1
|
Cui R, Zhang Y, Huang Z, Yuwen L, Xu Y, Zhang QW. N-Heterocyclic Carbene Enabled Copper Catalyzed Asymmetric Synthesis of Pyrimidinyl Phosphine with both Axial and P-Stereogenicity. Angew Chem Int Ed Engl 2024; 63:e202412064. [PMID: 39136318 DOI: 10.1002/anie.202412064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 10/17/2024]
Abstract
P-stereogenic phosphines, renowned for their utility as ligands and catalysts, have been instrumental in the field of asymmetric catalysis. However, the catalytic asymmetric synthesis of chiral ligands possessing both axial and phosphine chirality remains a significant challenge. Here, we present the successful demonstration of a Cu-catalyzed asymmetric C-P construction using in situ generated secondary phosphine and heteroaryl chloride. By introducing a chiral NHC ligand and an achiral diphosphine auxiliary ligand, we effectively alleviated the poisoning effect caused by phosphine(III) compounds and suppressed the nonenantioselective background reaction. The reaction exhibited excellent enantioselectivity, with up to 96 % ee, and good diastereoselectivity, with up to 14 : 1 dr, when employing less sterically hindered secondary phosphines. This particular substrate poses a significant challenge due to its strong poisoning effect in copper catalysis.
Collapse
Affiliation(s)
- Ranran Cui
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Yuxiang Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Zhuo Huang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Liyan Yuwen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Yuming Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
2
|
Wei XH, Xue YW, Liu X, Wang XH, Wang YB, Su Q. Interrupted Michael Reaction: Sulfophosphinoylation of α,β-Unsaturated Ketones Catalyzed by Phosphine. J Org Chem 2024; 89:16564-16570. [PMID: 39478284 DOI: 10.1021/acs.joc.4c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An efficient method for phosphine-catalyzed sulfophosphinoylation of α,β-unsaturated ketones for synthesis allylic organophosphorus compounds has been reported, in which α,β-unsaturated compounds acting as zwitterions react with electrophiles and nucleophiles to form a C-P bond and a C-O bond and obtain allylic organophosphorus with high regio- and stereoselectivity in moderate to excellent yields.
Collapse
Affiliation(s)
- Xiao-Hong Wei
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| | - Ya-Wen Xue
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| | - Xuan Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| | - Xiao-Hong Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| | - Yan-Bin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P.R. China
| |
Collapse
|
3
|
Ni C, Liang Z, Xu X, Yu F, Zhao Y, Chen C. Phosphine-Catalyzed [4 + 1] Annulation of β'-Acetoxy Allenoate with α-Alkylidene Succinimides: Access to Functionalized Spirosuccinimide Derivatives. J Org Chem 2024; 89:16711-16720. [PMID: 39479785 DOI: 10.1021/acs.joc.4c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A phosphine-catalyzed [4 + 1] annulation of β'-acetoxy allenoate with α-alkylidene succinimides is described. This method demonstrates the nucleophilic dialkylation and cyclization of α-alkylidene succinimides, resulting in the formation of functionalized spirosuccinimide derivatives. The reaction exhibits a wide substrate scope and yields ranging from moderate to excellent under the optimized conditions. In addition, the biological evaluation indicates that the cycloadduct 3u presents satisfied inhibitory activities for three human cancer cell lines (HCT116, A549, and HepG2).
Collapse
Affiliation(s)
- Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Zhanhang Liang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaojuan Xu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fan Yu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Yining Zhao
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Chen Chen
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
4
|
Wu K, Ruan X, Li Q, Jiang Q, Ni S, Zhou Q. Phosphine-Catalyzed [3 + 4] Annulations of Salicylaldehyde Schiff Bases with α-Substituted Allenes: Construction of Functionalized Benzoxepine Fused Succinimide Derivatives. Org Lett 2024; 26:9425-9430. [PMID: 39475578 DOI: 10.1021/acs.orglett.4c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Herein we reported a novel strategy for constructing benzoxepine fused succinimide derivatives via a phosphine-catalyzed [3 + 4] cyclization of α-substituted allenes and salicylaldehyde Schiff bases. This methodology serves as a conduit for the construction of benzoxepine derivatives in good yields under mild conditions by an unprecedented mode involving the β'-carbon of allenes. Density functional theory calculations were conducted to study the possible mechanism. Moreover, this class of compounds exhibited the potential ability of cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Ke Wu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiuqin Ruan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Quanxin Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qihe Jiang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Qu J, Yang T, Zhao X, Sun C, Yuan C, Guo H, Wang C. DMAP Catalyzed Ring-Opening/Cycloaddition of Vinyl Oxiranes with Activated Ketone Compounds to Construct the 1,3-Dioxolane Skeletons. Org Lett 2024; 26:9322-9327. [PMID: 39446723 DOI: 10.1021/acs.orglett.4c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The present work develops a DMAP-catalyzed [3 + 2] cycloaddition of vinyl oxiranes with activated ketone compounds, affording dioxolane derivatives with moderate to excellent yields. This approach represents the first Lewis base (LB)-catalyzed ring-opening reaction of vinyl epoxides, simultaneously providing a rare oxygen-containing active intermediate in this field. The gram-scale preparation and facile derivatization of the cycloadduct highlight the significant synthetic potential of this strategy.
