-Zhi Liao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yi Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
19
|
Tao Q, Zhang H, Ye R, Zhang Y, Long Y, Zhou X. Palladium-Catalyzed Synthesis of β-Alkynyl Ketones via Selective 1,3-Alkynyl Migration of α,α-Disubstituted Allylic Alcohols. J Org Chem 2024; 89:13208-13214. [PMID: 39213500 DOI: 10.1021/acs.joc.4c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, a palladium-catalyzed 1,3-alkynyl migration of allylic alcohol for the synthesis of β-alkynyl ketone was described. This intramolecular rearrangement reaction demonstrated an enhanced reactivity compared to the traditional intermolecular alkynylation by circumventing the dimerization of alkynes, exhibiting a specific selectivity toward β-alkynyl elimination. Moreover, this reaction featured wide substrate scope, good functional group tolerance, and 100% atom economy.
Collapse
Affiliation(s)
- Qinyue Tao
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Haoxiang Zhang
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Runyou Ye
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yanqiong Zhang
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yang Long
- School of Pharmacy, North Sichuan Medical College, 55 Dongshun Road, Nanchong 637000, P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
20
|
Sun GQ, Liao LL, Ran CK, Ye JH, Yu DG. Recent Advances in Electrochemical Carboxylation with CO 2. Acc Chem Res 2024; 57:2728-2745. [PMID: 39226463 DOI: 10.1021/acs.accounts.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ConspectusCarbon dioxide (CO2) is recognized as a greenhouse gas and a common waste product. Simultaneously, it serves as an advantageous and commercially available C1 building block to generate valuable chemicals. Particularly, carboxylation with CO2 is considered a significant method for the direct and sustainable production of important carboxylic acids. However, the utilization of CO2 is challenging owing to its thermodynamic stability and kinetic inertness. Recently, organic electrosynthesis has emerged as a promising approach that utilizes electrons or holes as environmentally friendly redox reagents to produce reactive intermediates in a controlled and selective manner. This technique holds great potential for the CO2 utilization.Since 2015, our group has been dedicated to exploring the utilization of CO2 in organic synthesis with a particular focus on electrochemical carboxylation. Despite the significant advancements made in this area, there are still many challenges, including the activation of inert substrates, regulation of selectivity, diversity in electrolysis modes, and activation strategies. Over the past 7 years, our team, with many great experts, has presented findings on electrochemical carboxylation with CO2 under mild conditions. In this context, we primarily highlight our contributions to selective electrocarboxylations, encompassing new reaction systems, selectivity control methods, and activation approaches.We commenced our research by establishing a Ni-catalyzed electrochemical carboxylation of unactivated aryl halides and alkyl bromides in conjunction with a useful paired anodic reaction. This approach eliminates the need for sacrificial anodes, rendering the carboxylation process sustainable. To further utilize the widely existing yet cost-effective alkyl chlorides, we have developed a deep electroreductive system to achieve carboxylation of unactivated alkyl chlorides and poly(vinyl chloride), allowing the direct modification and upgrading of waste polymers.Through precise adjustment of the electroreductive conditions, we successfully demonstrated the dicarboxylation of both strained carbocycles and acyclic polyarylethanes with CO2 via C-C bond cleavage. Furthermore, we have realized the dicarboxylative cyclization of unactivated skipped dienes to produce the valuable ring-tethered adipic acids through single-electron reduction of CO2 to the CO2 radical anion (CO2•-). In terms of the asymmetric carboxylation, Guo's and our groups have recently achieved the nickel-catalyzed enantioselective electroreductive carboxylation reaction using racemic propargylic carbonates and CO2, paving the way for the synthesis of enantioenriched propargylic carboxylic acids.In addition to the aforementioned advancements, Lin's and our groups have also developed new electrolysis modes to achieve regiodivergent C-H carboxylation of N-heteroarenes dictated by electrochemical reactors. The choice of reactors plays a crucial role in determining whether the hydrogen atom transfer (HAT) reagents are formed anodically, consequently influencing the carboxylation pathways of N-heteroarene radical anions in the distinct electrolyzed environments.
Collapse
Affiliation(s)
- Guo-Quan Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
21
|
Ding Z, Wang Z, Wang Y, Wang X, Xue Y, Xu M, Zhang H, Xu L, Li P. Regio- and Diastereoselective Synthesis of Polysubstituted Piperidines Enabled by Boronyl Radical-Catalyzed (4+2) Cycloaddition. Angew Chem Int Ed Engl 2024; 63:e202406612. [PMID: 38924325 DOI: 10.1002/anie.202406612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Piperidines are widely present in small molecule drugs and natural products. Despite many methods have been developed for their synthesis, new approaches to polysubstituted piperidines are highly desirable. This work presents a radical (4+2) cycloaddition reaction for synthesis of piperidines featuring dense substituents at 3,4,5-positions that are not readily accessible by known methods. Using commercially available diboron(4) compounds and 4-phenylpyridine as the catalyst precursors, the boronyl radical-catalyzed cycloaddition between 3-aroyl azetidines and various alkenes, including previously unreactive 1,2-di-, tri-, and tetrasubstituted alkenes, has delivered the polysubstituted piperidines in generally high yield and diastereoselectivity. The reaction also features high modularity, atom economy, broad substrate scope, metal-free conditions, simple catalysts and operation. The utilization of the products has been demonstrated by selective transformations. A plausible mechanism, with the ring-opening of azetidine as the rate-limiting step, has been proposed based on the experimental and computational results.
