1
|
Rueda-Espinosa J, Zhou W, Love JA, Pal S. Intramolecular Csp 3-H Activation at a Platinum(IV) Center Resulting from O 2 Activation: The Role of a Proton-Responsive Ligand and Trans Influence. J Am Chem Soc 2024; 146:34442-34451. [PMID: 39630995 DOI: 10.1021/jacs.4c11054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aerobic oxidation of a dimethylplatinum(II) complex featuring 1,1-di(2-pyridyl)ethanol as a supporting ligand leads to the formation of two unexpected PtIV complexes (in ∼1:1 ratio), neither of which results from direct oxidation typical for PtII centers supported by popular κ2-(N,N) ligands. While one product features an isomerized PtIV center stabilized by the κ3-(N,N,O) ligand coordination mode, surprisingly, the other product results from intramolecular activation of the ligand methyl fragment. Mechanistic studies, reactivity of model complexes, and DFT calculations reveal that the critical proton-responsive nature of the ligand allows formation of intermediates that result in a concerted metalation deprotonation (CMD)-like C-H activation at PtIV. To the best of our knowledge, this is the first mechanistic delineation of Csp3-H activation at PtIV, despite being known for other high-valent platinum group metal centers.
Collapse
Affiliation(s)
- Juan Rueda-Espinosa
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Wen Zhou
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Jennifer A Love
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Shrinwantu Pal
- Department of Chemistry, Brandon University, 270 18th Street, Brandon, Manitoba R7A 6A9, Canada
| |
Collapse
|
2
|
Yu B, He L, Wei S, Li J, Wang Y, Zhong J, Huang J, Liu YN. Robust phosphine-based covalent-organic framework palladium catalysts for the highly efficient carbonylation coupling reaction. Chem Commun (Camb) 2024. [PMID: 39641525 DOI: 10.1039/d4cc05624h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The first vinyl-linked PPh3-based covalent-organic frameworks (Pd@TMBen-PPh3 and Pd@TMBen-4F-PPh3) were facilely constructed via direct three-component Knoevenagel condensation, which could serve as outstanding heterogeneous catalysts for the Pd-catalyzed carbonylation coupling reaction owing to the synergistic effect of the flexible PPh3-ligated Pd complexes and the rigid framework.
Collapse
Affiliation(s)
- Benling Yu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Liuqing He
- The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, P. R. China
| | - Shiyuan Wei
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jiawei Li
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, Hunan, P. R. China.
| | - You Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Juan Zhong
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, Hunan, P. R. China.
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
3
|
Xia D, Wang W, Xu X, Zhu Y, Li Q, Wang J, Zhang Y, Zhang WD. Access to Diverse Carbonyl Compounds by Catalyst-Free and Photoinduced Aerobic Cleavage of C=N Bonds. Chemistry 2024; 30:e202402607. [PMID: 39215487 DOI: 10.1002/chem.202402607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Functional group interconversion is of great significance in organic synthesis. However, aerobic cleavage of C=N bonds to access carbonyl compounds still suffered from some limitations such as harsh reaction conditions, stoichiometric oxidants, poor substrate scope and use of toxic reagents. Herein, we report a catalyst-free and photo-induced aerobic cleavage of C=N bonds to afford diverse carbonyl compounds using oxygen from air as green oxidant. This mild methodology permits N-tosylhydrazones converted into the corresponding carbonyl compounds including ketones, aldehydes and carboxylic acids, showing broad functional group tolerance and compatibility. Moreover, the gram-scale reaction and post-modification of complicated molecules proved the applicability and efficiency of this strategy. Finally, a plausible mechanism was proposed based on spectroscopic investigations and detailed mechanistic studies.
Collapse
Affiliation(s)
- Dingding Xia
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| | - Weijie Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| | - Xike Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yanping Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, China
| | - Qiannan Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| | - Wei-Dong Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
4
|
Yang DS, Xiang JC, Wu AX. Recent advances in the synthesis of N-heterocycles from α-amino acids mediated by iodine. Chem Commun (Camb) 2024. [PMID: 39564680 DOI: 10.1039/d4cc05285d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The synthesis of N-heterocycles has received extensive attention from scientists considering their important role in organic synthesis, pharmaceuticals, and materials chemistry. α-Amino acids (α-AAs), both natural and non-natural, are structurally diverse, containing basic amino groups, acidic carboxyl groups, and various side-chain R groups in a single molecule. Given their structural properties and wide range of sources, they have undoubtedly become suitable synthetic building blocks for organic synthesis. However, conventional transformations of amino acids (AAs) focus on the amino and carboxyl groups independently. Conversions for these two prominent functional groups generally do not affect both their alpha positions and their branched chains. Over the past decade, with the application of iodine (I2) in the field of heterocyclic synthesis, the use of α-AAs for diverse construction of complex N-heterocyclic structures has gained increasing attention. This synthetic strategy relies on the I2-mediated Strecker degradation, which introduces α-AAs as electrophilic carbon species into the domino reaction sequence via decarboxylation and deamination processes. In this review, we have summarized recent advances in this emerging area.
Collapse
Affiliation(s)
- Dong-Sheng Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Bio-sensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Bio-sensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
5
|
Tian M, Li J, Mou Q, Liu M. Selective Oxyfunctionalization of Benzylic C-H with No Solvent. J Org Chem 2024; 89:16645-16652. [PMID: 39504509 DOI: 10.1021/acs.joc.4c01950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The direct selective oxyfunctionalization of C-H into C═O represents a highly useful, yet challenging, synthetic methodology. Herein, a one-step oxyfunctionalization of benzylic C-H into aryl ketone, with no overoxidation of the -OH functional group, is reported through mechanochemistry. The substrate scope is also tolerant of a wide range of different functional groups, providing a particularly sustainable yet widely adaptable route for the synthesis of aryl ketones, which represent both a classic synthetic precursor and a useful strategy for lignin monomer valorization. A series of mechanistic and spectroscopic investigations were also conducted to shed light on the unique C-H over -OH selectivity, opening up new avenues for oxidation chemistry.
Collapse
Affiliation(s)
- Miao Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinya Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Quansheng Mou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
6
|
Yamamoto M, Aihara T, Wachi K, Hara M, Kamata K. La 1-xSr xFeO 3-δ Perovskite Oxide Nanoparticles for Low-Temperature Aerobic Oxidation of Isobutane to tert-Butyl Alcohol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62244-62253. [PMID: 39484694 PMCID: PMC11565478 DOI: 10.1021/acsami.4c15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
The development of reusable solid catalysts based on naturally abundant metal elements for the liquid-phase selective oxidation of light alkanes under mild conditions to obtain desired oxygenated products, such as alcohols and carbonyl compounds, remains a challenge. In this study, various perovskite oxide nanoparticles were synthesized by a sol-gel method using aspartic acid, and the effects of A- and B-site metal cations on the liquid-phase oxidation of isobutane to tert-butyl alcohol with molecular oxygen as the sole oxidant were investigated. Iron-based perovskite oxides containing Fe4+ such as BaFeO3-δ, SrFeO3-δ, and La1-xSrxFeO3-δ exhibited catalytic performance superior to those of other Fe3+- and Fe2+-based iron oxides and Mn-, Ni-, and Co-based perovskite oxides. The partial substitution of Sr for La in LaFeO3 significantly enhanced the catalytic performance and durability. In particular, the La0.8Sr0.2FeO3-δ catalyst could be recovered by simple filtration and reused several times without an obvious loss of its high catalytic performance, whereas the recovered BaFeO3-δ and SrFeO3-δ catalysts were almost inactive. La0.8Sr0.2FeO3-δ promoted the selective oxidation of isobutane even under mild conditions (60 °C), and the catalytic activity was comparable to that of homogeneous systems, including halogenated metalloporphyrin complexes. On the basis of mechanistic studies, including the effect of Sr substitution in La1-xSrxFeO3-δ on surface redox reactions, the present oxidation proceeds via a radical-mediated oxidation mechanism, and the surface-mixed Fe3+/Fe4+ valence states of La1-xSrxFeO3-δ nanoparticles likely play an important role in promoting C-H activation of isobutane as well as decomposition of tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Masanao Yamamoto
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Takeshi Aihara
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keiju Wachi
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Michikazu Hara
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keigo Kamata
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| |
Collapse
|
7
|
Zhao J, Deng C, Zhang L, Zhang J, Rong Q, Wang F, Liu ZQ. NHPI-Catalyzed Electro-Oxidation of Alcohols to Aldehydes and Ketones. J Org Chem 2024; 89:15864-15876. [PMID: 39437145 DOI: 10.1021/acs.joc.4c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A practical and recyclable electro-oxidation of alcohols to aldehydes and ketones by using N-hydroxyphthalimide (NHPI) as the catalyst is presented. Through an undivided pool, under constant current conditions, various alcohols can be oxidized to the corresponding aldehydes or ketones in a high yield. Compared with previous methods, this system has the following characteristics: (1) the catalyst, electrode, electrolyte, and solvent (mainly water) are recyclable; (2) it has many advantages such as mild reaction conditions, easy operation, and good tolerance of functional groups; and (3) it can be smoothly scaled up to kilogram-scale production.
