1
|
Vu BT, Tran TH, Ly KL, Trinh KPN, Nguyen MNH, Doan HN, Duong TT, Hua HTN, Le HT, Le TD, Dang NNT, Nguyen HT. Polycaprolactone Hybrid Scaffold Loaded With N,O-Carboxymethyl Chitosan/Aldehyde Hyaluronic Acid/Hydroxyapatite Hydrogel for Bone Regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35486. [PMID: 39295151 DOI: 10.1002/jbm.b.35486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
Hydrogels have emerged as potential materials for bone grafting, thanks to their biocompatibility, biodegradation, and flexibility in filling irregular bone defects. In this study, we fabricated a novel NAH hydrogel system, composed of N,O-carboxymethyl chitosan (NOCC), aldehyde hyaluronic acid (AHA), and hydroxyapatite (HAp). To improve the mechanical strength of the fabricated hydrogel, a porous polycaprolactone (PCL) matrix was synthesized and used as a three-dimensional (3D) support template for NAH hydrogel loading, forming a novel PCL/NAH hybrid scaffold. A mixture of monosodium glutamate (M) and sucrose (S) at varied weight ratios (5M:5S, 7M:3S, and 9M:1S) was used for the fabrication of 3D PCL matrices. The morphology, interconnectivity, and water resistance of the porous PCL scaffolds were investigated for optimal hydrogel loading efficiency. The results demonstrated that PCL scaffolds with porogen ratios of 7M:3S and 9M:1S possessed better interconnectivity than 5M:5S ratio. The compressive strength of the PCL/NAH hybrid scaffolds with 9M:1S (561.6 ± 6.1 kPa) and 7M:3S (623.8 ± 6.8 kPa) ratios are similar to cancellous bone and all hybrid scaffolds were biocompatible. Rabbit models with tibial defects were implanted with the PCL/NAH scaffolds to assess the wound healing capability. The results suggest that the PCL/NAH hybrid scaffolds, specifically those with porogen ratio of 7M:3S, exhibit promising bone healing effects.
Collapse
Affiliation(s)
- Binh Thanh Vu
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thai Hoang Tran
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Khanh Loan Ly
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Khanh Phan-Ngoc Trinh
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - My Ngoc-Hoang Nguyen
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoan Ngoc Doan
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thanh-Tu Duong
- Department of Pathology, University of Medicine and Pharmacy at Ho chi Minh City, Ho Chi Minh City, Vietnam
| | - Ha Thi-Ngoc Hua
- Department of Pathology, University of Medicine and Pharmacy at Ho chi Minh City, Ho Chi Minh City, Vietnam
| | - Hung Thanh Le
- Medi Mech Research and Development Company, Ho Chi Minh City, Vietnam
| | | | - Nhi Ngoc-Thao Dang
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hiep Thi Nguyen
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
3
|
Li Q, Fang F, Yang C, Yu D, Gong Q, Shen X. Whole transcriptome landscape in HAPE under the stress of environment at high altitudes: new insights into the mechanisms of hypobaric hypoxia tolerance. Front Immunol 2024; 15:1444666. [PMID: 39328420 PMCID: PMC11424462 DOI: 10.3389/fimmu.2024.1444666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Background High altitude pulmonary edema (HAPE) is an idiopathic, noncardiogenic form of pulmonary edema that occurs at high altitudes. It is characterized by a severe clinical course and carries a significant mortality risk. Despite its clinical relevance, the molecular mechanisms underlying HAPE are not well understood. Methods We conducted whole-transcriptome RNA sequencing on blood samples from 6 pairs of HAPE patients and healthy controls to identify differentially expressed (DE) mRNAs, miRNAs, circRNAs, lncRNAs, along with alternative splicing (AS) events, gene fusions, and novel transcripts. To explore the regulatory dynamics, we constructed ceRNA networks and analyzed immune cell infiltration patterns, further annotating the biological functions of these transcripts. For empirical validation, we selected five circRNAs from the ceRNA network and conducted RT-qPCR on 50 paired samples. Additionally, we assessed the correlations between circRNA expression levels and clinical data to evaluate their diagnostic potential. Results We observed 2,023 differentially expressed mRNAs (DEmRNAs), 84 DEmiRNAs, 200 DEcircRNAs, and 3,573 DElncRNAs. A total of 139 'A3SS' events, 103 'A5SS' events, 545 'MXE' events, 14 'RI' events, and 1,482 'SE' events were identified in the AS events analysis between the two groups. Two ceRNA networks were constructed. T cells, follicular helper, and Macrophages M1 cells exhibited the strongest positive correlation (R=0.82), while naive B cells and memory B cells demonstrated the strongest negative correlation (R=-0.62). In total, the expression of three circRNAs was significantly different in a larger cohort. Hsa_circ_0058497, hsa_circ_0081006, and hsa_circ_0083220 demonstrated consistent with the RNA sequencing results. These three circRNAs strongly correlate with clinical indicators and exhibit potential as diagnostic biomarkers. Finally, we verified five genes (CXCR4, HSD17B2, ANGPTL4, TIMP3, N4BP3) that were differentially expressed in endothelial cells under normoxia and hypoxia through bioinformatics and RT-qPCR analyses. Conclusion This study elucidates the differential expression of coding and non-coding RNAs (ncRNAs) in HAPE, identifies new transcripts and genes, and enhances our understanding of the transcriptional characteristics of HAPE. Moreover, it highlights the potential role of circRNAs in advancing the diagnosis and treatment of HAPE.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Fujin Fang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Chuanli Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Dong Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Qianhui Gong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Dilissen S, Silva PL, Smolentseva A, Kache T, Thoelen R, Hendrix J. Characterisation of biocondensate microfluidic flow using array-detector FCS. Biochim Biophys Acta Gen Subj 2024; 1868:130673. [PMID: 39029539 DOI: 10.1016/j.bbagen.2024.130673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Biomolecular condensation via liquid-liquid phase separation (LLPS) is crucial for orchestrating cellular activities temporospatially. Although the rheological heterogeneity of biocondensates and the structural dynamics of their constituents carry critical functional information, methods to quantitatively study biocondensates are lacking. Single-molecule fluorescence research can offer insights into biocondensation mechanisms. Unfortunately, as dense condensates tend to sink inside their dilute aqueous surroundings, studying their properties via methods relying on Brownian diffusion may fail. METHODS We take a first step towards single-molecule research on condensates of Tau protein under flow in a microfluidic channel of an in-house developed microfluidic chip. Fluorescence correlation spectroscopy (FCS), a well-known technique to collect molecular characteristics within a sample, was employed with a newly commercialised technology, where FCS is performed on an array detector (AD-FCS), providing detailed diffusion and flow information. RESULTS The AD-FCS technology allowed characterising our microfluidic chip, revealing 3D flow profiles. Subsequently, AD-FCS allowed mapping the flow of Tau condensates while measuring their burst durations through the stationary laser. Lastly, AD-FCS allowed obtaining flow velocity and burst duration data, the latter of which was used to estimate the condensate size distribution within LLPS samples. CONCLUSION Studying biocondensates under flow through AD-FCS is promising for single-molecule experiments. In addition, AD-FCS shows its ability to estimate the size distribution in condensate samples in a convenient manner, prompting a new way of investigating biocondensate phase diagrams. GENERAL SIGNIFICANCE We show that AD-FCS is a valuable tool for advancing research on understanding and characterising LLPS properties of biocondensates.
Collapse
Affiliation(s)
- Stijn Dilissen
- UHasselt, Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), B3590 Diepenbeek, Belgium; UHasselt, Biomedical Device Engineering group, Institute for Materials Research (IMO-IMOMEC), Wetenschapspark 1, B3590 Diepenbeek, Belgium
| | - Pedro L Silva
- UHasselt, Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), B3590 Diepenbeek, Belgium
| | - Anastasia Smolentseva
- UHasselt, Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), B3590 Diepenbeek, Belgium
| | - Tom Kache
- UHasselt, Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), B3590 Diepenbeek, Belgium
| | - Ronald Thoelen
- UHasselt, Biomedical Device Engineering group, Institute for Materials Research (IMO-IMOMEC), Wetenschapspark 1, B3590 Diepenbeek, Belgium; IMOMEC Division, IMEC vzw, Wetenschapspark 1, B3590 Diepenbeek, Belgium
| | - Jelle Hendrix
- UHasselt, Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), B3590 Diepenbeek, Belgium.
| |
Collapse
|
5
|
Shen S, Liu X, Fan K, Bai H, Li X, Li H. Stabilizing and Accelerating Secondary Flow in Ultralong Spiral Channel for High-Throughput Cell Manipulation. Anal Chem 2024; 96:11412-11421. [PMID: 38954777 DOI: 10.1021/acs.analchem.4c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Efficient cell manipulation is essential for numerous applications in bioanalysis and medical diagnosis. However, the lack of stability and strength in the secondary flow, coupled with the narrow range of practical throughput, severely restricts the diverse applications. Herein, we present an innovative inertial microfluidic device that employs a spiral channel for high-throughput cell manipulation. Our investigation demonstrates that the regulation of Dean-like secondary flow in the microchannel can be achieved through geometric confinement. Introducing ordered microstructures into the ultralong spiral channel (>90 cm) stabilizes and accelerates the secondary flow among different loops. Consequently, effective manipulation of blood cells within a wide cell throughput range (1.73 × 108 to 1.16 × 109 cells/min) and cancer cells across a broad throughput range (0.5 × 106 to 5 × 107 cells/min) can be achieved. In comparison to previously reported technologies, our engineering approach of stabilizing and accelerating secondary flow offers specific performance for cell manipulation under a wide range of high-throughput manner. This engineered spiral channel would be promising in biomedical analysis, especially when cells need to be focused efficiently on large-volume liquid samples.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan, Shanxi 030000, P. R. China
| | - Xufang Liu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan, Shanxi 030000, P. R. China
| | - Kuohai Fan
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi 030000, P. R. China
| | - Hanjie Bai
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan, Shanxi 030000, P. R. China
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong 529000, P. R. China
| | - Hongquan Li
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi 030000, P. R. China
| |
Collapse
|
6
|
Xu C, Alameri A, Leong W, Johnson E, Chen Z, Xu B, Leong KW. Multiscale engineering of brain organoids for disease modeling. Adv Drug Deliv Rev 2024; 210:115344. [PMID: 38810702 PMCID: PMC11265575 DOI: 10.1016/j.addr.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Brain organoids hold great potential for modeling human brain development and pathogenesis. They recapitulate certain aspects of the transcriptional trajectory, cellular diversity, tissue architecture and functions of the developing brain. In this review, we explore the engineering strategies to control the molecular-, cellular- and tissue-level inputs to achieve high-fidelity brain organoids. We review the application of brain organoids in neural disorder modeling and emerging bioengineering methods to improve data collection and feature extraction at multiscale. The integration of multiscale engineering strategies and analytical methods has significant potential to advance insight into neurological disorders and accelerate drug development.
