1
|
Malbon CL, Hammes-Schiffer S. Nuclear-Electronic Orbital Multireference Configuration Interaction for Ground and Excited Vibronic States and Fundamental Insights into Multicomponent Basis Sets. J Chem Theory Comput 2025. [PMID: 40172071 DOI: 10.1021/acs.jctc.5c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The nuclear-electronic orbital (NEO) approach incorporates nuclear quantum effects into quantum chemistry calculations by treating specified nuclei quantum mechanically, equivalently to the electrons. Within the NEO framework, excited states are vibronic states representing electronic and nuclear vibrational excitations. The NEO multireference configuration interaction (MRCI) method presented herein provides accurate ground and excited vibronic states. The electronic and nuclear orbitals are optimized with a NEO multiconfigurational self-consistent field (NEO-MCSCF) procedure, thereby including both static and dynamic correlation and allowing the description of double and higher excitations. The accuracy of the NEO-MRCI method is illustrated by computing the ground state protonic densities and excitation energies of the vibronic states for four molecular systems with the hydrogen nucleus treated quantum mechanically. In addition, revised conventional electronic basis sets adapted for quantized nuclei are developed and shown to be essential for achieving this level of accuracy. The NEO-MRCI approach, as well as the strategy for revising electronic basis sets, will play a critical role in multicomponent quantum chemistry.
Collapse
Affiliation(s)
- Christopher L Malbon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Han D, Martens CC, Akimov AV. Generalization of Quantum-Trajectory Surface Hopping to Multiple Quantum States. J Chem Theory Comput 2025; 21:2839-2853. [PMID: 40062776 DOI: 10.1021/acs.jctc.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
In this work, we present a generalization of the quantum trajectory surface hopping (QTSH) to multiple states and its implementation in the Libra package for nonadiabatic dynamics. In lieu of the ad hoc velocity rescaling used in many trajectory-based surface hopping approaches, QTSH utilizes quantum forces to evolve nuclear degrees of freedom continuously. It also lifts the unphysical constraint of enforcing the total energy conservation at the individual trajectory level and rather conserves the total energy at the trajectory ensemble level. Leveraging our new implementation of the multistate QTSH, we perform a comparative analysis of this method with the conventional fewest switches surface hopping approach. We combine the QTSH and decoherence corrections based on the simplified decay of mixing (SDM) and exact factorization (XF), leading to the QTSH-SDM and QTSH-XF schemes. Using the Holstein, superexchange, and phenol model Hamiltonians, we assess the relative accuracy of the resulting combined schemes in reproducing branching ratios, population, and coherence dynamics for a broad range of initial conditions. We observe that the decoherence correction in QTSH is crucial to improve energy conservation as well as the internal consistency between the population from the quantum probability and active state.
Collapse
Affiliation(s)
- Daeho Han
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Craig C Martens
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
3
|
Dong J, Qiu J, Bai X, Wang Z, Xiao B, Wang L. SPADE 1.0: A Simulation Package for Non-Adiabatic Dynamics in Extended Systems. J Chem Theory Comput 2025. [PMID: 40126212 DOI: 10.1021/acs.jctc.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Nonadiabatic molecular dynamics (NAMD) simulations are crucial for revealing the underlying mechanisms of photochemical and photophysical processes. Typical NAMD simulation software packages rely on on-the-fly ab initio electronic structure and nonadiabatic coupling calculations, and thus become challenging when dealing with large complex systems. We here introduce a new Simulation Package for non-Adiabatic Dynamics in Extended systems (SPADE), which is designed to address the limitations of traditional surface hopping methods in dealing with these problems. By design, SPADE enables the users to define arbitrary quasi-diabatic Hamiltonians through parametrized functions and incorporates a variety of algorithms (e.g., global flux hopping probabilities, complex crossing and decoherence corrections), which can realize efficient and reliable NAMD simulations without using nonadiabatic couplings at all. All the employed methods and expressions for diabatic Hamiltonian matrix elements can be flexibly set through the input files. SPADE is mainly written in Fortran based on a modular design and has a great capacity for further implementation of new methods. SPADE can be used to simulate both model and atomistic systems as long as proper Hamiltonians are provided. As demonstrations, a series of representative models are studied to show the main features and capabilities.
Collapse
Affiliation(s)
- Jiawei Dong
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jing Qiu
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xin Bai
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zedong Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bingyang Xiao
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Wasif Baig M, Pederzoli M, Kývala M, Pittner J. Quantum Chemical and Trajectory Surface Hopping Molecular Dynamics Study of Iodine-Based BODIPY Photosensitizer. J Comput Chem 2025; 46:e70026. [PMID: 40068139 PMCID: PMC11896635 DOI: 10.1002/jcc.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 03/15/2025]
Abstract
A computational study of I-BODIPY (2-ethyl-4,4-difluoro-6,7-diiodo-1,3-dimethyl-4-bora-3a,4a-diaza-s-indacene) has been carried out to investigate its key photophysical properties as a potential triplet photosensitizer capable of generating singlet oxygen. Multireference CASPT2 and CASSCF methods have been used to calculate vertical excitation energies and spin-orbit couplings (SOCs), respectively, in a model (mono-iodinated BODIPY) molecule to assess the applicability of the single-reference second-order algebraic diagrammatic construction, ADC(2), method to this and similar molecules. Subsequently, time-dependent density functional theory (TD-DFT), possibly within the Tamm-Dancoff approximation (TDA), using several exchange-correlation functionals has been tested on I-BODIPY against ADC(2), both employing a basis set with a two-component pseudopotential on the iodine atoms. Finally, the magnitudes of SOC between excited electronic states of all types found have thoroughly been discussed using the Slater-Condon rules applied to an arbitrary one-electron one-center effective spin-orbit Hamiltonian. The geometry dependence of SOCs between the lowest-lying states has also been addressed. Based on these investigations, the TD-DFT/B3LYP and TD-DFT(TDA)/BHLYP approaches have been selected as the methods of choice for the subsequent nuclear ensemble approach absorption spectra simulations and mixed quantum-classical trajectory surface hopping (TSH) molecular dynamics (MD) simulations, respectively. Two bright states in the visible spectrum of I-BODIPY have been found, exhibiting a redshift of the main peak with respect to unsubstituted BODIPY caused by the iodine substituents. Excited-state MD simulations including both non-adiabatic effects and SOCs have been performed to investigate the relaxation processes in I-BODIPY after its photoexcitation to theS 1 $$ {\mathrm{S}}_1 $$ state. The TSH MD simulations revealed that intersystem crossings occur on a time scale comparable to internal conversions and that after an initial phase of triplet population growth a "saturation" is reached where the ratio of the net triplet to singlet populations is about 4:1. The calculated triplet quantum yield of 0.85 is in qualitative agreement with the previously reported experimental singlet oxygen generation yield of 0.99± $$ \pm $$ 0.06.
Collapse
Affiliation(s)
- Mirza Wasif Baig
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
- Faculty of Science, Department of Physical and Macromolecular ChemistryCharles UniversityPrague 2Czech Republic
| | - Marek Pederzoli
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
| | - Mojmír Kývala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPrague 6Czech Republic
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
| |
Collapse
|
5
|
Schürger P, Ibele LM, Lauvergnat D, Agostini F. Assessing the performance of coupled-trajectory schemes on full-dimensional two-state linear vibronic coupling models. J Chem Phys 2025; 162:104117. [PMID: 40084636 DOI: 10.1063/5.0252505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
We investigate the performance of coupled-trajectory methods for nonadiabatic molecular dynamics in simulating the photodynamics of 4-(dimethylamino)benzonitrile (DMABN) and fulvene, with electronic structure provided by linear vibrational coupling models. We focus on the coupled-trajectory mixed quantum-classical (CTMQC) algorithm and on the (combined) coupled-trajectory Tully surface hopping [(C)CTTSH] in comparison to independent-trajectory approaches, such as multi-trajectory Ehrenfest and Tully surface hopping. Our analysis includes not only electronic populations but also additional electronic and nuclear properties in position and momentum space. For both DMABN and fulvene, the recently developed CCTTSH algorithm successfully resolves the internal inconsistencies of coupled-trajectory Tully surface hopping. Instead, we find that DMABN highlights a significant weakness of CTMQC, which arises when the trajectories remain for a long time in the vicinity of a region of strong nonadiabaticity.
Collapse
Affiliation(s)
- Peter Schürger
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Lea M Ibele
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - David Lauvergnat
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Federica Agostini
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
6
|
Farkhutdinova D, Polonius S, Karrer P, Mai S, González L. Parametrization of Linear Vibronic Coupling Models for Degenerate Electronic States. J Phys Chem A 2025; 129:2655-2666. [PMID: 40036625 PMCID: PMC11912485 DOI: 10.1021/acs.jpca.4c07472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Linear vibronic coupling (LVC) models have proven to be effective in describing coupled excited-state potential energy surfaces of rigid molecules. However, obtaining the LVC parameters in molecules with many degrees of freedom and a large number of, possibly (near-)degenerate, electronic states can be challenging. In this paper, we discuss how the linear intra- and interstate couplings can be computed correctly using a numerical differentiation scheme, requiring a phase correction and sufficient numerical precision in the involved electronic structure calculations. The numerical scheme is applied to three test systems with symmetry-induced state degeneracies: SO3, [PtBr6]2-, and [Ru(bpy)3]2+. The first two systems are employed to validate the performance of the parametrization scheme. LVC potentials for SO3 are shown to reproduce the trigonal symmetry of the potential energy surfaces. The integration of the LVC potentials for [PtBr6]2- with the surface-hopping trajectory method illustrates how spurious parameters lead to erroneous trajectory behavior. In the transition metal complex [Ru(bpy)3]2+, extensive nonadiabatic simulations using LVC potentials are compared to those conducted with direct on-the-fly potentials. The simulations with LVC potentials demonstrate excellent agreement with the on-the-fly results while incurring costs that are 5 orders of magnitude lower. Further, the simulations evidence that intersystem crossing in [Ru(bpy)3]2+ occurs at a slightly slower rate than luminescence decay, underscoring the importance of simulating the actual experimental observable when comparing computed time constants with experimental time constants. Lastly, the initial nuclear response to excitation involves a rapid, short-lived, and small elongation of the Ru-N bonds, with no charge localization occurring on a sub-ps time scale.