Collapse
Affiliation(s)
- Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chengling Deng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lanlan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiatai Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Quanjin Rong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
Louchachha I, Faris A, Edder Y, Hasnaoui A, Kozakiewicz-Piekarz A, Ait Mansour A, Boualy B, Salghi R, Azzaoui K, Sabbahi R, Alanazi AS, Hefnawy M, Hammouti B, Karim A, Ait Ali M. Palladium-Catalyzed Acetoxylation of γ-Dehydro-aryl-himachalene: The Synthesis of a Novel Allylic Acetoxylated Sesquiterpene and a π-Allyl Palladium(II) Complex. Molecules 2024; 29:5040. [PMID: 39519681 PMCID: PMC11547928 DOI: 10.3390/molecules29215040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Allylic oxygenated derivatives of himachalenes are highly valued molecules due to their potential applications in perfumery, cosmetics, and pharmaceuticals. Previous attempts at catalyzed allylic oxidation of himachalenes led to the formation of a very stable η3-allyl palladium complex, preventing any further reaction development. Herein, we present the first successful palladium-catalyzed synthesis of a novel allylic acetoxylated derivative of himachalenes. This reaction was achieved by incorporating an aromatic ring into the substrate structure. The resulting intermediate complex was isolated and characterized using nuclear magnetic resonance spectroscopy and X-ray crystallography. Density functional theory (DFT) calculations were performed to compare the reactivity of the newly synthesized complex with previously reported ones. The theoretical results confirm that the introduction of an aromatic ring enhances the reactivity of the η³-allyl palladium complex, thereby facilitating the desired transformation.
Collapse
Affiliation(s)
- Issam Louchachha
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (I.L.); (A.F.); (Y.E.); (A.H.); (A.K.); (M.A.A.)
| | - Abdelmajid Faris
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (I.L.); (A.F.); (Y.E.); (A.H.); (A.K.); (M.A.A.)
| | - Youssef Edder
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (I.L.); (A.F.); (Y.E.); (A.H.); (A.K.); (M.A.A.)
- Department of Chemistry, Faculty of Science, Chouaib Doukkali University, B.P. 299, El Jadida 24000, Morocco
| | - Ali Hasnaoui
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (I.L.); (A.F.); (Y.E.); (A.H.); (A.K.); (M.A.A.)
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical Chemistry and Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland;
| | - Abdelkarim Ait Mansour
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, P.O. Box 1136, Agadir 80000, Morocco; (A.A.M.); (R.S.)
| | - Brahim Boualy
- Multidisciplinary Research and Innovation Laboratory, Faculté Polydisciplinaire de Khouribga, Université Sultan Moulay Slimane, Khouribga 23000, Morocco;
| | - Rachid Salghi
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, P.O. Box 1136, Agadir 80000, Morocco; (A.A.M.); (R.S.)
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes Meknes Road, Fes 30030, Morocco; (K.A.); (B.H.)
| | - Khalil Azzaoui
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes Meknes Road, Fes 30030, Morocco; (K.A.); (B.H.)
- Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Rachid Sabbahi
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes Meknes Road, Fes 30030, Morocco; (K.A.); (B.H.)
- Research Team in Science and Technology, Higher School of Technology, University of Ibn Zohr, Laayoune 70000, Morocco
| | - Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohamed Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Belkheir Hammouti
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes Meknes Road, Fes 30030, Morocco; (K.A.); (B.H.)
| | - Abdallah Karim
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (I.L.); (A.F.); (Y.E.); (A.H.); (A.K.); (M.A.A.)
| | - Mustapha Ait Ali
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (I.L.); (A.F.); (Y.E.); (A.H.); (A.K.); (M.A.A.)
| |
Collapse
|
9
|
Membrat R, Kondo TE, Agostini A, Vasseur A, Nava P, Giordano L, Martinez A, Nuel D, Humbel S. The Adaptative Modulation of the Phosphinito-Phosphinous Acid Ligand: Computational Illustration Through Palladium-Catalyzed Alcohol Oxidation. Molecules 2024; 29:4999. [PMID: 39519640 PMCID: PMC11547856 DOI: 10.3390/molecules29214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The phosphinito-phosphinous acid ligand (PAP) is a singular bidentate-like self-assembled ligand exhibiting dissymmetric but interchangeable electronic properties. This unusual structure has been used for the generation of active palladium hydride through alcohol oxidation. In this paper, we report the first theoretical highlight of the adaptative modulation ability of this ligand within a direct H-abstraction path for Pd and Pt catalyzed alcohol oxidation. A reaction forces study revealed rearrangements in the ligand self-assembling system triggered by a simple proton shift to promote the metal hydride generation via concerted six-center mechanism. We unveil here the peculiar behavior of the phosphinito-phosphinous acid ligand in this catalysis.
Collapse
Affiliation(s)
- Romain Membrat
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille, France; (R.M.); (A.V.); (P.N.); (L.G.); (A.M.)
| | - Tété Etonam Kondo
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille, France; (R.M.); (A.V.); (P.N.); (L.G.); (A.M.)
| | - Alexis Agostini
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille, France; (R.M.); (A.V.); (P.N.); (L.G.); (A.M.)
| | - Alexandre Vasseur
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille, France; (R.M.); (A.V.); (P.N.); (L.G.); (A.M.)
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Paola Nava
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille, France; (R.M.); (A.V.); (P.N.); (L.G.); (A.M.)
| | - Laurent Giordano
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille, France; (R.M.); (A.V.); (P.N.); (L.G.); (A.M.)
| | - Alexandre Martinez
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille, France; (R.M.); (A.V.); (P.N.); (L.G.); (A.M.)
| | - Didier Nuel
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille, France; (R.M.); (A.V.); (P.N.); (L.G.); (A.M.)
| | - Stéphane Humbel
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille, France; (R.M.); (A.V.); (P.N.); (L.G.); (A.M.)
| |
Collapse
|
10
|
Qin Q, Zhang L, Wei J, Qiu X, Hao S, An XD, Jiao N. Direct oxygen insertion into C-C bond of styrenes with air. Nat Commun 2024; 15:9015. [PMID: 39424824 PMCID: PMC11489579 DOI: 10.1038/s41467-024-53266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Skeletal editing of single-atom insertion to basic chemicals has been demonstrated as an efficient strategy for the discovery of structurally diversified compounds. Previous endeavors in skeletal editing have successfully facilitated the insertion of boron, nitrogen, and carbon atoms. Given the prevalence of oxygen atoms in biologically active molecules, the direct oxygenation of C-C bonds through single-oxygen-atom insertion like Baeyer-Villiger reaction is of particular significance. Herein, we present an approach for the skeletal modification of styrenes using O2 via oxygen insertion, resulting in the formation of aryl ether frameworks under mild reaction conditions. The broad functional-group tolerance and the excellent chemo- and regioselectivity are demonstrated in this protocol. A preliminary mechanistic study indicates the potential involvement of 1,2-aryl radical migration in this reaction.