Collapse
Affiliation(s)
- Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Alia Alameri
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Wei Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Emily Johnson
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
7
|
Chen J, Liu Y, Lan J, Liu H, Tang Q, Li Z, Qiu X, Hu W, Xie J, Feng Y, Qin L, Zhang X, Liu J, Chen L. Identification and validation of COL6A1 as a novel target for tumor electric field therapy in glioblastoma. CNS Neurosci Ther 2024; 30:e14802. [PMID: 38887185 PMCID: PMC11183175 DOI: 10.1111/cns.14802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive primary brain malignancy. Novel therapeutic modalities like tumor electric field therapy (TEFT) have shown promise, but underlying mechanisms remain unclear. The extracellular matrix (ECM) is implicated in GBM progression, warranting investigation into TEFT-ECM interplay. METHODS T98G cells were treated with TEFT (200 kHz, 2.2 V/m) for 72 h. Collagen type VI alpha 1 (COL6A1) was identified as hub gene via comprehensive bioinformatic analysis based on RNA sequencing (RNA-seq) and public glioma datasets. TEFT intervention models were established using T98G and Ln229 cell lines. Pre-TEFT and post-TEFT GBM tissues were collected for further validation. Focal adhesion pathway activity was assessed by western blot. Functional partners of COL6A1 were identified and validated by co-localization and survival analysis. RESULTS TEFT altered ECM-related gene expression in T98G cells, including the hub gene COL6A1. COL6A1 was upregulated in GBM and associated with poor prognosis. Muti-database GBM single-cell analysis revealed high-COL6A1 expression predominantly in malignant cell subpopulations. Differential expression and functional enrichment analyses suggested COL6A1 might be involved in ECM organization and focal adhesion. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments revealed that TEFT significantly inhibited expression of COL6A1, hindering its interaction with ITGA5, consequently suppressing the FAK/Paxillin/AKT pathway activity. These results suggested that TEFT might exert its antitumor effects by downregulating COL6A1 and thereby inhibiting the activity of the focal adhesion pathway. CONCLUSION TEFT could remodel the ECM of GBM cells by downregulating COL6A1 expression and inhibiting focal adhesion pathway. COL6A1 could interact with ITGA5 and activate the focal adhesion pathway, suggesting that it might be a potential therapeutic target mediating the antitumor effects of TEFT.
Collapse
Affiliation(s)
- Junyi Chen
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| | - Yuyang Liu
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Jinxin Lan
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Hongyu Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalHainanChina
| | - Qingyun Tang
- Department of Gastroenterology920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Ze Li
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| | - Xiaoguang Qiu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wentao Hu
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Jiaxin Xie
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Yaping Feng
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Lilin Qin
- Zhejiang Cancer HospitalZhejiangHangzhouChina
| | - Xin Zhang
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Jialin Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| | - Ling Chen
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| |
Collapse
|
8
|
Yang C, Yin D, Zhang H, Badea I, Yang SM, Zhang W. Cell Migration Assays and Their Application to Wound Healing Assays-A Critical Review. MICROMACHINES 2024; 15:720. [PMID: 38930690 PMCID: PMC11205366 DOI: 10.3390/mi15060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
In recent years, cell migration assays (CMAs) have emerged as a tool to study the migration of cells along with their physiological responses under various stimuli, including both mechanical and bio-chemical properties. CMAs are a generic system in that they support various biological applications, such as wound healing assays. In this paper, we review the development of the CMA in the context of its application to wound healing assays. As such, the wound healing assay will be used to derive the requirements on CMAs. This paper will provide a comprehensive and critical review of the development of CMAs along with their application to wound healing assays. One salient feature of our methodology in this paper is the application of the so-called design thinking; namely we define the requirements of CMAs first and then take them as a benchmark for various developments of CMAs in the literature. The state-of-the-art CMAs are compared with this benchmark to derive the knowledge and technological gap with CMAs in the literature. We will also discuss future research directions for the CMA together with its application to wound healing assays.
Collapse
Affiliation(s)
- Chun Yang
- School of Mechanical Engineering, Donghua University, Shanghai 200051, China;
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Di Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; (D.Y.); (H.Z.)
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; (D.Y.); (H.Z.)
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
| | - Shih-Mo Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wenjun Zhang
- School of Mechanical Engineering, Donghua University, Shanghai 200051, China;
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
9
|
Shen S, Zhao L, Bai H, Zhang Y, Niu Y, Tian C, Chan H. Spiral Large-Dimension Microfluidic Channel for Flow-Rate- and Particle-Size-Insensitive Focusing by the Stabilization and Acceleration of Secondary Flow. Anal Chem 2024; 96:1750-1758. [PMID: 38215439 DOI: 10.1021/acs.analchem.3c04897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Inertial microfluidics has demonstrated its ability to focus particles in a passive and straightforward manner. However, achieving flow-rate- and particle-size-insensitive focusing in large-dimension channels with a simple design remains challenging. In this study, we developed a spiral microfluidic with a large-dimension channel to achieve inertial focusing. By designing a unique "big buffering area" and a "small buffering area" in the spiral microchannel, we observed the stabilization and acceleration of secondary flow. Our optimized design allowed for efficient (>99.9%) focusing of 15 μm particles within a wide range of flow rates (0.5-4.5 mL/min) during a long operation duration (0-60 min). Additionally, we achieved effective (>95%) focusing of different-sized particles (7, 10, 15, and 30 μm) and three types of tumor cells (K562, HeLa, and MCF-7) near the inner wall of the 1 mm wide outlet when applying different flow rates (1-3 mL/min). Finally, successful 3D cell focusing was achieved within an optimized device, with the cells positioned at a distance of 50 μm from the wall. Our strategy of stabilizing and accelerating Dean-like secondary flow through the unique configuration of a "big buffering area" and a "small buffering area" proved to be highly effective in achieving inertial focusing that is insensitive to the flow rate and particle size, particularly in large-dimension channels. Consequently, it shows great potential for use in hand-operated microfluidic tools for flow cytometry.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Lei Zhao
- School of Life Science and Technology, Xidian University, Xi'an 710126, Shaanxi, P. R. China
| | - Hanjie Bai
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Yali Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Yanbing Niu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, P. R. China
| | - Henryk Chan
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
10
|
Vasantham S, Kotnala A, Promovych Y, Garstecki P, Derzsi L. Opto-hydrodynamic tweezers. LAB ON A CHIP 2024; 24:517-527. [PMID: 38165913 DOI: 10.1039/d3lc00733b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Optical fiber tweezers offer a simple, low-cost and portable solution for non-invasive trapping and manipulation of particles. However, single-fiber tweezers require fiber tip modification (tapering, lensing, etc.) and the dual-fiber approach demands strict alignment and positioning of fibers for robust trapping of particles. In addition, both tweezing techniques offer a limited range of particle manipulation and operate in low flow velocity regimes (a few 100 μm s-1) when integrated with microfluidic devices. In this paper, we report a novel opto-hydrodynamic fiber tweezers (OHT) platform that exploits the balance between the hydrodynamic drag force and optical scattering forces to trap and manipulate single or multiple particles of various shapes, sizes, and material compositions in a microfluidic channel. 3D hydrodynamic flow focusing offers an easy and dynamic alignment of the particle trajectories with the optical axis of the fiber, which enables robust trapping of particles with high efficiency of >70% and throughput of 14 particles per minute (operating flow velocity: 1000 μm s-1) without the need for precision stages or complex fabrication. By regulating the optical power and flow rates, we were able to trap single particles at desired positions in the channel with a precision of ±10 μm as well as manipulate them over a long range upstream or downstream with a maximum distance of 500 μm. Our opto-hydrodynamic tweezers offer an alternative to conventional optical fiber tweezers for several applications in physics, biology, medicine, etc.
Collapse
Affiliation(s)
- Shreyas Vasantham
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Abhay Kotnala
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, 77204, USA
| | - Yurii Promovych
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Ladislav Derzsi
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
11
|
DeAngelis MA, Ruder WC, LeDuc PR. An embedded microfluidic valve for dynamic control of cellular communication. APPLIED PHYSICS LETTERS 2023; 123:244103. [PMID: 38094664 PMCID: PMC10715818 DOI: 10.1063/5.0172538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
The communication between different cell populations is an important aspect of many natural phenomena that can be studied with microfluidics. Using microfluidic valves, these complex interactions can be studied with a higher level of control by placing a valve between physically separated populations. However, most current valve designs do not display the properties necessary for this type of system, such as providing variable flow rate when embedded inside a microfluidic device. While some valves have been shown to have such tunable behavior, they have not been used for dynamic, real-time outputs. We present an electric solenoid valve that can be fabricated completely outside of a cleanroom and placed into any microfluidic device to offer control of dynamic fluid flow rates and profiles. After characterizing the behavior of this valve under controlled test conditions, we developed a regression model to determine the required input electrical signal to provide the solenoid the ability to create a desired flow profile. With this model, we demonstrated that the valve could be controlled to replicate a desired, time-varying pattern for the interface position of a co-laminar fluid stream. Our approach can be performed by other investigators with their microfluidic devices to produce predictable, dynamic fluidic behavior. In addition to modulating fluid flows, this work will be impactful for controlling cellular communication between distinct populations or even chemical reactions occurring in microfluidic channels.