Collapse
Affiliation(s)
- Jiaxin Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Tongtong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Xin Zhao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Chentong Sun
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Chang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| |
Collapse
|
6
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
7
|
Tang S, Wang H, Zhang H, Zhang M, Xu J, Yang C, Chen X, Guo X. Simultaneous Determination of the Position and Cis- Trans Configuration of Lipid C═C Bonds via Asymmetric Derivatization and Ion Mobility-Mass Spectrometry. J Am Chem Soc 2024; 146:29503-29512. [PMID: 39412160 DOI: 10.1021/jacs.4c08980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The position and cis-trans configuration of C═C bonds in unsaturated lipids significantly affect their biological activities. Simultaneous identification of the position and cis-trans configuration of C═C bonds in unsaturated lipids is important; nonetheless, it still remains a challenging task. Herein, a stereoselective asymmetric reaction was used to recognize cis-trans isomers of the C═C bonds, and the derivatized precursor ions and product ions were subjected to tandem ion mobility-mass spectrometry (IM-MS) analysis. The theoretical calculation revealed that the formation of intramolecular hydrogen bonds after the cyclization reaction amplified the structural difference between diastereomers and increased the separation efficiency in IM. Consequently, a simple, sensitive, and highly selective platform for simultaneous determination of the position and cis-trans configuration of various C═C bonds in unsaturated lipids was established. It was then successfully applied to pinpoint the cis-trans geometry conversion of the located C═C bonds in lipids of the bacterial membrane under environmental stress and track the heterogeneous distribution of unsaturated lipids in rats after spinal cord injury. The present study also offers new insights into the application of IM-MS technology in resolving molecular structures and demonstrates the potential as a platform for a broad range of applications.
Collapse
Affiliation(s)
- Shuai Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huihui Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mingyu Zhang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Chun Yang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Hao L, Zhu F, Liu X, Wang D. Spirophosphine-Catalyzed Enantioselective [3 + 2] Cycloaddition of Allenoates and Unsaturated α-Ketimine Esters. Org Lett 2024; 26:8860-8865. [PMID: 39373463 DOI: 10.1021/acs.orglett.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A novel chiral spiro-monophosphine, OUC-Phos, was synthesized and utilized for the first time in the asymmetric Lu's [3 + 2] cycloaddition reaction of β,γ-unsaturated α-ketimine ester with allenoate. OUC-Phos, featuring a 3,3'-diphenyl-modified spirobiindane skeleton, demonstrated exceptional catalytic efficiency in the [3 + 2] cycloaddition to achieve high yields, enantioselectivities, and diastereoselectivities for the targeted products. The broad substrate scope encompassing diverse functional groups demonstrated the versatility of this methodology. Furthermore, the reaction was successfully scaled up, and the products were easily converted into their corresponding functionalized derivatives.