Collapse
Affiliation(s)
- Qixue Qin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China.
| | - Liang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China
| | - Shuanghong Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
11
|
Jesse KA, Anderson JS. Leveraging ligand-based proton and electron transfer for aerobic reactivity and catalysis. Chem Sci 2024; 15:d4sc03896g. [PMID: 39386904 PMCID: PMC11460188 DOI: 10.1039/d4sc03896g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024] Open
Abstract
While O2 is an abundant, benign, and thermodynamically potent oxidant, it is also kinetically inert. This frequently limits its use in synthetic transformations. Correspondingly, direct aerobic reactivity with O2 often requires comparatively harsh or forcing conditions to overcome this kinetic barrier. Forcing conditions limit product selectivity and can lead to over oxidation. Alternatively, O2 can be activated by a catalyst to facilitate oxidative reactivity, and there are a variety of sophisticated examples where transition metal catalysts facilitate aerobic reactivity. Many efforts have focused on using metal-ligand cooperativity to facilitate the movement of protons and electrons for O2 activation. This approach is inspired by enzyme active sites, which frequently use the secondary sphere to facilitate both the activation of O2 and the oxidation of substrates. However, there has only recently been a focus on harnessing metal-ligand cooperativity for aerobic reactivity and, especially, catalysis. This perspective will discuss recent efforts to channel metal-ligand cooperativity for the activation of O2, the generation and stabilization of reactive metal-oxygen intermediates, and oxidative reactivity and catalysis. While significant progress has been made in this area, there are still challenges to overcome and opportunities for the development of efficient catalysts which leverage this biomimetic strategy.
Collapse
Affiliation(s)
- Kate A Jesse
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - John S Anderson
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|
12
|
Kaster SHM, Zhu L, Lyon WL, Ma R, Ammann SE, White MC. Palladium-catalyzed cross-coupling of alcohols with olefins by positional tuning of a counteranion. Science 2024; 385:1067-1076. [PMID: 39236162 DOI: 10.1126/science.ado8027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
Transition metal-catalyzed cross-couplings have great potential to furnish complex ethers; however, challenges in the C(sp3)-O functionalization step have precluded general methods. Here, we describe computationally guided transition metal-ligand design that positions a hydrogen-bond acceptor anion at the reactive site to promote functionalization. A general cross-coupling of primary, secondary, and tertiary aliphatic alcohols with terminal olefins to furnish >130 ethers is achieved. The mild conditions tolerate functionality that is prone to substitution, elimination, and epimerization and achieve site selectivity in polyol settings. Mechanistic studies support the hypothesis that the ligand's geometry and electronics direct positioning of the phosphate anion at the π-allyl-palladium terminus, facilitating the phosphate's hydrogen-bond acceptor role toward the alcohol. Ligand-directed counteranion positioning in cationic transition metal catalysis has the potential to be a general strategy for promoting challenging bimolecular reactivity.
Collapse
Affiliation(s)
- Sven H M Kaster
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Lei Zhu
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - William L Lyon
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Rulin Ma
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Stephen E Ammann
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - M Christina White
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| |
Collapse
|
13
|
Tabaru K, Fujihara T, Torii K, Suzuki T, Jing Y, Toyao T, Maeno Z, Shimizu KI, Watanabe T, Sogawa H, Sanda F, Hasegawa JY, Obora Y. Exploring Catalytic Intermediates in Pd-Catalyzed Aerobic Oxidative Amination of 1,3-Dienes: Multiple Metal Interactions of the Palladium Nanoclusters. J Am Chem Soc 2024; 146:22993-23003. [PMID: 39110536 DOI: 10.1021/jacs.4c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Metal nanoclusters (NCs) have unique properties because of their small size, which makes them useful as catalysts in reactions like cross-coupling. Pd-catalyzed oxidative amination, which involves dehydrogenative C-N bond formation, uses Pd complexes as the active species. It is known that the catalytic conditions involve the formation of Pd(0) species from Pd NCs, but the precise role of Pd NCs in the transformations has not been established. In this study, we investigated the characteristic properties of Pd NCs in oxidative amination of 1,3-dienes. The reaction achieved direct amination of commercially accessible 1,3-dienes with secondary aromatic amines, providing a variety of nitrogen containing 1,3-dienes. The compound was applicable to radical polymerization to provide the nitrogen-fabricated 1,3-diene-based polymer, which exhibited a different thermal stability compared to aliphatic nitrogen-fabricated diene polymers. In addition to the synthetic utility, by combining X-ray absorption fine structure and small-angle X-ray scattering analysis, we revealed amines and 1,3-dienes affected metal leaching from the Pd nanoparticles and stabilization of Pd NCs in the catalytic reaction. Additionally, DFT calculation suggested that the catalytic intermediate contained multiple adjacent Pd atoms and was responsible for formation of an σ-allylic intermediate that is difficult to form with the use of Pd complexes. These results could be used to understand the underlying phenomenon in the oxidative coupling reaction and develop Pd NCs-based dehydrogenation.
Collapse
Affiliation(s)
- Kazuki Tabaru
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Tetsuaki Fujihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuyuki Torii
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Hokkaido 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Hokkaido 001-0021, Japan
| | - Zen Maeno
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-cho, Hachioji, Tokyo 192-0015, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Hokkaido 001-0021, Japan
| | - Takeshi Watanabe
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Hiromitsu Sogawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Fumio Sanda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Hokkaido 001-0021, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Yasushi Obora
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| |
Collapse
|
14
|
Patil VB, Raghu Ramudu G, Chegondi R. Cascade Oxypalladation/1,3-Palladium Shift to Access Cyclopentene-Fused Isocoumarins. Org Lett 2024; 26:6353-6358. [PMID: 39041835 DOI: 10.1021/acs.orglett.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Fused isocoumarins are frequently found in several natural products and pharmaceuticals. Herein, a cascade annulation of 2-alkynylbenzoate-tethered cyclic 1,3-diones via sequential trans-oxypalladation, carbonyl insertion, 1,3-Pd shift, and β-hydride elimination is reported. This method provides efficient access to highly diastereoselective tetracyclic cyclopentene-fused isocoumarins containing two contiguous quaternary stereocenters. A plausible reaction mechanism is proposed on the basis of mechanistic studies, including deuterium labeling experiments. Studies toward enantioselective synthesis using a chiral Bpy ligand gave encouraging initial results.
Collapse
Affiliation(s)
- Vaibhav B Patil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - G Raghu Ramudu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Qiao B, Lin FY, Fu D, Li SJ, Zhang T, Lan Y. Mechanistic insights into facilitating reductive elimination from Ni(II) species. Chem Commun (Camb) 2024; 60:8008-8019. [PMID: 39005163 DOI: 10.1039/d4cc02667e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Reductive elimination is a key step in Ni-catalysed cross-couplings, which is often considered to result in new covalent bonds. Due to the weak oxidizing ability of Ni(II) species, reductive eliminations from Ni(II) centers are challenging. A thorough mechanistic understanding of this process could inspire the rational design of Ni-catalysed coupling reactions. In this article, we give an overview of recent advances in the mechanistic study of reductive elimination from Ni(II) species achieved by our group. Three possible models for reductive elimination from Ni(II) species were investigated and discussed, including direct reductive elimination, electron density-controlled reductive elimination, and oxidation-induced reductive elimination. Notably, the direct reductive elimination from Ni(II) species often requires a high activation energy in some cases. In contrast, the electron density-controlled and oxidation-induced reductive elimination pathways can significantly enhance the driving force for reductive elimination, accelerating the formation of new covalent bonds. The intricate reaction mechanisms for each of these pathways are thoroughly discussed and systematically summarized in this paper. These computational studies showcase the characteristics of three models for reductive elimination from Ni(II) species, and we hope that it will spur the development of mechanistic studies of cross-coupling reactions.
Collapse
Affiliation(s)
- Bolin Qiao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Fa-You Lin
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dongmin Fu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Tao Zhang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan, 451162, P. R. China.
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, P. R. China.
- Pingyuan Laboratory, Xinxiang, Henan, 453007, China
| |
Collapse
|
16
|
Lalji RSK, Monika, Gupta M, Kumar S, Butcher RJ, Singh BK. Expedient, regioselective C-H chalcogenation of 3,4-dihydro-1,4-benzoxazines using a palladium-copper catalyst. Org Biomol Chem 2024; 22:5809-5815. [PMID: 38946460 DOI: 10.1039/d4ob00524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The palladium-catalysed regioselective C-H chalcogenation of benzoxazines with disulfides and diselenides in air has been described. In this protocol, palladium acetate serves as the catalyst in conjunction with copper as an oxidizing agent. Through this approach, a wide array of sulfenylation and selenylation reactions of benzomorpholines have been effected, yielding results ranging from good to excellent. Thus, the established procedure demonstrates superb regioselectivity and a strong tolerance towards various functional groups and is suitable for gram-scale synthesis. Additionally, this synthetic approach offers a practical and convenient pathway for late-stage functionalization leading to the Rosenmund-von Braun reaction.