Collapse
Affiliation(s)
- Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yingying Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yuanji Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Nie C, Park C, Kim J, Chirik PJ. Nickel-Catalyzed C-C Activation of Vinylcyclobutane with Visible Light: Scope, Mechanism, and Application to Chemically Recyclable Polyolefins. J Am Chem Soc 2024; 146:24818-24831. [PMID: 39213587 DOI: 10.1021/jacs.4c04611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
N-heterocyclic carbene (NHC)-supported nickel complexes were investigated for the oxidative ring-opening of vinylcyclobutane (VCB) and photocatalytic activity. Addition of VCB to in situ generated [(NHC)Ni(0)] compounds furnished (NHC)Ni(VCB)2 that underwent oxidative addition and conversion to the corresponding Ni(II) alkyl, allyl-metallacycles. The (NHC)Ni(C6H10) metallacycles were isolated, characterized, and exhibited high thermal and chemical stability. Irradiation with visible light at ambient temperature produced a mixture of ethylene and 4-vinylcyclohexene and 1,5-cyclooctadiene, cycloaddition dimers of butadiene, arising from formal retro-[2 + 2] cycloaddition. A mixture of hexadiene products arising from β-H elimination from the metallacycle was also observed. Free ethylene also underwent a secondary reaction to form cyclopropane products through formal [2 + 1] cycloaddition. A series of sterically and electronically modified NHC ligands was evaluated to establish the structure-activity relationship governing the rate of photocatalytic conversion of VCB and the resulting product distribution. Isotopic labeling experiments, resting state analysis, and independent synthesis of a range of nickel bis(olefin) complexes provided insight into the mechanism of the reaction and origins of the organic product mixture. (NHC)Ni-catalysis was also applied toward the retro-[2 + 2] depolymerization of (1,n'-divinyl)-oligocyclobutane to butadiene dimers.
Collapse
Affiliation(s)
- Cherish Nie
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Chloe Park
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
23
|
Yu K, Ward TR. C-H functionalization reactions catalyzed by artificial metalloenzymes. J Inorg Biochem 2024; 258:112621. [PMID: 38852295 DOI: 10.1016/j.jinorgbio.2024.112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
CH functionalization, a promising frontier in modern organic chemistry, facilitates the direct conversion of inert CH bonds into many valuable functional groups. Despite its merits, traditional homogeneous catalysis, often faces challenges in efficiency, selectivity, and sustainability towards this transformation. In this context, artificial metalloenzymes (ArMs), resulting from the incorporation of a catalytically-competent metal cofactor within an evolvable protein scaffold, bridges the gap between the efficiency of enzymatic transformations and the versatility of transition metal catalysis. Accordingly, ArMs have emerged as attractive tools for various challenging catalytic transformations. Additionally, the coming of age of directed evolution has unlocked unprecedented avenues for optimizing enzymatic catalysis. Taking advantage of their genetically-encoded protein scaffold, ArMs have been evolved to catalyze various CH functionalization reactions. This review delves into the recent developments of ArM-catalyzed CH functionalization reactions, highlighting the benefits of engineering the second coordination sphere around a metal cofactor within a host protein.
Collapse
Affiliation(s)
- Kun Yu
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4058, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4058, Switzerland.
| |
Collapse
|
24
|
Tao F, Li S, Phanindrudu M, Yang H, Qi Y, Luo H, Zheng J. Palladium-Catalyzed Regio- and Diastereoselective Hydro(hetero)arylation for Rapid Construction of Quaternary Center Containing Cyclobutanes. Org Lett 2024; 26:7222-7226. [PMID: 39158209 DOI: 10.1021/acs.orglett.4c02645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Herein we report a Pd-catalyzed regio- and diastereoselective hydro(hetero)arylation of inactivated alkylidenecyclobutanes. This protocol provides a rapid and atom-economical route to access 3-cyclobutyl (hetero)arenes with good functionalities toleration. With the assistance of the directing group, nucleophilic attack happened on the bulkier γ-position to form the quaternary carbon center. Furthermore, the selected products exhibited antitumor bioactivities.
Collapse
Affiliation(s)
- Furong Tao
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shuaikang Li
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Mandalaparthi Phanindrudu
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Haifei Yang
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yi Qi
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Jia Zheng
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
25
|
Kulyabin PS, Goryunov GP, Iashin AN, Mladentsev DY, Uborsky DV, Ehm C, Canich JAM, Hagadorn JR, Voskoboynikov AZ. Reversible C-C bond formation in group 4 metal complexes: nitrile extrusion via β-aryl elimination. Chem Sci 2024:d4sc02173h. [PMID: 39268207 PMCID: PMC11388100 DOI: 10.1039/d4sc02173h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Pyridylamides of zirconium and hafnium with [C,N,N]-ligands reversibly insert nitriles into M-CAr bonds leading to an observable equilibrium between the starting [C,N,N]-complexes and newly formed [N,N,N]-complexes with a ketimide moiety in a 7-membered metallacycle. The discovered reversible insertion of nitriles into M-CAr bonds represents an unprecedented example of β-aryl elimination from a ketimide ligand in early transition metal complexes. Experimental and computational studies suggest thermodynamic and electronic reasons for this reactivity. Weak orbital overlap between the ketimide nitrogen and the metal, and an unfavorable 7-membered metallacycle destabilize the product of insertion into the M-CAr bond, while the pyridylamide moiety acts as a directing group making the reverse process viable. The influence of non-chelate spectator ligands on the metal center and substituents in nitrile on the thermodynamic stability of the [N,N,N]-complexes was also studied. Exploiting β-carbon elimination in complexes of early transition metals may extend the range of catalysts that are accessible for C-C activation processes in the future.