Collapse
Affiliation(s)
- Dilara Farkhutdinova
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Severin Polonius
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Paul Karrer
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Research Platform on Accelerating Photoreaction Discovery (ViRAPID), University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| |
Collapse
|
7
|
Pinheiro M, de Oliveira Bispo M, Mattos RS, Telles do Casal M, Chandra Garain B, Toldo JM, Mukherjee S, Barbatti M. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning. DIGITAL DISCOVERY 2025; 4:666-682. [PMID: 39885946 PMCID: PMC11774233 DOI: 10.1039/d4dd00374h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
The analysis of nonadiabatic molecular dynamics (NAMD) data presents significant challenges due to its high dimensionality and complexity. To address these issues, we introduce ULaMDyn, a Python-based, open-source package designed to automate the unsupervised analysis of large datasets generated by NAMD simulations. ULaMDyn integrates seamlessly with the Newton-X platform and employs advanced dimensionality reduction and clustering techniques to uncover hidden patterns in molecular trajectories, enabling a more intuitive understanding of excited-state processes. Using the photochemical dynamics of fulvene as a test case, we demonstrate how ULaMDyn efficiently identifies critical molecular geometries and critical nonadiabatic transitions. The package offers a streamlined, scalable solution for interpreting large NAMD datasets. It is poised to facilitate advances in the study of excited-state dynamics across a wide range of molecular systems.
Collapse
Affiliation(s)
- Max Pinheiro
- Aix Marseille University, CNRS, ICR 13397 Marseille France
| | | | | | - Mariana Telles do Casal
- Aix Marseille University, CNRS, ICR 13397 Marseille France
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven 3001 Leuven Belgium
| | | | - Josene M Toldo
- Aix Marseille University, CNRS, ICR 13397 Marseille France
- UCBL, ENS de Lyon, CNRS, LCH UMR 5182 69342 Lyon Cedex 07 France
| | - Saikat Mukherjee
- Aix Marseille University, CNRS, ICR 13397 Marseille France
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń Gagarina 7 87-100 Toruń Poland
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR 13397 Marseille France
- Institut Universitaire de France 75231 Paris France https://barbatti.org/
| |
Collapse
|
8
|
Gao J, Fu L, Jiao S, Zhang Z, Chen S, Zhang Z, Wu W, Wan L, Li J, Hu W, Yang J. PyPWDFT: A Lightweight Python Software for Single-Node 10K Atom Plane-Wave Density Functional Theory Calculations. J Chem Theory Comput 2025; 21:2353-2370. [PMID: 39993781 DOI: 10.1021/acs.jctc.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
PyPWDFT is a Python software designed for performing plane-wave density functional theory (DFT) calculations. It can perform large-scale DFT calculations using only a single process on a single node, including local density functional for 10,000 atoms and nonlocal hybrid functional for 4096 atoms. Our benchmark test results demonstrate that PyPWDFT achieves performance comparable to that of Fortran/C++ codes, despite being developed in a native Python environment. In addition, it requires only NumPy, SciPy, and CuPy, enabling CPU-GPU heterogeneous computing, achieving a two-order-of-magnitude speedup compared to single-threaded CPU execution. Due to its excellent cross-platform compatibility, medium-scale DFT calculations can be performed through a graphical user interface on personal computers and Windows systems using consumer-grade GPUs, such as the NVIDIA GeForce RTX 4090. The computational efficiency is comparable to that of professional-grade GPUs such as the NVIDIA V100. The efficient performance, scalability to handle large-scale systems, high numerical accuracy, and different interfaces for molecular dynamics collectively underscore the considerable potential of PyPWDFT to develop into versatile DFT software.
Collapse
Affiliation(s)
- Jun Gao
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lizhong Fu
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shizhe Jiao
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenlin Zhang
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Chen
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiyuan Zhang
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wentiao Wu
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingyun Wan
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jielan Li
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- SState Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Souza Mattos R, Mukherjee S, Barbatti M. Legion: A Platform for Gaussian Wavepacket Nonadiabatic Dynamics. J Chem Theory Comput 2025; 21:2189-2205. [PMID: 40025765 PMCID: PMC11948330 DOI: 10.1021/acs.jctc.4c01697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Nonadiabatic molecular dynamics is crucial in investigating the time evolution of excited states in molecular systems. Among the various methods for performing such dynamics, those employing frozen Gaussian wavepacket propagation, particularly the multiple spawning approach, offer a favorable balance between computational cost and reliability. It propagates on-the-fly trajectories used to build and propagate the nuclear wavepacket. Despite its potential, efficient, flexible, and easily accessible software for Gaussian wavepacket propagation is less common compared to other methods, such as surface hopping. To address this, we present Legion, a software that facilitates the development and application of classical-trajectory-guided quantum wavepacket methods. The version presented here already contains a highly flexible and fully functional ab initio multiple spawning implementation, with different strategies to improve efficiency. Legion is written in Python for data management and NumPy/Fortran for numerical operations. It is created under the umbrella of the Newton-X platform and inherits all of its electronic structure interfaces beyond other direct interfaces. It also contains new approximations that allow it to circumvent the computation of the nonadiabatic coupling, extending the electronic structure methods that can be used for multiple spawning dynamics. We test, validate, and demonstrate Legion's functionalities through multiple spawning dynamics of fulvene (CASSCF and CASPT2) and DMABN (TDDFT).
Collapse
Affiliation(s)
| | - Saikat Mukherjee
- Aix
Marseille University, CNRS, ICR, Marseille 13397, France
- Faculty
of Chemistry, Nicolaus Copernicus University
in Torun, Torun 87100, Poland
| | - Mario Barbatti
- Aix
Marseille University, CNRS, ICR, Marseille 13397, France
- Institut
Universitaire de France, Paris 75231, France
| |
Collapse
|
10
|
Wang Y, Benny A, Le Dé B, Chin AW, Scholes GD. A numerically exact description of ultrafast vibrational decoherence in vibration-coupled electron transfer. Proc Natl Acad Sci U S A 2025; 122:e2416542122. [PMID: 40020191 DOI: 10.1073/pnas.2416542122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/15/2025] [Indexed: 03/12/2025] Open
Abstract
Broadband pump-probe spectroscopy has been widely used to measure vibrational decoherence associated with the reaction coordinate in photoinduced ultrafast vibration-coupled electron transfer (VCET) reactions. These experiments provide insight into the interplay of intramolecular coordinates along the reaction coordinate. However, a general theoretical foundation for analyzing, and even for explaining rigorously, these data is lacking. In this work, we study vibrational decoherence in a model VCET reaction using the nearly exact time-dependent density matrix renormalization group simulation method. We explore how analyzing the density matrix with quantum information measures can help elucidate the evolution of vibrational coherence in simulations of dynamics. We examine how vibrational coherence is affected by electron transfer on the timescale of approximately 100 femtoseconds. Our results suggest that electron transfer, in the nonadiabatic model, changes the vibrational equilibrium position abruptly-an example of a "quantum quench" event. This explains the concomitant vibrational decoherence. We find that abrupt vibrational decoherence can be mitigated by wavepacket motion occurring on the timescale of the electron transfer.
Collapse
Affiliation(s)
- Yuanheng Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Alfy Benny
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Brieuc Le Dé
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, Paris 75005, France
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, Paris 75005, France
| | | |
Collapse
|
11
|
Schofield J, Kapral R. Dynamics of quantum-classical systems in nonequilibrium environments. J Chem Phys 2025; 162:084101. [PMID: 39991995 DOI: 10.1063/5.0250872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025] Open
Abstract
The dynamics of a quantum system coupled to a classical environment and subject to constraints that drive it out of equilibrium are described. The evolution of the system is governed by the quantum-classical Liouville equation. Rather than evaluating the evolution of the mixed quantum-classical density operator, we derive exact equations of motion for the nonequilibrium average values of a set of operators or variables, along with correlation function expressions for the dissipative coefficients that enter these equations. These equations are obtained by requiring that the exact nonequilibrium averages are equal to local nonequilibrium averages that depend on auxiliary fields whose values satisfy evolution equations obtained using projection operator methods. The results are illustrated by deriving reaction-diffusion equations coupled to fluid hydrodynamic equations for a solution of quantum particles that can exist in two metastable states. Nonequilibrium steady states are discussed along with the reaction rate and diffusion correlation functions that characterize such states.