Collapse
Affiliation(s)
- Ram Sunil Kumar Lalji
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
- Department of Chemistry, Kirori Mal College, Delhi University, Delhi-110007, India
| | - Monika
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Mohit Gupta
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
- Department of Chemistry, L.N.M.S. College, Birpur, Supaul, Bihar-854340, India
| | - Sandeep Kumar
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Ray J Butcher
- Inorganic & Structural Chemistry, Howard University, Washington DC 20059, USA
| | - Brajendra Kumar Singh
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
17
|
Yamada K, Cheung KPS, Gevorgyan V. General Regio- and Diastereoselective Allylic C-H Oxygenation of Internal Alkenes. J Am Chem Soc 2024; 146:18218-18223. [PMID: 38922638 DOI: 10.1021/jacs.4c06421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Branched allylic esters and carboxylates are fundamental motifs prevalent in natural products and drug molecules. The direct allylic C-H oxygenation of internal alkenes represents one of the most straightforward approaches, bypassing the requirement for an allylic leaving group as in the classical Tsuji-Trost reaction. However, current methods suffer from limited scope─often accompanied by selectivity issues─thus hampering further development. Herein we report a photocatalytic platform as a general solution to these problems, enabling the coupling of diverse internal alkenes with carboxylic acids, alcohols, and other O-nucleophiles, typically in a highly regio- and diastereoselective manner.
Collapse
Affiliation(s)
- Kyohei Yamada
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| |
Collapse
|
18
|
Li H, Zhang B, Feng R, Guo S. An N-heterocyclic carbene-based pincer system of palladium and its versatile reactivity under oxidizing conditions. Dalton Trans 2024; 53:11470-11480. [PMID: 38912609 DOI: 10.1039/d4dt00980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
NHC-based pincers (NHC = N-heterocyclic carbene) have been broadly employed as supporting platforms, and their palladium complexes have found many synthetic applications. However, previous studies mainly focused on the NHC pincers of palladium featuring an oxidation number of +II. In contrast, oxidation of these well-defined Pd(II) species and the study of their fundamental high-valent Pd chemistry remain largely undeveloped. In addition, from a perspective of PdII/PdIV catalysis, the reactivity and degradation of NHC pincers in catalytically relevant reactions have not been well understood. In this work, a series of Pd(II) complexes supported by a well-known NHC^Aryl^NHC pincer platform have been prepared. Their reactivity towards various oxidizing reagents, including halogen surrogates, electrophilic fluorine reagents, and alkyl/aryl halides, has been examined. In some cases, ambient-characterizable high-valent Pd NHCs, which have been scarcely reported, were obtained. The carbenes incorporated into the pincer framework proved to be effective spectator donors. In contrast, the central aryl moiety exhibits versatile reactivity and collapse pathways, allowing it to function either as a spectator or a non-innocent actor.
Collapse
Affiliation(s)
- Haobin Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Bo Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Rui Feng
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Shuai Guo
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
19
|
Yang H, Zhang J, Zhang S, Xue Z, Hu S, Chen Y, Tang Y. Chiral Bisphosphine-Catalyzed Asymmetric Staudinger/aza-Wittig Reaction: An Enantioselective Desymmetrizing Approach to Crinine-Type Amaryllidaceae Alkaloids. J Am Chem Soc 2024; 146:14136-14148. [PMID: 38642063 DOI: 10.1021/jacs.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
An unprecedented chiral bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction of 2,2-disubstituted cyclohexane-1,3-diones is reported, enabling the facile access of a broad range of cis-3a-arylhydroindoles in high yields with excellent enantioselectivities. The key to the success of this work relies on the first application of chiral bisphosphine DuanPhos to the asymmetric Staudinger/aza-Wittig reaction. An effective reductive system has been established to address the challenging PV═O/PIII redox cycle associated with the chiral bisphosphine catalyst. In addition, comprehensive experimental and computational investigations were carried out to elucidate the mechanism of the asymmetric reaction. Leveraging the newly developed chemistry, the enantioselective total syntheses of several crinine-type Amaryllidaceae alkaloids, including (+)-powelline, (+)-buphanamine, (+)-vittatine, and (+)-crinane, have been accomplished with remarkable conciseness and efficiency.
Collapse
Affiliation(s)
- Hongzhi Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sen Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhengwen Xue
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shengkun Hu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yi Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Yamamoto D, Matsukawa D, Kikuchi R, Narushima Y, Kumakura Y, Ito M, Makino K. Manganese-Catalyzed 5- Endo-trig Oxygenative Cyclization of α,β-Unsaturated Oximes under Air and Ambient Conditions for the Synthesis of 4,5-Dihydroisoxazoles. J Org Chem 2024; 89:6377-6388. [PMID: 38634731 DOI: 10.1021/acs.joc.4c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The stereoselective 5-endo-trig oxygenative cyclization of α,β-unsaturated oximes was achieved using molecular oxygen (O2) and a manganese catalyst. Several 4-hydroxy-4,5-dihydroisoxazoles were obtained in high yields by directly incorporating O2 from the atmosphere (eliminating the necessity for a pure oxygen environment) and using an unprecedentedly low loading of Mn(acac)3 (as little as 0.020 mol %) without additional additives. Because of its desirable features, such as operational simplicity, inexpensive catalyst, mild reaction conditions (open flask conditions at room temperature), and broad substrate compatibility, this novel reaction provides an attractive synthetic approach to producing 4-hydroxy-4,5-dihydroisoxazoles.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Daisuke Matsukawa
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Ryusei Kikuchi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yuki Narushima
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yuta Kumakura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Mana Ito
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
21
|
Liu M, Wu X, Dyson PJ. Tandem catalysis enables chlorine-containing waste as chlorination reagents. Nat Chem 2024; 16:700-708. [PMID: 38396160 PMCID: PMC11087255 DOI: 10.1038/s41557-024-01462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Chlorinated compounds are ubiquitous. However, accumulation of chlorine-containing waste has a negative impact on human health and the environment due to the inapplicability of common disposal methods, such as landfill and incineration. Here we report a sustainable approach to valorize chlorine-containing hydrocarbon waste, including solids (chlorinated polymers) and liquids (chlorinated solvents), based on copper and palladium catalysts with a NaNO3 promoter. In the process, waste is oxidized to release the chlorine in the presence of N-directing arenes to afford valuable aryl chlorides, such as the FDA-approved drug vismodegib. The remaining hydrocarbon component is mineralized to afford CO, CO2 and H2O. Moreover, the CO and CO2 generated could be further utilized directly. Thus, chlorine-containing hydrocarbon waste, including mixed waste, can serve as chlorination reagents that neither generate hazardous by-products nor involve specialty chlorination reagents. This tandem catalytic approach represents a promising method for the viable management of a wide and diverse range of chlorine-containing hydrocarbon wastes.
Collapse
Affiliation(s)
- Mingyang Liu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xinbang Wu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
22
|
Babu SA, A A, Mohan M, Paul N, Mathew J, John J. Tandem Reactions of Electrophilic Indoles toward Indolizines and Their Subsequent Transformations through Pd(II)-Mediated C-H Functionalization to Access Polyring-Fused N-Heterocycles. ACS OMEGA 2024; 9:16196-16206. [PMID: 38617644 PMCID: PMC11007710 DOI: 10.1021/acsomega.3c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
A simple and efficient synthetic approach for generating a library of structurally novel indolizines has been developed via sequential 1,3-dipolar cycloaddition-ring opening processes. Using this methodology, a series of indolizines bearing different substituents were made in moderate to good yields. The presence of two functionalizable C-H bonds in these indolizine motifs makes them attractive for accessing fused indolizine scaffolds. In this line, we have introduced palladium-mediated site-selective C-H functionalizations, where the N-center and the two C-H centers of the indolizine moiety can be readily functionalized to generate fused N-heterocycles. Utilizing a Pd-mediated dual C-H activation of 5-benzoyl-substituted indolizine afforded 6H-indeno-indolizine, and a tetracene, viz., indolizino[2,1-b]indoles, was produced in the same substrate by the Pd-catalyzed selective C-H amination in the presence of oxygen.
