1
|
Shao H, Zhong L, Wu X, Wang YX, Smith SC, Tan X. Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion. Chem Commun (Camb) 2025. [PMID: 39760522 DOI: 10.1039/d4cc05900j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction. Then we summarize the recent progress of density functional theory studies on designing CS-SACs by the above strategies for electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, and electrosynthesis of urea, and electrochemical energy storage systems such as monovalent metal-sulfur batteries (Li-S and Na-S batteries). Finally, the current challenges and future opportunities in this emerging field are highlighted. This review will provide a helpful guideline for the rational design of the structure and functionality of CS-SACs, and contribute to material optimizations in applications of energy storage and conversion.
Collapse
Affiliation(s)
- Hengjia Shao
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Li Zhong
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Xingqiao Wu
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Sean C Smith
- Integrated Materials Design Laboratory, Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia.
| | - Xin Tan
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Sorkin V, Zhou H, Yu ZG, Ang KW, Zhang YW. Impact of grain boundaries on the electronic properties and Schottky barrier height in MoS 2@Au heterojunctions. Phys Chem Chem Phys 2025; 27:905-914. [PMID: 39663946 DOI: 10.1039/d4cp03686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Using density functional theory (DFT) calculations we thoroughly explored the influence of grain boundaries (GBs) in monolayer MoS2 composed of S-polar (S5|7), Mo-polar (Mo5|7), and (4|8) edge dislocation, as well as an edge dislocation-double S vacancy complex (S4|6), and a dislocation-double S interstitial complex (S6|8), respectively, on the electronic properties of MoS2 and the Schottky barrier height (SBH) in MoS2@Au heterojunctions. Our findings demonstrate that GBs formed by edge dislocations can significantly reduce the SBH in defect-free MoS2, with the strongest effect for zigzag (4|8) GBs (-20% reduction) and the weakest for armchair (5|7) GBs (-10% reduction). In addition, a larger tilt angle in the GBs leads to a more pronounced decrease in the SBH, suggesting that the modulation of SBH in the MoS2@Au heterostructure and analogous systems can be accomplished by GB engineering. Our findings also suggest that planar defects with high mobility in MoS2 may contribute to the memory switching effect observed in MoS2-based memtransistors and the reduction caused by the presence of planar defects can partially contribute to the discrepancy observed between experimental measurements and theoretical SBH predictions at the MoS2@Au heterojunction.
Collapse
Affiliation(s)
- Viacheslav Sorkin
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore.
| | - Hangbo Zhou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore.
| | - Zhi Gen Yu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore.
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore.
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore.
| |
Collapse
|
3
|
Tarigan AM, Rinawati M, Aulia S, Chang LY, Chang CY, Su WN, Haw SC, Huang WH, Setyawan H, Yeh MH. Dual-Driven Activation of High-Valence States in Prussian Blue Analogues Via Graphene-Quantum Dots and Ozone-Induced Surface Restructuring for Superior Hydrogen Evolution Electrocatalyst. SMALL METHODS 2025:e2401708. [PMID: 39748633 DOI: 10.1002/smtd.202401708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Electrochemical water splitting is a pivotal process for sustainable hydrogen energy production, relying on efficient hydrogen evolution reaction (HER) catalysts, particularly in acidic environments, where both high activity and durability are crucial. Despite the favorable kinetics of platinum (Pt)-based materials, their performance is hindered under harsh conditions, driving the search for alternatives. Due to their unique structural characteristic, Prussian blue analogs (PBAs) emerge as attractive candidates for designing efficient HER electrocatalysts. However, modulating their properties and functionalities is crucial to overcome their conductivity issue. Herein, a reconfiguration strategy for the dual-driven surface restructuring of the CoFe PBA involving graphene quantum dots (GQD) and UV/ozone is proposed. X-ray absorption spectroscopy (XAS) analysis revealed that dual-driven reconstruction plays a pivotal role in promoting the high-valence metal ions, effectively reducing charge transfer resistance-a key limitation in HER. The optimized CoFe PBA/GQD-UV exhibits remarkable electrocatalytic performance toward HER, with a low overpotential of 77 mV to reach a current density of 10 mA cm-2 with excellent durability for 12 h under an extremely high current density of 500 mA cm-2 in an acidic solution. This dual-combination strategy offering a new pathway to develop highly active electrocatalysts.
Collapse
Affiliation(s)
- Angelina Melanita Tarigan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Mia Rinawati
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Sofiannisa Aulia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Ling-Yu Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chia-Yu Chang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Wei-Nien Su
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Shu-Chih Haw
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Heru Setyawan
- Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering, Sepuluh Nopember Institute of Technology, Surabaya, 60111, Indonesia
| | - Min-Hsin Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
4
|
Zhang H, Zhou W, Hu L, Guo Y, Lu Y, Feng J. La doped-Fe 2(MoO 4) 3 with the synergistic effect between Fe 2+/Fe 3+ cycling and oxygen vacancies enhances the electrocatalytic synthesizing NH 3. J Colloid Interface Sci 2025; 677:264-272. [PMID: 39094487 DOI: 10.1016/j.jcis.2024.07.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) is a crucial process in addressing energy shortages and environmental concerns by synthesizing the NH3. However, the difficulty of N2 activation and fewer NRR active sites limit the application of NRR. Therefore, the NRR performance can be improved by rapid electron transport paths to participate in multi-electron reactions and N2 activation. Doping with transition metal element is a viable strategy to provide electrons and electronic channels in the NRR. This study focuses on the synthesis of Fe2(MoO4)3 (FeMo) and x%La-doped FeMo (x = 3, 5, 7, and 10) using the hydrothermal method. La-doping creates electron transport channels Fe2+-O2--Fe3+ and oxygen vacancies, achieving an equal molar ratio of Fe2+/Fe3+. This strategy enables the super-exchange in Fe2+-O2--Fe3+, and then enhances electron transport speed for a rapid hydrogenation reaction. Therefore, the synergistic effect of Fe2+/Fe3+ cycling and oxygen vacancies improves the NRR performance. Notably, 5%La-FeMo demonstrates the superior NRR performance (NH3 yield rate: 29.6 μg h-1 mgcat-1, Faradaic efficiency: 5.8%) at -0.8 V (vs. RHE). This work analyzes the influence of the catalyst electronic environment on the NRR performance based on the effect on different valence states of ions on electron transport.
Collapse
Affiliation(s)
- Hexin Zhang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Weichi Zhou
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Liangqing Hu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.
| | - Yanming Guo
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Yinpeng Lu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Jing Feng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
5
|
Chen T, Xu Z. Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis. Adv Colloid Interface Sci 2024; 337:103387. [PMID: 39729822 DOI: 10.1016/j.cis.2024.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts. Six types of materials, including oxide nano/microparticle, mesoporous silica nanoparticle (MSN), polymer nanomaterial, reticular material, zeolite, and carbon-based nanomaterial, are widely used as supports for the immobilization of catalytic species. We summarize and discuss the synthesis and modification of supports and the positive effects of microenvironments on catalytic properties such as metal-support interaction, molecular recognition, pseudo-solvent effect, regulating mass transfer, steric effect, etc. These design principles and engineering strategies allow access to a better understanding of structure-property relationships and advance the development of more efficient catalytic processes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Wang TT, Meng Y, Huang HC, Zhang L, Cheng SB. Single-atom Pd directly anchored on biphenylene: a promising bifunctional electrocatalyst for overall water splitting. Phys Chem Chem Phys 2024; 27:291-300. [PMID: 39636027 DOI: 10.1039/d4cp03539a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The development of bifunctional single-atom catalysts (SACs) for overall water splitting is crucial for clean energy production in the context of sustainable development. Using first-principles calculations, the catalytic capability of different transition metal (TM) atoms supported on biphenylene (Bip) monolayers (TM@Bip, TM = V-Cu, Ru-Ag, and Ir-Au) is comprehensively investigated. Bip can directly anchor TM atoms without engineered vacancies or nitrogen defects. Among the screened SACs, Pd@Bip is found to be an excellent bifunctional catalyst for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). The overpotentials for the HER and the OER were calculated to be 0.05 and 0.50 V, respectively, which are even superior to the commercialized catalysts like Pt and IrO2. Furthermore, adjusting the d-band center of TM atoms effectively modulates the catalytic activity, and the optimal OER performance of TM-Bip can be achieved with a d-band center of -2.32 eV, which can serve as a principle to design Bip-based SACs. Our findings may serve as a practical theoretical guide for the exploration of effective bifunctional SACs for overall water splitting.