Collapse
Affiliation(s)
- Mark A. DeAngelis
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
12
|
Dittfeld C, Winkelkotte M, Scheer A, Voigt E, Schmieder F, Behrens S, Jannasch A, Matschke K, Sonntag F, Tugtekin SM. Challenges of aortic valve tissue culture - maintenance of viability and extracellular matrix in the pulsatile dynamic microphysiological system. J Biol Eng 2023; 17:60. [PMID: 37770970 PMCID: PMC10538250 DOI: 10.1186/s13036-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) causes an increasing health burden in the 21st century due to aging population. The complex pathophysiology remains to be understood to develop novel prevention and treatment strategies. Microphysiological systems (MPSs), also known as organ-on-chip or lab-on-a-chip systems, proved promising in bridging in vitro and in vivo approaches by applying integer AV tissue and modelling biomechanical microenvironment. This study introduces a novel MPS comprising different micropumps in conjunction with a tissue-incubation-chamber (TIC) for long-term porcine and human AV incubation (pAV, hAV). RESULTS Tissue cultures in two different MPS setups were compared and validated by a bimodal viability analysis and extracellular matrix transformation assessment. The MPS-TIC conjunction proved applicable for incubation periods of 14-26 days. An increased metabolic rate was detected for pulsatile dynamic MPS culture compared to static condition indicated by increased LDH intensity. ECM changes such as an increase of collagen fibre content in line with tissue contraction and mass reduction, also observed in early CAVD, were detected in MPS-TIC culture, as well as an increase of collagen fibre content. Glycosaminoglycans remained stable, no significant alterations of α-SMA or CD31 epitopes and no accumulation of calciumhydroxyapatite were observed after 14 days of incubation. CONCLUSIONS The presented ex vivo MPS allows long-term AV tissue incubation and will be adopted for future investigation of CAVD pathophysiology, also implementing human tissues. The bimodal viability assessment and ECM analyses approve reliability of ex vivo CAVD investigation and comparability of parallel tissue segments with different treatment strategies regarding the AV (patho)physiology.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany.
| | - Maximilian Winkelkotte
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Anna Scheer
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Emmely Voigt
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| |
Collapse
|
13
|
Sherif S, Ghallab YH, AbdelRaheem O, Ziko L, Siam R, Ismail Y. Optimization design of interdigitated microelectrodes with an insulation layer on the connection tracks to enhance efficiency of assessment of the cell viability. BMC Biomed Eng 2023; 5:4. [PMID: 37127658 PMCID: PMC10150490 DOI: 10.1186/s42490-023-00070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Microelectrical Impedance Spectroscopy (µEIS) is a tiny device that utilizes fluid as a working medium in combination with biological cells to extract various electrical parameters. Dielectric parameters of biological cells are essential parameters that can be extracted using µEIS. µEIS has many advantages, such as portability, disposable sensors, and high-precision results. RESULTS The paper compares different configurations of interdigitated microelectrodes with and without a passivation layer on the cell contact tracks. The influence of the number of electrodes on the enhancement of the extracted impedance for different types of cells was provided and discussed. Different types of cells are experimentally tested, such as viable and non-viable MCF7, along with different buffer solutions. This study confirms the importance of µEIS for in vivo and in vitro applications. An essential application of µEIS is to differentiate between the cells' sizes based on the measured capacitance, which is indirectly related to the cells' size. The extracted statistical values reveal the capability and sensitivity of the system to distinguish between two clusters of cells based on viability and size. CONCLUSION A completely portable and easy-to-use system, including different sensor configurations, was designed, fabricated, and experimentally tested. The system was used to extract the dielectric parameters of the Microbeads and MCF7 cells immersed in different buffer solutions. The high sensitivity of the readout circuit, which enables it to extract the difference between the viable and non-viable cells, was provided and discussed. The proposed system can extract and differentiate between different types of cells based on cells' sizes; two other polystyrene microbeads with different sizes are tested. Contamination that may happen was avoided using a Microfluidic chamber. The study shows a good match between the experiment and simulation results. The study also shows the optimum number of interdigitated electrodes that can be used to extract the variation in the dielectric parameters of the cells without leakage current or parasitic capacitance.
Collapse
Affiliation(s)
- Sameh Sherif
- Biomedical Engineering Department, Helwan University, Cairo, Egypt.
- Center of Nanoelectronics and Devices (CND), Zewail City of Science and Technology and The American University in Cairo (AUC), Cairo, Egypt.
| | - Yehya H Ghallab
- Biomedical Engineering Department, Helwan University, Cairo, Egypt
- Center of Nanoelectronics and Devices (CND), Zewail City of Science and Technology and The American University in Cairo (AUC), Cairo, Egypt
| | - Omnia AbdelRaheem
- Department of Biology, School of Sciences and Engineering, The American University in Cairo(AUC), Cairo, Egypt
| | - Laila Ziko
- Department of Biology, School of Sciences and Engineering, The American University in Cairo(AUC), Cairo, Egypt
- School of Life and Medical Sciences, the University of Hertfordshire, Hosted By Global Academic Foundation, Cairo, Egypt
| | - Rania Siam
- Department of Biology, School of Sciences and Engineering, The American University in Cairo(AUC), Cairo, Egypt
| | - Yehea Ismail
- Center of Nanoelectronics and Devices (CND), Zewail City of Science and Technology and The American University in Cairo (AUC), Cairo, Egypt
| |
Collapse
|
14
|
Saffari H, Hajiaghalou S, Hajari MA, Gourabi H, Fathi D, Fathi R. Design and fabrication of aspiration microfluidic channel for oocyte characterization. Talanta 2023; 254:124098. [PMID: 36462279 DOI: 10.1016/j.talanta.2022.124098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
The development potential for oocytes can be predicted by their mechanical properties. One important parameter that is measured to calculate oocyte hardness is Cortical Tension (CT). In this work, for the first time, we present the design, simulation, and fabrication of a new aspiration microfluidic chip to measure the CT of oocytes and then predict their maturation capability in the Germinal Vesicle (GV) stage. This high-performance technique facilitates oocyte characterization and is a promising alternative to traditional methods such as MicroPipette Aspiration (MPA). The proposed technique involves considerably simpler operation, less specialized equipment, and less technical skill than MPA. The proposed microfluidic channel also promises faster measurements. It is shown that in order to completely continue the growth process of oocytes in GV stage, the CT should be in a certain range: very low or very high CTs lead to unsuccessful growth. The obtained results show that 79% of oocytes with the CT between 1.5 and 3 nN/μm reach the Metaphase II (MII) stage, whereas the growth for 78% of oocytes with the CT less than 1.5 nN/μm or higher than 3 nN/μm stops at the GV or Germinal Vesicle Break Down (GVBD) stages. Another property, kvis, that points to the viscous behavior of oocytes is also measured. It is seen that 80% of GV oocytes with the kvis values between 15 and 30 k Pa s/m reach the MII stage.
Collapse
Affiliation(s)
- H Saffari
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - S Hajiaghalou
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - M A Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - H Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - D Fathi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
| | - R Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
15
|
Moon HR, Saha S, Mugler A, Han B. Cells function as a ternary logic gate to decide migration direction under integrated chemical and fluidic cues. LAB ON A CHIP 2023; 23:631-644. [PMID: 36524874 PMCID: PMC9926949 DOI: 10.1039/d2lc00807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Cells sense various environmental cues and subsequently process intracellular signals to decide their migration direction in many physiological and pathological processes. Although several signaling molecules and networks have been identified in these directed migrations, it still remains ambiguous to predict the migration direction under multiple and integrated cues, specifically chemical and fluidic cues. Here, we investigated the cellular signal processing machinery by reverse-engineering directed cell migration under integrated chemical and fluidic cues. We imposed controlled chemical and fluidic cues to cells using a microfluidic platform and analyzed the extracellular coupling of the cues with respect to the cellular detection limit. Then, the cell's migratory behavior was reverse-engineered to build a cellular signal processing system as a logic gate, which is based on a "selection" gate. This framework is further discussed with a minimal intracellular signaling network of a shared pathway model. The proposed framework of the ternary logic gate suggests a systematic view to understand how cells decode multiple cues and make decisions about the migration direction.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
16
|
Han W, Duan X, Wu J, Jiang L, Wu H, Chen Z. Leakage Dynamics of Glass Bottles on Container Closure Integrity Testing: Influence of Different Laser-Drilled Microhole Geometries. J Pharm Sci 2023; 112:1440-1449. [PMID: 36706835 DOI: 10.1016/j.xphs.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023]
Abstract
Container closure integrity testing (CCIT) is a critical step in ensuring package integrity and providing feedback on package designs. In practical applications, CCIT methods, namely physical and probabilistic methods, must be appropriately selected and validated to ensure their suitability for the intended use. However, the industry still lacks practical recommendations regarding the choice of CCIT methods and artificial leaks to set the acceptance criteria. The main reason is the lack of correlation between testing methods. Artificially introduced leak microholes are the only way to determine the sensitivity of a CCIT method and to implement the method correlation. However, the type of artificial leakage is a key factor because in most studies, leakage is described and valued using a single parameter, such as size. This can significantly affect the credibility of the relevant test results, especially in the case of microbial invasion, where the difference in test conditions and samples will severely affect the probability of microbial invasion. Therefore, it is vital to conduct a systematic study on the influence of leakage conditions on CCIT methods. In this study, the influence of the shapes of artificial leaks on the two kinds of testing methods was systematically studied based on a laser-drilled microhole-a highly potential and non-exogenous artificial leak manufacturing method that can fabricate different leakage geometries. The reason for the influence of the shape of an artificial leak on the CCIT is that the deterministic method takes defects as an idealized model and ignores the influence of the leak shape, wall thickness, and other factors on leakage and pollution risks. However, these factors seriously affect the dynamic process of leakage and microbial invasion. The pressure decay method is used to test the leakage flow rate of conical and straight holes. Microbial challenge tests are then used to verify the impact of leakage shapes on the pollution risk. The results of the tests indicated that the probability of microbial invasion in the conical holes is much higher than that in straight holes with the same flow test results and that the wall thickness can also affect microbial invasion. Thus, it can be proven that the risk of leakage and invasion or the sensitivity of different methods cannot only be compared through the leak diameter. Numerous influencing factors, including leakage geometry (e.g., shape and thickness), must be considered in practical applications.
Collapse
Affiliation(s)
- Weina Han
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314003, China
| | - Xiaofeng Duan
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Jianying Wu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314003, China.
| | - Hao Wu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Zhaolun Chen
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| |
Collapse
|
17
|
Wang X, Zheng J, Iyer MA, Szmelter AH, Eddington DT, Lee SSY. Spatially selective cell treatment and collection for integrative drug testing using hydrodynamic flow focusing and shifting. PLoS One 2023; 18:e0279102. [PMID: 36649249 PMCID: PMC9844832 DOI: 10.1371/journal.pone.0279102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023] Open
Abstract
Hydrodynamic focusing capable of readily producing and controlling laminar flow facilitates drug treatment of cells in existing microfluidic culture devices. However, to expand applications of such devices to multiparameter drug testing, critical limitations in current hydrodynamic focusing microfluidics must be addressed. Here we describe hydrodynamic focusing and shifting as an advanced microfluidics tool for spatially selective drug delivery and integrative cell-based drug testing. We designed and fabricated a co-flow focusing, three-channel microfluidic device with a wide cell culture chamber. By controlling inlet flow rates of sample and two side solutions, we could generate hydrodynamic focusing and shifting that mediated precise regulation of the path and width of reagent and drug stream in the microfluidic device. We successfully validated a hydrodynamic focusing and shifting approach for spatially selective delivery of DiI, a lipophilic fluorophore, and doxorubicin, a chemotherapeutic agent, to tumor cells in our device. Moreover, subsequent flowing of a trypsin EDTA solution over the cells that were exposed to doxorubicin flow allowed us to selectively collect the treated cells. Our approach enabled downstream high-resolution microscopy of the cell suspension to confirm the nuclear delivery of doxorubicin into the tumor cells. In the device, we could also evaluate in situ the cytotoxic effect of doxorubicin to the tumor cells that were selectively treated by hydrodynamic flow focusing and shifting. These results show that hydrodynamic focusing and shifting enable a fast and robust approach to spatially treat and then collect cells in an optimized microfluidic device, offering an integrative assay tool for efficient drug screening and discovery.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Maheshwar Adiraj Iyer
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Adam Henry Szmelter
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - David T. Eddington
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois, United States of America
- * E-mail: (DTE); (SSYL)
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois, United States of America
- * E-mail: (DTE); (SSYL)
| |
Collapse
|
18
|
Abdelkarim M, Perez-Davalos L, Abdelkader Y, Abostait A, Labouta HI. Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles. Expert Opin Drug Deliv 2023; 20:13-30. [PMID: 36440475 DOI: 10.1080/17425247.2023.2152000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Organ-on-a-chip (OOC) models are based on microfluidics and can recapitulate the healthy and diseased microstructure of organs1 and tissues and the dynamic microenvironment inside the human body. However, the use of OOC models to evaluate the safety and efficacy of nanoparticles (NPs) is still in the early stages. AREAS COVERED The different design parameters of the microfluidic chip and the mechanical forces generated by fluid flow play a pivotal role in simulating the human environment. This review discusses the role of different key parameters on the performance of OOC models. These include the flow pattern, flow rate, shear stress (magnitude, rate, and distribution), viscosity of the media, and the microchannel dimensions and shape. We also discuss how the shear stress and other mechanical forces affect the transport of NPs across biological barriers, cell uptake, and their biocompatibility. EXPERT OPINION We describe several good practices and design parameters to consider for future OOC research. We submit that following these recommendations will help realize the full potential of the OOC models in the preclinical evaluation of novel therapies, including NPs.