Collapse
Affiliation(s)
- Jeremy Schofield
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
12
|
Weight BM, Mandal A, Hu D, Huo P. Ab initio spin-mapping non-adiabatic dynamics simulations of photochemistry. J Chem Phys 2025; 162:084105. [PMID: 39998166 DOI: 10.1063/5.0248950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
We perform on-the-fly non-adiabatic molecular dynamics simulations using the recently developed spin-mapping formalism. Two quantum dynamics approaches based on this mapping formalism, (i) the fully linearized Spin-LSC and (ii) the partially linearized Spin-PLDM, are explored using the quasi-diabatic propagation scheme. We have performed dynamics simulations in four ab initio molecular models for which benchmark ab initio multiple spawning (AIMS) data have been published. We find that the spin-LSC and the previously reported symmetric quasi-classical (SQC) approaches provide nearly equivalent population dynamics. While we expected the more involved spin-PLDM method to provide superior accuracy compared to the other mapping-based approaches, SQC and spin-LSC, we found that it performed with equivalent accuracy compared to the AIMS benchmark results. We further explore the underpinnings of the spin-PLDM correlation function by decomposing its N2 density matrix-focused initial conditions, where N is the number of states in the quantum subsystem. Finally, we found an approximate form of the spin-PLDM correlation function, which simplifies the simulation and reduces the computational costs from N2 to N.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Arkajit Mandal
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
| | - Deping Hu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
13
|
Restaino L, Schnappinger T, Kowalewski M. Simulating nonadiabatic dynamics in benzophenone: Tracing internal conversion through photoelectron spectra. J Chem Phys 2025; 162:084301. [PMID: 39991998 PMCID: PMC7617526 DOI: 10.1063/5.0250153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025] Open
Abstract
Benzophenone serves as a prototype chromophore for studying the photochemistry of aromatic ketones, with applications ranging from biochemistry to organic light-emitting diodes. In particular, its intersystem crossing from the first singlet excited state to triplet states has been extensively studied, but experimental or theoretical studies on the preceding internal conversion within the singlet manifold are very rare. This relaxation mechanism is particularly important because direct population transfer of the first singlet excited state from the ground state is inefficient due to its low oscillator strength. In this work, our aim is to fill this gap by employing mixed quantum-classical and full quantum dynamics simulations and time-resolved photoelectron spectroscopy for gas-phase benzophenone and meta-methyl benzophenone. Our results show that nonadiabatic relaxation via conical intersections leads to an increase in the population of the first singlet excited state, which appears linear within the simulation time of 500 fs. This population transfer due to conical intersections can be directly detected by a bifurcation of the photoelectron signal. In addition, we discuss to clarify the role of the third singlet excited state degenerate to the second excited state-a topic that remains largely unexplored in the existing literature on benzophenone.
Collapse
Affiliation(s)
- Lorenzo Restaino
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91Stockholm, Sweden
| | - Thomas Schnappinger
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91Stockholm, Sweden
| |
Collapse
|
14
|
Rath Y, Booth GH. Interpolating numerically exact many-body wave functions for accelerated molecular dynamics. Nat Commun 2025; 16:2005. [PMID: 40011445 DOI: 10.1038/s41467-025-57134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
While there have been many developments in computational probes of both strongly-correlated molecular systems and machine-learning accelerated molecular dynamics, there remains a significant gap in capabilities in simulating accurate non-local electronic structure over timescales on which atoms move. We develop an approach to bridge these fields with a practical interpolation scheme for the correlated many-electron state through the space of atomic configurations, whilst avoiding the exponential complexity of these underlying electronic states. With a small number of accurate correlated wave functions as a training set, we demonstrate provable convergence to near-exact potential energy surfaces for subsequent dynamics with propagation of a valid many-body wave function and inference of its variational energy whilst retaining a mean-field computational scaling. This represents a profoundly different paradigm to the direct interpolation of potential energy surfaces in established machine-learning approaches. We combine this with modern electronic structure approaches to systematically resolve molecular dynamics trajectories and converge thermodynamic quantities with a high-throughput of several million interpolated wave functions with explicit validation of their accuracy from only a few numerically exact quantum chemical calculations. We also highlight the comparison to traditional machine-learned potentials or dynamics on mean-field surfaces.
Collapse
Affiliation(s)
- Yannic Rath
- National Physical Laboratory, Teddington, UK.
- Department of Physics and Thomas Young Centre, King's College London, London, UK.
| | - George H Booth
- Department of Physics and Thomas Young Centre, King's College London, London, UK.
| |
Collapse
|
15
|
Avagliano D. Solvent Effects on Nonadiabatic Dynamics: Ab Initio Multiple Spawning Propagated on CASPT2/xTB Potentials. J Chem Theory Comput 2025; 21:1905-1915. [PMID: 39932695 DOI: 10.1021/acs.jctc.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
An approach to simulate nonadiabatic dynamics in solution is introduced, which relies on the propagation of the nuclear wavepacket with the Ab Initio Multiple Spawning (AIMS) method under the effect of potential energy calculated with a hybrid but fully quantum mechanical scheme (QM/QM'). The electronic energies of the excited states of the chromophore are calculated with multireference perturbation theory (CASPT2), and the embedding molecules are described with a tight binding Hamiltonian (GFN2-xTB). This implementation is fully open source and relies on the combination of PySpawn, OpenMolcas, and xTB. Additionally, ORCA is used to properly generate the initial conditions in solution, showing how the combination of cutting-edge implementations in several commonly used software can push the state of the art of nonadiabatic dynamics in solution toward a new high standard of accuracy. The dynamics of ethylene in vacuum, in acetone, and in chloroform is reported as a test case, with a detailed analysis of the AIMS runs that shows important geometrical and electronic effects of the solvents on the decay mechanism of the chromophore.
Collapse
Affiliation(s)
- Davide Avagliano
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (iCLeHS UMR 8060), 75005 Paris, France
| |
Collapse
|
16
|
Zheng J, Xie Y, Peng J, Han Z, Lan Z. ML-MCTDH-Aid: An auxiliary package for multilayer multiconfiguration time-dependent Hartree calculations. J Chem Phys 2025; 162:052501. [PMID: 39902683 DOI: 10.1063/5.0240580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
The multilayer-multiconfiguration time-dependent Hartree (ML-MCTDH) method has garnered significant attention in the realm of theoretical chemistry owing to its powerful ability to perform numerically exact descriptions of multi-dimensional quantum dynamics and exhibit the remarkable performance in simulating the nonadiabatic dynamics of complex systems. Despite the availability of computational packages within the ML-MCTDH framework, executing these calculations seamlessly is not a straightforward task. Typically, substantial efforts are necessitated to configure the correct inputs for ML-MCTDH calculations, which require to correctly define several non-trivial parameters, to reasonably setup the optimal tree expansion of wavefunctions, and to properly select basis function numbers. To address these challenges, we have developed an auxiliary package named ML-MCTDH-Aid, which facilitates the setup of ML-MCTDH calculations using the Heidelberg MCTDH package in a user-friendly manner. This package is primarily tailored to handle the high-dimensional nonadiabatic dynamics governed by the Hamiltonian composed of several electronic states, several vibrational modes and their linear vibronic coupling terms. It automatically generates multiple essential input files, and all the calculations can be performed in an all-in-one black-box easy-to-use manner. To show the utility of the ML-MCTDH-Aid package, we provide a step-by-step tutorial that demonstrates running ML-MCTDH studies on three models. These examples illuminate how the utilization of the ML-MCTDH-Aid package significantly enhances the efficiency and effectiveness of ML-MCTDH calculations. This substantially boosts the accessibility of ML-MCTDH calculations in tackling the high-dimensional quantum dynamics of complex systems.
Collapse
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yu Xie
- POWERCHINA, SEPCOIII Electric Power Construction Co., Ltd., Qingdao 266061, People's Republic of China
| | - Jiawei Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Zhaohui Han
- POWERCHINA, SEPCOIII Electric Power Construction Co., Ltd., Qingdao 266061, People's Republic of China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
17
|
Zhang J, Peng J, Hu D, Gelin MF, Lan Z. What Two-Dimensional Electronic Spectroscopy Can Tell Us about Energy Transfer in Dendrimers: Ab Initio Simulations. J Phys Chem Lett 2025; 16:1007-1015. [PMID: 39840912 DOI: 10.1021/acs.jpclett.4c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Two-dimensional (2D) electronic spectra of the phenylene ethynylene dendrimer with 2-ring and 3-ring branches were evaluated by combining the on-the-fly trajectory surface hopping nonadiabatic dynamics and the doorway-window simulation protocol. The ground state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA) contributions to the 2D signal were obtained and carefully analyzed. The results demonstrate that the ultrafast intramolecular nonadiabatic excited-state energy transfer (EET) from the 2-ring to the 3-ring units is comprehensively characterized by the SE and ESA signals. It is proven that the monitoring of the 2D ESA signal is especially convenient, because it is spectrally well separated from the SE and GSB signals. Hence, 2D electronic spectroscopy provides a detailed and multifaceted view of the intramolecular EET process in dendrimers.
Collapse
Affiliation(s)
- Juanjuan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
18
|
Janoš J, Slavíček P, Curchod BFE. Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations. Acc Chem Res 2025; 58:261-270. [PMID: 39787317 PMCID: PMC11756641 DOI: 10.1021/acs.accounts.4c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
ConspectusPhotochemical reactions have always been the source of a great deal of mystery. While classified as a type of chemical reaction, no doubts are allowed that the general tenets of ground-state chemistry do not directly apply to photochemical reactions. For a typical chemical reaction, understanding the critical points of the ground-state potential (free) energy surface and embedding them in a thermodynamics framework is often enough to infer reaction yields or characteristic time scales. A general working principle is that the energy profile along the minimum energy paths provides the key information to characterize the reaction. These well-developed concepts, unfortunately, rarely stretch to processes involving the formation of a nonstationary state for a molecular system after light absorption.Upon photoexcitation, a molecule is likely to undergo internal conversion processes, that is, changes of electronic states mediated by couplings between nuclear and electronic motion, precisely what the celebrated Born-Oppenheimer approximation neglects. These coupled electron-nuclear processes, coined nonadiabatic processes, allow for the molecule to decay from one electronic state to the other nonradiatively. Understanding the intricate nonadiabatic dynamics is pivotal to rationalizing and predicting the outcome of a molecular photoexcitation and providing insights for experiments conducted, for example, in advanced light sources such as free-electron lasers.Nowadays, most simulations in nonadiabatic molecular dynamics are based on approximations that invoke a near-classical depiction of the nuclei. This reliance is due to practical constraints, and the classical equations of motion for the nuclei must be supplemented by techniques such as surface hopping to account for nonadiabatic transitions between electronic states. A critical but often overlooked aspect of these simulations is the selection of initial conditions, specifically the choice of initial nuclear positions and momenta for the nonadiabatic dynamics, which can significantly influence how well the simulations mimic real quantum systems across various experimental scenarios. The conventional approach for generating initial conditions for nonadiabatic dynamics typically maps the initial state onto a nuclear phase space using a Wigner quasiprobability function within a harmonic approximation, followed by a second approximation where the molecule undergoes a sudden excitation.In this Account, we aim to warn the experienced or potential user of nonadiabatic molecular dynamics about the possible limitations of this strategy for initial-condition generation and its inability to accurately describe the photoexcitation of a molecule. More specifically, we argue that the initial phase-space distribution can be more accurately represented through molecular dynamics simulations by using a quantum thermostat. This method offers a robust framework that can be applied to large, flexible, or even solvated molecular systems. Furthermore, the reliability of this strategy can be benchmarked against more rigorous approaches such as path integral molecular dynamics. Additionally, the commonly used sudden approximation, which assumes a vertical and sudden excitation of a molecule, rarely reflects the excitation triggered by laser pulses used in actual photochemical and spectroscopic experiments. We discuss here a more general approach that can generate initial conditions for any type of laser pulse. We also discuss strategies to tackle excitation triggered by a continuous-wave laser.