Collapse
Affiliation(s)
- Ting-Ting Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yanan Meng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Hai-Cai Huang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
7
|
Wang X, Yang Y, Zhou Z, Zhong Y, Qin M, Wang W, Li W, Tang B. Defective h-BNs-Supported Pd Nanoclusters: An Efficient Photocatalyst for Selective Oxidation of 5-Hydroxymethylfurfural. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69125-69132. [PMID: 39655767 DOI: 10.1021/acsami.4c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
5-hydroxymethylfurfural (HMF) is one of the most promising biomass-based chemicals that is used to produce many kinds of important compounds. Especially, the selective conversion of HMF to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), an important chemical feedstock, has high industrial significance but is technically challenging. In this study, we present a high-performance photocatalyst for selective oxidation of HMF to HMFCA. By integrating an ultrasmall amount of palladium (Pd) nanoclusters (1.12‰ in weight) on defective hexagonal boron nitride nanosheets (Pd/defective h-BN nanosheets (dh-BNs)), outstanding photocatalytic performance can be achieved, resulting in up to a 95% HMF conversion ratio with an 82% HMFCA selectivity. The performance is considerably higher than that of pristine dh-BNs and Pd on defect-free h-BNs. More importantly, this Pd/dh-BNs catalyst maintains a high catalytic activity after eight cycles, demonstrating robust catalytic stability. Density functional theory calculations indicate that Pd/dh-BNs can lower the energy barrier for HMF oxidation and facilitate the desorption of HMFCA, which contributes to the high selectivity catalytic performance. This study not only introduces a promising photocatalyst for sustainable chemical transformations but can also provide valuable insights into the design of advanced photocatalytic material for biorefinery applications.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Zhiqing Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Yuling Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Miaomiao Qin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Weiqing Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
8
|
Huang Z, Wang Z, Zhou Q, Rabl H, Naghdi S, Yang Z, Eder D. Engineering of HO-Zn-N 2 Active Sites in Zeolitic Imidazolate Frameworks for Enhanced (Photo)Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024:e202419913. [PMID: 39688357 DOI: 10.1002/anie.202419913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Currently, lack of ways to engineer specific and well-defined active sites in zeolitic imidazolate frameworks (ZIFs) limits our fundamental knowledge with respect to the mechanistic details for (photo)electrocatalytic hydrogen evolution reaction (HER). Here, we introduce the open metal sites into ZIFs through the selective ligand removal (SeLiRe) strategy, comprehensively characterize the altered structural and electronic features, and evaluate their role in HER. In situ electrochemical analysis and X-ray absorption spectroscopy reveal the formation of high-valence HO-Zn-N2 sites through the binding of Zn-N2 with electrolyte hydroxide. The optimal OMS-ZIF exhibits a low overpotential of 0.41 V to achieve an ampere-level 1.0 A cm-2 with 120-hour stability. Theoretical simulations indicate that these active sites accelerate the water molecules activation kinetics, consequently enhancing the efficiency of the Volmer step. This work demonstrates a versatile strategy to introduce highly active catalytic sites in ZIFs, providing new insights into the electrocatalytic mechanism in alkaline media.
Collapse
Affiliation(s)
- Zheao Huang
- Institute of Materials Chemistry, Technische Universität Wien, 1060, Vienna, Austria
| | - Zhouzhou Wang
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, 430079, Wuhan, China
| | - Qiancheng Zhou
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, 430079, Wuhan, China
| | - Hannah Rabl
- Institute of Materials Chemistry, Technische Universität Wien, 1060, Vienna, Austria
| | - Shaghayegh Naghdi
- Institute of Materials Chemistry, Technische Universität Wien, 1060, Vienna, Austria
| | - Ze Yang
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, 430079, Wuhan, China
| | - Dominik Eder
- Institute of Materials Chemistry, Technische Universität Wien, 1060, Vienna, Austria
| |
Collapse
|
9
|
Zhu Y, Tang Z, Yuan L, Li B, Shao Z, Guo W. Beyond conventional structures: emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis. Chem Soc Rev 2024. [PMID: 39661069 DOI: 10.1039/d3cs01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The core of clean energy technologies such as fuel cells, water electrolyzers, and metal-air batteries depends on a series of oxygen and hydrogen-based electrocatalysis reactions, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), which necessitate cost-effective electrocatalysts to improve their energy efficiency. In the recent decade, complex metal oxides (beyond simple transition metal oxides, spinel oxides and ABO3 perovskite oxides) have emerged as promising candidate materials with unexpected electrocatalytic activities for oxygen and hydrogen electrocatalysis owing to their special crystal structures and unique physicochemical properties. In this review, the current progress in complex metal oxides for ORR, OER, and HER electrocatalysis is comprehensively presented. Initially, we present a brief description of some fundamental concepts of the ORR, OER, and HER and a detailed description of complex metal oxides, including their physicochemical characteristics, synthesis methods, and structural characterization. Subsequently, we present a thorough overview of various complex metal oxides reported for ORR, OER, and HER electrocatalysis thus far, such as double/triple/quadruple perovskites, perovskite hydroxides, brownmillerites, Ruddlesden-Popper oxides, Aurivillius oxides, lithium/sodium transition metal oxides, pyrochlores, metal phosphates, polyoxometalates and other specially structured oxides, with emphasis on the designed strategies for promoting their performance and structure-property-performance relationships. Moreover, the practical device applications of complex metal oxides in fuel cells, water electrolyzers, and metal-air batteries are discussed. Finally, some concluding remarks summarizing the challenges, perspectives, and research trends of this topic are presented. We hope that this review provides a clear overview of the current status of this emerging field and stimulate future efforts to design more advanced electrocatalysts.
Collapse
Affiliation(s)
- Yinlong Zhu
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zheng Tang
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Lingjie Yuan
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Bowen Li
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zongping Shao
- School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia.
| | - Wanlin Guo
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
10
|
Wijesingha M, Mo Y. Computational Study of Electrochemical CO 2 Reduction on 2D Graphitic Carbon Nitride Supported Single-Atom (Al and P) Catalysts (SACs). Chemphyschem 2024:e202400908. [PMID: 39643598 DOI: 10.1002/cphc.202400908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
To mitigate the adverse effects of CO2 emissions, CO2 electroreduction to small organic products is a preferable solution and potential catalysts include the single-atom catalyst (SAC) which comprises individual atoms dispersed on 2D materials. Here, we used aluminum and phosphorus as the active sites for CO2 electroreductions by embedding them on the 2D graphitic carbon nitride (g-C3N4) nano-surface. The resulting M-C3N4 (M=Al and P) SACs were computationally studied for the CO2 electroreduction using density functional theory (DFT) and ab-initio molecular dynamics (AIMD) simulations. Computations showed that CO2 can be adsorbed to the active sites in forms of a frustrated Lewis pair (Al/N or P/N) or single atom Al or P. The adsorbed CO2 can be converted to various intermediates by gaining proton and electron (H++e-) pairs, a process simulated as electroreduction. While both SACs prefer to produce HCOOH with low potential determining steps (PDSs) and small overpotential values of 0.25 V and 0.08 V for Al-C3N4 and P-C3N4 respectively, to produce CH4, P-C3N4 exhibits a lower potential barrier of 0.9 eV than Al-C3N4 (1.07~1.17 eV).
Collapse
Affiliation(s)
- Manoj Wijesingha
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
11
|
Ansari MM, Shin M, Kim M, Ghosh M, Kim SH, Son YO. Nano-enabled strategies in sustainable agriculture for enhanced crop productivity: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123420. [PMID: 39581009 DOI: 10.1016/j.jenvman.2024.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The global food demand is increasing with the world population, burdening agriculture with unprecedented challenges. Agricultural techniques that ushered in the green revolution are now unsustainable, owing to population growth and climate change. The agri-tech revolution that promises a robust, efficient, and sustainable agricultural system while enhancing food security is expected to be greatly aided by advancements in nanotechnology, which have been reviewed here. Nanofertilizers and nanoinsecticides can benefit agricultural practices economically without major environment impact. Owing to their unique size and features, nano-agrochemicals provide enhanced delivery of active ingredients and increased bioavailability, and posing lesser environment hazard. Nano-agrochemicals should be improved for increased efficiency in the future. In this context, nanocomposites have drawn considerable interest with regard to food security. Nanocomposites can overcome the drawbacks of chemical fertilizers and improve plant output and nutrient bioavailability. Similarly, metallic and polymeric nanoparticles (NPs) can potentially improve sustainable agriculture via better plant development, increased nutrient uptake, and soil healing. Hence, they can be employed as nanofertilizers, nanopesticides, and nanoherbicides. Nanotechnology is also being used to enhance crop production via genetic modification of traits for efficient use of soil nutrients and higher yields. Furthermore, NPs can help plants overcome salinity stress-induced oxidative damage. We also review the fate of NPs in the soil system, plants, animals, and humans, highlight the shortcomings of previous research, and offer suggestions for toxicity studies that would aid regulatory bodies and benefit the agrochemical sector, consequently promoting efficient and sustainable use of nano-agrochemicals.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Myeongyeon Shin
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Minhye Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
12
|
Sun X, Zhang P, Zhang B, Xu C. Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405624. [PMID: 39252646 DOI: 10.1002/smll.202405624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.