Collapse
Affiliation(s)
- Mahmoud Abdelkarim
- Biomedical Engineering, University of Manitoba, R3T 5V6, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Luis Perez-Davalos
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Yasmin Abdelkader
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada.,Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Amr Abostait
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Hagar I Labouta
- Biomedical Engineering, University of Manitoba, R3T 5V6, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, R3E 3P4, Winnipeg, Manitoba, Canada.,Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| |
Collapse
|
19
|
He S, Pang W, Wu X, Yang Y, Li W, Qi H, Sun C, Duan X, Wang Y. A targeted hydrodynamic gold nanorod delivery system based on gigahertz acoustic streaming. NANOSCALE 2022; 14:15281-15290. [PMID: 36112106 DOI: 10.1039/d2nr03222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The hydrodynamic method mimics the in vivo environment of the mechanical effect on cell stimulation, which not only modulates cell physiology but also shows excellent intracellular delivery ability. Herein, a hydrodynamic intracellular delivery system based on the gigahertz acoustic streaming (AS) effect is proposed, which presents powerful targeted delivery capabilities with high efficiency and universality. Results indicate that the range of cells with AuNR introduction is related to that of AS, enabling a tunable delivery range due to the adjustability of the AS radius. Moreover, with the assistance of AS, the organelle localization delivery of AuNRs with different modifications is enhanced. AuNRs@RGD is inclined to accumulate in the nucleus, while AuNRs@BSA tend to enter the mitochondria and AuNRs@PEGnK tend to accumulate in the lysosome. Finally, the photothermal effect is proved based on the large quantities of AuNRs introduced via AS. The abundant introduction of AuNRs under the action of AS can achieve rapid cell heating with the irradiation of a 785 nm laser, which has great potential in shortening the treatment cycle of photothermal therapy (PTT). Thereby, an efficient hydrodynamic technology in AuNR introduction based on AS has been demonstrated. The outstanding location delivery and organelle targeting of this method provides a new idea for precise medical treatment.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wenjun Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Hang Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
20
|
Vuille-Dit-Bille E, Deshmukh DV, Connolly S, Heub S, Boder-Pasche S, Dual J, Tibbitt MW, Weder G. Tools for manipulation and positioning of microtissues. LAB ON A CHIP 2022; 22:4043-4066. [PMID: 36196619 DOI: 10.1039/d2lc00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Complex three-dimensional (3D) in vitro models are emerging as a key technology to support research areas in personalised medicine, such as drug development and regenerative medicine. Tools for manipulation and positioning of microtissues play a crucial role in the microtissue life cycle from production to end-point analysis. The ability to precisely locate microtissues can improve the efficiency and reliability of processes and investigations by reducing experimental time and by providing more controlled parameters. To achieve this goal, standardisation of the techniques is of primary importance. Compared to microtissue production, the field of microtissue manipulation and positioning is still in its infancy but is gaining increasing attention in the last few years. Techniques to position microtissues have been classified into four main categories: hydrodynamic techniques, bioprinting, substrate modification, and non-contact active forces. In this paper, we provide a comprehensive review of the different tools for the manipulation and positioning of microtissues that have been reported to date. The working mechanism of each technique is described, and its merits and limitations are discussed. We conclude by evaluating the potential of the different approaches to support progress in personalised medicine.
Collapse
Affiliation(s)
- Emilie Vuille-Dit-Bille
- Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland.
- MicroBioRobotic Systems Laboratory, Institute of Mechanical Engineering, EPFL, Lausanne, Switzerland
| | - Dhananjay V Deshmukh
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Sinéad Connolly
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Sarah Heub
- Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland.
| | | | - Jürg Dual
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Gilles Weder
- Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland.
| |
Collapse
|
21
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
22
|
Wei Y, Wang K, Luo S, Li F, Zuo X, Fan C, Li Q. Programmable DNA Hydrogels as Artificial Extracellular Matrix. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107640. [PMID: 35119201 DOI: 10.1002/smll.202107640] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The cell microenvironment plays a crucial role in regulating cell behavior and fate in physiological and pathological processes. As the fundamental component of the cell microenvironment, extracellular matrix (ECM) typically possesses complex ordered structures and provides essential physical and chemical cues to the cells. Hydrogels have attracted much attention in recapitulating the ECM. Compared to natural and synthetic polymer hydrogels, DNA hydrogels have unique programmable capability, which endows the material precise structural customization and tunable properties. This review focuses on recent advances in programmable DNA hydrogels as artificial extracellular matrix, particularly the pure DNA hydrogels. It introduces the classification, design, and assembly of DNA hydrogels, and then summarizes the state-of-the-art achievements in cell encapsulation, cell culture, and tissue engineering with DNA hydrogels. Ultimately, the challenges and prospects for cellular applications of DNA hydrogels are delivered.
Collapse
Affiliation(s)
- Yuhan Wei
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaizhe Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shihua Luo
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| |
Collapse
|
23
|
Hoyle H, Stenger C, Przyborski S. Design considerations of benchtop fluid flow bioreactors for bio-engineered tissue equivalents in vitro. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100063. [PMID: 36824373 PMCID: PMC9934498 DOI: 10.1016/j.bbiosy.2022.100063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
One of the major aims of bio-engineering tissue equivalents in vitro is to create physiologically relevant culture conditions to accurately recreate the cellular microenvironment. This often includes incorporation of factors such as the extracellular matrix, co-culture of multiple cell types and three-dimensional culture techniques. These advanced techniques can recapitulate some of the properties of tissue in vivo, however fluid flow is a key aspect that is often absent. Fluid flow can be introduced into cell and tissue culture using bioreactors, which are becoming increasingly common as we seek to produce increasingly accurate tissue models. Bespoke technology is continuously being developed to tailor systems for specific applications and to allow compatibility with a range of culture techniques. For effective perfusion of a tissue culture many parameters can be controlled, ranging from impacts of the fluid flow such as increased shear stress and mass transport, to potentially unwanted side effects such as temperature fluctuations. A thorough understanding of these properties and their implications on the culture model can aid with a more accurate interpretation of results. Improved and more complete characterisation of bioreactor properties will also lead to greater accuracy when reporting culture conditions in protocols, aiding experimental reproducibility, and allowing more precise comparison of results between different systems. In this review we provide an analysis of the different factors involved in the development of benchtop flow bioreactors and their potential biological impacts across a range of applications.
Collapse
Key Words
- 3D, three-dimensional
- ABS, acrylonitrile butadiene styrene
- ALI, air-liquid interface
- Bioreactors
- CFD, computational fluid dynamics
- Cell culture
- ECM, extracellular matrix
- FDM, fused deposition modelling
- Fluid flow
- PC, polycarbonate
- PET, polyethylene terephthalate
- PLA, polylactic acid
- PTFE, polytetrafluoroethylene
- SLA, stereolithography
- Tissue engineering
- UL, unstirred layer
- UV, ultraviolet light
Collapse
Affiliation(s)
- H.W. Hoyle
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - C.M.L. Stenger
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - S.A. Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK,NETPark Incubator, Reprocell Europe Ltd., Thomas Wright Way, Sedgefield TS21 3FD, UK,Corresponding author at: Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
24
|
Bourguignon N, Karp P, Attallah C, Chamorro DA, Oggero M, Booth R, Ferrero S, Bhansali S, Pérez MS, Lerner B, Helguera G. Large Area Microfluidic Bioreactor for Production of Recombinant Protein. BIOSENSORS 2022; 12:bios12070526. [PMID: 35884329 PMCID: PMC9313365 DOI: 10.3390/bios12070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
To produce innovative biopharmaceuticals, highly flexible, adaptable, robust, and affordable bioprocess platforms for bioreactors are essential. In this article, we describe the development of a large-area microfluidic bioreactor (LM bioreactor) for mammalian cell culture that works at laminar flow and perfusion conditions. The 184 cm2 32 cisterns LM bioreactor is the largest polydimethylsiloxane (PDMS) microfluidic device fabricated by photopolymer flexographic master mold methodology, reaching a final volume of 2.8 mL. The LM bioreactor was connected to a syringe pump system for culture media perfusion, and the cells’ culture was monitored by photomicrograph imaging. CHO-ahIFN-α2b adherent cell line expressing the anti-hIFN-a2b recombinant scFv-Fc monoclonal antibody (mAb) for the treatment of systemic lupus erythematosus were cultured on the LM bioreactor. Cell culture and mAb production in the LM bioreactor could be sustained for 18 days. Moreover, the anti-hIFN-a2b produced in the LM bioreactor showed higher affinity and neutralizing antiproliferative activity compared to those mAbs produced in the control condition. We demonstrate for the first-time, a large area microfluidic bioreactor for mammalian cell culture that enables a controlled microenvironment suitable for the development of high-quality biologics with potential for therapeutic use.
Collapse
Affiliation(s)
- Natalia Bourguignon
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Paola Karp
- Laboratorio de Biotecnología Farmacéutica, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad de Buenos Aires C1428ADN, Argentina; (P.K.); (S.F.)
| | - Carolina Attallah
- Centro Biotecnológico del Litoral, Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Santa Fe S3000ZAA, Provincia de Santa Fe, Argentina; (C.A.); (M.O.)
| | - Daniel A. Chamorro
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
| | - Marcos Oggero
- Centro Biotecnológico del Litoral, Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Santa Fe S3000ZAA, Provincia de Santa Fe, Argentina; (C.A.); (M.O.)
| | - Ross Booth
- Roche Sequencing Solutions, Inc., Pleasanton, CA 94588, USA;
| | - Sol Ferrero
- Laboratorio de Biotecnología Farmacéutica, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad de Buenos Aires C1428ADN, Argentina; (P.K.); (S.F.)