Collapse
Affiliation(s)
- Sheba Ann Babu
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aparna A
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Malavika Mohan
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Namitha Paul
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Jomon Mathew
- Research
and Post-Graduate Department of Chemistry, St. Joseph’s College, Devagiri, Calicut 673008, India
| | - Jubi John
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Wang B, Liang RX, Shen ZL, Jia YX. Copper-catalyzed intramolecular dearomative aza-Wacker reaction of indole. Chem Commun (Camb) 2024; 60:3858-3861. [PMID: 38497365 DOI: 10.1039/d3cc06217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Herein, we describe a copper-catalyzed intramolecular dearomative amination of indoles via a formal aza-Wacker reaction. This protocol provides an efficient method to access aza-polycyclic indoline molecules bearing exocyclic CC bonds in moderate to excellent yields in the presence of molecular oxygen as an oxidant. It is worth noting that indolin-3-ones are achieved when employing C3-non-substituted indoles as substrates.
Collapse
Affiliation(s)
- Bi Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
| | - Zhen-Lu Shen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, China
| |
Collapse
|
24
|
Liu C, Chen F, Zhao BH, Wu Y, Zhang B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 2024; 8:277-293. [PMID: 38528116 DOI: 10.1038/s41570-024-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yongmeng Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
25
|
Tang W, Liu Y, Jin Y, Shi W, Sun J, Ma P, Niu J, Wang J. {Ru(C 6 H 6 )}-Decorating Heteropolymolybdate for Highly Activity Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde. Chemistry 2024; 30:e202302921. [PMID: 38183325 DOI: 10.1002/chem.202302921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/02/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
An unclassical structure of {Ru(C6 H6 )}-based polyoxometalate, Cs6 H4 [Te2 Mo12 O46 {Ru(C6 H6 )}] ⋅ 16.5H2 O (1), has been successfully constructed from {Te2 Mo12 O46 }-type heteropolymolybdate and {Ru(C6 H6 )} group, which structure type was discovered for the first time. Compound 1 not only possesses strong light-harvesting ability, but also exhibits high carrier separation efficiency and lower charge transfer resistance. Under visible light irradiation, compound 1 displayed excellent catalytic activity and circularity in the conversion of benzyl alcohol to benzaldehyde (yield=94 %; turnover number=500; turnover frequency=20.8 h-1 ). Finally, the electron paramagnetic resonance measurement and energy level matching analysis provide theoretical basis for the derivation of the reaction mechanism.
Collapse
Affiliation(s)
- Wei Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
- Puyang Institute of Technology, Henan University, Puyang, Henan, 457000, P. R. China
| | - Yuzhen Jin
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Weixia Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Jialiang Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| |
Collapse
|
26
|
Sathyamoorthi S. Fun With Unusual Functional Groups: Sulfamates, Phosphoramidates, and Di-tert-butyl Silanols. European J Org Chem 2024; 27:e202301283. [PMID: 39309710 PMCID: PMC11415259 DOI: 10.1002/ejoc.202301283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 09/25/2024]
Abstract
Compared to ubiquitous functional groups such as alcohols, carboxylic acids, amines, and amides, which serve as central "actors" in most organic reactions, sulfamates, phosphoramidates, and di-tert-butyl silanols have historically been viewed as "extras". Largely considered functional group curiosities rather than launch-points of vital reactivity, the chemistry of these moieties is under-developed. Our research program has uncovered new facets of reactivity of each of these functional groups, and we are optimistic that the chemistry of these fascinating molecules can be developed into truly general transformations, useful for chemists across multiple disciplines. In the ensuing sections, I will describe our efforts to develop new reactions with these "unusual" functional groups, namely sulfamates, phosphoramidates, and di-tert-butyl silanols.
Collapse
Affiliation(s)
- Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
27
|
Yoo HS, Shin JW, Jang YH, Yang YS, Son SH, Won HJ, Kim SL, Sim J, Kim NJ. Synthesis of 2,3-Benzotropones via Palladium(II)-Catalyzed Aerobic Dehydrogenation from 1-Benzosuberones and Sequential Diels-Alder Reaction to Yield Benzobicyclo[3.2.2]nonenones. J Org Chem 2024; 89:3102-3110. [PMID: 38364274 DOI: 10.1021/acs.joc.3c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
An approach to 2,3-benzotropone from 1-benzosuberone via palladium(II)-catalyzed aerobic dehydrogenation was developed. This method first provided a catalytic route to various 2,3-benzotropones from their corresponding 1-benzosuberones in good yields. In addition, the reaction could be applied to a one-pot Diels-Alder reaction with maleimide, providing a complex benzobicyclo[3.2.2]nonenone in ≤90% yield. Kinetic analysis supporting our proposed mechanism was also performed, underscoring the robustness of the developed synthetic pathway.
Collapse
Affiliation(s)
- Hyung-Seok Yoo
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yo-Sep Yang
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Hwan Son
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyuck-Jae Won
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jaehoon Sim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
28
|
Wang J, Wu J, Li R, Wang K, Xu S, Wu J, Wu F. Semipinacol Rearrangement of Iododifluorohomoallyl Alcohols and Its Application in the Allylic C-H Esterification Reactions. J Org Chem 2024; 89:3111-3122. [PMID: 38343173 DOI: 10.1021/acs.joc.3c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
We herein present a study on the Ag(I)-mediated semipinacol rearrangement of iododifluorohomoallyl alcohols, the resulting allylic difluoromethyl ketones underwent oxidative allylic C-H esterification under palladium catalysis in the absence of external ligand. This process yielded a range of difluoromethyl ketones derived from allyl esters in a single operation. The reaction features broad scope of o-nitrobenzoic acids and homoallylic iododifluoroalcohols affording the targeted molecules in synthetically useful yields. Control experiments illustrated that the silver salt acted as not only a Lewis acid to promote the cleavage of a C-I bond and furnish the semipinacol rearrangement but also a co-oxidant in the catalytic cycle for the allylic C-H esterification.
Collapse
Affiliation(s)
- Junqi Wang
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jihong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ruowen Li
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Kaiji Wang
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shibo Xu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingjing Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fanhong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
29
|
Hardy MA, Hayward Cooke J, Feng Z, Noda K, Kerschgens I, Massey LA, Tantillo DJ, Sarpong R. Unified Synthesis of 2-Isocyanoallopupukeanane and 9-Isocyanopupukeanane through a "Contra-biosynthetic" Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202317348. [PMID: 38032339 PMCID: PMC11646677 DOI: 10.1002/anie.202317348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Herein, we describe our synthetic efforts toward the pupukeanane natural products, in which we have completed the first enantiospecific route to 2-isocyanoallopupukeanane in 10 steps (formal synthesis), enabled by a key Pd-mediated cyclization cascade. This subsequently facilitated an unprecedented bio-inspired "contra-biosynthetic" rearrangement, providing divergent access to 9-isocyanopupukeanane in 15 steps (formal synthesis). Computational studies provide insight into the nature of this rearrangement.
Collapse
Affiliation(s)
- Melissa A. Hardy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jack Hayward Cooke
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zhitao Feng
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kenta Noda
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Isabel Kerschgens
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lynée A. Massey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Zhang X, Wang D, Chang M, Xu X, Li W, Wang W. Pd(II)-Catalyzed tandem selective dehydrogenative [4+2] annulation of 2-methyl-1,3-cycloalkanediones with olefins. Chem Commun (Camb) 2024; 60:594-597. [PMID: 38099810 DOI: 10.1039/d3cc05191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A practical and effective palladium-catalyzed selective dehydrogenative [4+2] annulation of 2-methyl-1,3-cycloalkanediones with olefins was reported. The active 2-methylene-1,3-cycloalkanedione was in situ generated via Pd-catalyzed enolate oxidation processes, and it subsequently reacted with a wide variety of olefins to afford various polysubstituted dihydropyran derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Di Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Mengfan Chang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xuefeng Xu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wenguang Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wanya Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
31
|
Bandehali-Naeini F, Tanbakouchian Z, Farajinia-Lehi N, Mayer N, Shiri M, Breugst M. Two distinct protocols for the synthesis of unsymmetrical 3,4-disubstituted maleimides based on transition-metal catalysts. Org Biomol Chem 2024; 22:380-387. [PMID: 38086692 DOI: 10.1039/d3ob01620j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Two tandem catalytic systems are described for the synthesis of novel 3,4-disubstituted maleimides using the same Ugi adducts as starting materials. 4-Aryl-3-pyrrolyl- and 4-aryl-3-indolyl-maleimides were successfully obtained via a Pd(OAc)2/PPh3 based protocol. In contrast, maleimide-fused pyrrolo and indolo[1,2-a]quinolines were obtained in a complementary methodology using CuI/L-proline. These strategies involved a combination of benzylic amine oxidation, trans-amidation, intramolecular Knoevenagel condensation, and N-arylation reactions. Computational investigations provide further insights into this reaction sequence.