Collapse
Affiliation(s)
- Xiaohui Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bangyan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
13
|
Arumugam D, Subramani D, Muralidharan A, Ramasamy S. Demystifying Synergistic Multifunctional Electrocatalysis of N-Doped Graphene/WS 2 Heterostructure with Single-Atom Catalysts for Water Splitting and Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64916-64928. [PMID: 39531226 DOI: 10.1021/acsami.4c16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
As the demand for sustainable energy continues to rise, electrocatalysis has become increasingly prominent in the advancement of clean energy technologies. By scrutinizing the material to function as a multifunctional catalyst, the effectiveness of energy conversion processes is significantly enhanced. This study focuses on harnessing graphene/WS2 van der Waals heterostructures for overall water splitting and fuel cell applications, using transition metals (TMs) from Sc-Zn as single-atom catalysts (SACs). Additionally, the research explores the synergistic effect of nitrogen doping combined with SACs to modify the material into multifunctional catalysts. The stability of all TMs as SACs in the vdW heterostructure (TM@GW) and nitrogen-doped TM@GW (TM@NGW) is validated with negative cohesive and formation energies, and thermodynamic stability is also corroborated with ab initio molecular dynamics (AIMD) analysis at both 300 and 500 K for 5 ps. The observed electrocatalytic performance of TM@GW and TM@NGW depicts that the Ni@NGW system exhibits trifunctional property with the lowest overpotentials {ηHER; ηOER; ηORR = 0.21; 0.42; 0.27 V}. Additionally, the Cr@NGW material displays bifunctional catalytic activity for the OER and ORR, with overpotentials of 0.53 and 0.37 V, respectively. The synergistic effect between N doping and SACs is further studied with the d, p band centers and density of states calculations. Furthermore, the scaling relation between the adsorption of intermediates and reaction kinetics is studied, which validates the coaction of N and SACs in the TM@NGW heterostructure. This study demonstrates that the inclusion of SACs and nitrogen atoms in the GW heterostructure significantly enhances the catalytic performance by approximately 26%, effectively transforming the system into a multifunctional catalyst. These findings emphasize the role of SACs in vdW heterostructures and N doping effects, providing valuable insights to guide the design of advanced catalysts for water splitting and fuel cell applications.
Collapse
Affiliation(s)
- Deepak Arumugam
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Divyakaaviri Subramani
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Akilesh Muralidharan
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Shankar Ramasamy
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| |
Collapse
|
14
|
Melchionna M, Fornasiero P. What Is to Be Expected from Heterogeneous Catalysis in the Pipeline to Circular Economy? CHEMSUSCHEM 2024:e202402064. [PMID: 39600217 DOI: 10.1002/cssc.202402064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Indexed: 11/29/2024]
Abstract
Modern society requires a change in the philosophy of doing science, which faces the enormous challenge of being compatible with the new sustainability principles. Inorganic chemistry holds the keys to accelerate the transition given that most chemical processes or technology devices rely on the use or integration of inorganic materials. In particular, heterogeneous catalysis has a central role in promoting the transition from a linear economy to a circular one. To accomplish this, it is imperative that the modern schemes for catalysis will adopt a holistic approach based on sensible choice of raw materials, reliance on clean energy inputs and establishment of a robust framework of resource use and recovery. Some of these concepts are analysed here and discussed in Ref. [to a few selected examples.
Collapse
Affiliation(s)
- Michele Melchionna
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- ICCOM-CNR URT Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
15
|
Zhang S, Cheng W, Jin L, Liu Y, Dai X, Liu G, Zhang X. Multiple Weyl fermions and topological phase transition in two-dimensional ferromagnetic CrS 2. Phys Chem Chem Phys 2024. [PMID: 39584390 DOI: 10.1039/d4cp03606a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The study of topological states in two-dimensional (2D) systems, especially with magnetic properties, has recently gained significant attention owing to their potential in spintronics and nanotechnology. Here, we propose a 2D ferromagnetic (FM) material, CrS2, which hosts multiple Weyl points (WPs) and can undergo a topological phase transition by rotating the magnetization direction. Based on first-principles calculations, we identify distinct Weyl points around the Fermi level: W1, W2, and W3. These points appear in both spin channels and include various types: type-I, type-II and type-III WPs. Corresponding Fermi arcs are clearly observed at the material edges. CrS2 displays a FM ground state with the easy magnetization direction along the c-axis. When the magnetization direction is rotated in the x-y plane, the W1 and W3 points open gaps, with the gap values remaining the same in all magnetization directions. The W2 can maintain a crossing at specific in-plane magnetization directions, indicating that the material retains its Weyl state. Additionally, we examine the effects of biaxial and uniaxial strains on electronic properties. Weyl points remain stable under biaxial strain of less than ±5%, but they disappear under uniaxial strain. In summary, our work proposes a 2D FM material with multiple coexisting Weyl fermions, where the topological states can be tuned by an external magnetic field.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Wenzhang Cheng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Lei Jin
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Ying Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xuefang Dai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Guodong Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xiaoming Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
16
|
Coello Escalante L, Limmer DT. Microscopic Origin of Twist-Dependent Electron Transfer Rate in Bilayer Graphene. NANO LETTERS 2024; 24:14868-14874. [PMID: 39527706 DOI: 10.1021/acs.nanolett.4c04690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Using molecular simulation and continuum dielectric theory, we consider how electrochemical kinetics are modulated by the twist angle in bilayer graphene electrodes. By establishing a connection between the twist angle and the screening length of charge carriers within the electrode, we investigate how tunable metallicity modifies the statistics of the electron transfer energy gap. Constant potential molecular simulations show that the activation free energy for electron transfer increases with screening length, leading to a non-monotonic dependence on the twist angle. The twist angle alters the density of states, tuning the number of thermally accessible channels for electron transfer and the reorganization energy by affecting the stability of the vertically excited state through attenuated image charge interactions. Understanding these effects allows us to express the Marcus rate of interfacial electron transfer as a function of the twist angle in a manner consistent with experimental observations.
Collapse
Affiliation(s)
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- MSD, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- CSD, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Guo Z, Wang T, Xu J, Cao A, Li H. Surface coverage and reconstruction analyses bridge the correlation between structure and activity for electrocatalysis. Chem Commun (Camb) 2024. [PMID: 39555896 DOI: 10.1039/d4cc03875d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Electrocatalysis is key to realizing a sustainable future for our society. However, the complex interface between electrocatalysts and electrolytes presents an ongoing challenge in electrocatalysis, hindering the accurate identification of effective/authentic structure-activity relationships and determination of favourable reaction mechanisms. Surface coverage and reconstruction analyses of electrocatalysts are important to address each conjecture and/or conflicting viewpoint on surface-active phases and their corresponding electrocatalytic origin, i.e., so-called structure-activity relationships. In this review, we emphasize the importance of surface states in electrocatalysis experimentally and theoretically, providing guidelines for research practices in discovering promising electrocatalysts. Then, we summarize some recent progress of how surface states determine the adsorption strengths and reaction mechanisms of occurring electrocatalytic reactions, exemplified in the electrochemical oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, CO2 reduction reaction, CO2 and N2 co-reductions, and hydrogen evolution reaction. Finally, the review proposes deep insights into the in situ study of surface states, their efficient building and the application of surface Pourbaix diagrams. This review will accelerate the development of electrocatalysts and electrocatalysis theory by arousing broad consensus on the significance of surface states.
Collapse
Affiliation(s)
- Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Tianyi Wang
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ang Cao
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
- Inner Mongolia Daqingshan Laboratory, Hohhot 017000, China
| | - Hao Li
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
18
|
Li D, Jiang SC, Xie JF, Zhang J, Zheng YL, Zhao QB, Yu HQ. Boosting seawater denitrification in an electrochemical flow cell. WATER RESEARCH 2024; 266:122384. [PMID: 39243459 DOI: 10.1016/j.watres.2024.122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Nitrogen compounds in current seawater treatment processes typically are converted to nitrate, threatening seawater quality and marine ecology. Electrochemical denitrification is a promising technique, but its efficiency is severely limited by the presence of excess chloride ions. In this work, a flow-through cell went through an on-demand chlorine-mediated electrochemical-chemical tandem reaction process was designed for efficient seawater denitrification. Equipped with ultrathin cobalt-based nanosheets as the cathode catalyst and commercial IrO2-RuO2/Ti as the anode, the newly designed flow-through cell achieved nitrate removal efficiency that was about 50 times greater than the batch cell and nearly 100 % N2 selectivity. Moreover, nitrite and ammonia can also be removed with over 93 % efficiency in total nitrogen (TN) removal. Furthermore, the concentration of active chlorine in the effluent could be adjusted within two orders of magnitude, enabling on-demand release of active chlorine. Finally, this flow-through cell reduced the TN of actual mariculture tailwater (40.1 mg N L-1 nitrate) to only 5.7 mg N L-1, meeting the discharge standard for aquaculture tailwater of Fujian, China. This work demonstrates the paradigm of deep denitrification from ultra-concentrated chlorine ion wastewater using an on-demand active chlorine-mediated electrochemical-chemical tandem reaction process.