Collapse
Affiliation(s)
- Jiří Janoš
- Department of Physical Chemistry,
University of Chemistry and Technology, Technická 5,
Prague 6, 166 28, Czech Republic
- Centre for Computational Chemistry, School of
Chemistry, University of Bristol, Bristol BS8 1TS,
United Kingdom
| | - Petr Slavíček
- Department of Physical Chemistry,
University of Chemistry and Technology, Technická 5,
Prague 6, 166 28, Czech Republic
| | - Basile F. E. Curchod
- Centre for Computational Chemistry, School of
Chemistry, University of Bristol, Bristol BS8 1TS,
United Kingdom
| |
Collapse
|
19
|
Wang SR, Fang Q, Liu XY, Fang WH, Cui G. Machine learning accelerated nonadiabatic dynamics simulations of materials with excitonic effects. J Chem Phys 2025; 162:024105. [PMID: 39774880 DOI: 10.1063/5.0248228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
This study presents an efficient methodology for simulating nonadiabatic dynamics of complex materials with excitonic effects by integrating machine learning (ML) models with simplified Tamm-Dancoff approximation (sTDA) calculations. By leveraging ML models, we accurately predict ground-state wavefunctions using unconverged Kohn-Sham (KS) Hamiltonians. These ML-predicted KS Hamiltonians are then employed for sTDA-based excited-state calculations (sTDA/ML). The results demonstrate that excited-state energies, time-derivative nonadiabatic couplings, and absorption spectra from sTDA/ML calculations are accurate enough compared with those from conventional density functional theory based sTDA (sTDA/DFT) calculations. Furthermore, sTDA/ML-based nonadiabatic molecular dynamics simulations on two different materials systems, namely chloro-substituted silicon quantum dot and monolayer black phosphorus, achieve more than 100 times speedup than the conventional linear response time-dependent DFT simulations. This work highlights the potential of ML-accelerated nonadiabatic dynamics simulations for studying the complicated photoinduced dynamics of large materials systems, offering significant computational savings without compromising accuracy.
Collapse
Affiliation(s)
- Sheng-Rui Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
20
|
Mukherjee S, Lassmann Y, Mattos RS, Demoulin B, Curchod BFE, Barbatti M. Assessing Nonadiabatic Dynamics Methods in Long Timescales. J Chem Theory Comput 2025; 21:29-37. [PMID: 39680061 DOI: 10.1021/acs.jctc.4c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Nonadiabatic dynamics simulations complement time-resolved experiments by revealing ultrafast excited-state mechanistic information in photochemical reactions. Understanding the relaxation mechanisms of photoexcited molecules finds application in energy, material, and medicinal research. However, with substantial computational costs, the nonadiabatic dynamics simulations have been restricted to ultrafast timescales, typically less than a few picoseconds, thus neglecting a wide range of photoactivated processes occurring in much longer timescales. Before developing new methodologies, we must ask: How well do the popular nonadiabatic dynamics methods perform in a long timescale simulation? In this study, we employ the multiconfiguration time-dependent Hartree (MCTDH) and its multilayer variants (ML-MCTDH), ab initio multiple spawning (AIMS), and fewest-switches surface hopping (FSSH) methodologies to simulate the excited-states dynamics of a weakly coupled multidimensional Spin-Boson model Hamiltonian designed for a long timescale decay behavior. Our study assures that despite having very different theoretical backgrounds, all the above methods deliver qualitatively similar results. While quantum dynamics would be very costly for long timescale simulations, the trajectory-based approaches are paving the way for future advancements.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, Toruń 87100, Poland
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Yorick Lassmann
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Rafael S Mattos
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Baptiste Demoulin
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- CINaM UMR 7325, CNRS, Marseille 13288, France
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
21
|
Gallmetzer HG, Sangiogo Gil E, González L. Photoisomerization Dynamics of Azo-Escitalopram Using Surface Hopping and a Semiempirical Method. J Phys Chem B 2025; 129:385-397. [PMID: 39707901 PMCID: PMC11726678 DOI: 10.1021/acs.jpcb.4c06924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The photoisomerization dynamics of azo-escitalopram, a synthetic photoswitchable inhibitor of the human serotonin transporter, is investigated in both gas-phase and water. We use the trajectory surface hopping method─as implemented in SHARC─interfaced with the floating occupation molecular orbital-configuration interaction semiempirical method to calculate on-the-fly energies, forces, and couplings. The inclusion of explicit water molecules is enabled using an electrostatic quantum mechanics/molecular mechanics framework. We find that the photoisomerization quantum yield of trans-azo-escitalopram is wavelength- and environment-dependent, with n → π* excitation yielding higher quantum yields than π → π* excitation. Additionally, we observe the formation of two distinct cis-isomers in the photoisomerization from the most thermodynamically stable trans-isomer, with formation rates influenced by both the excitation window and the surrounding environment. We predict longer excited-state lifetimes than those reported for azobenzene, suggesting that the escitalopram moiety contributes to prolonged lifetimes and slower torsional motions.
Collapse
Affiliation(s)
- Hans Georg Gallmetzer
- Doctoral
School in Chemistry (DoSChem), University
of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Eduarda Sangiogo Gil
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Research Platform in Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
22
|
Alfonso-Hernandez L, Freixas VM, Gibson T, Tretiak S, Fernandez-Alberti S. Tuning Electronic Relaxation of Nanorings Through Their Interlocking. J Comput Chem 2025; 46:e27533. [PMID: 39680665 DOI: 10.1002/jcc.27533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024]
Abstract
Electronic and vibrational relaxation processes can be optimized and tuned by introducing alternative pathways that channel excess energy more efficiently. An ensemble of interacting molecular systems can help overcome the bottlenecks caused by large energy gaps between intermediate excited states involved in the relaxation process. By employing this strategy, catenanes composed of mechanically interlocked carbon nanostructures show great promise as new materials for achieving higher efficiencies in electronic devices. Herein, we perform nonadiabatic excited state molecular dynamics on different all-benzene catenanes. We observe that catenanes experience faster relaxations than individual units. Coupled catenanes present overlapping energy manifolds that include several electronic excited states spatially localized on the different moieties, increasing the density of states that ultimately improve the efficiency in the energy relaxation. This result suggests the use of catenanes as a viable strategy for tuning the internal conversion rates in a quest for their utilization for new optoelectronic applications.
Collapse
Affiliation(s)
- Laura Alfonso-Hernandez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal, Argentina
| | - Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California, USA
| | - Tammie Gibson
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | |
Collapse
|
23
|
Sangiogo Gil E, Oppel M, Kottmann JS, González L. SHARC meets TEQUILA: mixed quantum-classical dynamics on a quantum computer using a hybrid quantum-classical algorithm. Chem Sci 2025; 16:596-609. [PMID: 39703417 PMCID: PMC11653199 DOI: 10.1039/d4sc04987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Recent developments in quantum computing are highly promising, particularly in the realm of quantum chemistry. Due to the noisy nature of currently available quantum hardware, hybrid quantum-classical algorithms have emerged as a reliable option for near-term simulations. Mixed quantum-classical dynamics methods effectively capture nonadiabatic effects by integrating classical nuclear dynamics with quantum chemical computations of the electronic properties. However, these methods face challenges due to the high computational cost of the quantum chemistry part. To mitigate the computational demand, we propose a method where the required electronic properties are computed through a hybrid quantum-classical approach that combines classical and quantum hardware. This framework employs the variational quantum eigensolver and variational quantum deflation algorithms to obtain ground and excited state energies, gradients, nonadiabatic coupling vectors, and transition dipole moments. These quantities are used to propagate the nonadiabatic molecular dynamics using the Tully's fewest switches surface hopping method, although the implementation is also compatible with other molecular dynamics approaches. The approach, implemented by integrating the molecular dynamics program package SHARC with the TEQUILA quantum computing framework, is validated by studying the cis-trans photoisomerization of methanimine and the electronic relaxation of ethylene. The results show qualitatively accurate molecular dynamics that align with experimental findings and other computational studies. This work is expected to mark a significant step towards achieving a "quantum advantage" for realistic chemical simulations.