Collapse
Affiliation(s)
- Farzaneh Bandehali-Naeini
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Zahra Tanbakouchian
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Noushin Farajinia-Lehi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Nicolas Mayer
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany.
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany.
| |
Collapse
|
32
|
Xiao SY, Liu CX, Peng J, Tan R, Peng Y, Wang YW. A highly sensitive and selective fluorescent probe for rapid detection and intracellular imaging of Pd(II). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122967. [PMID: 37352784 DOI: 10.1016/j.saa.2023.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023]
Abstract
A novel near-infrared fluorescent probe (SWJT-13) for detecting Pd2+ ions was designed and synthesized using 3-bromopropargyne group as a recognition site. SWJT-13 can detect Pd2+ ions specifically, which can be quickly recognized by naked eye under natural light. SWJT-13 has a large Stokes shift (155 nm) with LOD of 10.5 nM. The mechanism was verified by 1H NMR, MS, and Gaussian calculations. In addition, the detection of Pd2+ ions by the probe was studied in HeLa cells.
Collapse
Affiliation(s)
- Shu-Yuan Xiao
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Chang-Xiang Liu
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jing Peng
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Rui Tan
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
33
|
Cui SQ, Zhang DB, Wei ZL, Liao WW. Construction of Functionalized α-Imino Ketones via Pd-Catalyzed C-H Addition to Nitriles/Aerobic Oxidation Sequences. J Org Chem 2023; 88:16018-16023. [PMID: 37930958 DOI: 10.1021/acs.joc.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Pd(II)-catalyzed addition of sp2 C-H to nitrile/aerobic oxidation sequences for the preparation of functionalized α-imino ketones is described in which readily available heteroarenes and O-acyl cyanohydrins were employed. Various functionalized targeted molecules can be prepared in good yields with high atom and step economy. Moreover, a broad substrate scope and the ready manipulation and availability of the reaction partners enable this protocol to be appealing to explore the chemical space of the construction of functionalized α-imino ketones with high efficiency.
Collapse
Affiliation(s)
- Shu-Qiang Cui
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | - Dian-Bo Zhang
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| |
Collapse
|
34
|
Zhang B, Deng D, Chen J, Li Y, Yuan M, Xiao W, Wang S, Wang X, Zhang P, Shu Y, Shi S, Chen C. Defect Engineering of High-Entropy Oxides for Superior Catalytic Oxidation Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922463 DOI: 10.1021/acsami.3c15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
High-entropy oxides (HEOs) are crucial in various fields (power storage/conversion, electronic devices, and catalysis) owing to their adjustable structural characteristics, fabulous stability, and massive components. However, the current strategies for synthesizing HEOs suffer from low surface area and limited active sites. Herein, we present a salt-assisted strategy with remarkable universality for the preparation of HEOs with high surface area [e.g., HP-(FeCrCoNiCu)xOy: 59 m2/g, HP-(ZnMgNiCuCo)xOy: 49 m2/g, and HP-(CrMnFeNiZn)xOy: 11 m2/g], where HP means high porosity. Especially, HP-(FeCrCoNiCu)xOy with rich-oxygen vacancies promotes catalytic efficiency for hydrocarbon and alcohol oxidation owing to its hierarchical texture and massive oxygen vacancies. Furthermore, density functional theory is utilized to well illustrate the relationship of the structure and catalytic efficiency within the catalysts. This work offers realistic pathway for the large-scale application of HEOs in catalytic areas.
Collapse
Affiliation(s)
- Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Dan Deng
- College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Jian Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ying Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Mingwei Yuan
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Xiaolei Wang
- College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Pengfei Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuan Shu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
35
|
Ji SH, Wang Q, Cai YR. A facile approach to phenothiazinones via catalytic aerobic oxidation: discovery of an antiproliferative agent. Org Biomol Chem 2023; 21:8197-8200. [PMID: 37789759 DOI: 10.1039/d3ob01111a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The production of bioactive pharmaceutical ingredients in a sustainable manner has become essential in the modern academic and industrial community. Herein, we report a chemically robust and sustainable aerobic oxidation for the synthesis of the phenothiazinone framework, using the commercially available TEMPO/HBF4/NaNO2 co-catalytic system under an ambient atmosphere. The reaction is highly efficient with broad scopes and excellent scalability. Preliminary activity screening led to the discovery of compound 3 as a potent antiproliferative agent. The green synthesis of a variety of sulfur containing heterocycles might encourage the pursuit of biologically valuable molecules in the medicinal field.
Collapse
Affiliation(s)
- Su-Hui Ji
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| | - Yun-Rui Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
36
|
Gay BL, Wang YN, Bhatt S, Tarasewicz A, Cooke DJ, Milem EG, Zhang B, Gary JB, Neidig ML, Hull KL. Palladium and Iron Cocatalyzed Aerobic Alkene Aminoboration. J Am Chem Soc 2023; 145:18939-18947. [PMID: 37584107 PMCID: PMC10772865 DOI: 10.1021/jacs.3c05790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Aminoboration of simple alkenes with nitrogen nucleophiles remains an unsolved problem in synthetic chemistry; this transformation can be catalyzed by palladium via aminopalladation followed by transmetalation with a diboron reagent. However, this catalytic process faces inherent challenges with instability of the alkylpalladium(II) intermediate toward β-hydride elimination. Herein, we report a palladium/iron cocatalyzed aminoboration, which enables this transformation. We demonstrate these conditions on a variety of alkenes and norbornenes with an array of common nitrogen nucleophiles. In the developed strategy, the iron cocatalyst is crucial to achieving the desired reactivity by serving as a halophilic Lewis acid to release the transmetalation-active cationic alkylpalladium intermediate. Furthermore, it serves as a redox shuttle in the regeneration of the Pd(II) catalyst by reactivation of nanoparticulate palladium.
Collapse
Affiliation(s)
- Brittany L. Gay
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| | - Ya-Nong Wang
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| | - Shreeja Bhatt
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| | - Anika Tarasewicz
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| | - Daniel J. Cooke
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| | - E. Grace Milem
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
- Stephen F. Austin State University, P.O. Box 13006, SFA Station, Nacogdoches, TX 75962, United States of America
| | - Bufan Zhang
- University of Rochester, 120 Trustee Road, Rochester, NY 14627, United States of America
| | - J. Brannon Gary
- Stephen F. Austin State University, P.O. Box 13006, SFA Station, Nacogdoches, TX 75962, United States of America
| | - Michael L. Neidig
- University of Rochester, 120 Trustee Road, Rochester, NY 14627, United States of America
- University of Oxford, S Parks Rd, Oxford OX1 3QR, United Kingdom
| | - Kami L. Hull
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| |
Collapse
|
37
|
Li J, Fan J, Hu F. Ultrasound-assisted acid/enzymatic hydrolysis preparation of loquat kernel porous starch: A carrier with efficient palladium loading capacity. Int J Biol Macromol 2023; 247:125676. [PMID: 37423443 DOI: 10.1016/j.ijbiomac.2023.125676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Porous starch, with excellent renewal and thermodynamic stability characteristics, could be utilized as a novel carrier for metals. In this research, starch was obtained from wasted loquat kernel (LKS) and converted into loquat kernel porous starch (LKPS) through ultrasound-assisted acid/enzymatic hydrolysis. Then, LKS and LKPS were utilized for loading with palladium. The porous structures of LKPS were evaluated by the results of water/oil absorption rate and N2 adsorption analysis, and the physicochemical properties of LKPS and starch@Pd were analyzed by FT-IR, XRD, SEM-EDS, ICP-OES, and DSC-TAG. LKPS prepared by the synergistic method formed a better porous structure. Its specific surface area was 2.65 times that of LKS, and the water/oil absorption capabilities were considerably improved to 152.28 % and 129.59 %, respectively. XRD patterns showed that the presence of diffraction peaks at 39.7° and 47.1°, indicating successful palladium loading onto LKPS. The EDS and ICP-OES results revealed that the palladium loading capacity of LKPS was superior to that of LKS, with a significantly increased loading ratio of 2.08 %. In addition, LKPS@Pd exhibited excellent thermal stability, with a temperature range of 310-320 °C. Therefore, LKPS was a palladium carrier with highly efficient loading ratio, and LKPS@Pd had promising properties as a competent catalyst.