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Maximiliano S. Pérez
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Betiana Lerner
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
- Correspondence: (B.L.); (G.H.); Tel.:+5411-4343-1177 (ext. 1209) (B.L.); +54-11-4783-2869 (G.H.)
| | - Gustavo Helguera
- Laboratorio de Biotecnología Farmacéutica, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad de Buenos Aires C1428ADN, Argentina; (P.K.); (S.F.)
- Correspondence: (B.L.); (G.H.); Tel.:+5411-4343-1177 (ext. 1209) (B.L.); +54-11-4783-2869 (G.H.)
| |
Collapse
|
25
|
Feng Y, Chai H, He W, Liang F, Cheng Z, Wang W. Impedance-Enabled Camera-Free Intrinsic Mechanical Cytometry. SMALL METHODS 2022; 6:e2200325. [PMID: 35595712 DOI: 10.1002/smtd.202200325] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mechanical properties of single cells are important label-free biomarkers normally measured by expensive and complex imaging systems. To unlock this limit and allow mechanical properties comparable across different measurement platforms, camera-free intrinsic mechanical cytometry (CFIMC) is proposed for on-the-fly measurement of two major intrinsic mechanical parameters, that is, Young's modulus E and fluidity β, of single cells. CFIMC adopts a framework that couples the impedance electrodes with the constriction channel spatially, so that the impedance signals contain the dynamic deformability information of the cell squeezing through the constriction channel. Deformation of the cell is thus extracted from the impedance signals and used to derive the intrinsic mechanical parameters. With reasonably high throughput (>500 cells min-1 ), CFIMC can successfully reveal the mechanical difference in cancer and normal cells (i.e., human breast cell lines MCF-10A, MCF-7, and MDA-MB-231), living and fixed cells, and pharmacological perturbations of the cytoskeleton. It is further found that 1 µM level concentration of Cytochalasin B may be the threshold for the treated cells to induce a significant cytoskeleton effect reflected by the mechanical parameters. It is envisioned that CFIMC provides an alternative avenue for high-throughput and real-time single-cell intrinsic mechanical analysis.
Collapse
Affiliation(s)
- Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Weihua He
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhen Cheng
- Department of Automation, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
26
|
Rayat Pisheh H, Ansari M, Eslami H. How is mechanobiology involved in bone regenerative medicine? Tissue Cell 2022; 76:101821. [DOI: 10.1016/j.tice.2022.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
27
|
Taylor DP, Mathur P, Renaud P, Kaigala GV. Microscale hydrodynamic confinements: shaping liquids across length scales as a toolbox in life sciences. LAB ON A CHIP 2022; 22:1415-1437. [PMID: 35348555 DOI: 10.1039/d1lc01101d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrodynamic phenomena can be leveraged to confine a range of biological and chemical species without needing physical walls. In this review, we list methods for the generation and manipulation of microfluidic hydrodynamic confinements in free-flowing liquids and near surfaces, and elucidate the associated underlying theory and discuss their utility in the emerging area of open space microfluidics applied to life-sciences. Microscale hydrodynamic confinements are already starting to transform approaches in fundamental and applied life-sciences research from precise separation and sorting of individual cells, allowing localized bio-printing to multiplexing for clinical diagnosis. Through the choice of specific flow regimes and geometrical boundary conditions, hydrodynamic confinements can confine species across different length scales from small molecules to large cells, and thus be applied to a wide range of functionalities. We here provide practical examples and implementations for the formation of these confinements in different boundary conditions - within closed channels, in between parallel plates and in an open liquid volume. Further, to enable non-microfluidics researchers to apply hydrodynamic flow confinements in their work, we provide simplified instructions pertaining to their design and modelling, as well as to the formation of hydrodynamic flow confinements in the form of step-by-step tutorials and analytical toolbox software. This review is written with the idea to lower the barrier towards the use of hydrodynamic flow confinements in life sciences research.
Collapse
Affiliation(s)
- David P Taylor
- IBM Research - Europe, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
- Microsystems Laboratory 4, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Prerit Mathur
- IBM Research - Europe, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
- Dept. of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule (ETH), Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Philippe Renaud
- Microsystems Laboratory 4, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Govind V Kaigala
- IBM Research - Europe, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| |
Collapse
|
28
|
Organ-on-a-Chip: Design and Simulation of Various Microfluidic Channel Geometries for the Influence of Fluid Dynamic Parameters. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083829] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Shear stress, pressure, and flow rate are fluid dynamic parameters that can lead to changes in the morphology, proliferation, function, and survival of many cell types and have a determinant impact on tissue function and viability. Microfluidic devices are promising tools to investigate these parameters and fluid behaviour within different microchannel geometries. This study discusses and analyses different designed microfluidic channel geometries regarding the influence of fluid dynamic parameters on their microenvironment at specified fluidic parameters. The results demonstrate that in the circular microchamber, the velocity and shear stress profiles assume a parabolic shape with a maximum velocity occurring in the centre of the chamber and a minimum velocity at the walls. The longitudinal microchannel shows a uniform velocity and shear stress profile throughout the microchannel. Simulation studies for the two geometries with three parallel microchannels showed that in proximity to the micropillars, the velocity and shear stress profiles decreased. Moreover, the pressure is inversely proportional to the width and directly proportional to the flow rate within the microfluidic channels. The simulations showed that the velocity and wall shear stress indicated different values at different flow rates. It was also found that the width and height of the microfluidic channels could affect both velocity and shear stress profiles, contributing to the control of shear stress. The study has demonstrated strategies to predict and control the effects of these forces and the potential as an alternative to conventional cell culture as well as to recapitulate the cell- and organ-specific microenvironment.
Collapse
|
29
|
Gao X, Wu Y, Cheng T, Stewart AG. Comprehensive multiplexed superfusion system enables physiological emulation in cell culture: exemplification by persistent circadian entrainment. LAB ON A CHIP 2022; 22:1137-1148. [PMID: 35199811 DOI: 10.1039/d1lc00841b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells and tissues are routinely cultured in vitro for biological research with findings being extrapolated to their host organ and tissue function. However, most samples are cultured and studied in unphysiological environments, without temporal variation in the biochemical cues that are ubiquitous in vivo. The artificiality of these conditions undermines the predictive value of cell culture studies. We ascribe the prevalence of this suboptimal culture methodology to the lack of practical continuous flow systems that are economical and robust. Here, we design and implement an expandable multiplexed flow system for cell culture superfusion. By expanding on the concept of the planar peristaltic pump, we fabricated a highly compact and multiplexed pump head with up to 48 active pump lines. The pump is incorporated into a custom, open-top superfusion system configured for conventional multi-well culture plates. We then demonstrated the utility of the system for in vitro circadian entrainment using a daily cortisol pulse, generating a sustained circadian amplitude that is essential for physiological emulation and chrono-pharmacological studies. The multiplexed pump is complemented by a package of fluidic interconnection and management methods enabling user-friendly and scalable operation. Collectively, the suite of technologies provides a much-needed improvement in physiological emulation to support the predictive value of in vitro biomedical and biological research.
Collapse
Affiliation(s)
- Xumei Gao
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yanqi Wu
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tianhong Cheng
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alastair G Stewart
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
30
|
Bonner MG, Gudapati H, Mou X, Musah S. Microfluidic systems for modeling human development. Development 2022; 149:274363. [PMID: 35156682 PMCID: PMC8918817 DOI: 10.1242/dev.199463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The proper development and patterning of organs rely on concerted signaling events emanating from intracellular and extracellular molecular and biophysical cues. The ability to model and understand how these microenvironmental factors contribute to cell fate decisions and physiological processes is crucial for uncovering the biology and mechanisms of life. Recent advances in microfluidic systems have provided novel tools and strategies for studying aspects of human tissue and organ development in ways that have previously been challenging to explore ex vivo. Here, we discuss how microfluidic systems and organs-on-chips provide new ways to understand how extracellular signals affect cell differentiation, how cells interact with each other, and how different tissues and organs are formed for specialized functions. We also highlight key advancements in the field that are contributing to a broad understanding of human embryogenesis, organogenesis and physiology. We conclude by summarizing the key advantages of using dynamic microfluidic or microphysiological platforms to study intricate developmental processes that cannot be accurately modeled by using traditional tissue culture vessels. We also suggest some exciting prospects and potential future applications of these emerging technologies.
Collapse
Affiliation(s)
- Makenzie G. Bonner
- Developmental and Stem Cell Biology Program, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
| | - Hemanth Gudapati
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Developmental and Stem Cell Biology Program, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA,Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,MEDx Investigator and Faculty Member at the Duke Regeneration Center, Duke University, Durham, NC 27710, USA,Author for correspondence ()
| |
Collapse
|
31
|
Stirnemann G. Recent Advances and Emerging Challenges in the Molecular Modeling of Mechanobiological Processes. J Phys Chem B 2022; 126:1365-1374. [PMID: 35143190 DOI: 10.1021/acs.jpcb.1c10715] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many biological processes result from the effect of mechanical forces on macromolecular structures and on their interactions. In particular, the cell shape, motion, and differentiation directly depend on mechanical stimuli from the extracellular matrix or from neighboring cells. The development of experimental techniques that can measure and characterize the tiny forces acting at the cellular scale and down to the single-molecule, biomolecular level has enabled access to unprecedented details about the involved mechanisms. However, because the experimental observables often do not provide a direct atomistic picture of the corresponding phenomena, particle-based simulations performed at various scales are instrumental in complementing these experiments and in providing a molecular interpretation. Here, we will review the recent key achievements in the field, and we will highlight and discuss the many technical challenges these simulations are facing, as well as suggest future directions for improvement.