Collapse
Affiliation(s)
- Pavel S Kulyabin
- Department of Chemistry, M. V. Lomonosov Moscow State University Leninskie Gory, 1/3 Moscow 119991 Russian Federation
| | - Georgy P Goryunov
- Department of Chemistry, M. V. Lomonosov Moscow State University Leninskie Gory, 1/3 Moscow 119991 Russian Federation
| | - Andrei N Iashin
- Department of Chemistry, M. V. Lomonosov Moscow State University Leninskie Gory, 1/3 Moscow 119991 Russian Federation
| | - Dmitry Y Mladentsev
- Department of Chemistry, M. V. Lomonosov Moscow State University Leninskie Gory, 1/3 Moscow 119991 Russian Federation
| | - Dmitry V Uborsky
- Department of Chemistry, M. V. Lomonosov Moscow State University Leninskie Gory, 1/3 Moscow 119991 Russian Federation
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II Via Cintia Napoli 80126 Italy
| | - Jo Ann M Canich
- Baytown Technology and Engineering Complex, ExxonMobil Technology and Engineering Company Baytown Texas 77520 USA
| | - John R Hagadorn
- Baytown Technology and Engineering Complex, ExxonMobil Technology and Engineering Company Baytown Texas 77520 USA
| | - Alexander Z Voskoboynikov
- Department of Chemistry, M. V. Lomonosov Moscow State University Leninskie Gory, 1/3 Moscow 119991 Russian Federation
| |
Collapse
|
26
|
Wu H, Fujii T, Wang Q, Zhu J. Quaternary Carbon Editing Enabled by Sequential Palladium Migration. J Am Chem Soc 2024; 146:21239-21244. [PMID: 39052260 DOI: 10.1021/jacs.4c07706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Peripheral functionalization of a quaternary carbon via C(sp3)-H bond activation has made significant progress in recent years. However, direct editing of a quaternary carbon through Csp3-Csp3 bond cleavage and refunctionalization of nonstrained acyclic molecules remain underexploited. Herein we report a reaction in which a methyl group attached to a quaternary carbon is shifted to its neighboring secondary carbon with concurrent oxidation of the quaternary C-C single bond to the C═C double bond. Specifically, morpholinyl amide of 2,2-dimethyl alkanoic acids is converted to 2-methylene-3-methyl alkanoic acid derivatives in the presence of a catalytic amount of palladium acetate, Selectfluor and sodium carbonate. Control experiments suggest that the reaction proceeds via a sequence of selective C(sp3)-H activation of the methyl group, oxidation of the resulting C(sp3)-PdII to PdIV intermediate followed by unprecedented 1,3-PdIV migration, 1,2-methyl/PdIV dyotropic rearrangement and finally, β-Hydride elimination. In this domino process, palladium migrates successively from the primary to the secondary and finally to the quaternary carbon, leading to the concurrent functionalization of a primary, a secondary, and a quaternary carbon.
Collapse
Affiliation(s)
- Hua Wu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Lázaro-Milla C, da Concepción E, Fernández I, Mascareñas JL, López F. Cobalt-Catalyzed (3 + 2) Cycloaddition of Cyclopropene-Tethered Alkynes: Versatile Access to Bicyclic Cyclopentadienyl Systems and Their CpM Complexes. ACS Catal 2024; 14:11574-11583. [PMID: 39119354 PMCID: PMC11307490 DOI: 10.1021/acscatal.4c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Low-valent cobalt complexes can promote intramolecular (3 + 2) cycloadditions of alkyne-tethered cyclopropenes to provide bicyclic systems containing highly substituted cyclopentadienyl moieties with electronically diverse functional groups. The adducts can be easily transformed into new types of CpRh(III) and CpIr(III) complexes, which show catalytic activity in several relevant transformations. Preliminary computational (DFT) and experimental studies provide relevant information on the mechanistic peculiarities of the cobalt-catalyzed process and allow us to rationalize its advantages over the homologous rhodium-promoted reaction.