Collapse
Affiliation(s)
- Luyao Hao
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Fangfang Zhu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xinyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - De Wang
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266071, China
| |
Collapse
|
9
|
Wang WQ, Nallapati S, Chen CY, Yaoita T, Yamaoka S, Murata M, Chuang SC. Phosphine-Promoted Synthesis of Naphthoquinones Fused with Cyclopentadienyl Moiety Via Ring Expansion: Synthesis, Reactivity, and Ring Contraction Via [1,5] Sigmatropic Rearrangement. Org Lett 2024; 26:8730-8735. [PMID: 39373146 PMCID: PMC11494658 DOI: 10.1021/acs.orglett.4c03052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Phosphine-promoted unprecedented [3 + 2] annulation reactions via ring expansion by using 2-benzylidene-indane-1,3-diones and diynoates for the synthesis of biologically interesting novel naphthoquinones fused with a five-membered ring bearing a phosphorus ylide up to 78% yield are described. Further ring contraction through [1,5] sigmatropic rearrangement to the spiro indan-1,3-diones by mCPBA oxidation was revealed and inferred through oxidation, followed by protonation. The relevant structures were confirmed by single-crystal X-ray diffraction. Electrochemical studies show that the naphthoquinones and lactones with phosphorus ylides could be applied to redox colorimetric materials.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sureshbabu Nallapati
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chun-Yu Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan
| | - Tomoya Yaoita
- Department
of Applied Chemistry, Osaka Institute of
Technology, Osaka 535-8585, Japan
| | - Shuri Yamaoka
- Department
of Applied Chemistry, Osaka Institute of
Technology, Osaka 535-8585, Japan
| | - Michihisa Murata
- Department
of Applied Chemistry, Osaka Institute of
Technology, Osaka 535-8585, Japan
| | - Shih-Ching Chuang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
10
|
An F, Brossette J, Jangra H, Wei Y, Shi M, Zipse H, Ofial AR. Reactivities of tertiary phosphines towards allenic, acetylenic, and vinylic Michael acceptors. Chem Sci 2024:d4sc04852k. [PMID: 39416302 PMCID: PMC11474661 DOI: 10.1039/d4sc04852k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The addition of phosphines (PR3) to Michael acceptors is a key step in many Lewis-base catalysed reactions. The kinetics of the reactions of ten phosphines with ethyl acrylate, ethyl allenoate, ethyl propiolate, ethenesulfonyl fluoride, and ethyl 2-butynoate in dichloromethane at 20 °C was followed by photometric and NMR spectroscopic methods. The experimentally determined second-order rate constants k 2 show that electronic effects in sterically unencumbered phosphines affect their nucleophilicity towards different classes of Michael acceptors in the same ordering. Michael acceptors with sp-hybridised electrophilic centres, however, are less susceptible to changes in the PR3 nucleophilicity than those with sp2-hybridised reactive sites. Linear correlations of lg k 2 from this work with published rate constants for SN2 and SN1 reactions as well as with Brønsted basicities and fugalities for PR3 demonstrate the generality of the detected reactivity trends. Computed reaction barriers (ΔG ‡ calc) as well as reaction energies (ΔG add) for Michael adduct formations show excellent correlations with experimentally obtained reaction barriers (ΔG ‡ exp) corroborating the interpretation of the kinetic data and revealing the philicity/fugality features of the reactants in phospha-Michael additions.
Collapse
Affiliation(s)
- Feng An
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstr. 5-13 81377 München Germany
| | - Jan Brossette
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstr. 5-13 81377 München Germany
| | - Harish Jangra
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstr. 5-13 81377 München Germany
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai P. R. China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai P. R. China
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology Meilong Road No. 130 200237 Shanghai P. R. China
| | - Hendrik Zipse
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstr. 5-13 81377 München Germany
| | - Armin R Ofial
- Department Chemie, Ludwig-Maximilians-Universität München Butenandtstr. 5-13 81377 München Germany
| |
Collapse
|
11
|
Qiu YF, Wang Q, Cao JH, Xue DQ, Li M, Quan ZJ, Wang XC, Liang YM. Selective Synthesis of Mono- and Bis-Phosphorylated (Dihydro)pyrans via TMSCl-Mediated Cascade Phosphorylation Cycloisomerization of Enynones. Org Lett 2024; 26:8636-8642. [PMID: 39326000 DOI: 10.1021/acs.orglett.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A chlorotrimethylsilane (TMSCl)-mediated cascade phosphorylation and cycloisomerization of enynones with diphenylphosphine oxides is presented. This methodology enables the highly selective synthesis of monophosphorylated 2H-pyrans and bisphosphorylated dihydropyrans through precise solvent-reagent stoichiometry control. The strategy demonstrated excellent functional group compatibility and high yields (up to 96%), providing facile access to structurally diverse phosphorylated heterocycles with potential applications in medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jian-He Cao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Qian Xue
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
12
|
Kang J, Ding K, Ren SM, Yang WJ, Su B. Copper-Catalyzed Enantioselective Hydrophosphorylation of Unactivated Alkynes. Angew Chem Int Ed Engl 2024:e202415314. [PMID: 39368100 DOI: 10.1002/anie.202415314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/07/2024]
Abstract
P-stereogenic phosphorus compounds are essential across various fields, yet their synthesis via enantioselective P-C bond formation remains both challenging and underdeveloped. We report the first copper-catalyzed enantioselective hydrophosphorylation of alkynes, facilitated by a newly designed chiral 1,2-diamine ligand. Unlike previous methods that rely on kinetic resolution with less than 50 % conversion, our approach employs a distinct dynamic kinetic asymmetric transformation mechanism, achieving complete conversion of racemic starting materials. This reaction is compatible with a broad range of aromatic and aliphatic terminal alkynes, producing products with high yields (up to 95 %), exclusive cis selectivity, and exceptional regio- and enantioselectivity (>20 : 1 r.r. and up to 96 % ee). The resulting products were further transformed into a diverse array of enantioenriched P-stereogenic scaffolds. Preliminary mechanistic studies were conducted to elucidate the reaction details.