Collapse
Affiliation(s)
- Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
32
|
Cha H, Fallahi H, Dai Y, Yuan D, An H, Nguyen NT, Zhang J. Multiphysics microfluidics for cell manipulation and separation: a review. LAB ON A CHIP 2022; 22:423-444. [PMID: 35048916 DOI: 10.1039/d1lc00869b] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3216, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
33
|
Bußmann A, Thalhofer T, Hoffmann S, Daum L, Surendran N, Hayden O, Hubbuch J, Richter M. Microfluidic Cell Transport with Piezoelectric Micro Diaphragm Pumps. MICROMACHINES 2021; 12:mi12121459. [PMID: 34945309 PMCID: PMC8708163 DOI: 10.3390/mi12121459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/19/2022]
Abstract
The automated transport of cells can enable far-reaching cell culture research. However, to date, such automated transport has been achieved with large pump systems that often come with long fluidic connections and a large power consumption. Improvement is possible with space- and energy-efficient piezoelectric micro diaphragm pumps, though a precondition for a successful use is to enable transport with little to no mechanical stress on the cell suspension. This study evaluates the impact of the microfluidic transport of cells with the piezoelectric micro diaphragm pump developed by our group. It includes the investigation of different actuation signals. Therewith, we aim to achieve optimal fluidic performance while maximizing the cell viability. The investigation of fluidic properties proves a similar performance with a hybrid actuation signal that is a rectangular waveform with sinusoidal flanks, compared to the fluidically optimal rectangular actuation. The comparison of the cell transport with three actuation signals, sinusoidal, rectangular, and hybrid actuation shows that the hybrid actuation causes less damage than the rectangular actuation. With a 5% reduction of the cell viability it causes similar strain to the transport with sinusoidal actuation. Piezoelectric micro diaphragm pumps with the fluidically efficient hybrid signal actuation are therefore an interesting option for integrable microfluidic workflows.
Collapse
Affiliation(s)
- Agnes Bußmann
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (T.T.); (S.H.); (N.S.); (M.R.)
- MAB-Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany;
- Correspondence: ; Tel.: +49-89-54759-416
| | - Thomas Thalhofer
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (T.T.); (S.H.); (N.S.); (M.R.)
- TranslaTUM—Central Institute for Translational Cancer Research, Technical University of Munich, Einsteinstrasse 25, 81675 Munich, Germany; (L.D.); (O.H.)
| | - Sophie Hoffmann
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (T.T.); (S.H.); (N.S.); (M.R.)
| | - Leopold Daum
- TranslaTUM—Central Institute for Translational Cancer Research, Technical University of Munich, Einsteinstrasse 25, 81675 Munich, Germany; (L.D.); (O.H.)
| | - Nivedha Surendran
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (T.T.); (S.H.); (N.S.); (M.R.)
| | - Oliver Hayden
- TranslaTUM—Central Institute for Translational Cancer Research, Technical University of Munich, Einsteinstrasse 25, 81675 Munich, Germany; (L.D.); (O.H.)
| | - Jürgen Hubbuch
- MAB-Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany;
| | - Martin Richter
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (T.T.); (S.H.); (N.S.); (M.R.)
| |
Collapse
|
34
|
Pang L, Ding J, Liu XX, Kou Z, Guo L, Xu X, Fan SK. Microfluidics-Based Single-Cell Research for Intercellular Interaction. Front Cell Dev Biol 2021; 9:680307. [PMID: 34458252 PMCID: PMC8397490 DOI: 10.3389/fcell.2021.680307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Intercellular interaction between cell-cell and cell-ECM is critical to numerous biology and medical studies, such as stem cell differentiation, immunotherapy and tissue engineering. Traditional methods employed for delving into intercellular interaction are limited by expensive equipment and sophisticated procedures. Microfluidics technique is considered as one of the powerful measures capable of precisely capturing and manipulating cells and achieving low reagent consumption and high throughput with decidedly integrated functional components. Over the past few years, microfluidics-based systems for intercellular interaction study at a single-cell level have become frequently adopted. This review focuses on microfluidic single-cell studies for intercellular interaction in a 2D or 3D environment with a variety of cell manipulating techniques and applications. The challenges to be overcome are highlighted.
Collapse
Affiliation(s)
- Long Pang
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Jing Ding
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| | - Xi-Xian Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhixuan Kou
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Lulu Guo
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Xi Xu
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Shih-Kang Fan
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
35
|
Santos ÉCD, Fonseca Junior AMD, Lima CBD, Ispada J, Silva JVAD, Milazzotto MP. Less is more: Reduced nutrient concentration during in vitro culture improves embryo production rates and morphophysiology of bovine embryos. Theriogenology 2021; 173:37-47. [PMID: 34329894 DOI: 10.1016/j.theriogenology.2021.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Reproducing the environment to which the embryo is naturally exposed may be an alternative to improve viability of embryos produced in vitro. In the first part of this work, we describe a novel culture media, namely Embryonic Culture Supplementation (ECS100). The composition of this media was based on the contents of carbohydrates and amino acids found in oviductal and uterine fluids. Because it was a new formulation, we investigated the performance of ECS100 in comparison with conventionally used SOFaa, and possible benefits to embryo development. Embryo production rates (cleavage, morula and blastocyst conversion, blastocyst and hatching rates) and morphophysiological parameters (total cell number, cell allocation, Mitochondrial membrane potential (MMP), Reactive Oxygen Species (ROS), NADH, FAD+ and ATP content) were similar between ECS100 and SOFaa. Next, we tested if a reduction of ECS100 concentration could positively contribute to embryo viability by resembling the more dynamic availability of nutrients that reach the embryos in vivo. Therefore, embryos were cultured in ECS100 or in its serial dilution (ECS75, 50 and 25). Despite the fact that the lowest concentration (ECS25) still supported blastocyst formation, halving the concentration of metabolites (ECS50) actually improved embryo production rates. Thus, embryos produced in ECS100 or ECS50 were submitted to further analyses on Days 4 and 7. Embryos cultured in ECS50 presented better developmental rates and morphophysiological profile than embryos cultured in ECS100. Additionally, physiological traits (MMP, ROS and NADH levels) of embryos cultured in ECS50 presented the expected pattern for embryos produced in vivo. In conclusion, we presented a novel, more personalized and effective culture media for bovine IVP embryos. And although the ECS media formulation was based on the contents of female reproductive fluids, it is worth mentioning that adaptations must be specifically directed for in vitro conditions rather than reproduced exactly from in vivo state.
Collapse
Affiliation(s)
- Érika Cristina Dos Santos
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil.
| | - Aldcejam Martins da Fonseca Junior
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil.
| | - Camila Bruna de Lima
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil; Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec, Canada.
| | - Jessica Ispada
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil.
| | - João Vitor Alcantara da Silva
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil.
| | - Marcella Pecora Milazzotto
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
36
|
Ma Y, Gu M, Chen L, Shen H, Pan Y, Pang Y, Miao S, Tong R, Huang H, Zhu Y, Sun L. Recent advances in critical nodes of embryo engineering technology. Theranostics 2021; 11:7391-7424. [PMID: 34158857 PMCID: PMC8210615 DOI: 10.7150/thno.58799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The normal development and maturation of oocytes and sperm, the formation of fertilized ova, the implantation of early embryos, and the growth and development of foetuses are the biological basis of mammalian reproduction. Therefore, research on oocytes has always occupied a very important position in the life sciences and reproductive medicine fields. Various embryo engineering technologies for oocytes, early embryo formation and subsequent developmental stages and different target sites, such as gene editing, intracytoplasmic sperm injection (ICSI), preimplantation genetic diagnosis (PGD), and somatic cell nuclear transfer (SCNT) technologies, have all been established and widely used in industrialization. However, as research continues to deepen and target species become more advanced, embryo engineering technology has also been developing in a more complex and sophisticated direction. At the same time, the success rate also shows a declining trend, resulting in an extension of the research and development cycle and rising costs. By studying the existing embryo engineering technology process, we discovered three critical nodes that have the greatest impact on the development of oocytes and early embryos, namely, oocyte micromanipulation, oocyte electrical activation/reconstructed embryo electrofusion, and the in vitro culture of early embryos. This article mainly demonstrates the efforts made by researchers in the relevant technologies of these three critical nodes from an engineering perspective, analyses the shortcomings of the current technology, and proposes a plan and prospects for the development of embryo engineering technology in the future.
Collapse
Affiliation(s)
- Youwen Ma
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Mingwei Gu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Hao Shen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yifan Pan
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yan Pang
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Sheng Miao
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Ruiqing Tong
- Cardiology, Dushuhu Public Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Haibo Huang
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yichen Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Lining Sun
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
- State Key Laboratory of Robotics & Systems, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
37
|
Batcho EC, Miller S, Cover TL, McClain MS, Marasco C, Bell CS, Giorgio TD. Inertial-based Fluidic Platform for Rapid Isolation of Blood-borne Pathogens. Mil Med 2021; 186:129-136. [PMID: 33499487 DOI: 10.1093/milmed/usaa442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Bacterial sepsis is a life-threatening disease and a significant clinical problem caused by host responses to a microbial infection. Sepsis is a leading cause of death worldwide and, importantly, a significant cause of morbidity and mortality in combat settings, placing a considerable burden on military personnel and military health budgets. The current method of treating sepsis is restricted to pathogen identification, which can be prolonged, and antibiotic administration, which is, initially, often suboptimal. The clinical trials that have been performed to evaluate bacterial separation as a sepsis therapy have been unsuccessful, and new approaches are needed to address this unmet clinical need. MATERIALS AND METHODS An inertial-based, scalable spiral microfluidic device has been created to overcome these previous deficiencies through successful separation of infection-causing pathogens from the bloodstream, serving as a proof of principle for future adaptations. Fluorescent imaging of fluorescent microspheres mimicking the sizes of bacteria cells and blood cells as well as fluorescently stained Acinetobacter baumannii were used to visualize flow within the spiral. The particles were imaged when flowing at a constant volumetric rate of 0.2 mL min-1 through the device. The same device was functionalized with colistin and exposed to flowing A. baumannii at 0.2 mL h-1. RESULTS Fluorescent imaging within the channel under a constant volumetric flow rate demonstrated that smaller, bacteria-sized microspheres accumulated along the inner wall of the channel, whereas larger blood cell-sized microspheres accumulated within the center of the channel. Additionally, fluorescently stained A. baumannii displayed accumulation along the channel walls in agreement with calculated performance. Nearly 106 colony-forming units of A. baumannii were extracted with 100% capture efficiency from flowing phosphate-buffered saline at 0.2 mL h-1 in this device; this is at least one order of magnitude more bacteria than present in the blood of a human at the onset of sepsis. CONCLUSIONS This type of bacterial separation device potentially provides an ideal approach for treating soldiers in combat settings. It eliminates the need for immediate pathogen identification and determination of antimicrobial susceptibility, making it suitable for rapid use within low-resource environments. The overall simplicity and durability of this design also supports its broad translational potential to improve military mortality rates and overall patient outcomes.