Collapse
Affiliation(s)
- Eduarda Sangiogo Gil
- Faculty of Chemistry, Institute of Theoretical Chemistry, Universität Wien A-1090 Vienna Austria
| | - Markus Oppel
- Faculty of Chemistry, Institute of Theoretical Chemistry, Universität Wien A-1090 Vienna Austria
| | - Jakob S Kottmann
- Institute for Computer Science, Center for Advanced Analytics and Predictive Sciences, Universität Augsburg Augsburg Germany
| | - Leticia González
- Faculty of Chemistry, Institute of Theoretical Chemistry, Universität Wien A-1090 Vienna Austria
| |
Collapse
|
24
|
Pérez-Sánchez Á, Curutchet C, González-Lafont À, Lluch JM. First-principles simulations of the fluorescence modulation of a COX-2-specific fluorogenic probe upon protein dimerization for cancer discrimination. Protein Sci 2025; 34:e70001. [PMID: 39720902 DOI: 10.1002/pro.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024]
Abstract
Cyclooxygenase-2 (COX-2) plays a crucial role in inflammation and has been implicated in cancer development. Understanding the behavior of COX-2 in different cellular contexts is essential for developing targeted therapeutic strategies. In this study, we investigate the fluorescence spectrum of a fluorogenic probe, NANQ-IMC6, when bound to the active site of human COX-2 in both its monomeric and homodimeric forms. We employ a multiscale first-principles simulation protocol that combines ground state MM-MD simulations with multiple excited state adiabatic QM/MM Born-Oppenheimer MD simulations based on linear response TD-DFT, which allows to account for protein heterogeneity effects on excited-state properties. Emission is then estimated from polarizable embedding TD-DFT QM/MMPol calculations. Our findings indicate that the emission shift arises from dimerization of the highly overexpressed COX-2 in cancer tissues, in contrast to the monomer structure present in inflammatory lesions and in normal cells with constitutive COX-2. This spectral shift is linked to changes in specific protein-probe interactions upon dimerization due to changes in the environment, whereas steric effects related to modulation of the NANQ geometry by the protein scaffold are found to be minor. This research paves the way for detailed investigations on the impact of environment structural transitions on the spectral properties of fluorogenic probes. Moreover, the fact that COX-2 exists as homodimer just in cancer tissues, but as monomer elsewhere, gives novel hints for therapeutical avenues to fight cancer and contributes to the development of drugs targeted to COX-2 dimer in cancer, but without affecting constitutive COX-2, thus minimizing off-target effects.
Collapse
Affiliation(s)
- Álex Pérez-Sánchez
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Díaz Mirón G, Lien-Medrano CR, Banerjee D, Monti M, Aradi B, Sentef MA, Niehaus TA, Hassanali A. Non-adiabatic Couplings in Surface Hopping with Tight Binding Density Functional Theory: The Case of Molecular Motors. J Chem Theory Comput 2024; 20:10602-10614. [PMID: 39564804 DOI: 10.1021/acs.jctc.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nonadiabatic molecular dynamics (NAMD) has become an essential computational technique for studying the photophysical relaxation of molecular systems after light absorption. These phenomena require approximations that go beyond the Born-Oppenheimer approximation, and the accuracy of the results heavily depends on the electronic structure theory employed. Sophisticated electronic methods, however, make these techniques computationally expensive, even for medium size systems. Consequently, simulations are often performed on simplified models to interpret the experimental results. In this context, a variety of techniques have been developed to perform NAMD using approximate methods, particularly density functional tight binding (DFTB). Despite the use of these techniques on large systems, where ab initio methods are computationally prohibitive, a comprehensive validation has been lacking. In this work, we present a new implementation of trajectory surface hopping combined with DFTB, utilizing nonadiabatic coupling vectors. We selected the methaniminium cation and furan systems for validation, providing an exhaustive comparison with the higher-level electronic structure methods. As a case study, we simulated a system from the class of molecular motors, which has been extensively studied experimentally but remains challenging to simulate with ab initio methods due to its inherent complexity. Our approach effectively captures the key photophysical mechanism of dihedral rotation after the absorption of light. Additionally, we successfully reproduced the transition from the bright to dark states observed in the time-dependent fluorescence experiments, providing valuable insights into this critical part of the photophysical behavior in molecular motors.
Collapse
Affiliation(s)
- Gonzalo Díaz Mirón
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Carlos R Lien-Medrano
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Debarshi Banerjee
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Marta Monti
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Bálint Aradi
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Michael A Sentef
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
- Center for Free-Electron Laser Science (CFEL), Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Thomas A Niehaus
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Ali Hassanali
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| |
Collapse
|
26
|
Arribas EV, Maitra NT. Electronic Coherences in Molecules: The Projected Nuclear Quantum Momentum as a Hidden Agent. PHYSICAL REVIEW LETTERS 2024; 133:233201. [PMID: 39714655 DOI: 10.1103/physrevlett.133.233201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024]
Abstract
Electronic coherences are key to understanding and controlling photoinduced molecular transformations. We identify a crucial quantum-mechanical feature of electron-nuclear correlation, the projected nuclear quantum momenta, essential to capture the correct coherence behavior. For simulations, we show that, unlike traditional trajectory-based schemes, exact-factorization-based methods approximate these correlation terms and correctly capture electronic coherences in a range of situations, including their spatial dependence, an important aspect that influences subsequent electron dynamics and that is becoming accessible in more experiments.
Collapse
|
27
|
Yamaguchi K, Miyagawa K, Shoji M, Kawakami T, Isobe H, Yamanaka S, Nakajima T. Theoretical elucidation of the structure, bonding, and reactivity of the CaMn 4O x clusters in the whole Kok cycle for water oxidation embedded in the oxygen evolving center of photosystem II. New molecular and quantum insights into the mechanism of the O-O bond formation. PHOTOSYNTHESIS RESEARCH 2024; 162:291-330. [PMID: 37945776 PMCID: PMC11614991 DOI: 10.1007/s11120-023-01053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
This paper reviews our historical developments of broken-symmetry (BS) and beyond BS methods that are applicable for theoretical investigations of metalloenzymes such as OEC in PSII. The BS hybrid DFT (HDFT) calculations starting from high-resolution (HR) XRD structure in the most stable S1 state have been performed to elucidate structure and bonding of whole possible intermediates of the CaMn4Ox cluster (1) in the Si (i = 0 ~ 4) states of the Kok cycle. The large-scale HDFT/MM computations starting from HR XRD have been performed to elucidate biomolecular system structures which are crucial for examination of possible water inlet and proton release pathways for water oxidation in OEC of PSII. DLPNO CCSD(T0) computations have been performed for elucidation of scope and reliability of relative energies among the intermediates by HDFT. These computations combined with EXAFS, XRD, XFEL, and EPR experimental results have elucidated the structure, bonding, and reactivity of the key intermediates, which are indispensable for understanding and explanation of the mechanism of water oxidation in OEC of PSII. Interplay between theory and experiments have elucidated important roles of four degrees of freedom, spin, charge, orbital, and nuclear motion for understanding and explanation of the chemical reactivity of 1 embedded in protein matrix, indicating the participations of the Ca(H2O)n ion and tyrosine(Yz)-O radical as a one-electron acceptor for the O-O bond formation. The Ca-assisted Yz-coupled O-O bond formation mechanisms for water oxidation are consistent with recent XES and very recent time-resolved SFX XFEL and FTIR results.
Collapse
Affiliation(s)
- Kizashi Yamaguchi
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan.
- SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| | - Koichi Miyagawa
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Mitsuo Shoji
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takashi Kawakami
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shusuke Yamanaka
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
28
|
de Oliveira Bispo M, Barbatti M. Accelerating Molecular Dynamics Simulations Using Socket-Based Interprocess Communication. J Phys Chem Lett 2024; 15:11891-11895. [PMID: 39569995 DOI: 10.1021/acs.jpclett.4c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Molecular dynamics (MD) simulations are essential for studying the time evolution of molecular systems. Still, their efficiency is often bottlenecked by file-based interprocess communication (IPC) between MD and electronic structure programs. We present a socket-based IPC implementation that dramatically accelerates MD simulations, reducing the computational time by >10-fold compared to those of traditional file-based methods. Our approach, applied to nonadiabatic molecular dynamics with the Newton-X program, eliminates disk read/write overhead, allowing for faster simulations over longer time scales. This method opens the door to more efficient high-throughput simulations, providing new opportunities for exploring complex molecular processes in real time.
Collapse
Affiliation(s)
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
29
|
Cortivo R, Zerbetto M, Polimeno A. QSLE-v1.0: A New Software Package for the Calculation of Coupled Quantum-Classical Dynamics in Condensed Phases Based on a Stochastic Approach. J Chem Theory Comput 2024; 20:9787-9798. [PMID: 39509476 DOI: 10.1021/acs.jctc.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Recently, a stochastic version of the quantum-classical Liouville equation has been proposed [Campeggio, J.; Cortivo, R.; Zerbetto, M. J. Chem. Phys. 2023, 158, 244104], to compute the coupled quantum-classical dynamics of molecules in condensed phases. The approach, called quantum-stochastic Liouville equation (QSLE), is based on coupling the time evolution of electronic states to a stochastic description of the relevant (classical) nuclear coordinates. Natural internal coordinates are used, i.e., bond lengths, bond angles, and dihedral angles. The approach is tailored to directly propagate the populations of the electronic states over time, based on a classical Fokker-Planck equation for the nuclear degrees of freedom coupled to a master equation for the jumps among the electronic states. The QSLE is a multiscale approach requiring many ingredients to be assembled in order to carry out the numerical solution. To make the approach accessible, a software package that handles the main (and most cumbersome) details of the numerical workflow has been implemented into the software package QSLE-v1.0, which is introduced in the present paper. Here, it is considered the case of one torsional nuclear coordinate and two nonadiabatic electronic potential energy surfaces. This is a very basic model for interpreting photoisomerization or charge transfer phenomena, but despite its simplicity, it can be applied even in complex systems where the relevant quantum/classical parts affecting the phenomena under study are highly localized. A sand-box model system for describing photoisomerization processes is reported to demonstrate the usage of the software package. QSLE-v1.0 is open source and distributed under the GPLv2.0 license.