Collapse
Affiliation(s)
- Carlos Lázaro-Milla
- Centro Singular de Investigación en
Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de
Química Orgánica, Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain
| | - Eduardo da Concepción
- Centro Singular de Investigación en
Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de
Química Orgánica, Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I,
Facultad de Ciencias Químicas, Universidad Complutense de
Madrid, 28040 Madrid, Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en
Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de
Química Orgánica, Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en
Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de
Química Orgánica, Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain
- Misión Biológica de Galicia,
Consejo Superior de Investigaciones Científicas
(CSIC), 36080 Pontevedra, Spain
| |
Collapse
|
28
|
Zhu Y, Jia J, Song X, Gong C, Xia Y. Double strain-release enables formal C-O/C-F and C-N/C-F ring-opening metathesis. Chem Sci 2024:d4sc03624g. [PMID: 39129767 PMCID: PMC11310891 DOI: 10.1039/d4sc03624g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024] Open
Abstract
Metathesis reactions have been established as a powerful tool in organic synthesis. While great advances were achieved in double-bond metathesis, like olefin metathesis and carbonyl metathesis, single-bond metathesis has received less attention in the past decade. Herein, we describe the first C(sp3)-O/C(sp3)-F bond formal cross metathesis reaction between gem-difluorinated cyclopropanes (gem-DFCPs) and epoxides under rhodium catalysis. The reaction involves the formation of a highly electrophilic fluoroallyl rhodium intermediate, which is capable of reacting with the oxygen atom in epoxides as weak nucleophiles followed by C-F bond reconstruction. The use of two strained ring substrates is the key to the success of the formal cross metathesis, in which the double strain release accounts for the driving force of the transformation. Additionally, azetidine also proves to be a suitable substrate for this transformation. The reaction offers a novel approach for the metathesis of C(sp3)-O and C(sp3)-N bonds, presenting new opportunities for single-bond metathesis.
Collapse
Affiliation(s)
- Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Jie Jia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Chunyu Gong
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| |
Collapse
|
29
|
Zhang SL, Wu ZB, Zhao CX, Bai YX, Sun W, Sun M. Ag-Catalyzed Selective C-C Bond Activation of Cyclopropenones to Access α-Alkylidene Lactones. Org Lett 2024; 26:6120-6124. [PMID: 38989859 DOI: 10.1021/acs.orglett.4c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A novel Ag-catalyzed ring opening of unsymmetric cyclopropenones for the stereoselective synthesis of a diverse range of α-alkylidene lactones has been developed. In this protocol, two different C-C(O) bonds were distinguished, demonstrating selective C-C bond activation. This reaction features a wide substrate scope, good functional group compatibility, and high atom economy, providing a versatile and general approach to the construction of α-alkylidene lactones.
Collapse
Affiliation(s)
- Shu-Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Zhao-Bing Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Chun-Xin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Yu-Xin Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
30
|
Zhang Z, Li Q, Cheng Z, Jiao N, Zhang C. Selective nitrogen insertion into aryl alkanes. Nat Commun 2024; 15:6016. [PMID: 39019881 PMCID: PMC11255249 DOI: 10.1038/s41467-024-50383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Molecular structure-editing through nitrogen insertion offers more efficient and ingenious pathways for the synthesis of nitrogen-containing compounds, which could benefit the development of synthetic chemistry, pharmaceutical research, and materials science. Substituted amines, especially nitrogen-containing alkyl heterocyclic compounds, are widely found in nature products and drugs. Generally, accessing these compounds requires multiple steps, which could result in low efficiency. In this work, a molecular editing strategy is used to realize the synthesis of nitrogen-containing compounds using aryl alkanes as starting materials. Using derivatives of O-tosylhydroxylamine as the nitrogen source, this method enables precise nitrogen insertion into the Csp2-Csp3 bond of aryl alkanes. Notably, further synthetic applications demonstrate that this method could be used to prepare bioactive molecules with good efficiency and modify the molecular skeleton of drugs. Furthermore, a plausible reaction mechanism involving the transformation of carbocation and imine intermediates has been proposed based on the results of control experiments.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Qi Li
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Chun Zhang
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
31
|
Zhang Y, Zhu T, Lin Y, Wei X, Xie X, Lin R, Zhang Z, Fang W, Zhang JJ, Zhang Y, Hu MY, Cai L, Chen Z. Organo-photoredox catalyzed gem-difluoroallylation of ketone-derived dihydroquinazolinones via C(sp 3)-C bond and C(sp 3)-F bond cleavage. Org Biomol Chem 2024; 22:5561-5568. [PMID: 38916128 DOI: 10.1039/d4ob00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of both acyclic and cyclic ketone derivatives with α-trifluoromethyl alkenes has been demonstrated, thus giving access to a diverse set of gem-difluoroalkenes in moderate to high yields. Pro-aromatic dihydroquinazolinones can be either pre-formed or in situ generated for ketone activation. This reaction is characterized by readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this reaction has been highlighted by the late-stage modification of several natural products and drug-like molecules as well as the in vitro antifungal activity.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Tianshuai Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhijie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yue Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China.
| | - Meng-Yang Hu
- DreamChem (Tianjin) Co., Ltd., No. 4, Haitai Development 2nd Road, Binhai High-tech Zone, Tianjin, 300380, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
32
|
Hong K, Liu M, Qian L, Bao M, Chen G, Jiang X, Huang J, Xu X. Catalytic [4+2]- and [4+4]-cycloaddition using furan-fused cyclobutanone as a privileged C4 synthon. Nat Commun 2024; 15:5407. [PMID: 38926359 PMCID: PMC11208666 DOI: 10.1038/s41467-024-49664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cycloaddition reactions play a pivotal role in synthetic chemistry for the direct assembly of cyclic architectures. However, hurdles remain for extending the C4 synthon to construct diverse heterocycles via programmable [4+n]-cycloaddition. Here we report an atom-economic and modular intermolecular cycloaddition using furan-fused cyclobutanones (FCBs) as a versatile C4 synthon. In contrast to the well-documented cycloaddition of benzocyclobutenones, this is a complementary version using FCB as a C4 reagent. It involves a C-C bond activation and cycloaddition sequence, including a Rh-catalyzed enantioselective [4 + 2]-cycloaddition with imines and an Au-catalyzed diastereoselective [4 + 4]-cycloaddition with anthranils. The obtained furan-fused lactams, which are pivotal motifs that present in many natural products, bioactive molecules, and materials, are inaccessible or difficult to prepare by other methods. Preliminary antitumor activity study indicates that 6e and 6 f exhibit high anticancer potency against colon cancer cells (HCT-116, IC50 = 0.50 ± 0.05 μM) and esophageal squamous cell carcinoma cells (KYSE-520, IC50 = 0.89 ± 0.13 μM), respectively.