Collapse
Affiliation(s)
- Erin C Batcho
- Vanderbilt University Department of Biomedical Engineering, Nashville, TN, 37232
| | - Sinead Miller
- Vanderbilt University Department of Biomedical Engineering, Nashville, TN, 37232
| | - Timothy L Cover
- Vanderbilt University Medical Center, Nashville, TN, 37232.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212
| | - Mark S McClain
- Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Christina Marasco
- Vanderbilt University Department of Biomedical Engineering, Nashville, TN, 37232
| | - Charleson S Bell
- Vanderbilt University Department of Biomedical Engineering, Nashville, TN, 37232
| | - Todd D Giorgio
- Vanderbilt University Department of Biomedical Engineering, Nashville, TN, 37232
| |
Collapse
|
38
|
Doherty EL, Aw WY, Hickey AJ, Polacheck WJ. Microfluidic and Organ-on-a-Chip Approaches to Investigate Cellular and Microenvironmental Contributions to Cardiovascular Function and Pathology. Front Bioeng Biotechnol 2021; 9:624435. [PMID: 33614613 PMCID: PMC7890362 DOI: 10.3389/fbioe.2021.624435] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/08/2021] [Indexed: 01/06/2023] Open
Abstract
Over the past decade, advances in microfabrication and biomaterials have facilitated the development of microfluidic tissue and organ models to address challenges with conventional animal and cell culture systems. These systems have largely been developed for human disease modeling and preclinical drug development and have been increasingly used to understand cellular and molecular mechanisms, particularly in the cardiovascular system where the characteristic mechanics and architecture are difficult to recapitulate in traditional systems. Here, we review recent microfluidic approaches to model the cardiovascular system and novel insights provided by these systems. Key features of microfluidic approaches include the ability to pattern cells and extracellular matrix (ECM) at cellular length scales and the ability to use patient-derived cells. We focus the review on approaches that have leveraged these features to explore the relationship between genetic mutations and the microenvironment in cardiovascular disease progression. Additionally, we discuss limitations and benefits of the various approaches, and conclude by considering the role further advances in microfabrication technology and biochemistry techniques play in establishing microfluidic cardiovascular disease models as central tools for understanding biological mechanisms and for developing interventional strategies.
Collapse
Affiliation(s)
- Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- University of North Carolina Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wen Yih Aw
- University of North Carolina Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Anthony J. Hickey
- Joint Department of Biomedical Engineering, University of Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- University of North Carolina Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- RTI International, Durham, NC, United States
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
39
|
Xu N, Lin H, Lin S, Zhang W, Han S, Nakajima H, Mao S, Lin JM. A Fluidic Isolation-Assisted Homogeneous-Flow-Pressure Chip-Solid Phase Extraction-Mass Spectrometry System for Online Dynamic Monitoring of 25-Hydroxyvitamin D 3 Biotransformation in Cells. Anal Chem 2021; 93:2273-2280. [PMID: 33443406 DOI: 10.1021/acs.analchem.0c04147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is well known that cell can response to various chemical and mechanical stimuli. Therefore, flow pressure variation induced by sample loading and elution should be small enough to ignore the physical impact on cells when we use a Chip-SPE-MS system for cells. However, most existent Chip-SPE-MS systems ignored the pressure alternation because it is extremely difficult to develop a homogeneous-flow-pressure hyphenated module. Herein, we developed an interesting fluidic isolation-assisted homogeneous-flow-pressure Chip-SPE-MS system and demonstrated that it is adequate for online high-throughput determination and quantification of the 25-hydroxyvitamin D3 (25(OH)D3) biotransformation in different cells. Briefly, the homogeneous ambient flow pressure is achieved by fluidic isolation between the cell culture channel and the SPE column, and an automatic sampling probe could accomplish the sample loading and dispensing to fulfill online pretreatment of the sample. Through this new system, the expression levels of 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) can be determined in real time with a detection limit of 2.54 nM. In addition, the results revealed that 25(OH)D3 metabolic activity differed significantly between normal L-02 cells and cancerous HepG2 cells. Treatment of L-02 cells with a high dose of 25(OH)D3 was found to increase significant formation of 24,25(OH)2D3, but this change was not apparent in HepG2 cells. The presented system promises to be a versatile tool for online accurate molecule biotransformation investigation and drug screening processes.
Collapse
Affiliation(s)
- Ning Xu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry &Chemical Biology, Tsinghua University, Beijing 100084, China.,Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Haifeng Lin
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Sheng Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry &Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wanling Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry &Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shuang Han
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry &Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hizuru Nakajima
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Sifeng Mao
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry &Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Deroy C, Stovall-Kurtz N, Nebuloni F, Soitu C, Cook PR, Walsh EJ. Predicting flows through microfluidic circuits with fluid walls. MICROSYSTEMS & NANOENGINEERING 2021; 7:93. [PMID: 34804587 PMCID: PMC8599700 DOI: 10.1038/s41378-021-00322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 05/13/2023]
Abstract
The aqueous phase in traditional microfluidics is usually confined by solid walls; flows through such systems are often predicted accurately. As solid walls limit access, open systems are being developed in which the aqueous phase is partly bounded by fluid walls (interfaces with air or immiscible liquids). Such fluid walls morph during flow due to pressure gradients, so predicting flow fields remains challenging. We recently developed a version of open microfluidics suitable for live-cell biology in which the aqueous phase is confined by an interface with an immiscible and bioinert fluorocarbon (FC40). Here, we find that common medium additives (fetal bovine serum, serum replacement) induce elastic no-slip boundaries at this interface and develop a semi-analytical model to predict flow fields. We experimentally validate the model's accuracy for single conduits and fractal vascular trees and demonstrate how flow fields and shear stresses can be controlled to suit individual applications in cell biology.
Collapse
Affiliation(s)
- Cyril Deroy
- Department of Engineering Science, Osney Thermo-Fluids Laboratory, University of Oxford, Oxford, OX2 0ES UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Nicholas Stovall-Kurtz
- Department of Engineering Science, Osney Thermo-Fluids Laboratory, University of Oxford, Oxford, OX2 0ES UK
| | - Federico Nebuloni
- Department of Engineering Science, Osney Thermo-Fluids Laboratory, University of Oxford, Oxford, OX2 0ES UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Cristian Soitu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | - Peter R. Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Edmond J. Walsh
- Department of Engineering Science, Osney Thermo-Fluids Laboratory, University of Oxford, Oxford, OX2 0ES UK
| |
Collapse
|
41
|
Liu W, Sun M, Han K, Hu R, Liu D, Wang J. Comprehensive Evaluation of Stable Neuronal Cell Adhesion and Culture on One-Step Modified Polydimethylsiloxane Using Functionalized Pluronic. ACS OMEGA 2020; 5:32753-32760. [PMID: 33376913 PMCID: PMC7758976 DOI: 10.1021/acsomega.0c05190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Polydimethylsiloxane (PDMS) is a popular and property-advantageous material for developing biomedical microsystems and advancing cell microengineering. The requirement of constructing a robust cell-adhesive PDMS interface drives the exploration of simple, straightforward, and applicable surface modification methods. Here, a comprehensive evaluation of highly stable neuronal cell adhesion and culture on the PDMS surface modified in one step using functionalized Pluronic is presented. According to multiple comparative tests, this modification is sufficiently verified to enable more significant cell adhesion and spreading in both quantity and stability, higher neuronal differentiation and viability/growth, more complete formation of the neuronal network, and stabler neuronal cell culture than the common coating tools on the PDMS substrate. The comparable and even superior cellular effects of this modification on PDMS to the standard coating of polystyrene for in vitro neurological research are demonstrated. Long-term microfluidic neuron culture with stable adhesion and high differentiation on the modified PDMS interface is accomplished, too. The achievement provides a detailed experimental demonstration of this simple and effective modification for strengthening neuronal cell culture on the PDMS substrate, which is useful for potential applications in the fields of neurobiology, neuron microengineering, and brain-on-a-chip.
Collapse
Affiliation(s)
- Wenming Liu
- Departments
of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meilin Sun
- Departments
of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Kai Han
- Departments
of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Rui Hu
- Departments
of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Dan Liu
- Departments
of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinyi Wang
- Department
of Chemistry, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
42
|
A biomimetic model of 3D fluid extracellular macromolecular crowding microenvironment fine-tunes ovarian cancer cells dissemination phenotype. Biomaterials 2020; 269:120610. [PMID: 33388691 DOI: 10.1016/j.biomaterials.2020.120610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
An early fundamental step in ovarian cancer progression is the dissemination of cancer cells through liquid environments, one of them being cancer ascites accumulated in the peritoneal cavity. These biological fluids are highly crowded with a high total macromolecule concentration. This biophysical property of fluids is widely used in tissue engineering for a few decades now, yet is largely underrated in cancer biomimetic models. To unravel the role of fluids extracellular macromolecular crowding (MMC), we exposed ovarian cancer cells (OCC) to high molecular weight inert polymer solutions. High macromolecular composition of extracellular liquid presented a differential effect: i) it impeded non-adherent OCC aggregation in suspension and, decreased their adhesion; ii) it promoted adherent OCC migration by decreasing extracellular matrix deposition. Besides, there seemed to be a direct link between the extracellular MMC and intracellular processes, especially the actin cytoskeleton organization and the nucleus morphology. In conclusion, extracellular fluid MMC orients OCC dissemination phenotype. Integrating MMC seems crucial to produce more relevant mimetic 3D in vitro fluid models to study ovarian dissemination but also to screen drugs.
Collapse
|
43
|
Neves SF, Ponmozhi J, Mergulhão FJ, Campos JBLM, Miranda JM. Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations. Colloids Surf B Biointerfaces 2020; 198:111490. [PMID: 33262016 DOI: 10.1016/j.colsurfb.2020.111490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023]
Abstract
Biofilm growth (fouling) in microdevices is a critical concern in several industrial, engineering and health applications, particularly in novel high-performance microdevices often designed with complex geometries, narrow regions and multiple headers. Unfortunately, on these devices, the regions with local high wall shear stresses (WSS) also show high local fouling rates. Several explanations have been put forward by the scientific community, including the effect of cell transport by Brownian motion on the adhesion rate. In this work, for the first time, both WSS and convection and Brownian diffusion effects on cell adhesion were evaluated along a microchannel with intercalate constriction and expansion zones designed to mimic the hydrodynamics of the human body and biomedical devices. Convection and Brownian diffusion effects were numerically studied using a steady-state convective-diffusion model (convection, diffusion and sedimentation). According to the numerical results, the convection and Brownian diffusion effects on cell adhesion are effectively more significant in regions with high WSS. Furthermore, a good agreement was observed between experimental and predicted local Sherwood numbers, particularly at the entrance and within the multiple constrictions. However, further mechanisms should be considered to accurately predict cell adhesion in the expansion zones. The described numerical approach can be used as a way to identify possible clogging zones in microchannels, and defining solutions, even before the construction of the prototype.