Collapse
Affiliation(s)
- Ding Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jia-Fang Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Lian Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
19
|
Hong S, Wu L, Xiao Z, Chen Y, Kuklin A, Liu H, Ågren H, Ren X, Zhang Y. Facile Exfoliation of Few-Layer Sn-Based Nanosheets for Self-Powered Photo-Electrochemical and All-Optical Modulation Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404228. [PMID: 39075930 DOI: 10.1002/smll.202404228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Indexed: 07/31/2024]
Abstract
Few-layer tin (Sn)-based nanosheets (NSs) with a thickness of ≈2.5 nm are successfully prepared using a modified liquid phase exfoliation (LPE) method. Here the first exploration of photo-electrochemical (PEC) and nonlinear properties of Sn NSs is presented. The results demonstrate that the PEC properties are tunable under different experimental conditions. Additionally, Sn NSs are shown to exhibit a unique self-powered PEC performance, maintaining a good long-term stability for up to 1 month. Using electron spin resonance, active species, such as hydroxyl radicals (·OH), superoxide radicals (·O2 -), and holes (h+), are detected during operations, providing a deeper understanding of the working mechanism. Furthermore, measurements of nonlinear response reveal that Sn NSs can be effective for all-optical modulation, as it enables the realization of all-optical switching through excitation spatial cross-phase modulation (SXPM). These findings present new research insights and potential applications of Sn NSs in optoelectronics.
Collapse
Affiliation(s)
- Siyi Hong
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Leiming Wu
- Advanced Institute of Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zizhen Xiao
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Yinxiang Chen
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Artem Kuklin
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Huating Liu
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Xiaohui Ren
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferous Metalurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel making, Faculty of Materials, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ye Zhang
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
20
|
Kong X, Zong X, Lei Z, Wang Z, Zhao Y, Zhao X, Zhang J, Liu Z, Ren Y, Wu L, Zhang M, He F, Yang P. A Universal In-Situ Interfacial Growth Strategy for Various MXene-Based van der Waals Heterostructures with Uniform Heterointerfaces: The Efficient Conversion from 3D Composite to 2D Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405174. [PMID: 39072996 DOI: 10.1002/smll.202405174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Two-dimensional (2D) van der Waals heterostructures endow individual 2D material with the novel functional structures, intriguing compositions, and fantastic interfaces, which efficiently provide a feasible route to overcome the intrinsic limitations of single 2D components and embrace the distinct features of different materials. However, the construction of 2D heterostructures with uniform heterointerfaces still poses significant challenges. Herein, a universal in-situ interfacial growth strategy is designed to controllably prepare a series of MXene-based tin selenides/sulfides with 2D van der Waals homogeneous heterostructures. Molten salt etching by-products that are usually recognized as undesirable impurities, are reasonably utilized by us to efficiently transform into different 2D nanostructures via in-situ interfacial growth. The obtained MXene-based 2D heterostructures present sandwiched structures and lamellar interlacing networks with uniform heterointerfaces, which demonstrate the efficient conversion from 3D composite to 2D heterostructures. Such 2D heterostructures significantly enhance charge transfer efficiency, chemical reversibility, and overall structural stability in the electrochemical process. Taking 2D-SnSe2/MXene anode as a representative, it delivers outstanding lithium storage performance with large reversible capacities and ultrahigh capacity retention of over 97% after numerous cycles at 0.2, 1.0, and 10.0 A g-1 current density, which suggests its tremendous application potential in lithium-ion batteries.
Collapse
Affiliation(s)
- Xianglong Kong
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xiaohang Zong
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zijin Lei
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zicong Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ying Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xudong Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Junming Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zhiliang Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yueming Ren
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Milin Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
21
|
Chen S, Zhu H, Li T, Liu P, Wu C, Jia S, Li Y, Suo B. Applications of metal nanoclusters supported on the two-dimensional material graphene in electrocatalytic carbon dioxide reduction. Phys Chem Chem Phys 2024; 26:26647-26676. [PMID: 39415712 DOI: 10.1039/d4cp03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metal nanoclusters (MNCs) have been demonstrated to exhibit superior catalytic performance compared to single nanoparticles. This is attributed to their quantized electronic structure, unique geometrical stacking and abundant active sites. While the exposed metal atoms can markedly enhance the efficiency of catalysis, unfortunately, MNCs are susceptible to agglomeration, which impairs their catalytic activity and stability. Graphene is a two-dimensional material consisting of a single atomic layer formed by the hybridization of the s and p orbitals of carbon atoms. It exhibits stable physical and chemical properties and has an easily controllable structure, making it an ideal carrier for MNCs. When metal nanoclusters (MNCs) are loaded on a graphene substrate, the MNCs can form a stable binding site on the graphene substrate. Furthermore, the construction of a defective structure on the graphene substrate enables the formation of robust interactions between the metal atoms of the MNCs and the substrate, facilitating the rapid establishment of electron conduction pathways and markedly enhancing the electrocatalytic performance. This paper presents a review of the applications of metal nanoclusters supported on graphene skeletons in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Firstly, we briefly introduce the reaction mechanism of the CO2RR, then we systematically discuss the synthesis strategies, properties and applications of metal nanoclusters in electrocatalytic carbon dioxide reduction from both experimental and theoretical perspectives, and lastly, we discuss the opportunities and challenges of metal nanocluster catalysts supported on carbon materials.
Collapse
Affiliation(s)
- Shanlin Chen
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Tingting Li
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shaobo Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Yawei Li
- School of Energy, Power and Mechanical Engineering, Institute of Energy and Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
22
|
Ahmed ATA, Sree VG, Meena A, Inamdar AI, Im H, Cho S. In Situ Transformed CoOOH@Co 3S 4 Heterostructured Catalyst for Highly Efficient Catalytic OER Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1732. [PMID: 39513812 PMCID: PMC11547189 DOI: 10.3390/nano14211732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The deprived electrochemical kinetics of the oxygen evolution reaction (OER) catalyst is the prime bottleneck and remains the major obstacle in the water electrolysis processes. Herein, a facile hydrothermal technique was implemented to form a freestanding polyhedron-like Co3O4 on the microporous architecture of Ni foam, its reaction kinetics enhanced through sulfide counterpart transformation in the presence of Na2S, and their catalytic OER performances comparatively investigated in 1 M KOH medium. The formed Co3S4 catalyst shows outstanding catalytic OER activity at a current density of 100 mA cm-2 by achieving a relatively low overpotential of 292 mV compared to the pure Co3O4 catalyst and the commercial IrO2 catalyst. This enhancement results from the improved active centers and conductivity, which boost the intrinsic reaction kinetics. Further, the optimized Co3S4 catalyst exhibits admirable prolonged durability up to 72 h at varied current rates with insignificant selectivity decay. The energy dispersive X-ray spectroscopy (EDX) and Raman spectra measured after the prolonged OER stability test reveal a partial transformation of the active catalyst into an oxyhydroxide phase (i.e., CoOOH@Co3S4), which acts as an active catalyst phase during the electrolysis process.
Collapse
Affiliation(s)
- Abu Talha Aqueel Ahmed
- Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea; (A.T.A.A.); (A.M.); (A.I.I.)
| | | | - Abhishek Meena
- Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea; (A.T.A.A.); (A.M.); (A.I.I.)
| | - Akbar I. Inamdar
- Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea; (A.T.A.A.); (A.M.); (A.I.I.)
| | - Hyunsik Im
- Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea; (A.T.A.A.); (A.M.); (A.I.I.)
| | - Sangeun Cho
- Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea; (A.T.A.A.); (A.M.); (A.I.I.)
| |
Collapse
|
23
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
24
|
Nunthakitgoson W, Chaipornchalerm P, Sohail A, Thivasasith A, Wattanakit C. Ni-decorated carbon nanotubes (CNTs) derived from ethanol for electrooxidation of furan derivatives featuring H 2 production. Chem Commun (Camb) 2024; 60:12177-12180. [PMID: 39263817 DOI: 10.1039/d4cc03356f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This study explores advancements in concurrent biorefinery and hydrogen production using Ni-decorated CNTs derived from bioethanol as electrocatalysts, showing the complete conversion of furan derivatives to the desired products with 95-97% selectivity and a hydrogen production rate of 75 μmol h-1. These findings highlight the simultaneous upgrading of biomass-derived compounds and hydrogen production.
Collapse
Affiliation(s)
- Watinee Nunthakitgoson
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| | - Peeranat Chaipornchalerm
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| | - Anousha Sohail
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| | - Anawat Thivasasith
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| | - Chularat Wattanakit
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| |
Collapse
|
25
|
Cao J, Zhao F, Li C, Zhao Q, Gao L, Ma T, Xu H, Ren X, Liu A. Electrocatalytic Synthesis of Urea: An In-depth Investigation from Material Modification to Mechanism Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403412. [PMID: 38934550 DOI: 10.1002/smll.202403412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Industrial urea synthesis production uses NH3 from the Haber-Bosch method, followed by the reaction of NH3 with CO2, which is an energy-consuming technique. More thorough evaluations of the electrocatalytic C-N coupling reaction are needed for the urea synthesis development process, catalyst design, and the underlying reaction mechanisms. However, challenges of adsorption and activation of reactant and suppression of side reactions still hinder its development, making the systematic review necessary. This review meticulously outlines the progress in electrochemical urea synthesis by utilizing different nitrogen (NO3 -, N2, NO2 -, and N2O) and carbon (CO2 and CO) sources. Additionally, it delves into advanced methods in materials design, such as doping, facet engineering, alloying, and vacancy introduction. Furthermore, the existing classes of urea synthesis catalysts are clearly defined, which include 2D nanomaterials, materials with Mott-Schottky structure, materials with artificially frustrated Lewis pairs, single-atom catalysts (SACs), and heteronuclear dual-atom catalysts (HDACs). A comprehensive analysis of the benefits, drawbacks, and latest developments in modern urea detection techniques is discussed. It is aspired that this review will serve as a valuable reference for subsequent designs of highly efficient electrocatalysts and the development of strategies to enhance the performance of electrochemical urea synthesis.