Collapse
Affiliation(s)
- Jie Kang
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China
| | - Kang Ding
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China
| | - Si-Mu Ren
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China
| | - Wen-Jun Yang
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China
| | - Bo Su
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China
| |
Collapse
|
13
|
Miyake K, Iwamura A, Fujita K, Takehara T, Suzuki T, Yasukawa N, Nakamura S. Asymmetric Conjugate Addition of Phosphine Sulfides to α-Substituted β-Nitroacrylates Using Cinchona Alkaloid Amide Catalysts. Org Lett 2024; 26:8233-8238. [PMID: 39302210 DOI: 10.1021/acs.orglett.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Chiral phosphine-containing amino acids are useful motifs in pharmaceutical compounds. In this study, we developed the asymmetric conjugate addition of phosphine sulfides with α-substituted β-nitroacrylates to synthesize phosphine-containing amino acid precursors with chiral tetrasubstituted carbon centers. This method showed a wide substrate scope, and the obtained products were converted into various chiral compounds. The origin of the enantioselectivity was clarified by computational analysis.
Collapse
Affiliation(s)
- Kosei Miyake
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Akane Iwamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kazuki Fujita
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Naoki Yasukawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
14
|
Kitagaki S, Nakayoshi T, Masunaka S, Uchida A, Inano M, Yoshida E, Washino Y, Aoyama H, Yoshida K. Highly regio- and stereoselective (3 + 2) annulation reaction of allenoates with 3-methyleneindolin-2-ones catalyzed by a planar chiral [2.2]paracyclophane-based bifunctional phosphine-phenol catalyst. Org Biomol Chem 2024; 22:7817-7833. [PMID: 39005149 DOI: 10.1039/d4ob00831f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
A planar chiral [2.2]paracyclophane-based phosphine-phenol catalyst catalyzed the (3 + 2) annulation reaction of ethyl 2,3-butadienoate with 3-methyleneindolin-2-ones to produce 2,5-disubstituted cyclopentene-fused C3-spirooxindoles in high yields with high regio-, diastereo-, and enantioselectivities. This catalyst was suitable for reactions of not only benzylideneindolinones but also alkylideneindolinones, the chiral phosphine-catalyzed reactions of which have not yet been reported. Density functional theory calculations suggested that the formation of hydrogen bonds between the phenolic OH group of the catalyst and the allenoate carbonyl group, rather than between the OH group and the carbonyl group of indolinone, contributed to the formation of an efficient reaction space at the enantiodetermining step.
Collapse
Affiliation(s)
- Shinji Kitagaki
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Tomoki Nakayoshi
- Laboratory of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima-shi, Hiroshima 731-3194, Japan
| | - Sota Masunaka
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Akane Uchida
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Mai Inano
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Emika Yoshida
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Yusuke Washino
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Yoshida
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| |
Collapse
|
15
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Chen SH, Chen YL, Chen CY, Wu CS, Su MD, Chuang SC. Spirocyclopropanes and Substituted Furans by Controlling Reactivity of 1,3-Enynoates: γ- and δ-Addition of Phosphines to Conjugate Acceptors. Chemistry 2024:e202402688. [PMID: 39325539 DOI: 10.1002/chem.202402688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
In the Morita-Baylis-Hillman (MBH) reaction, a nucleophile undergoes β-addition to activated alkenes or alkynes, forming reactive intermediates for subsequent carbon-carbon or carbon-hetero bond formation. By using a π-conjugated acceptor, however, an unprecedented reactivity of 1,3-enynoates and indane-1,3-diones was uncovered in the presence of phosphines. When indan-1,3-diones were used, γ-addition of phosphines to 1,3-enynoates was observed for the first time; moderate to good yields were obtained for 14 substances containing the prominent spirocyclopropane scaffold with 100 % retention of (Z)-alkene. When 2-methyl-indan-1,3-diones were used, di(tri)-substituted furans were produced through the δ-addition pathway, with 20 substances and a yield of up to 88 % being achieved. Control experiments and density functional theory calculations were conducted to obtain insights into the unconventional γ-addition reaction pathway.