Collapse
Affiliation(s)
- S F Neves
- CEFT - Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - J Ponmozhi
- CEFT - Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; IES- Institute of Engineering & Science IPS Academy Knowledge Village, Rajendra Nagar A.B. Road, Indore, 452012, India
| | - F J Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - J B L M Campos
- CEFT - Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - J M Miranda
- CEFT - Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
44
|
Trembecka-Wójciga K, Kopernik M, Surmiak M, Major R, Gawlikowski M, Bruckert F, Kot M, Lackner JM. Effect of the mechanical properties of carbon-based coatings on the mechanics of cell-material interactions. Colloids Surf B Biointerfaces 2020; 197:111359. [PMID: 33032179 DOI: 10.1016/j.colsurfb.2020.111359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022]
Abstract
The paper presents an influence of the surface mechanical properties of thin-film materials on blood cell adhesion under shear stress conditions. Physical vapour deposited (PVD) coatings i.e. hydrogenated amorphous carbon (a-C:H) doped with nitrogen or silicon have been investigated. The mechanical properties of materials, namely their microhardness and Young's modulus were measured using indentation test with Rockwell indenter. The adhesion efficiency of blood cells in dynamic conditions were analysed using a radial flow chamber. Red blood cells (RBC) were used as representative cells to analyse cell-material interactions. The biomaterial examinations were performed under physiological flow conditions at the single-cell level. The 3D FVM (finite volume method) model of multi-phase radial flow test was developed to reproduce the physical test and to predict distributions of shear stresses and velocity during blood washout with PBS. Cell-material interactions were found to be strongly associated with the mechanical properties of the thin-film material. The decrease in the hardness of the coatings translated into a weaker cell - material interactions.
Collapse
Affiliation(s)
- K Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, Cracow, Poland
| | - M Kopernik
- AGH University of Science and Technology, Mickiewicza Str. 30, Cracow, Poland.
| | - M Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Skawinska Str. 8, Cracow, Poland
| | - R Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, Cracow, Poland
| | - M Gawlikowski
- Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biosensors and Processing of Biomedical Signals, Roosevelt Str. 40, Zabrze, Poland
| | - F Bruckert
- Laboratoire des Matériaux et du Génie Physique - UMR 5628, 3 parvis Louis Néel, Grenoble Cedex 1, France
| | - M Kot
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicza Str. 30, Cracow, Poland
| | - J M Lackner
- Joanneum Research Forschungsges mbH, Institute of Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712, Niklasdorf, Austria
| |
Collapse
|
45
|
Limraksasin P, Kosaka Y, Zhang M, Horie N, Kondo T, Okawa H, Yamada M, Egusa H. Shaking culture enhances chondrogenic differentiation of mouse induced pluripotent stem cell constructs. Sci Rep 2020; 10:14996. [PMID: 32929163 PMCID: PMC7490351 DOI: 10.1038/s41598-020-72038-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
Mechanical loading on articular cartilage induces various mechanical stresses and strains. In vitro hydrodynamic forces such as compression, shear and tension impact various cellular properties including chondrogenic differentiation, leading us to hypothesize that shaking culture might affect the chondrogenic induction of induced pluripotent stem cell (iPSC) constructs. Three-dimensional mouse iPSC constructs were fabricated in a day using U-bottom 96-well plates, and were subjected to preliminary chondrogenic induction for 3 days in static condition, followed by chondrogenic induction culture using a see-saw shaker for 17 days. After 21 days, chondrogenically induced iPSC (CI-iPSC) constructs contained chondrocyte-like cells with abundant ECM components. Shaking culture significantly promoted cell aggregation, and induced significantly higher expression of chondrogenic-related marker genes than static culture at day 21. Immunohistochemical analysis also revealed higher chondrogenic protein expression. Furthemore, in the shaking groups, CI-iPSCs showed upregulation of TGF-β and Wnt signaling-related genes, which are known to play an important role in regulating cartilage development. These results suggest that shaking culture activates TGF-β expression and Wnt signaling to promote chondrogenic differentiation in mouse iPSCs in vitro. Shaking culture, a simple and convenient approach, could provide a promising strategy for iPSC-based cartilage bioengineering for study of disease mechanisms and new therapies.
Collapse
Affiliation(s)
- Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukihiro Kosaka
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Naohiro Horie
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, 90095-1668, USA
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
46
|
Georgiev RN, Toscano SO, Uspal WE, Bet B, Samin S, van Roij R, Eral HB. Universal motion of mirror-symmetric microparticles in confined Stokes flow. Proc Natl Acad Sci U S A 2020; 117:21865-21872. [PMID: 32839312 PMCID: PMC7486782 DOI: 10.1073/pnas.2005068117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Comprehensive understanding of particle motion in microfluidic devices is essential to unlock additional technologies for shape-based separation and sorting of microparticles like microplastics, cells, and crystal polymorphs. Such particles interact hydrodynamically with confining surfaces, thus altering their trajectories. These hydrodynamic interactions are shape dependent and can be tuned to guide a particle along a specific path. We produce strongly confined particles with various shapes in a shallow microfluidic channel via stop flow lithography. Regardless of their exact shape, particles with a single mirror plane have identical modes of motion: in-plane rotation and cross-stream translation along a bell-shaped path. Each mode has a characteristic time, determined by particle geometry. Furthermore, each particle trajectory can be scaled by its respective characteristic times onto two master curves. We propose minimalistic relations linking these timescales to particle shape. Together these master curves yield a trajectory universal to particles with a single mirror plane.
Collapse
Affiliation(s)
- Rumen N Georgiev
- Process and Energy Department, Delft University of Technology, 2628CB Delft, The Netherlands
| | - Sara O Toscano
- Process and Energy Department, Delft University of Technology, 2628CB Delft, The Netherlands
| | - William E Uspal
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Bram Bet
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Sela Samin
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - René van Roij
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Huseyin Burak Eral
- Process and Energy Department, Delft University of Technology, 2628CB Delft, The Netherlands;
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
47
|
|
48
|
Richards C, Slaimi A, O’Connor NE, Barrett A, Kwiatkowska S, Regan F. Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review. Int J Mol Sci 2020; 21:ijms21145063. [PMID: 32709068 PMCID: PMC7404281 DOI: 10.3390/ijms21145063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023] Open
Abstract
The imitation of natural systems to produce effective antifouling materials is often referred to as “biomimetics”. The world of biomimetics is a multidisciplinary one, needing careful understanding of “biological structures”, processes and principles of various organisms found in nature and based on this, designing nanodevices and nanomaterials that are of commercial interest to industry. Looking to the marine environment for bioinspired surfaces offers researchers a wealth of topographies to explore. Particular attention has been given to the evaluation of textures based on marine organisms tested in either the laboratory or the field. The findings of the review relate to the numbers of studies on textured surfaces demonstrating antifouling potential which are significant. However, many of these are only tested in the laboratory, where it is acknowledged a very different response to fouling is observed.
Collapse
Affiliation(s)
- Chloe Richards
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Asma Slaimi
- Insight Centre for Data Analytics, Dublin City University, Dublin 9, Ireland; (A.S.); (N.E.O.)
| | - Noel E. O’Connor
- Insight Centre for Data Analytics, Dublin City University, Dublin 9, Ireland; (A.S.); (N.E.O.)
| | - Alan Barrett
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Sandra Kwiatkowska
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Fiona Regan
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
- Correspondence:
| |
Collapse
|
49
|
Brugger BA, Guettler J, Gauster M. Go with the Flow-Trophoblasts in Flow Culture. Int J Mol Sci 2020; 21:ijms21134666. [PMID: 32630006 PMCID: PMC7369846 DOI: 10.3390/ijms21134666] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/20/2023] Open
Abstract
With establishment of uteroplacental blood flow, the perfused fetal chorionic tissue has to deal with fluid shear stress that is produced by hemodynamic forces across different trophoblast subtypes. Amongst many other cell types, trophoblasts are able to sense fluid shear stress through mechanotransduction. Failure in the adaption of trophoblasts to fluid shear stress is suggested to contribute to pregnancy disorders. Thus, in the past twenty years, a significant body of work has been devoted to human- and animal-derived trophoblast culture under microfluidic conditions, using a rather broad range of different fluid shear stress values as well as various different flow systems, ranging from commercially 2D to customized 3D flow culture systems. The great variations in the experimental setup reflect the general heterogeneity in blood flow through different segments of the uteroplacental circulation. While fluid shear stress is moderate in invaded uterine spiral arteries, it drastically declines after entrance of the maternal blood into the wide cavity of the intervillous space. Here, we provide an overview of the increasing body of evidence that substantiates an important influence of maternal blood flow on several aspects of trophoblast physiology, including cellular turnover and differentiation, trophoblast metabolism, as well as endocrine activity, and motility. Future trends in trophoblast flow culture will incorporate the physiological low oxygen conditions in human placental tissue and pulsatile blood flow in the experimental setup. Investigation of trophoblast mechanotransduction and development of mechanosome modulators will be another intriguing future direction.
Collapse
Affiliation(s)
| | | | - Martin Gauster
- Correspondence: ; Tel.: +43-316-385-71896; Fax: +43-316-385-79612
| |
Collapse
|
50
|
Xie R, Korolj A, Liu C, Song X, Lu RXZ, Zhang B, Ramachandran A, Liang Q, Radisic M. h-FIBER: Microfluidic Topographical Hollow Fiber for Studies of Glomerular Filtration Barrier. ACS CENTRAL SCIENCE 2020; 6:903-912. [PMID: 32607437 PMCID: PMC7318083 DOI: 10.1021/acscentsci.9b01097] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Indexed: 05/07/2023]
Abstract
Kidney-on-a-chip devices may revolutionize the discovery of new therapies. However, fabricating a 3D glomerulus remains a challenge, due to a requirement for a microscale soft material with complex topography to support cell culture in a native configuration. Here, we describe the use of microfluidic spinning to recapitulate complex concave and convex topographies over multiple length scales, required for biofabrication of a biomimetic 3D glomerulus. We produced a microfluidic extruded topographic hollow fiber (h-FIBER), consisting of a vessel-like perfusable tubular channel for endothelial cell cultivation, and a glomerulus-like knot with microconvex topography on its surface for podocyte cultivation. Meter long h-FIBERs were produced in microfluidics within minutes, followed by chemically induced inflation for generation of topographical cues on the 3D scaffold surface. The h-FIBERs were assembled into a hot-embossed plastic 96-well plate. Long-term perfusion, podocyte barrier formation, endothelialization, and permeability tests were easily performed by a standard pipetting technique on the platform. Following long-term culture (1 month), a functional filtration barrier, measured by the transfer of albumin from the blood vessel side to the ultrafiltrate side, suggested the establishment of an engineered glomerulus.
Collapse
Affiliation(s)
- Ruoxiao Xie
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Beijing Key Lab of Microanalytical Methods & Instrumentation,
Department of Chemistry, Centre for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Anastasia Korolj
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| | - Chuan Liu
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Xin Song
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| | - Rick Xing Ze Lu
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Boyang Zhang
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Arun Ramachandran
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| | - Qionglin Liang
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Beijing Key Lab of Microanalytical Methods & Instrumentation,
Department of Chemistry, Centre for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Milica Radisic
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| |
Collapse
|