Collapse
Affiliation(s)
- Riccardo Cortivo
- Department of Chemical Sciences, University of Padua, via Marzolo 1, Padova I-35131, Italy
| | - Mirco Zerbetto
- Department of Chemical Sciences, University of Padua, via Marzolo 1, Padova I-35131, Italy
| | - Antonino Polimeno
- Department of Chemical Sciences, University of Padua, via Marzolo 1, Padova I-35131, Italy
| |
Collapse
|
30
|
Sepali C, Goletto L, Lafiosca P, Rinaldi M, Giovannini T, Cappelli C. Fully Polarizable Multiconfigurational Self-Consistent Field/Fluctuating Charges Approach. J Chem Theory Comput 2024; 20:9954-9967. [PMID: 39532840 DOI: 10.1021/acs.jctc.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A multiscale model based on the coupling of the multiconfigurational self-consistent field (MCSCF) method and the classical atomistic polarizable fluctuating charges (FQ) force field is presented. The resulting MCSCF/FQ approach is validated by exploiting the CASSCF scheme through application to compute vertical excitation energies of formaldehyde and para-nitroaniline in aqueous solution. The procedure is integrated with molecular dynamics simulations to capture the solute's conformational changes and the dynamic aspects of solvation. Comparative analysis with alternative solvent models, gas-phase calculations, and experimental data provides insights into the model's accuracy in reproducing solute-solvent molecular interactions and spectral signals.
Collapse
Affiliation(s)
- Chiara Sepali
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
| | - Linda Goletto
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
| | - Piero Lafiosca
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
| | - Matteo Rinaldi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
| | - Tommaso Giovannini
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome I-00133, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
- IMT School for Advanced Studies Lucca, Piazza San Francesco 19, Lucca I-55100, Italy
| |
Collapse
|
31
|
Tracy DA, Fernandez-Alberti S, Galindo JF, Tretiak S, Roitberg AE. Nonadiabatic Excited-State Molecular Dynamics with an Explicit Solvent: NEXMD-SANDER Implementation. J Phys Chem B 2024; 128:11426-11434. [PMID: 39530349 DOI: 10.1021/acs.jpcb.4c05600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this article, the nonadiabatic excited-state Molecular dynamics (NEXMD) package is linked with the SANDER package, provided by AMBERTOOLS. The combination of these software packages enables the simulation of photoinduced dynamics of large multichromophoric conjugated molecules involving several coupled electronic excited states embedded in an explicit solvent by using the quantum/mechanics/molecular mechanics (QM/MM) methodology. The fewest switches surface hopping algorithm, as implemented in NEXMD, is used to account for quantum transitions among the adiabatic excited-state simulations of the photoexcitation and subsequent nonadiabatic electronic transitions, and vibrational energy relaxation of a substituted polyphenylenevinylene oligomer (PPV3-NO2) in vacuum and methanol as an explicit solvent has been used as a test case. The impact of including specific solvent molecules in the QM region is also analyzed. Our NEXMD-SANDER QM/MM implementation provides a useful computational tool to simulate qualitatively solvent-dependent effects, like electron transfer, stabilization of charge-separated excited states, and the role of solvent reorganization in the molecular optical properties, observed in solution-based spectroscopic experiments.
Collapse
Affiliation(s)
- Dustin A Tracy
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Johan Fabian Galindo
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- CONICET─Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
32
|
Sun X, Liu Z. Reduced density matrix dynamics in multistate harmonic models via time-convolution and time-convolutionless quantum master equations with quantum-mechanical and semiclassical kernels. J Chem Phys 2024; 161:184105. [PMID: 39526737 DOI: 10.1063/5.0231561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
In this work, we explore the electronic reduced density matrix (RDM) dynamics using time-convolution (TC) and time-convolutionless (TCL) quantum master equations (QMEs) that are based on perturbative electronic couplings within the framework of multistate harmonic (MSH) models. The MSH model Hamiltonian consistently incorporates the electronic-vibrational correlations between all pairs of states by satisfying the pairwise reorganization energies directly obtained from all-atom simulations, representing the globally heterogeneous environments that couple to the multiple states differently. We derive the exact quantum-mechanical and a hierarchy of semiclassical approximate expressions for the kernels in TC and TCL QMEs that project the full RDM for general shifted harmonic systems, including the MSH model. These QMEs are applied to simulate RDM dynamics of photoinduced charge transfer (PICT) in organic photovoltaic carotenoid-porphyrin-fullerene triad solvated in tetrahydrofuran solution and the excitation energy transfer (EET) dynamics in photosynthetic Fenna-Matthews-Olson complexes from C. tepidum and P. aestuarii. Our results show that while both TC and TCL QMEs capture similar phenomena in PICT and EET processes, TC QME generally provides more accurate results than TCL QME, particularly in the initial oscillation of EET population dynamics. This study highlights the effectiveness of the TC and TCL QMEs in modeling RDM dynamics of nonadiabatic processes, offering insights for realistic condensed phase systems.
Collapse
Affiliation(s)
- Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China; and Department of Chemistry, New York University, New York, New York 10003, USA
| | - Zengkui Liu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China; and Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
33
|
Atalar K, Rath Y, Crespo-Otero R, Booth GH. Fast and accurate nonadiabatic molecular dynamics enabled through variational interpolation of correlated electron wavefunctions. Faraday Discuss 2024; 254:542-569. [PMID: 39136121 DOI: 10.1039/d4fd00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
We build on the concept of eigenvector continuation to develop an efficient multi-state method for the rigorous and smooth interpolation of a small training set of many-body wavefunctions through chemical space at mean-field cost. The inferred states are represented as variationally optimal linear combinations of the training states transferred between the many-body bases of different nuclear geometries. We show that analytic multi-state forces and nonadiabatic couplings from the model enable application to nonadiabatic molecular dynamics, developing an active learning scheme to ensure a compact and systematically improvable training set. This culminates in application to the nonadiabatic molecular dynamics of a photoexcited 28-atom hydrogen chain, with surprising complexity in the resulting nuclear motion. With just 22 DMRG calculations of training states from the low-energy correlated electronic structure at different geometries, we infer the multi-state energies, forces and nonadiabatic coupling vectors at 12 000 geometries with provable convergence to high accuracy along an ensemble of molecular trajectories, which would not be feasible with a brute force approach. This opens up a route to bridge the timescales between accurate single-point correlated electronic structure methods and timescales of relevance for photo-induced molecular dynamics.
Collapse
Affiliation(s)
- Kemal Atalar
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
| | - Yannic Rath
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
- National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Rachel Crespo-Otero
- Department of Chemistry University College London, 2020 Gordon St., London, WC1H 0AJ, UK
| | - George H Booth
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
| |
Collapse
|
34
|
Ibele LM, Sangiogo Gil E, Villaseco Arribas E, Agostini F. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys Chem Chem Phys 2024; 26:26693-26718. [PMID: 39417703 DOI: 10.1039/d4cp02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This perspective offers an overview of the applications of the exact factorization of the electron-nuclear wavefunction to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact factorization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes involving the electronic ground and excited states as well as their coupling through the nuclear motion. Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent performance in describing a variety of excited-state processes, as this perspective illustrates. We conclude with a discussion on the authors' point of view on the future of the exact factorization.
Collapse
Affiliation(s)
- Lea Maria Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Evaristo Villaseco Arribas
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| |
Collapse
|
35
|
Janoš J, Slavíček P, Curchod BFE. Including Photoexcitation Explicitly in Trajectory-Based Nonadiabatic Dynamics at No Cost. J Phys Chem Lett 2024; 15:10614-10622. [PMID: 39405399 PMCID: PMC11514012 DOI: 10.1021/acs.jpclett.4c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Over the last decades, theoretical photochemistry has produced multiple techniques to simulate the nonadiabatic dynamics of molecules. Surprisingly, much less effort has been devoted to adequately describing the first step of a photochemical or photophysical process: photoexcitation. Here, we propose a formalism to include the effect of a laser pulse in trajectory-based nonadiabatic dynamics at the level of the initial conditions, with no additional cost. The promoted density approach (PDA) decouples the excitation from the nonadiabatic dynamics by defining a new set of initial conditions, which include an excitation time. PDA with surface hopping leads to nonadiabatic dynamics simulations in excellent agreement with quantum dynamics using an explicit laser pulse and highlights the strong impact of a laser pulse on the resulting photodynamics and the limits of the (sudden) vertical excitation. Combining PDA with trajectory-based nonadiabatic methods is possible for any arbitrary-sized molecules using a code provided in this work.
Collapse
Affiliation(s)
- Jiří Janoš
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, Prague 6, 166 28, Czech Republic
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United
Kingdom
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, Prague 6, 166 28, Czech Republic
| | - Basile F. E. Curchod
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United
Kingdom
| |
Collapse
|
36
|
Pios SV, Zhang J, Gelin MF, Duan HG, Chen L. Tracking the Electron Density Changes in Excited States: A Computational Study of Pyrazine. J Phys Chem Lett 2024; 15:10609-10613. [PMID: 39405178 DOI: 10.1021/acs.jpclett.4c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The development of X-ray free-electron lasers has enabled ultrafast X-ray diffraction (XRD) experiments, which are capable of resolving electronic and vibrational transitions and structural changes in molecules or capturing molecular movies. While time-resolved XRD has attracted more attention, the extraction of information from signals is challenging and requires theoretical support. In this work, we combined X-ray scattering theory and a trajectory surface hopping approach to resolve dynamical changes in the electronic structure of photoexcited molecules by studying the time evolution of electron density changes between electronic excited states and ground state. Using the pyrazine molecule as an example, we show that key features of reaction pathways can be identified, enabling the capture of structural changes associated with electronic transitions for a photoexcited molecule.