Collapse
Affiliation(s)
- Jing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Junwei Fan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Fei Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| |
Collapse
|
38
|
Stamoulis AG, Bruns DL, Stahl SS. Optimizing the Synthetic Potential of O 2: Implications of Overpotential in Homogeneous Aerobic Oxidation Catalysis. J Am Chem Soc 2023; 145:17515-17526. [PMID: 37534994 PMCID: PMC10629435 DOI: 10.1021/jacs.3c02887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Molecular oxygen is the quintessential oxidant for organic chemical synthesis, but many challenges continue to limit its utility and breadth of applications. Extensive historical research has focused on overcoming kinetic challenges presented by the ground-state triplet electronic structure of O2 and the various reactivity and selectivity challenges associated with reactive oxygen species derived from O2 reduction. This Perspective will analyze thermodynamic principles underlying catalytic aerobic oxidation reactions, borrowing concepts from the study of the oxygen reduction reaction (ORR) in fuel cells. This analysis is especially important for "oxidase"-type liquid-phase catalytic aerobic oxidation reactions, which proceed by a mechanism that couples two sequential redox half-reactions: (1) substrate oxidation and (2) oxygen reduction, typically affording H2O2 or H2O. The catalysts for these reactions feature redox potentials that lie between the potentials associated with the substrate oxidation and oxygen reduction reactions, and changes in the catalyst potential lead to variations in effective overpotentials for the two half reactions. Catalysts that operate at low ORR overpotential retain a more thermodynamic driving force for the substrate oxidation step, enabling O2 to be used in more challenging oxidations. While catalysts that operate at high ORR overpotential have less driving force available for substrate oxidation, they often exhibit different or improved chemoselectivity relative to the high-potential catalysts. The concepts are elaborated in a series of case studies to highlight their implications for chemical synthesis. Examples include comparisons of (a) NOx/oxoammonium and Cu/nitroxyl catalysts, (b) high-potential quinones and amine oxidase biomimetic quinones, and (c) Pd aerobic oxidation catalysts with or without NOx cocatalysts. In addition, we show how the reductive activation of O2 provides a means to access potentials not accessible with conventional oxidase-type mechanisms. Overall, this analysis highlights the central role of catalyst overpotential in guiding the development of aerobic oxidation reactions.
Collapse
Affiliation(s)
- Alexios G Stamoulis
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - David L Bruns
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
39
|
Hou L, Zhang S, Ma J, Wang H, Jin T, Terada M, Bao M. Organocatalytic Atroposelective Construction of Axially Chiral Compounds Containing Benzimidazole and Quinoline Rings. Org Lett 2023. [PMID: 37470416 DOI: 10.1021/acs.orglett.3c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
An organocatalytic atroposelective strategy for the construction of axially chiral compounds containing benzimidazole and quinoline rings is described. The enantioselective heteroannulation reaction of 2-alkynylbenzimidazoles with ortho-aminophenylketones proceeded smoothly in the presence of chiral phosphoric acid to provide axially chiral heterobiaryls with good yields and enantioselectivities. This is the first example of the combination of benzimidazole and quinoline rings at the 2- and 3-positions, respectively, into axially chiral heterobiaryls by this new strategy.
Collapse
Affiliation(s)
- Linan Hou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Ji Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Haiyu Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Tienan Jin
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
40
|
Deolka S, Govindarajan R, Khaskin E, Vasylevskyi S, Bahri J, Fayzullin RR, Roy MC, Khusnutdinova JR. Oxygen transfer reactivity mediated by nickel perfluoroalkyl complexes using molecular oxygen as a terminal oxidant. Chem Sci 2023; 14:7026-7035. [PMID: 37389265 PMCID: PMC10306096 DOI: 10.1039/d3sc01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023] Open
Abstract
Nickel perfluoroethyl and perfluoropropyl complexes supported by naphthyridine-type ligands show drastically different aerobic reactivity from their trifluoromethyl analogs resulting in facile oxygen transfer to perfluoroalkyl groups or oxygenation of external organic substrates (phosphines, sulfides, alkenes and alcohols) using O2 or air as a terminal oxidant. Such mild aerobic oxygenation occurs through the formation of spectroscopically detected transient high-valent NiIII and structurally characterized mixed-valent NiII-NiIV intermediates and radical intermediates, resembling O2 activation reported for some Pd dialkyl complexes. This reactivity is in contrast with the aerobic oxidation of naphthyridine-based Ni(CF3)2 complexes resulting in the formation of a stable NiIII product, which is attributed to the effect of greater steric congestion imposed by longer perfluoroalkyl chains.
Collapse
Affiliation(s)
- Shubham Deolka
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - R Govindarajan
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Serhii Vasylevskyi
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Janet Bahri
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences 8 Arbuzov Street Kazan 420088 Russian Federation
| | - Michael C Roy
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
41
|
Fernández-Moyano S, Salamanca V, Albéniz AC. Palladium mono- N-protected amino acid complexes: experimental validation of the ligand cooperation model in C-H activation. Chem Sci 2023; 14:6688-6694. [PMID: 37350841 PMCID: PMC10284104 DOI: 10.1039/d3sc02076b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Mechanistic proposals for the C-H activation reaction enabled by mono-N-protected amino acid ligands (MPAAs) have been supported by DFT calculations. The direct experimental observation of the ligand-assisted C-H activation has not yet been reported due to the lack of well-defined isolated palladium complexes with MPAAs that can serve as models. In this work, palladium complexes bearing chelating MPAAs (NBu4)[Pd(κ2-N,O-AcN-CHR-COO)(C6F5)py] (Ac = MeC(O); R = H, Me) and [Pd(κ2-N,O-MeNH-CH2-COO)(C6F5)py] have been isolated and characterized. Their evolution in a solution containing toluene leads to the C-H activation of the arene and the formation of the C6F5-C6H4Me coupling products. This process takes place only for the ligands with an acyl protecting group, showing the cooperating role of this group in a complex with a chelating MPAA, therefore experimentally validating this working model. The carboxylate group is inefficient in this C-H activation.
Collapse
Affiliation(s)
| | - Vanesa Salamanca
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid 47071-Valladolid Spain
| | - Ana C Albéniz
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid 47071-Valladolid Spain
| |
Collapse
|
42
|
Thomas AA, Seidl FJ, Mague JT, Sathyamoorthi S. Ring-Opening Reactions of Phosphoramidate Heterocycles. Tetrahedron 2023; 137:133390. [PMID: 37885946 PMCID: PMC10602049 DOI: 10.1016/j.tet.2023.133390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
We present protocols for the conversion of phosphoramidate heterocycles into 1,3-chloroamines and 1,3-aminoalcohols. For the formation of chloroamines, our optimized protocol involves heating the phosphoramidate starting material with 4 equivalents of HCl in a dioxane/toluene solvent mixture. The substituents on the phosphoramidate starting material have a profound influence on product formation. Phosphoramidates with a variety of aza-heterocyclic substituents engage, but those containing a 5-chloro-8-quinolinol arm are most competent for 1,3-chloroamine formation. Furthermore, only the phosphoramidate cis diastereomers allow for 1,3-chloroamine formation. X-ray crystallography studies coupled with DFT analysis provide a basis for the stark difference in reactivity between the cis and trans diastereomers. Amino-alcohol products form by heating phosphoramidate heterocycles with aqueous HF in toluene. Here, there is no diastereomeric preference or a requirement for an aza-heterocyclic arm. Based on a substrate survey, both reactions tolerate a broad range of substitution patterns and functional groups. This work establishes that phosphoramidates are competent synthons for interesting amine products and further increases the prominence of tethered aza-Wacker technology.