Collapse
Affiliation(s)
- Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mengting Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Lixin Qian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Xinyu Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jingjing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
33
|
Cheng Z, Xu H, Hu Z, Zhu M, Houk KN, Xue XS, Jiao N. Carbene-Assisted Arene Ring-Opening. J Am Chem Soc 2024; 146:16963-16970. [PMID: 38691630 DOI: 10.1021/jacs.4c03634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Despite the significant achievements in dearomatization and C-H functionalization of arenes, the arene ring-opening remains a largely unmet challenge and is underdeveloped due to the high bond dissociation energy and strong resonance stabilization energy inherent in aromatic compounds. Herein, we demonstrate a novel carbene assisted strategy for arene ring-opening. The understanding of the mechanism by our DFT calculations will stimulate wide application of bulk arene chemicals for the synthesis of value-added polyconjugated chain molecules. Various aryl azide derivatives now can be directly converted into valuable polyconjugated enynes, avoiding traditional synthesis including multistep unsaturated precursors, poor selectivity control, and subsequent transition-metal catalyzed cross-coupling reactions. The simple conditions required were demonstrated in the late-stage modification of complex molecules and fused ring compounds. This chemistry expands the horizons of carbene chemistry and provides a novel pathway for arene ring-opening.
Collapse
Affiliation(s)
- Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, China
| | - Haoran Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhibin Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095-1569, United States
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
34
|
Huang H, Luan X, Zuo Z. Cooperative Photoredox and Cobalt-Catalyzed Acceptorless Dehydrogenative Functionalization of Cyclopropylamides towards Allylic N,O-Acyl-acetal Derivatives. Angew Chem Int Ed Engl 2024; 63:e202401579. [PMID: 38609328 DOI: 10.1002/anie.202401579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
We disclose herein a novel photoredox and cobalt co-catalyzed ring-opening/acceptorless dehydrogenative functionalization of mono-donor cyclopropanes. This sustainable and atom-economic approach allows the rapid assembly of a wide range of allylic N,O-acyl-acetal derivatives. The starting materials are readily available and the reaction features mild conditions, broad substrate scope, and excellent functional group compatibility. The optimized conditions accommodate assorted cycloalkylamides and primary, secondary, and tertiary alcohols, with applications in late-stage functionalization of pharmaceutically relevant compounds, stimulating further utility in medicinal chemistry. Moreover, selective nucleophilic substitutions with various carbon nucleophiles were achieved in a one-pot fashion, offering a reliable avenue to access some cyclic and acyclic derivatives.
Collapse
Affiliation(s)
- Haohao Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Zhijun Zuo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
35
|
Zhou J, Meng L, Yang Z, Wang JJ. Enantio- and Regioselective Cascade Hydroboration of Methylenecyclopropanes for Facile Access to Chiral 1,3- and 1,4-Bis(boronates). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400096. [PMID: 38477439 DOI: 10.1002/advs.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Chiral 1, n-bis(boronate) plays a crucial role in organic synthesis and medicinal chemistry. However, their catalytic and asymmetric synthesis has long posed a challenge in terms of operability and accessibility from readily available substrates. The recent discovery of the C═C bond formation through β-C elimination of methylenecyclopropanes (MCP) has provided an exciting opportunity to enhance molecular complexity. In this study, the catalyzed asymmetric cascade hydroboration of MCP is developed. By employing different ligands, various homoallylic boronate intermediate are obtained through the hydroboration ring opening process. Subsequently, the cascade hydroboration with HBpin or B2pin2 resulted in the synthesis of enantioenriched chiral 1,3- and 1,4-bis(boronates) in high yields, accompanied by excellent chemo- and enantioselectivities. The selective transformation of these two distinct C─B bonds also demonstrated their application potential in organic synthesis.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ling Meng
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ziyi Yang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jun Joelle Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
36
|
Shimazumi R, Tobisu M. Unimolecular Fragment Coupling: A New Bond-Forming Methodology via the Deletion of Atom(s). JACS AU 2024; 4:1676-1695. [PMID: 38818052 PMCID: PMC11134393 DOI: 10.1021/jacsau.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 06/01/2024]
Abstract
Unimolecular fragment coupling (UFC) is defined as a reaction format, wherein atom(s) located in the middle of a molecule are extruded, and the remaining fragments are coupled. UFC is a potentially powerful strategy that is an alternative to transition-metal-catalyzed cross-coupling because the target chemical bond is formed in an intramolecular fashion, which is inherently beneficial for chemoselectivity and stereoselectivity issues. In this Perspective, we will present an overview of the recent advances in UFC reactions, which encompass those proceeding through the elimination of CO2, CO, SO2, isocyanates, N2, or single atoms primarily via transition metal catalysis.