Collapse
Affiliation(s)
- Jianghui Cao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Chengjie Li
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Weifang, 262700, China
| | - Qidong Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Hao Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| |
Collapse
|
26
|
Chen X, Guo J, Qian D, Wu J, Liao W, Waterhouse GIN, Liu J. Insightful Understanding of Synergistic Oxygen Reduction on PtCo 3(111) Toward Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403894. [PMID: 38864207 DOI: 10.1002/smll.202403894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Theory-guided materials design is an effective strategy for designing catalysts with high intrinsic activity whilst minimizing the usage of expensive metals like platinum. As proof-of-concept, herein it demonstrates that using density functional theory (DFT) calculations and experimental validation that intermetallic PtCo3 alloy nanoparticles offer enhanced electrocatatalytic performance for the oxygen reduction reaction (ORR) compared to Pt nanoparticles. DFT calculations established that PtCo3(111) surfaces possess better intrinsic ORR activity compared to Pt(111) surfaces, owing to the synergistic action of adjacent Pt and Co active sites which optimizes the binding strength of ORR intermediates to boost overall ORR kinetics. With this understanding, a PtCo3/NC catalyst, comprising PtCo3 nanoparticles exposing predominantly (111) facets dispersed on an N-doped carbon support, is successfully fabricated. PtCo3/NC demonstrates a high specific activity (3.4 mA cm-2 mgPt -1), mass activity (0.67 A mgPt -1), and cycling stability for the ORR in 0.1 M KOH, significantly outperforming a commercial 20 wt.% Pt/C catalyst. Moreover, a zinc-air battery (ZAB) assembled with PtCo3/NC as the air-electrode catalyst delivered an open-circuit voltage of 1.47 V, a specific capacity of 775.1 mAh gZn -1 and excellent operation durability after 200 discharge/charge cycles, vastly superior performance to a ZAB built using commercial Pt/C+IrO2 as the air-electrode catalyst.
Collapse
Affiliation(s)
- Xiangxiong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Hunan Jomo Technology Co Ltd, Changsha, 410083, China
| | - Jiangnan Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiayun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weixiong Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
27
|
Song D, Roh J, Choi J, Lee H, Koh G, Kwon Y, Kim H, Lee HM, Kim M, Cho E. Heterogeneous Structure of Ni-Mo Nanoalloys Decorated on MoO x for an Efficient Hydrogen Evolution Reaction Using Hydrogen Spillover. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403752. [PMID: 39159050 PMCID: PMC11497032 DOI: 10.1002/advs.202403752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Herein, a heterogeneous structure of Ni-Mo catalyst comprising Ni4Mo nanoalloys decorated on a MoOx matrix via electrodeposition is introduced. This catalyst exhibits remarkable hydrogen evolution reaction (HER) activity across a range of pH conditions. The heterogeneous Ni-Mo catalyst showed low overpotentials only of 24 and 86, 21 and 60, and 37 and 168 mV to produce a current density of 10 and 100 mA cm-2 (η10 and η100) in alkaline, acidic, and neutral media, respectively, which represents one of the most active catalysts for the HER. The enhanced activity is attributed to the hydrogen spillover effect, where hydrogen atoms migrate between the Ni4Mo alloys and the MoOx matrix, forming hydrogen molybdenum bronze as additional active sites. Additionally, the Ni4Mo facilitated the water dissociation process, which helps the Volmer step in the alkaline/neutral HER. Through electrochemical analysis, in situ Raman spectroscopy, and density functional theory calculations, the fast HER mechanism is elucidated.
Collapse
Affiliation(s)
- DongHoon Song
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jeonghan Roh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jungwoo Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Hyein Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Gyungmo Koh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - YongKeun Kwon
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - HyoWon Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Hyuck Mo Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - MinJoong Kim
- Hydrogen Research DepartmentKorea Institute of Energy Research (KIER)152 Gajeong‐ro, Yuseong‐guDaejeon34129Republic of Korea
- Energy EngineeringUniversity of Science and Technology (UST)217 Gajeong‐ro, Yuseong‐guDaejeon34113Republic of Korea
| | - EunAe Cho
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
28
|
He J, Hu H, Xue H, Tang Y, Li X, Xue R, Chi L, Zhang H. Unveiling the Role of Pyridinic Nitrogen and Diacetylene in the Hydrogen Evolution Reaction through Model Catalysts Prepared by On-Surface Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51301-51308. [PMID: 39279490 DOI: 10.1021/acsami.4c09256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Metal-free carbon materials (MFCMs) have extensive applications in electrocatalysis because of their comparable catalytic activity to that of Pt/C in some cases. Understanding the structure-property relationship is crucial for the reasonable design of more efficient catalysts. To reveal the structure-property relationship of the hydrogen evolution reaction (HER), we prepared nanowire model catalysts on single-crystalline Au(111) electrodes through state-of-the-art on-surface synthesis. Temperature-dependent experiments were conducted to evaluate the HER activity of the nanoribbons functionalized with pyridinic nitrogen and diacetylene. According to our electrochemical results (overpotential, current density j0, and apparent activation energy), we demonstrate that the participation of diacetylene can promote the catalytic reaction for the HER through a synergistic effect. Based on the analysis of the activation entropy for the model catalysts, we attribute the synergistic effect of diacetylene groups to the large area of π···H-O bonding in the electric double layer, thus providing direct insight into the structural-property relationship of polymerized nanoribbons for the HER through the rational design of precursor structures. The nanoribbons prepared by on-surface synthesis can serve as prototype systems for model catalytic research on MFCMs.
Collapse
Affiliation(s)
- Jing He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Hao Hu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Huimin Xue
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yanning Tang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Xuechao Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Renjie Xue
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Haiming Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
29
|
Song B, Xia X, Ma Z, Li R, Wang X, Zhou L, Huang Y. Breaking the Linear Scaling Relationship by Alloying Micro Sn to a Cu Surface toward CO 2 Electrochemical Reduction. J Phys Chem Lett 2024; 15:9342-9348. [PMID: 39236290 DOI: 10.1021/acs.jpclett.4c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) to HCOOH provides an avenue for reducing global accelerated CO2 emissions and producing high-value-added chemicals. Nevertheless, the presence of an inherent linear scaling relationship (LSR) between *OCHO and *HCOOH leads to the electrosynthesis of HCOOH being achieved at high cathodic potentials. In this work, by adjusting the different Cu:Sn ratio of SnxCu(1-x) alloys, we comprehensively explored the electrocatalytic 2e- CO2RR performance toward the production of HCOOH. Combining density functional theory calculations with the constant-potential implicit solvent model, the Sn0.03Cu0.97 surface alloy was posited to be a promising electrocatalyst with superior HCOOH selectivity and an ultralow limiting potential of -0.20 V in an environment of pH = 7.2. The high performance was found to originate from the breaking of the LSR, which is a result of an extraordinary electronic property of the active Cu site. This work not only advances a global-searched strategy for the rational design of efficient catalysts toward HCOOH production but also provides in-depth insights into the underlying mechanism for the enhanced performance of microalloy electrocatalysts.
Collapse
Affiliation(s)
- Bowen Song
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Xueqian Xia
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Zengying Ma
- Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China
| | - Renjie Li
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Xiufeng Wang
- Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China
| | - Lin Zhou
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
- Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
30
|
Lee C, Yun YH, Kim SH, Doo G, Lee S, Park H, Park Y, Shin J, Cho HS, Kim SK, Cho E, Jung C, Kim M. Structural and Compositional Optimization of Fe-Co-Ni Ternary Amorphous Electrocatalysts for Efficient Oxygen Evolution in Anion Exchange Membrane Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405468. [PMID: 39263762 DOI: 10.1002/smll.202405468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Anion exchange membrane water electrolysis (AEMWE) offers a sustainable path for hydrogen production with advantages such as high current density, dynamic responsiveness, and low-cost electrocatalysts. However, the development of efficient and durable oxygen evolution reaction (OER) electrocatalysts under operating conditions is crucial for achieving the AEMWE. This study systematically investigated Fe-Co-Ni ternary amorphous electrocatalysts for the OER in AEMWE through a comprehensive material library system comprising 21 composition series. The study aims to explore the relationship between composition, degree of crystallinity, and electrocatalytic activity using ternary contours and binary plots to derive optimal catalysts. The findings reveal that higher Co and lower Fe contents lead to increased structural disorder within the Fe-Co-Ni system, whereas an appropriate amount of Fe addition is necessary for OER activity. It is concluded that the amorphous structure of Fe-Co3-Ni possesses an optimal ternary composition and degree of crystallinity to facilitate the OER. Post-OER analyses reveal that the optimized ternary amorphous structure induces structural reconstruction into an OER-favorable OOH-rich surface. The Fe-Co3-Ni electrocatalysts exhibit outstanding performances in both half-cells and single-cells, with an overpotential of 256 mV at 10 mA cm- 2 and a current density of 2.0 A cm- 2 at 1.89 V, respectively.