Collapse
Affiliation(s)
| | | | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hong-Guang Duan
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | | |
Collapse
|
37
|
Ma X, Tian X, Stippell E, Prezhdo OV, Long R, Fang WH. Self-passivation of Halide Interstitial Defects by Organic Cations in Hybrid Lead-Halide Perovskites: Ab Initio Quantum Dynamics. J Am Chem Soc 2024; 146:29255-29265. [PMID: 39393094 DOI: 10.1021/jacs.4c12634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Halide interstitial defects severely hinder the optoelectronic performance of metal halide perovskites, making research on their passivation crucial. We demonstrate, using ab initio nonadiabatic molecular dynamics simulations, that hydrogen vacancies (Hv) at both N and C atoms of the methylammonium (MA) cation in MAPbI3 efficiently passivate iodine interstitials (Ii), providing a self-passivation strategy for dealing with the Hv and Ii defects simultaneously. Hv at the N site (Hv-N) introduces a defect state into the valence band, while the state contributed by Hv at the C site (Hv-C) evolves from a shallow level at 0 K to a deep midgap state at ambient temperature, exhibiting a high environmental activity. Both Hv-N and Hv-C are strong Lewis bases, capable of capturing and passivating Ii defects. Hv-C is a stronger Lewis base, bonds with Ii better, and exhibits a more pronounced passivation effect. The charge carrier lifetimes in the passivated systems are significantly longer than in those containing either Hv or Ii, and even in pristine MAPbI3. Our demonstration of the Hv and Ii defect self-passivation in MAPbI3 suggests that systematic control of the relative concentrations of Hv and Ii can simultaneously eliminate both types of defects, thereby minimizing charge and energy losses. The demonstrated defect self-passivation strategy provides a promising means for defect control in organic-inorganic halide perovskites and related materials and deepens our atomistic understanding of defect chemistry and charge carrier dynamics in solar energy and optoelectronic materials.
Collapse
Affiliation(s)
- Xinbo Ma
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Xuesong Tian
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Elizabeth Stippell
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
38
|
Xu W, Xu H, Zhu M, Wen J. Ultrafast dynamics in spatially confined photoisomerization: accelerated simulations through machine learning models. Phys Chem Chem Phys 2024; 26:25994-26003. [PMID: 39370956 DOI: 10.1039/d4cp01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This study sheds light on the exploration of photoresponsive host-guest systems, highlighting the intricate interplay between confined spaces and photosensitive guest molecules. Conducting nonadiabatic molecular dynamics (NAMD) simulations based on electronic structure calculations for such large systems remains a formidable challenge. By leveraging machine learning (ML) as an accelerator for NAMD simulations, we analytically constructed excited-state potential energy surfaces along relevant collective variables to investigate photoisomerization processes efficiently. Combining the quantum mechanics/molecular mechanics (QM/MM) methodology with ML-based NAMD simulations, we elucidated the reaction pathways and identified the key degrees of freedom as reaction coordinates leading to conical intersections. A machine learning-based nonadiabatic dynamics model has been developed to compare the excited-state dynamics of the guest molecule, benzopyran, in both the gas phase and its behavior within the confined space of cucurbit[5]uril. This comparative analysis was designed to determine the influence of the environment on the photoisomerization rate of the guest molecule. The results underscore the effectiveness of ML models in simulating trajectory evolution in a cost-effective manner. This research offers a practical approach to accelerate NAMD simulations in large-scale systems of photochemical reactions, with potential applications in other host-guest complex systems.
Collapse
Affiliation(s)
- Weijia Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Haoyang Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
39
|
Chen WK, Zhao X, Liu XY, Xie XY, Zeng Y, Cui G. Photoinduced Nonadiabatic Dynamics of a Single-Walled Carbon Nanotube-Porphyrin Complex. J Phys Chem A 2024; 128:8803-8815. [PMID: 39344670 DOI: 10.1021/acs.jpca.4c04544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) have gained a lot of attention in the past few decades due to their promising optoelectronic properties. In addition, SWCNTs can form complexes that have good chemical stability and transport properties with other optical functional materials through noncovalent interactions. Elucidating the detailed mechanism of these complexes is of great significance for improving their optoelectronic properties. Nevertheless, simulating the photoinduced dynamics of these complexes accurately is rather challenging since they usually contain hundreds of atoms. To save computational efforts, most of the previous works have ignored the excitonic effects by employing nonadiabatic carrier (electron and hole) dynamics simulations. To properly consider the influence of excitonic effects on the photoinduced ultrafast processes of the SWCNT-tetraphenyl porphyrin (H2TPP) complex and to further improve the computational efficiency, we developed the nonadiabatic molecular dynamics (NAMD) method based on the extended tight binding-based simplified Tamm-Dancoff approximation (sTDA-xTB), which is applied to study the ultrafast photoinduced dynamics of the noncovalent SWCNT-porphyrin complex. In combination with statically electronic structure calculations, the present work successfully reveals the detailed microscopic mechanism of the ultrafast excitation energy transfer process of the complex. Upon local excitation on the H2TPP molecule, an ultrafast energy transfer process occurs from H2TPP (SWCNT-H2TPP*) to SWCNT (SWCNT*-H2TPP) within 10 fs. Then, two slower processes corresponding to the energy transfer from H2TPP to SWCNT and hole transfer from H2TPP to SWCNT take place in the 1 ps time scale. The sTDA-xTB-based electronic structure calculation and NAMD simulation results not only match the previous experimental observations from static and transient spectra but also provide more insights into the detailed information on the complex's photoinduced dynamics. Therefore, the sTDA-xTB-based NAMD method is a powerful theoretical tool for studying the ultrafast photoinduced dynamics in large extended systems with a large number of electronically excited states, which could be helpful for the subsequent design of SWCNT-based functional materials.
Collapse
Affiliation(s)
- Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xi Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiao-Ying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
40
|
Hollas D, Curchod BFE. AtmoSpec-A Tool to Calculate Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds. J Phys Chem A 2024; 128:8580-8590. [PMID: 39359141 PMCID: PMC11457220 DOI: 10.1021/acs.jpca.4c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Characterizing the photolysis processes undergone by transient volatile organic compounds (VOCs) in the troposphere requires the knowledge of their photoabsorption cross-section-quantities often challenging to determine experimentally, particularly due to the reactivity of these molecules. We present a computational tool coined AtmoSpec, which can predict a quantitative photoabsorption cross-section for volatile organic compounds by using computational photochemistry. The user enters the molecule of interest as a SMILES code and, after selecting a level of theory for the electronic structure (and waiting for the calculations to take place), is presented with a photoabsorption cross-section for the low-energy conformers and an estimate of the photolysis rate coefficient for different standardized actinic fluxes. More specifically, AtmoSpec is an automated workflow for the nuclear ensemble approach, an efficient technique to approximate the absolute intensities and excitation wavelengths of a photoabsorption cross-section for a molecule in the gas phase of interest in atmospheric chemistry and astrochemistry. This work provides background information on the nuclear ensemble approach, a guided example of a typical AtmoSpec calculation, details about the architecture of the code, and the current limitations and future developments of this tool.
Collapse
Affiliation(s)
- Daniel Hollas
- Centre for Computational
Chemistry, School of Chemistry, University
of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom
| | - Basile F. E. Curchod
- Centre for Computational
Chemistry, School of Chemistry, University
of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
41
|
Zhu Y, Peng J, Xu C, Lan Z. Unsupervised Machine Learning in the Analysis of Nonadiabatic Molecular Dynamics Simulation. J Phys Chem Lett 2024; 15:9601-9619. [PMID: 39270134 DOI: 10.1021/acs.jpclett.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The all-atomic full-dimensional-level simulations of nonadiabatic molecular dynamics (NAMD) in large realistic systems has received high research interest in recent years. However, such NAMD simulations normally generate an enormous amount of time-dependent high-dimensional data, leading to a significant challenge in result analyses. Based on unsupervised machine learning (ML) methods, considerable efforts were devoted to developing novel and easy-to-use analysis tools for the identification of photoinduced reaction channels and the comprehensive understanding of complicated molecular motions in NAMD simulations. Here, we tried to survey recent advances in this field, particularly to focus on how to use unsupervised ML methods to analyze the trajectory-based NAMD simulation results. Our purpose is to offer a comprehensive discussion on several essential components of this analysis protocol, including the selection of ML methods, the construction of molecular descriptors, the establishment of analytical frameworks, their advantages and limitations, and persistent challenges.
Collapse
Affiliation(s)
- Yifei Zhu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
42
|
Sit MK, Das S, Samanta K. Machine Learning-Assisted Mixed Quantum-Classical Dynamics without Explicit Nonadiabatic Coupling: Application to the Photodissociation of Peroxynitric Acid. J Phys Chem A 2024; 128:8244-8253. [PMID: 39283987 DOI: 10.1021/acs.jpca.4c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We have devised a hybrid quantum-classical scheme utilizing machine-learned potential energy surfaces (PES), which circumvents the need for explicit computation of nonadiabatic coupling elements. The quantities necessary to account for the nonadiabatic effects are directly obtained from the PESs. The simulation of dynamics is based on the fewest-switches surface-hopping method. We applied this scheme to model the photodissociation of both N-O and O-O bonds in a conformer of peroxynitric acid (HO2NO2). Adiabatic PES data for the six lowest states of this molecule were computed at the CASSCF level for various nuclear configurations. These served as the training data for the machine-learning models for the PESs. The dynamics simulation was initiated on the lowest optically bright singlet excited state (S4) and propagated along the two Jacobi coordinates J → 1 and J → 2 while accounting for the nonadiabatic effects through transitions between PESs. Our analysis revealed that there is a very high chance of dissociation of the N-O bond leading to the HO2 and NO2 fragments.