Collapse
Affiliation(s)
- Ryoma Shimazumi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Zhang Z, Liang FF, Zhang SL, Sun W, Zhou AX, Sun M. Pd-Catalyzed Three-Component Coupling of Cyclopropenones via Sequential C-C Bond Activation and Allylation. Org Lett 2024; 26:4262-4267. [PMID: 38722897 DOI: 10.1021/acs.orglett.4c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel Pd-catalyzed three-component domino reaction for the stereoselective synthesis of highly functionalized allyl cinnamates has been developed. In this protocol, a sequential process of C-C bond activation and intermolecular allylic substitution was well-organized. The key for this transformation is the in situ generated hydrolysis product of cyclopropenone, which triggered a new reaction with vinylethylene carbonates. The reaction mechanism was investigated, demonstrating the high stereoselectivity and excellent atomic economy in this process.
Collapse
Affiliation(s)
- Zhou Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Fei-Fei Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Shu-Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - An-Xi Zhou
- Key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao, Jiangxi 334001, China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| |
Collapse
|
38
|
Li K, Dong S, Li SL, Chen Z, Yin G. Pd(II)/LA-catalyzed acetanilide olefination with dioxygen. Org Biomol Chem 2024; 22:4089-4095. [PMID: 38695080 DOI: 10.1039/d4ob00468j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Transition-metal-catalyzed aromatic olefination through direct C-H activation represents an atom and step-economic route for versatile pharmaceutical syntheses, and in many cases, different stoichiometric oxidants are frequently employed for achieving a reasonable catalytic efficiency of the transition metal ions. Herein, we report a Lewis acid promoted Pd(II)-catalyzed acetanilide olefination reaction with atmospheric dioxygen as the oxidant source. The linkage of the Lewis acid to the Pd(II) species through a diacetate bridge significantly improved its catalytic efficiency, and independent kinetic studies on the olefination step revealed that adding the Lewis acid significantly accelerated the olefination rate as well as the C-H activation step. A strong basicity of the internal base in the Pd(II) salt also benefited the olefination reaction plausibly through base-assisted β-hydride elimination.
Collapse
Affiliation(s)
- Kaiwen Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Shuangfeng Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Shuang-Long Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
39
|
Shi WY, Zhang SL. Copper/O 2-Mediated Oxidative C-C Activation of Nitriles for Selective Acylation-Bromination of Anilines. J Org Chem 2024; 89:6929-6936. [PMID: 38717970 DOI: 10.1021/acs.joc.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This study reports selective dual amino acylation and C-H bromination of aniline compounds enabled by Cu/O2 catalyst systems. This method involves crucial oxidation-induced C-CN bond cleavage of α-methylene nitriles to generate an acylcyanide intermediate that is facilely intercepted by anilines. After amino acylation, the Cu(II) precatalyst in combination with NBS generates Cu(III)-Br in situ that engages in selective electrophilic para- or ortho-C-H bromination. The substrate scope, mechanistic aspects, and late-stage functionalization of biologically active anilines are studied. This study shows the synthetic potential of oxidative C-CN bond activation of nitriles for the development of valuable reactions.
Collapse
Affiliation(s)
- Wei-Yu Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
40
|
Barman M, Mishra M, Mandal S, Punniyamurthy T. Palladium Catalysis Enabled Sequential C(sp 3)-H/C-C Activation: Access to Vinyl γ-Lactams. Org Lett 2024; 26:3722-3726. [PMID: 38678543 DOI: 10.1021/acs.orglett.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A Pd(II)-catalyzed tandem reaction of aliphatic amides with vinylcyclopropanes (VCPs) was accomplished by merging C(sp3)-H and C-C activation. The reaction of VCP revealed alkenylation/cyclization, followed by ring opening via C-C cleavage, delivering vinyl γ-lactams with (E)-selectivity. The role of ligands, site-selectivity, functional group diversity, mechanistic insight, and synthetic utilities are important practical features.
Collapse
Affiliation(s)
- Madhab Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | | |
Collapse
|
41
|
Wu X, Song X, Xia Y. High-Valent Copper Catalysis Enables Regioselective Fluoroarylation of Gem-Difluorinated Cyclopropanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401243. [PMID: 38460153 PMCID: PMC11095216 DOI: 10.1002/advs.202401243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Indexed: 03/11/2024]
Abstract
Transition-metal (TM) catalyzed reaction of gem-difluorinated cyclopropanes (gem-DFCPs) has drawn much attention recently. The reaction generally occurs via the activation of the distal C─C bond in gem-DFCPs by a low-valent TM through oxidative addition, eventually producing mono-fluoro olefins as the coupling products. However, achieving regioselective activation of the proximal C─C bond in gem-DFCPs that overcomes the intrinsic reactivity via TM catalysis remains elusive. Here, a new reaction mode of gem-DFCPs enabled by high-valent copper catalysis, which allows exclusive activation of the congested proximal C─C bond is presented. The reaction that achieves fluoroarylation of gem-DFCPs uses NFSI (N-fluorobenzenesulfonimide) as electrophilic fluoro reagent and arenes as the C─H nucleophiles, enabling the synthesis of diverse CF3-containing scaffolds. It is proposed that a high-valent copper species plays an important role in the regioselective activation of the proximal C─C bond possibly via a σ-bond metathesis.