Collapse
Affiliation(s)
- Changsoo Lee
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Young Hwa Yun
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Se-Ho Kim
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gisu Doo
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Sechan Lee
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyunjeong Park
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Youngtae Park
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Jooyoung Shin
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Hyun-Seok Cho
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Department of Chemical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang-Kyung Kim
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - EunAe Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chanwon Jung
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
- Department of Materials Science and Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - MinJoong Kim
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
31
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
32
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
33
|
Ma J, Zhang T, Li J, Tian Y, Sun C. Superhydrophilic/superaerophobic CoP/CoMoO 4 multi-level hierarchitecture electrocatalyst for urea-assisted hydrogen evolution reaction in alkaline media. J Colloid Interface Sci 2024; 669:43-52. [PMID: 38703581 DOI: 10.1016/j.jcis.2024.04.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Utilizing the thermodynamically favorable urea oxidation reaction instead of the anodic oxygen precipitation reaction is an alternative pathway for the energy-saving hydrogen production. Therefore, it is significant to explore advanced electrocatalysts for both HER and UOR. In this work, a dendritic heteroarchitectures of 2D CoMoO4 nanosheets deposited on 1D CoP nanoneedles (CoP/CoMoO4-CC) was fabricated as bifunctional electrocatalyst. 1D CoP nanostructure with fast charge transport pathways and 2D CoMoO4 nanostructure with large specific surface area and short paths for electron/mass transport. The unique morphology endows the superhydrophilic and superaerophobic properties, allowing for the rapid contact with the reactants and rapid removal of surface-generated gases. As a result, the CoP/CoMoO4-CC shows efficient bifunctional activity. This work offers a new avenue to rationally design bifunctional electrocatalysts for large-scale practical hydrogen production.
Collapse
Affiliation(s)
- Jingwen Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Tianai Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Junbin Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ying Tian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Chunwen Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
34
|
Senthilkumar AK, Kumar M, Samuel MS, Ethiraj S, Shkir M, Chang JH. Recent advancements in carbon/metal-based nano-catalysts for the reduction of CO 2 to value-added products. CHEMOSPHERE 2024; 364:143017. [PMID: 39103104 DOI: 10.1016/j.chemosphere.2024.143017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to the increased human activities in burning of fossil fuels and deforestation, the CO2 level in the atmosphere gets increased up to 415 ppm; although it is an essential component for plant growth, an increased level of CO2 in the atmosphere leads to global warming and catastrophic climate change. Various conventional methods are used to capture and utilize CO2, among that a feasible and eco-friendly technique for creating value-added products is the CO2RR. Photochemical, electrochemical, thermochemical, and biochemical approaches can be used to decrease the level of CO2 in the atmosphere. The introduction of nano-catalysts in the reduction process helps in the efficient conversion of CO2 with improved selectivity, increased efficiency, and also enhanced stability of the catalyst materials. Thus, in this mini-review of nano-catalysts, some of the products formed during the reduction process, like CH3OH, C2H5OH, CO, HCOOH, and CH4, are explained. Among different types of metal catalysts, carbonaceous, single-atom catalysts, and MOF based catalysts play a significant role in the CO2 RR process. The effects of the catalyst material on the surface area, composition, and structural alterations are covered in depth. To aid in the design and development of high-performance nano-catalysts for value-added products, the current state, difficulties, and future prospects are provided.
Collapse
Affiliation(s)
- Arun Kumar Senthilkumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| | - Melvin S Samuel
- Department of Civil, Construction & Environmental Engineering, Marquette University, 1637 W Wisconsin Ave, Milwaukee, WI, 53233, USA
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Mohd Shkir
- Department of Physics, College of Science, King Khalid University, P.O Box-9004, Abha, 61413, Saudi Arabia
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| |
Collapse
|
35
|
Islam MN, Hossain MM, Maktedar SS, Rahaman M, Rahman MA, Aldalbahi A, Hasnat MA. Ce-Doped TiO 2 Fabricated Glassy Carbon Electrode for Efficient Hydrogen Evolution Reaction in Acidic Medium. Chem Asian J 2024; 19:e202301143. [PMID: 38376002 DOI: 10.1002/asia.202301143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The quest for sustainable and clean energy sources has intensified research on the Hydrogen Evolution Reaction (HER) in recent decades. In this study, we have presented a novel Ce-doped TiO2 catalyst synthesized through the sol-gel method, showcasing its potential as a superior electrocatalyst for HER in an acidic medium. Comprehensive characterization through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Energy dispersive X-ray (EDX), and Raman spectroscopy confirms the successful formation of the catalyst. Electrocatalytic performance evaluation, including open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and Tafel analysis, demonstrates that GCE-5wt.%CeTiO2 outperforms bare GCE, as well as Ce and TiO2-based electrodes. Kinetic investigations reveal a Tafel slope of 105 mV dec-1, indicating the Volmer step as the rate-determining step. The onset potential for HER at GCE-5wt.%CeTiO2 is -0.16 V vs. RHE, close to the platinum electrode. Notably, the catalyst exhibits a low overpotential of 401 mV to achieve a current density of 10 mA cm-2 with an impressive 95 % Faradaic efficiency. Furthermore, the catalyst demonstrates outstanding durability, maintaining a negligible increase in overpotential during a 14-hour chronoamperometry test. These results have far-reaching implications for the development of cost-effective and efficient electrocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Md Nurnobi Islam
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Mosaraf Hossain
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shrikant S Maktedar
- Materials Chemistry & Engineering Research Laboratory, Department of Chemistry, National Institute of Technology, Srinagar, 190006, J & K (UT), India
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Atiqur Rahman
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
36
|
Gottwald F, Penschke C, Saalfrank P. Water splitting at imine-linked covalent organic frameworks. Phys Chem Chem Phys 2024; 26:21821-21831. [PMID: 39101840 DOI: 10.1039/d4cp02019g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Covalent organic frameworks (COFs) are a promising class of metal-free catalysts, offering a high structural and functional variety. Here, we systematically study imine-linked COFs with donor (D) and acceptor (A) groups using density functional theory (DFT). Using water splitting as a model reaction, we analyze the effects of protonation of the catalyst, the orientation of the imine linkage leading to different constitutional isomers, and solvation. In agreement with experimental results, we show that protonation decreases the band gap. In addition, COFs in which the donor is closer to the nitrogen atom of the imine group (DNCA) have lower band gaps than those in which the donor is closer to the carbon atom (DCNA). Three different D/A COFs are compared in this work, for which energies for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and corresponding electrochemical overpotentials are computed. We show that reaction energies are very similar for DCNA and DNCA COFs. The differences in hydrogen evolution rates between the constitutional isomers observed experimentally in (photocatalytic) HER (Yang et al., Nat. Commun., 2022, 13, 6317), are proposed to be at least in part a consequence of differences in charge distribution.
Collapse
Affiliation(s)
- Felizitas Gottwald
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| | - Christopher Penschke
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| | - Peter Saalfrank
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
- Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
37
|
Li Y, Chen C, Zhao G, Huang H, Ren Y, Zuo S, Wu ZP, Zheng L, Lai Z, Zhang J, Rueping M, Han Y, Zhang H. Unveiling the Activity Origin of Electrochemical Oxygen Evolution on Heteroatom-Decorated Carbon Matrix. Angew Chem Int Ed Engl 2024:e202411218. [PMID: 39137124 DOI: 10.1002/anie.202411218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Chemical modification via functional dopants in carbon materials holds great promise for elevating catalytic activity and stability. To gain comprehensive insights into the pivotal mechanisms and establish structure-performance relationships, especially concerning the roles of dopants, remains a pressing need. Herein, we employ computational simulations to unravel the catalytic function of heteroatoms in the acidic oxygen evolution reaction (OER), focusing on a physical model of high-electronegative F and N co-doped carbon matrix. Theoretical and experimental findings elucidate that the enhanced activity originates from the F and pyridinic-N (Py-N) species that achieve carbon activation. This activated carbon significantly lowers the conversion energy barrier from O* to OOH*, shifts the potential-limiting step from OOH* formation to O* generation, and ultimately optimizes the energy barrier of the potential-limiting step. This wok elucidates that the critical role of heteroatoms in catalyzing the reaction and unlocks the potential of carbon materials for acidic OER.