Collapse
Affiliation(s)
- Annu Anna Thomas
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, 66047, USA
| | | | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, 66047, USA
| |
Collapse
|
43
|
Gong J, Liu L, Li C, He Y, Yu J, Zhang Y, Feng L, Jiang G, Wang J, Tang BZ. Oxidization enhances type I ROS generation of AIE-active zwitterionic photosensitizers for photodynamic killing of drug-resistant bacteria. Chem Sci 2023; 14:4863-4871. [PMID: 37181775 PMCID: PMC10171080 DOI: 10.1039/d3sc00980g] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Type I photosensitizers (PSs) with an aggregation-induced emission (AIE) feature have received sustained attention for their excellent theranostic performance in the treatment of clinical diseases. However, the development of AIE-active type I PSs with strong reactive oxygen species (ROS) production capacity remains a challenge due to the lack of in-depth theoretical studies on the aggregate behavior of PSs and rational design strategies. Herein, we proposed a facile oxidization strategy to enhance the ROS generation efficiency of AIE-active type I PSs. Two AIE luminogens, MPD and its oxidized product MPD-O were synthesized. Compared with MPD, the zwitterionic MPD-O showed higher ROS generation efficiency. The introduction of electron-withdrawing oxygen atoms results in the formation of intermolecular hydrogen bonds in the molecular stacking of MPD-O, which endowed MPD-O with more tightly packed arrangement in the aggregate state. Theoretical calculations demonstrated that more accessible intersystem crossing (ISC) channels and larger spin-orbit coupling (SOC) constants provide further explanation for the superior ROS generation efficiency of MPD-O, which evidenced the effectiveness of enhancing the ROS production ability by the oxidization strategy. Moreover, DAPD-O, a cationic derivative of MPD-O, was further synthesized to improve the antibacterial activity of MPD-O, showing excellent photodynamic antibacterial performance against methicillin-resistant S. aureus both in vitro and in vivo. This work elucidates the mechanism of the oxidization strategy for enhancing the ROS production ability of PSs and offers a new guideline for the exploitation of AIE-active type I PSs.
Collapse
Affiliation(s)
- Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Yumao He
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Jia Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Ying Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Lina Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
44
|
Toupalas G, Ribadeau-Dumas L, Morandi B. Ni-catalyzed mild hydrogenolysis and oxidations of C-O bonds via carbonate redox tags. Nat Commun 2023; 14:2604. [PMID: 37147279 PMCID: PMC10163265 DOI: 10.1038/s41467-023-38305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Oxygenated molecules are omnipresent in natural as well as artificial settings making the redox transformation of the present C-O bonds a central tool for their processing. However, the required (super)stoichiometric redox agents which traditionally include highly reactive and hazardous reagents pose multiple practical challenges including process safety hazards or special waste management requirements. Here, we report a mild Ni-catalyzed fragmentation strategy based on carbonate redox tags for redox transformations of oxygenated hydrocarbons in the absence of any external redox equivalents or other additives. The purely catalytic process enables the hydrogenolysis of strong C(sp2)-O bonds including that of enol carbonates as well as the catalytic oxidation of C-O bonds under mild conditions down to room temperature. Additionally, we investigated the underlying mechanism and showcased the benefits of carbonate redox tags in multiple applications. More broadly, the work herein demonstrates the potential of redox tags for organic synthesis.
Collapse
Affiliation(s)
- Georgios Toupalas
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Loélie Ribadeau-Dumas
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Bill Morandi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Wang SJ, Wang L, Tang XY. Synergistic effect of hydrogen bonds and π-π interactions of B(C 6F 5) 3·H 2O/amides complex: Application in photoredox catalysis. iScience 2023; 26:106528. [PMID: 37128550 PMCID: PMC10148046 DOI: 10.1016/j.isci.2023.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023] Open
Abstract
B(C6F5)3·H2O has been long recognized as a common Brønsted acid. The lack of X-ray crystal structure of B(C6F5)3·H2O with other substrates has greatly limited the development of a new catalytic mode. In this work, a complex of B(C6F5)3·H2O and amide 2-phenyl-3,4-dihydroisoquinolin-1(2H)-one with hydrogen bonds and π-π interactions is characterized by X-ray diffraction. Such noncovalent interactions in solution also exist, as verified by NMR, UV-Vis absorption, and fluorescence emission measurements. Moreover, the mixture of amide 2-phenyl-3,4-dihydroisoquinolin-1(2H)-one and B(C6F5)3·H2O, instead of other tested Brønsted acids, shows a tailing absorption band in the visible light region (400-450 nm). Based on the photoactive properties of the complex, a photoredox catalysis is developed to construct α-aminoamides under mild conditions.
Collapse
Affiliation(s)
- Shi-Jun Wang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica and Semiconductor Chemistry Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Long Wang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica and Semiconductor Chemistry Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang-Ying Tang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica and Semiconductor Chemistry Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Corresponding author
| |
Collapse
|
46
|
He ZX, Yin B, Li XH, Zhou XL, Song HN, Xu JB, Gao F. Photochemical Selective Oxidation of Benzyl Alcohols to Aldehydes or Ketones. J Org Chem 2023; 88:4765-4769. [PMID: 36989387 DOI: 10.1021/acs.joc.2c02667] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Using Eosin Y as a metal-free photocatalyst and O2 as an oxidant, the present study reports a new photochemical protocol that enables efficient aerobic oxidation of various benzyl alcohols to the corresponding aldehydes or ketones in excellent yields under mild reaction conditions. The catalyst system presents good functional-group tolerance and exquisite chemoselectivity, which also can easily be scaled-up to gram scale. Moreover, the methodological applications in practical synthesis of several organic molecules and the primary reaction mechanism were also discussed.
Collapse
Affiliation(s)
- Zhen-Xiang He
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xiao-Huan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xian-Li Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Hai-Ning Song
- Department of Pharmacy, The Third People's Hospital of Chengdu and College of Medicine, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
47
|
Trouvé J, Youssef K, Kasemthaveechok S, Gramage-Doria R. Catalyst Complexity in a Highly Active and Selective Wacker-Type Markovnikov Oxidation of Olefins with a Bioinspired Iron Complex. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
| | - Khalil Youssef
- Univ Rennes, CNRS, ISCR-UMR6226, FR-35000 Rennes, France
| | | | | |
Collapse
|
48
|
Yun SJ, Kim J, Kang E, Jung H, Kim HT, Kim M, Joo JM. Nondirected Pd-Catalyzed C–H Perdeuteration and meta-Selective Alkenylation of Arenes Enabled by Pyrazolopyridone Ligands. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Seo Jin Yun
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jisu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Eunsu Kang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyun Tae Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Minkyu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
49
|
Hybrid Materials Based on Imidazo[4,5-b]porphyrins for Catalytic Oxidation of Sulfides. Catalysts 2023. [DOI: 10.3390/catal13020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Heterogenized metalloporphyrin catalysts for oxidation reactions are extensively explored to improve chemical production. In this work, manganese meso-tetraarylporphyrins were immobilized on hydrated mesoporous titanium dioxide (SBET = 705 m2 g−1) through carboxylate or phosphonate anchoring groups separated from the macrocycle by the 2-arylimidazole linker fused across one of the pyrrolic rings of the macrocycle. The element composition of two mesoporous hybrid materials thus obtained were investigated and the integrity of the immobilized complexes was shown by different physicochemical methods. Finally, the catalytic efficiency of the more stable material Mn(TMPIP)/TiO2 with the phosphonate anchor was evaluated in the selective oxidation of sulfides to sulfoxides by molecular oxygen in the presence of isobutyraldehyde (IBA). The heterogenized complex has shown excellent catalytic activity exhibiting a turnover (TON) of ~1100 in a single catalytic run of the sulfoxidation of thioanisole. The catalyst was successfully reused in seven consecutive catalytic cycles.
Collapse
|
50
|
Lai Q, Chen S, Zou L, Lin C, Huang S, Fu L, Cai L, Cai S. Syntheses of functionalized benzocoumarins by photoredox catalysis. Org Biomol Chem 2023; 21:1181-1186. [PMID: 36632780 DOI: 10.1039/d2ob02225g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Direct functionalization of inert C(sp3)-H bonds is an attractive synthetic technology for the preparation of pharmaceutically significant compounds in modern synthetic organic chemistry. In this work, we report a new method for the synthesis of functionalized benzocoumarins through the strategy of activation of multiple C-H bonds on 2-aryl toluenes under visible-light-enabled photoredox conditions. This method has the advantages of high functional group compatibility, mild reaction conditions, and effectively avoiding the use of strong oxidants and precious metal catalysts. Detailed mechanistic investigations, including spectroscopic and electrochemical studies, support the reaction's mechanistic course.
Collapse
Affiliation(s)
- Qihong Lai
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Shanyi Chen
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Linnan Zou
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Chengzhi Lin
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Shuling Huang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Lailing Fu
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Lina Cai
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Shunyou Cai
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China. .,Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|