Collapse
Affiliation(s)
- Xiuli Wu
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Ying Xia
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| |
Collapse
|
42
|
Zhang B, Bai H, Zhan B, Wei K, Nie S, Zhang X. Deacylative arylation and alkynylation of unstrained ketones. SCIENCE ADVANCES 2024; 10:eado0225. [PMID: 38669332 PMCID: PMC11051662 DOI: 10.1126/sciadv.ado0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Ketones are ubiquitous in bioactive natural products, pharmaceuticals, chemical feedstocks, and synthetic intermediates. Hence, deacylative coupling reactions enable the versatile elaboration of a plethora of chemicals to access complex drug candidates and natural products. Here, we present deacylative arylation and alkynylation strategies for the synthesis of a wide range of alkyl-tethered arenes and alkynes from cyclic ketones and methyl ketones under dual nickel/photoredox catalysis. This reaction begins by generating a pre-aromatic intermediate (PAI) through the condensation of the ketone and N'-methylpicolino-hydrazonamide (MPHA), followed by the oxidative cleavage of the PAI α-C─C bond to form an alkyl radical, which is subsequently intercepted by a Ni complex, facilitating the formation of diverse C(sp3)-C(sp2)/C(sp) bonds with remarkable generality. This protocol features a one-pot reaction capability, high regioselectivity and ring-opening efficiency, mild reaction conditions, and a broad substrate scope with excellent functional group compatibility.
Collapse
Affiliation(s)
- Boyi Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hui Bai
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Beibei Zhan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Kaihang Wei
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shenyou Nie
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Urology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
43
|
Niu C, Zhang Z, Li Q, Cheng Z, Jiao N, Zhang C. Selective Ring-Opening Amination of Isochromans and Tetrahydroisoquinolines. Angew Chem Int Ed Engl 2024; 63:e202401318. [PMID: 38459760 DOI: 10.1002/anie.202401318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The molecular structure-editing through selective C-C bond cleavage allows for the precise modification of molecular structures and opens up new possibilities in chemical synthesis. By strategically cleaving C-C bonds and editing the molecular structure, more efficient and versatile pathways for the synthesis of complex compounds could be designed, which brings significant implications for drug development and materials science. o-Aminophenethyl alcohols and amines are the essential key motifs in bioactive and functional material molecules. The traditional synthesis of these compounds usually requires multiple steps which could generate inseparable isomers and induce low efficiencies. By leveraging a molecular editing strategy, we herein reported a selective ring-opening amination of isochromans and tetrahydroisoquinolines for the efficient synthesis of o-aminophenethyl alcohols and amines. This innovative chemistry allows for the precise cleavage of C-C bonds under mild transition metal-free conditions. Notably, further synthetic application demonstrated that our method could provide an efficient approach to essential components of diverse bioactive molecules.
Collapse
Affiliation(s)
- Changhao Niu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Zheng Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Qi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| |
Collapse
|
44
|
Shi C, Liu R, Wang Z, Li X, Qin H, Yuan L, Shan W, Zhuang W, Li X, Shi D. Radical Addition-Enabled C-C σ-Bond Cleavage/Reconstruction to Access Functional Indanones: Total Synthesis of Carexane L. Org Lett 2024; 26:2913-2917. [PMID: 38569099 DOI: 10.1021/acs.orglett.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
C-C σ-bond cleavage and reconstruction is a significant tool for structural modification in synthetic chemistry but it remains a formidable challenge to perform on unstrained skeletons. Herein, we describe a radical addition-enabled C-C σ-bond cleavage/reconstruction reaction of unstrained allyl ketones to access various functional indanones bearing a benzylic quaternary center. The synthetic utility of this method has been showcased by the first total synthesis of carexane L, an indanone-based natural product.
Collapse
Affiliation(s)
- Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237 Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237 Shandong, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237 Shandong, P. R. China
| | - Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237 Shandong, P. R. China
| | - Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237 Shandong, P. R. China
| | - Leifeng Yuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237 Shandong, P. R. China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237 Shandong, P. R. China
| | - Wenli Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237 Shandong, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237 Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237 Shandong, P. R. China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, 168 Weihai Road, Qingdao, 266237 Shandong, P. R. China
| |
Collapse
|
45
|
Fukazawa M, Takahashi F, Kurogi T, Yorimitsu H. Sodium-Mediated Reductive C-C Bond Cleavage Assisted by Boryl Groups. Chem Asian J 2024; 19:e202400100. [PMID: 38385830 DOI: 10.1002/asia.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
In contrast to the well-established oxidative C=C double bond cleavage to give the corresponding carbonyl compounds, little is known about reductive C=C double bond cleavage. Here we report that C-C single bond cleavage in 1,2-diaryl-1,2-diborylethanes proceeds by reduction with sodium metal to yield α-boryl benzylsodium species. In combination with our previous reductive diboration of stilbenes, the overall transformation represents reductive cleavage of the C=C double bonds of stilbene to yield α-boryl-α-sodiated toluenes. This reductive two-step C=C double bond cleavage is applicable to ring-opening or ring-expansion reactions of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Mizuki Fukazawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| | - Takashi Kurogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| |
Collapse
|
46
|
Li D, Wang Y. DFT study on isothiourea-catalyzed C-C bond activation of cyclobutenone: the role of the catalyst and the origin of stereoselectivity. Org Biomol Chem 2024; 22:2662-2669. [PMID: 38477235 DOI: 10.1039/d4ob00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The organocatalytic C-C bond activation strategy stands out as a new reaction mode for the release of ring strain and expands the scope of organocatalysts. Thus, disclosing the role of the organocatalyst in the C-C bond cleavage process would be of interest. Here, an isothiourea-catalyzed C-C bond activation/cycloaddition reaction of cyclobutenone is selected as a computational model to uncover the role of the catalyst. Based on the calculations, the electrocyclic cleavage of cyclobutenone is calculated to be energetically more favorable than the isothiourea-catalyzed C-C bond cleavage, which is different from the NHC-catalyzed C-C bond activation of cyclobutenone. The computational results show that the isothiourea promotes the reaction by increasing the nucleophilicity of vinyl ketene and thus lowers the energy barrier of the cycloaddition process. Moreover, NCI and AIM analyses are performed to disclose the origin of stereoselectivity.