Collapse
Affiliation(s)
- Yang Li
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Cailing Chen
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Guoxiang Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Huawei Huang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Zhi-Peng Wu
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiping Lai
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Magnus Rueping
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yu Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
38
|
Wang P, Wang R. Ionic Liquid-Catalyzed CO 2 Conversion for Valuable Chemicals. Molecules 2024; 29:3805. [PMID: 39202884 PMCID: PMC11357070 DOI: 10.3390/molecules29163805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
CO2 is not only the main gas that causes the greenhouse effect but also a resource with abundant reserves, low price, and low toxicity. It is expected to become an important "carbon source" to replace oil and natural gas in the future. The efficient and clean resource utilization of CO2 has shown important scientific and economic value. Making full use of abundant CO2 resources is in line with the development direction of green chemistry and has attracted the attention of scientists. Environmentally friendly ionic liquids show unique advantages in the capture and conversion of CO2 due to their non-volatilization, designable structure, and good solubility, and show broad application prospects. The purpose of this paper is to discuss the research on the use of an ionic liquid as a catalyst to promote the synthesis of various value-added chemicals in CO2, hoping to make full use of CO2 resources while avoiding the defects of the traditional synthesis route, such as the use of highly toxic raw materials, complicated operation, or harsh reaction conditions. The purpose of this paper is to provide reference for the application and development of ionic liquids in CO2 capture and conversion.
Collapse
Affiliation(s)
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, No. 72 Seaside Road, Qingdao 266237, China
| |
Collapse
|
39
|
Xu T, Wang D, Fu Q, Liu C. Effect of Different N/C Coordination Electronic Structures on the Activity of Bifunctional Rare-Earth Ytterbium Electrocatalysts for Oxygen Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16463-16472. [PMID: 39054753 DOI: 10.1021/acs.langmuir.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The research and development of bifunctional electrocatalysts for the oxygen electrode is of great significance to solve the problem of electrochemical energy. Herein, the effect of different structure-activity relationships on the performance of YbNxCy-gra catalysts was explored. The bifunctional activity of graphene with a vacancy defect supported by single-atom rare-earth ytterbium was studied by density functional theory (DFT) calculations. We systematically analyzed the stability, electronic properties, and catalytic performance of potential bifunctional catalysts. The results showed that all catalysts were thermodynamically and kinetically stable. Under acidic conditions, YbN2C2-oppo-gra and YbN2C2-pen-gra showed good ORR activity, and their overpotentials were 0.53 and 0.65 V, respectively. In an alkaline environment, most of the Yb(OH)NxCy-gra catalysts showed excellent ORR and OER bifunctional catalytic activity. Their overpotentials were all below 0.6 V. In particular, the ηORR and ηOER of the Yb(OH)N4C0-gra electrocatalyst were as low as 0.33 and 0.42 V. This verified the practicability and feasibility of hydroxyl-modified catalysts to enhance activity. This research provides theoretical insights into the further design and development of high-efficiency rare-earth-supported bifunctional catalysts.
Collapse
Affiliation(s)
- Tao Xu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Daomiao Wang
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Qiming Fu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Chao Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
40
|
Kundu J, Kwon T, Lee K, Choi S. Exploration of metal-free 2D electrocatalysts toward the oxygen electroreduction. EXPLORATION (BEIJING, CHINA) 2024; 4:20220174. [PMID: 39175883 PMCID: PMC11335471 DOI: 10.1002/exp.20220174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 08/24/2024]
Abstract
The advancement of economical and readily available electrocatalysts for the oxygen reduction reaction (ORR) holds paramount importance in the advancement of fuel cells and metal-air batteries. Recently, 2D non-metallic materials have obtained substantial attention as viable alternatives for ORR catalysts due to their manifold advantages, encompassing low cost, ample availability, substantial surface-to-volume ratio, high conductivity, exceptional durability, and competitive activity. The augmented ORR performances observed in metal-free 2D materials typically arise from heteroatom doping, defects, or the formation of heterostructures. Here, the authors delve into the realm of electrocatalysts for the ORR, pivoting around metal-free 2D materials. Initially, the merits of metal-free 2D materials are explored and the reaction mechanism of the ORR is dissected. Subsequently, a comprehensive survey of diverse metal-free 2D materials is presented, tracing their evolutionary journey from fundamental concepts to pragmatic applications in the context of ORR. Substantial importance is given on the exploration of various strategies for enhancing metal-free 2D materials and assessing their impact on inherent material performance, including electronic properties. Finally, the challenges and future prospects that lie ahead for metal-free 2D materials are underscored, as they aspire to serve as efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Joyjit Kundu
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute of Basic SciencesIncheon National UniversityIncheonRepublic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoulRepublic of Korea
| | - Sang‐Il Choi
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
41
|
Zhao X, Chen H, Cui Y, Zhang X, Hao R. Dual-Mode Imaging of Dynamic Interaction between Bubbles and Single Nanoplates during the Electrocatalytic Hydrogen Evolution Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400273. [PMID: 38552218 DOI: 10.1002/smll.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Indexed: 08/17/2024]
Abstract
Gas bubble formation at electrochemical interfaces can significantly affect the efficiency and durability of electrocatalysts. However, obtaining comprehensive details on bubble evolution dynamics, particularly their dynamic interaction with high-performance structured electrocatalysts, poses a considerable challenge. Herein, dual-mode interference/total internal reflection fluorescence microscopy is introduced, which allows for the simultaneous capture of the evolution pathway of bubbles and the 3D motion of nanoplate electrocatalysts, providing high-resolution and accurate spatiotemporal information. During the hydrogen evolution reaction, the dynamics of hydrogen bubble generation and their interactions with single nanoplate electrocatalysts at the electrochemical interface are observed. The results unveiled that, under constant potential, bubbles initially manifest as fast-moving nanobubbles, transforming into stationary microbubbles subsequently. The morphology of stationary nanoplates regulates the trajectories of these moving nanobubbles while the pinned microbubbles induce the motion of the electrocatalysts. The dual-mode microscopy can be employed to scrutinize numerous multiphase electrochemical interactions with high spatiotemporal resolution, which can facilitate the rational design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Houkai Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
42
|
Wei Z, Shen Y, Wang X, Song Y, Guo J. Recent advances of doping strategy for boosting the electrocatalytic performance of two-dimensional noble metal nanosheets. NANOTECHNOLOGY 2024; 35:402003. [PMID: 38986444 DOI: 10.1088/1361-6528/ad6162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Benefiting from the ultrahigh specific surface areas, massive exposed surface atoms, and highly tunable microstructures, the two-dimensional (2D) noble metal nanosheets (NSs) have presented promising performance for various electrocatalytic reactions. Nevertheless, the heteroatom doping strategy, and in particular, the electronic structure tuning mechanisms of the 2D noble metal catalysts (NMCs) yet remain ambiguous. Herein, we first review several effective strategies for modulating the electrocatalytic performance of 2D NMCs. Then, the electronic tuning effect of hetero-dopants for boosting the electrocatalytic properties of 2D NMCs is systematically discussed. Finally, we put forward current challenges in the field of 2D NMCs, and propose possible solutions, particularly from the perspective of the evolution of electron microscopy. This review attempts to establish an intrinsic correlation between the electronic structures and the catalytic properties, so as to provide a guideline for designing high-performance electrocatalysts.
Collapse
Affiliation(s)
- Zebin Wei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yongqing Shen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Xudong Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Instrumental Analysis Center, Taiyuan University of Technology, Taiyuan 030051, People's Republic of China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Instrumental Analysis Center, Taiyuan University of Technology, Taiyuan 030051, People's Republic of China
| |
Collapse
|
43
|
Liu J, Luo Z, Wu J, Qian D, Liao W, Waterhouse GIN, Chen X. Iron-Cobalt Phosphide Encapsulated in a N-Doped Carbon Framework as a Promising Low-Cost Oxygen Reduction Electrocatalyst for Zinc-Air Batteries. Inorg Chem 2024; 63:12681-12689. [PMID: 38922608 DOI: 10.1021/acs.inorgchem.4c02077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The oxygen reduction reaction (ORR) plays a vital role in many next-generation electrochemical energy conversion and storage devices, motivating the search for low-cost ORR electrocatalysts possessing high activity and excellent durability. In this work, we demonstrate that iron-cobalt phosphide (FeCoP) nanoparticles encapsulated in a N-doped carbon framework (FeCoP@NC) represent a very promising catalyst for the ORR in alkaline media. The core-shell structured FeCoP@NC catalyst offered outstanding ORR activity with a half-wave potential (E1/2) of 0.86 V vs reversible hydrogen electrode (RHE) and excellent stability in a 0.1 M KOH electrolyte, outperforming commercial Pt/C and many recently reported noble-metal-free ORR electrocatalysts. The superiority of FeCoP@NC as an ORR electrocatalyst relative to Pt/C was further verified in prototype zinc-air batteries (ZABs), with the aqueous and flexible ZABs prepared using FeCoP@NC offering excellent stability, impressive open circuit voltages (1.56 and 1.44 V, respectively), and high maximum power densities (183.5 and 69.7 mW cm-2, respectively). Density functional theory calculations revealed that encapsulating FeCoP nanoparticles in N-doped carbon shells resulted in favorable electron penetration effects, which synergistically regulated the adsorption/desorption of ORR intermediates for optimal ORR performance while also boosting the electronic conductivity. Our findings offer valuable new insights for rational design of transition metal phosphide-based catalysts for the ORR and other electrochemical applications.