Collapse
Affiliation(s)
- Mahesh K Sit
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Subhasish Das
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Kousik Samanta
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
43
|
Dickinson JA, Hammes-Schiffer S. Nonadiabatic Hydrogen Tunneling Dynamics for Multiple Proton Transfer Processes with Generalized Nuclear-Electronic Orbital Multistate Density Functional Theory. J Chem Theory Comput 2024. [PMID: 39259939 DOI: 10.1021/acs.jctc.4c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Proton transfer and hydrogen tunneling play key roles in many processes of chemical and biological importance. The generalized nuclear-electronic orbital multistate density functional theory (NEO-MSDFT) method was developed in order to capture hydrogen tunneling effects in systems involving the transfer and tunneling of one or more protons. The generalized NEO-MSDFT method treats the transferring protons quantum mechanically on the same level as the electrons and obtains the delocalized vibronic states associated with hydrogen tunneling by mixing localized NEO-DFT states in a nonorthogonal configuration interaction scheme. Herein, we present the derivation and implementation of analytical gradients for the generalized NEO-MSDFT vibronic state energies and the nonadiabatic coupling vectors between these vibronic states. We use this methodology to perform adiabatic and nonadiabatic dynamics simulations of the double proton transfer reactions in the formic acid dimer and the heterodimer of formamidine and formic acid. The generalized NEO-MSDFT method is shown to capture the strongly coupled synchronous or asynchronous tunneling of the two protons in these processes. Inclusion of vibronically nonadiabatic effects is found to significantly impact the double proton transfer dynamics. This work lays the foundation for a variety of nonadiabatic dynamics simulations of multiple proton transfer systems, such as proton relays and hydrogen-bonding networks.
Collapse
Affiliation(s)
- Joseph A Dickinson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
44
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
45
|
Peschel MT, Kussmann J, Ochsenfeld C, de Vivie-Riedle R. Simulation of the non-adiabatic dynamics of an enone-Lewis acid complex in an explicit solvent. Phys Chem Chem Phys 2024; 26:23256-23263. [PMID: 39193656 DOI: 10.1039/d4cp02492c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Unlocking the full potential of Lewis acid catalysis for photochemical transformations requires a comprehensive understanding of the ultrafast dynamics of substrate-Lewis acid complexes. In a previous article [Peschel et al., Angew. Chem. Int. Ed., 2021, 60, 10155], time-resolved spectroscopy supported by static calculations revealed that the Lewis acid remains attached during the relaxation of the model complex cyclohexenone-BF3. In contrast to the experimental observation, surface-hopping dynamics in the gas phase predicted ultrafast heterolytic dissociation. We attributed the discrepancy to missing solvent interactions. Thus, in this work, we present an interface between the SHARC and FermiONs++ program packages, which enables us to investigate the ultrafast dynamics of cyclohexenone-BF3 in an explicit solvent environment. Our simulations demonstrate that the solvent prevents the dissociation of the complex, leading to an intriguing dissociation-reassociation mechanism. Comparing the dynamics with and without triplet states highlights their role in the relaxation process and shows that the Lewis acid inhibits intersystem crossing. These findings provide a clear picture of the relaxation process, which may aid in designing future Lewis acid catalysts for photochemical applications. They underscore that an explicit solvent model is required to describe relaxation processes in weakly bound states, as energy transfer to the solvent is crucial for the system to reach its minimum geometries.
Collapse
Affiliation(s)
- Martin T Peschel
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| | - Jörg Kussmann
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| |
Collapse
|
46
|
Sun K, Vasquez L, Borrelli R, Chen L, Zhao Y, Gelin MF. Interconnection between Polarization-Detected and Population-Detected Signals: Theoretical Results and Ab Initio Simulations. J Chem Theory Comput 2024; 20:7560-7573. [PMID: 39185737 DOI: 10.1021/acs.jctc.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Most of spectroscopic signals are specified by the nonlinear laser-induced polarization. In recent years, population-detection of signals becomes a trend in femtosecond spectroscopy. Polarization-detected (PD) and population-detected signals are fundamentally different, because they are determined by photoinduced processes acting on disparate time scales. In this work, we consider the fluorescence-detected (FD) N-wave-mixing (NWM) signal as a representative example of population-detected signals, derive a rigorous expression for this signal, and discuss its approximate variants suitable for numerical simulations. This leads us to the definition of the phenomenological FD (PFD) signal, which contains as a special case all definitions of FD signals available in the literature. Then we formulate and prove the population-polarization equivalence (PPE) theorem, which states that PFD NWM signals produced by (possibly strong) laser pulses can be evaluated as conventional PD signals in which the effective polarization is determined by the PFD transition dipole moment operator. We use the PPE theorem for the construction of the ab initio protocol for the simulation of PFD 4WM signals. As an example, we calculate electronic two-dimensional (2D) PFD spectra of the gas-phase pyrazine and compare them with the corresponding PD 2D spectra.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Luis Vasquez
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | | | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
47
|
Malpathak S, Ananth N. Semiclassical dynamics in Wigner phase space II: Nonadiabatic hybrid Wigner dynamics. J Chem Phys 2024; 161:094110. [PMID: 39234964 DOI: 10.1063/5.0223187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
We present an approximate semiclassical (SC) framework for mixed quantized dynamics in Wigner phase space in a two-part series. In the first article, we introduced the Adiabatic Hybrid Wigner Dynamics (AHWD) method that allows for a few important "system" degrees of freedom to be quantized using high-level double Herman-Kluk SC theory while describing the rest (the "bath") using classical-limit linearized SC theory. In this second article, we extend our hybrid Wigner dynamics to nonadiabatic processes. The resulting Nonadiabatic Hybrid Wigner Dynamics (NHWD) has two variants that differ in the choice of degrees of freedom to be quantized. Specifically, we introduce NHWD(E) where only the electronic state variables are quantized and the NHWD(V) where both electronic state variables and a handful of strongly coupled nuclear modes are quantized. We show that while NHWD(E) proves accurate for a wide range of scattering models and spin-boson models, systems where a few nuclear modes are strongly coupled to electronic states require NHWD(V) to accurately capture the long-time dynamics. Taken together, we show that AHWD and NHWD represent a new framework for SC simulations of high-dimensional systems with significant quantum effects.
Collapse
Affiliation(s)
- Shreyas Malpathak
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
48
|
Padula D. Discriminating Clockwise and Counterclockwise Photoisomerization Paths in Achiral Photoswitches by Excited-State Electronic Circular Dichroism. J Phys Chem B 2024; 128:8303-8312. [PMID: 39171863 DOI: 10.1021/acs.jpcb.4c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Despite the numerous investigations of photoisomerization reactions from both the computational and experimental points of view, even in complex environments, to date there is no direct demonstration of the direction of rotation of the retinal chromophore, initiating the vision process in several organisms, occurring upon light irradiation. In the literature, many proposals have been formulated to shed light on the details of this process, most of which are extracted from semiclassical simulations. Although high hopes are held in the development of time-resolved X-ray spectroscopy, I argue in this work that simpler but less known techniques can be used to unravel the details of this fascinating photochemical process. In fact, chiroptical spectroscopy would unambiguously prove the direction of the rotatory motion of the chromophore during the photoisomerization process by probing excited state chirality, a piece of information that, so far, has been exclusively extracted from atomistic simulations. I demonstrate this statement by computing the expected chiroptical response along photoisomerization pathways for several models of the retinal chromophores that are found in nature bound to rhodopsins, including nuclear ensemble spectra from semiclassical dynamics simulations, that can be compared with time-resolved experiments.
Collapse
Affiliation(s)
- Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, Siena 53100, Italy
| |
Collapse
|
49
|
S Mattos R, Mukherjee S, Barbatti M. Quantum Dynamics from Classical Trajectories. J Chem Theory Comput 2024. [PMID: 39235064 DOI: 10.1021/acs.jctc.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Nonadiabatic molecular dynamics plays an essential role in exploring the time evolution of molecular systems. Various methods have been developed for this study, with varying accuracy and computational cost. One very successful among them is trajectory surface hopping, which propagates nuclei as classical trajectories using forces from a quantum description of the electrons and incorporates nonadiabatic effects through stochastic state changes during each trajectory propagation. A statistical analysis of an ensemble of the independent trajectories recovers the simulated system's behavior. This approach can give good results, but it is known to overlook nuclear quantum effects, leading to inaccurate predictions. Here, we present quantum dynamics from classical trajectories (QDCT), a new protocol to recover the quantum wavepacket from the classical trajectories generated by surface hopping. In this first QDCT implementation, we apply it to recover results at the multiple spawning level from postprocessing surface hopping precomputed trajectories. With a series of examples, we demonstrate QDCT's potential to improve the accuracy of the dynamics, correct decoherence effects, and diagnose problems or increase confidence in surface hopping results. All that comes at virtually no computational cost since no new electronic calculation is required.
Collapse
Affiliation(s)
- Rafael S Mattos
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
| | - Saikat Mukherjee
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87100 Torun, Poland
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
50
|
Li G, Shi Z, Huang L, Wang L. Multiconfigurational Surface Hopping: a Time-Dependent Variational Approach with Momentum-Jump Trajectories. J Chem Theory Comput 2024. [PMID: 39215702 DOI: 10.1021/acs.jctc.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Ehrenfest mean field dynamics and trajectory surface hopping have been widely used in nonadiabatic dynamics simulations. Based on the time-dependent variational principle (TDVP), the multiconfigurational Ehrenfest (MCE) method has also been developed and can be regarded as a multiconfigurational extension of the traditional Ehrenfest dynamics. However, it is not straightforward to apply the TDVP to surface hopping trajectories because there exists momentum jump during surface hops. To solve this problem, we here propose a multiconfigurational surface hopping (MCSH) method, where continuous momenta are obtained by linear interpolation and the interpolated trajectories are used to construct the basis functions for TDVP in a postprocessing manner. As demonstrated in a series of representative spin-boson models, MCSH achieves high accuracy with only several hundred trajectory bases and can uniformly improve the performance of surface hopping. In principle, MCSH can be combined with all kinds of mixed quantum-classical trajectories and thus has the potential to properly describe general nonadiabatic dynamics.
Collapse
Affiliation(s)
- Guijie Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lei Huang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|