Collapse
Affiliation(s)
- Daochang Li
- Department of Chemical and Material Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China.
| | - Yang Wang
- Department of Chemical and Material Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China.
| |
Collapse
|
47
|
Wang ZY, Zhang X, Chen WQ, Sun GD, Wang X, Tan L, Xu H, Dai HX. Palladium-Catalyzed Deuteration of Arylketone Oxime Ethers. Angew Chem Int Ed Engl 2024; 63:e202319773. [PMID: 38279666 DOI: 10.1002/anie.202319773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
We report herein the development of palladium-catalyzed deacylative deuteration of arylketone oxime ethers. This protocol features excellent functional group tolerance, heterocyclic compatibility, and high deuterium incorporation levels. Regioselective deuteration of some biologically important drugs and natural products are showcased via Friedel-Crafts acylation and subsequent deacylative deuteration. Vicinal meta-C-H bond functionalization (including fluorination, arylation, and alkylation) and para-C-H bond deuteration of electro-rich arenes are realized by using the ketone as both directing group and leaving group, which is distinct from aryl halide in conventional dehalogenative deuteration.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xu Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wen-Qing Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Guo-Dong Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lin Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Xiong Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
48
|
Hu L, Xiang Y, Lan XB, Xie Y. An Intermolecular Hydroarylation of Unactivated Arylcyclopropane via Re 2O 7/HFIP-Mediated Ring Opening. Org Lett 2024; 26:2085-2090. [PMID: 38441049 DOI: 10.1021/acs.orglett.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
In this paper, we describe a Re2O7-mediated ring-opening arylation of unactivated arylcyclopropane because of its functionalization with various arenes via Friedel-Crafts-type reactivity. This protocol allows facile access to functionalized 1,1-diaryl alkanes and is characterized by a broad substrate scope, mild reaction conditions, high efficiency, and high atom economy. Both density functional theory calculations and deuterium labeling experiments were carried out to justify the indispensable role of HFIP in this transformation and pointed to Re2O7-mediated ring opening being the rate-determining step.
Collapse
Affiliation(s)
- Liqun Hu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yao Xiang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiao-Bing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
49
|
Chandu P, Biswas S, Pal K, Sureshkumar D. Organophotoredox Catalysis: Switchable Radical Generation from Alkyl Sodium Sulfinates for Sulfonylation and Alkylative Activation of C-C Bonds of Cyclopropenes. J Org Chem 2024; 89:3912-3925. [PMID: 38446801 DOI: 10.1021/acs.joc.3c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Generating alkyl radicals from the sulfonyl radicals remains challenging in synthetic chemistry. Here, we report an efficient photocatalyzed strategy using alkyl sodium sulfinates as both sulfonylating and alkylating reagents by controlling the reaction temperature. This methodology provides a versatile protocol for synthesizing diastereoselective sulfonylated cyclopropanes and poly-substituted styrene derivatives. This methodology is successfully demonstrated with a wide variety of cyclopropenes and alkyl sulfinates, showcasing its broad substrate scope, high diastereo- and E/Z selectivity, and yielding good to excellent yields.
Collapse
Affiliation(s)
- Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
50
|
Liu H, Shi L, Tan X, Kang B, Luo G, Jiang H, Qi C. Et 2 Zn-Mediated Gem-Dicarboxylation of Cyclopropanols with CO 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307633. [PMID: 38126667 PMCID: PMC10916615 DOI: 10.1002/advs.202307633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 12/23/2023]
Abstract
An unprecedented Et2 Zn-mediated gem-dicarboxylation of C─C/C─H single bond of cyclopropanols with CO2 is disclosed, which provides a straightforward and efficient methodology for the synthesis of a variety of structurally diverse and useful malonic acids in moderate to excellent yields. The protocol features mild reaction conditions, excellent functional group compatibility, broad substrate scope, and facile derivatization of the products. DFT calculations confirm that the transition-metal-free transformation proceeds through a novel ring-opening/α-functionalization/ring-closing/ring-opening/β-functionalization (ROFCOF) process, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) plays dual important roles in the transformation.
Collapse
Affiliation(s)
- Hongjian Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Lei Shi
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Xiaobin Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Gen Luo
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|