Collapse
Affiliation(s)
- Szu-Han Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| | - Yi-Liang Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| | - Chun-Yu Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| | - Chi-Shiun Wu
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan, ROC
- Department of Medical and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| |
Collapse
|
17
|
Han X, Hou J, Zhang H, Wang Z, Yao W. Phosphine-catalyzed enantioselective and diastereodivergent [3+2] cyclization for the construction of oxetane dispirooxindole skeletons. Chem Commun (Camb) 2024; 60:10736-10739. [PMID: 39246022 DOI: 10.1039/d4cc03610g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We have developed a phosphine catalyzed asymmetric [3+2] cyclization of 3-oxetanone derived MBH carbonates with activated methyleneoxindole, to construct oxetane dispirooxindole skeletons. Diastereodivergent synthesis was realized via the control of the phosphine catalyst. The (-)-DIOP provides the syn diastereoisomers, while the spiro phosphine (R)-SITCP achieves the anti-epimers.
Collapse
Affiliation(s)
- Xiao Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Jie Hou
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Haiyan Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| |
Collapse
|
18
|
Zhang C, Maddigan-Wyatt JT, Nguyen X, Seitz A, Breugst M, Lupton DW. Enantioselective Synthesis of Cyclopentanes by Phosphine-Catalyzed β,γ-Annulation of Allenoates. Org Lett 2024; 26:7800-7804. [PMID: 39240702 DOI: 10.1021/acs.orglett.4c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Herein, we report the enantioselective phosphine-catalyzed β,γ-annulation of electron-poor allenes with bifunctional malonates. The reaction exploits a 2C phosphonium synthon that when accessed using (R)-SITCP gives 23 cyclopentanes with high stereoselectivity (most >95:5 er and >9:1 dr) and yield. In addition to the (3+2) annulation, a one-pot three-component variant to give the same cyclopentanes and a (3+2) annulation/Dieckmann cyclization cascade, along with mechanistic studies, are reported.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | | | - Xuan Nguyen
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Antonia Seitz
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen, 09111 Chemnitz, Germany
| | - David W Lupton
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
19
|
Li B, Hu X, Yao H, Li Y, Xu D, Huang N, Wang N. Pyridine-Catalyzed Chemoselective Four-Component Cascade Reaction of Aromatic Aldehydes, Malononitrile/Cyanoacetates, MBH Carbonates, and Alcohols. Org Lett 2024; 26:7576-7583. [PMID: 39225685 DOI: 10.1021/acs.orglett.4c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An efficient pyridine-catalyzed chemoselective four-component cascade reaction of aromatic aldehydes, malononitrile/cyanoacetates, Morita-Baylis-Hillman (MBH) carbonates, and alcohols has been established. This one-pot reaction progressed in an unusual reaction with solvent participation via a Knoevenagel condensation/oxa-Michael addition/SN2' substitution sequence. This method allowed for facile access to an array of functionalized chain alkylbenzenes and dihydroquinolinones bearing one all-carbon quaternary center in moderate to excellent yields. It is worth noting that the configuration of the all-carbon quaternary center could be modulated by changing only the electron-withdrawing groups via a tandem reduction/cyclization reaction.
Collapse
Affiliation(s)
- Boning Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xianfei Hu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Yi Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Dan Xu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
20
|
Zhang H, Han X, Chen T, Wang Z, Yao W. Rapid Construction of Cycloheptatriene through Organocatalyzed [4 + 3] Annulation of Coumalates. Org Lett 2024; 26:7495-7500. [PMID: 39235126 DOI: 10.1021/acs.orglett.4c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A protocol for the construction of cycloheptatrienes has been developed. 4-(Dimethylamino)pyridine (DMAP) was found to be an efficient catalyst to promote the [4 + 3] annulation between coumalates and γ-alkyl-substituted allenoate or γ-aryl-3-butynoates to deliver a variety of cycloheptatrienes in moderate to good yield with excellent chemoselectivity. The asymmetric version of this annulation was also realized by using bifunctional phosphine catalyst to provide the chiral products with 32-97% ee and 29-64% yield.