Collapse
Affiliation(s)
- Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Hunan Jomo Technology Co Ltd, Changsha 410083, China
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiayun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weixiong Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Xiangxiong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Hunan Jomo Technology Co Ltd, Changsha 410083, China
| |
Collapse
|
44
|
Gao X, Chen Y, Wang Y, Zhao L, Zhao X, Du J, Wu H, Chen A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2024; 16:237. [PMID: 38967856 PMCID: PMC11226619 DOI: 10.1007/s40820-024-01424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yutong Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yujun Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Luyao Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xingyuan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
45
|
Iqbal A, Skulason E, Abghoui Y. Electrochemical Nitrogen Reduction to Ammonia at Ambient Condition on the (111) Facets of Transition Metal Carbonitrides. Chemphyschem 2024; 25:e202300991. [PMID: 38568155 DOI: 10.1002/cphc.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/21/2024] [Indexed: 05/15/2024]
Abstract
We conducted Density Functional Theory calculations to investigate a class of materials with the goal of enabling nitrogen activation and electrochemical ammonia production under ambient conditions. The source of protons at the anode could originate from either water splitting or H2, but our specific focus was on the cathode reaction, where nitrogen is reduced into ammonia. We examined the conventional associative mechanism, dissociative mechanism, and Mars-van Krevelen mechanism on the (111) facets of the NaCl-type structure found in early transition metal carbonitrides, including Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, Sc, Y, and W. We explored the catalytic activity by calculating the free energy of all intermediates along the reaction pathway and constructing free energy diagrams to identify the steps that determine the reaction's feasibility. Additionally, we closely examined the potential for catalyst poisoning within the electrochemical environment, considering the bias required to drive the reaction. Furthermore, we assessed the likelihood of catalyst decomposition and the potential for catalyst regeneration among the most intriguing carbonitrides. Our findings revealed that the only carbonitride catalyst considered here exhibiting both activity and stability, capable of self-regeneration and nitrogen-to-ammonia activation, is NbCN with a low potential-determining step energy of 0.58 eV. This material can facilitate ammonia formation via a mixed associative-MvK mechanism. In contrast, other carbonitrides of this crystallographic orientation are likely to undergo decomposition, reverting to their parent metals under operational conditions.
Collapse
Affiliation(s)
- Atef Iqbal
- Science Institute of the University of Iceland
| | - Egill Skulason
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland
| | | |
Collapse
|
46
|
Bai J, Wu M, He Q, Wang H, Liao Y, Chen L, Chen S. Emerging Doped Metal-Organic Frameworks: Recent Progress in Synthesis, Applications, and First-Principles Calculations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306616. [PMID: 38342672 DOI: 10.1002/smll.202306616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/14/2024] [Indexed: 02/13/2024]
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials with a long-range ordered structure and excellent specific surface area and have found a wide range of applications in diverse fields, such as catalysis, energy storage, sensing, and biomedicine. However, their poor electrical conductivity and chemical stability, low capacity, and weak adhesion to substrates have greatly limited their performance. Doping has emerged as a unique strategy to mitigate the issues. In this review, the concept, classification, and characterization methods of doped MOFs are first introduced, and recent progress in the synthesis and applications of doped MOFs, as well as the rapid advancements and applications of first-principles calculations based on the density functional theory (DFT) in unraveling the mechanistic origin of the enhanced performance are summarized. Finally, a perspective is included to highlight the key challenges in doping MOF materials and an outlook is provided on future research directions.
Collapse
Affiliation(s)
- Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Mengcheng Wu
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, United States
| |
Collapse
|
47
|
Zhu Y, Chen Y, Feng Y, Meng X, Xia J, Zhang G. Constructing Ru-O-TM Bridge in NiFe-LDH Enables High Current Hydrazine-assisted H 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401694. [PMID: 38721895 DOI: 10.1002/adma.202401694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Hydrazine oxidation-assisted water splitting is a critical technology to tackle the high energy consumption in large-scale H2 production. Ru-based electrocatalysts hold promise for synergetic hydrogen reduction (HER) and hydrazine oxidation (HzOR) catalysis but are hindered by excessive superficial adsorption of reactant intermediate. Herein, this work designs Ru cluster anchoring on NiFe-LDH (denoted as Ruc/NiFe-LDH), which effectively enhances the intermediate adsorption capacity of Ru by constructing Ru─O─Ni/Fe bridges. Notably, it achieves an industrial current density of 1 A cm-2 at an unprecedentedly low voltage of 0.43 V, saving 3.94 kWh m-3 H2 in energy, and exhibits remarkable stability over 120 h at a high current density of 5 A cm-2. Advanced characterizations and theoretical calculation reveal that the presence of Ru─O─Ni/Fe bridges widens the d-band width (Wd) of the Ru cluster, leading to a lower d-band center and higher electron occupation on antibonding orbitals, thereby facilitating moderate adsorption energy and enhanced catalytic activity of Ru.
Collapse
Affiliation(s)
- Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanxu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
48
|
Ahmad M, Nawaz T, Hussain I, Meharban F, Chen X, Khan SA, Iqbal S, Rosaiah P, Ansari MZ, Zoubi WA, Zhang K. Evolution of Metal Tellurides for Energy Storage/Conversion: From Synthesis to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310099. [PMID: 38342694 DOI: 10.1002/smll.202310099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/16/2024] [Indexed: 02/13/2024]
Abstract
Metal telluride (MTe)-based nanomaterials have emerged as a potential alternative for efficient, highly conductive, robust, and durable electrodes in energy storage/conversion applications. Significant progress in the material development of MTe-based electrodes is well-sought, from the synthesis of its nanostructures, integration of MTes with supporting materials, synthesis of their hybrid morphologies, and their implications in energy storage/conversion systems. Herein, an extensive exploration of the recent advancements and progress in MTes-based nanomaterials is reviewed. This review emphasizes elucidating the fundamental properties of MTes and providing a systematic compilation of its wet and dry synthesis methods. The applications of MTes are extensively summarized and discussed, particularly, in energy storage and conversion systems including batteries (Li-ion, Zn-ion, Li-S, Na-ion, K-ion), supercapacitor, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and CO2 reduction. The review also emphasizes the future prospects and urgent challenges to be addressed in the development of MTes, providing knowledge for researchers in utilizing MTes in energy storage and conversion technologies.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
| | - Tehseen Nawaz
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Centre (CNERC) for National Precious Metals Material (NPMM), Kowloon 999077, Hong Kong
| | - Faiza Meharban
- Material College, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai, China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
| | - Shahid Ali Khan
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
| | - Sarmad Iqbal
- Department of Energy Conversion and Storage Technical University of Denmark (DTU), Building 310, Fysikvej, Lyngby, DK-2800, Denmark
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, India
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Wail Al Zoubi
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Centre (CNERC) for National Precious Metals Material (NPMM), Kowloon 999077, Hong Kong
| |
Collapse
|
49
|
Li H, Wang Y, Chen S, Peng F, Gao F. Boosting Electrochemical Reduction of Nitrate to Ammonia by Constructing Nitrate-Favored Active Cu-B Sites on SnS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308182. [PMID: 38308386 DOI: 10.1002/smll.202308182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Indexed: 02/04/2024]
Abstract
The electrochemical reduction of nitrate to ammonia is an effective method for mitigating nitrate pollution and generating ammonia. To design superior electrocatalysts, it is essential to construct a reaction site with high activity. Herein, a simple two-step method is applied to in situ reduce amorphous copper over boron-doped SnS2 nanosheets(denoted as aCu@B-SnS2-x. DFT calculations reveal the combination of amorphous copper and B-doping strategy can construct Cu-B active twins and introduce sulfur vacancies on the surface of the inert SnS2, the active twins can efficiently adsorb nitrate and forcibly separate oxygen atoms from nitrate under the assistance of the exposed Sn atom, leading to strong nitrate adsorption. Benefiting from this, aCu@B-SnS2-x exhibited an ultrahigh NH3 FE of 94.6% at -0.67 V versus RHE and the highest NH3 yield rate of 0.55 mmol h-1 mg-1 cat (9350 µg h-1 mg-1 cat) at -0.77 V versus RHE under alkaline conditions. Besides, aCu@B-SnS2-x is confirmed to remain active after various stability tests, suggesting the practicality of utilizing aCu@B-SnS2-x in industrial applications. This work highlights the feasibility of enhanced nitrate-to-ammonia conversion efficiency by combining the doping method and amorphous metal.
Collapse
Affiliation(s)
- Heen Li
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yuanzhe Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| | - Shuheng Chen
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| |
Collapse
|
50
|
Lu Z, Zhao E, Zhang C, Chen C. Two-dimensional materials and their applications in fuel cells. iScience 2024; 27:109841. [PMID: 38765249 PMCID: PMC11101685 DOI: 10.1016/j.isci.2024.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024] Open
Abstract
In recent years, two-dimensional (2D) materials have been extensively studied and applied in the field of catalysis on account of their high specific surface areas, high exposure of metal active sites, and readily tunable structures. This article introduces various 2D materials (including materials composed of a few atomic layers) and the related synthesis methods and discusses their catalytic performances for hydrogen fuel cells, in particular, for oxygen reduction reaction and hydrogen oxidation reaction. At the end of this review, the advantages and current challenges of 2D materials are summarized, and the prospects of 2D electrocatalytic materials are proposed.
Collapse
Affiliation(s)
- Zeyu Lu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Erbo Zhao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|