Collapse
Affiliation(s)
- Haiyan Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiao Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Tong Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
21
|
Tang MQ, Yang ZJ, Han AJ, He ZT. Diastereoselective and Enantioselective Hydrophosphinylations of Conjugated Enynes, Allenes and Dienes via Synergistic Pd/Co Catalysis. Angew Chem Int Ed Engl 2024:e202413428. [PMID: 39254504 DOI: 10.1002/anie.202413428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Different from the reported work focusing on the construction of single P- or C-stereocenter via hydrophosphinylation of unsaturated carbon bonds, the highly diastereo- and enantioselective hydrophosphinylation reaction of allenes, conjugated enynes and 1,3-dienes is achieved via a designed Pd/Co dual catalysis and newly modified masked phosphinylating reagent. A series of allyl motifs bearing both a tertiary C- and P-stereocenter are prepared in generally good yields, >20 : 1 dr, >20 : 1 rr and 99 % ee. The unprecedented diastereo- and enantioselective hydrophosphinylation of 1,3-enynes is established to generate skeletons containing both a P-stereocenter and a nonadjacent chiral axis. The first stereodivergent hydrophosphinylation reaction is also developed to achieve all four P-containing stereoisomers. The present protocol features the use of only 3-minutes reaction time and 0.1 % catalyst, and with the observation of up to 730 TON. A set of mechanistic studies reveal the necessity and roles of two metal catalysts and corroborate the designed synergistic process.
Collapse
Affiliation(s)
- Ming-Qiao Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zi-Jiang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ai-Jun Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- Ningbo Zhongke Creation Center of New Materials, 315899, Ningbo, China
| |
Collapse
|
22
|
Jana K, Zhao Z, Musies J, Sparr C. Atroposelective Arene-Forming Wittig Reaction by Phosphorus P III/P V=O Redox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202408159. [PMID: 38940901 DOI: 10.1002/anie.202408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
The Wittig reaction is renowned as exceptionally versatile method for converting a diversity of aldehydes and ketones into alkenes. Recently, strategies for chiral phosphine catalysis under PIII/PV=O redox cycling emerged to render this venerable transformation stereoselective. Herein, we describe that phosphine redox catalysis enables the enantioselective synthesis of pertinent biaryl atropisomers by means of a stereocontrolled arene-forming Wittig reaction. Key to the process is the release of an endogenous base from readily accessible tert-butyloxycarbonylated Morita-Baylis-Hillman adducts triggered by catalyst intramolecularization, permitting mild phosphine redox catalysis for atroposelective Wittig reactions. By this strategy, a broad diversity of biaryl atropisomers is obtained with up to 94 : 6 enantioselectivity.
Collapse
Affiliation(s)
- Kalipada Jana
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Zhengxing Zhao
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Janis Musies
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
23
|
Shen H, Yang L, Xu M, Shi Z, Gao K, Xia X, Wang Z. Radical-Based Enantioconvergent Reductive Couplings of Racemic Allenes and Aldehydes. Angew Chem Int Ed Engl 2024:e202413198. [PMID: 39221920 DOI: 10.1002/anie.202413198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Transition metal-catalyzed radical-based enantioconvergent reactions have become a powerful strategy to synthesize enantiopure compounds from racemic starting materials. However, existing methods primarily address precursors with central chirality, neglecting those with axial chirality. Herein, we describe the enantioconvergent reductive coupling of racemic allenes with aldehydes, facilitated by a photoredox, chromium, and cobalt triple catalysis system. This method selectively affords one product from sixteen possible regio- and stereoisomers. The protocol leverages CoIII-H mediated hydrogen atom transfer (MHAT) and Cr-catalyzed radical-polar crossover for efficient stereoablation of axial chirality and asymmetric addition, respectively. Supported by mechanistic insights from control experiments, deuterium labeling, and DFT calculations, our approach offers synthetic chemists a valuable tool for creating enantioenriched chiral homoallylic alcohols, promising to advance radical-based strategies for synthesizing complex chiral molecules.
Collapse
Affiliation(s)
- Haigen Shen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China
| | - Ling Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China
| | - Mingrui Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
| | - Zhaoxin Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
| | - Ke Gao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
| | - Xiaowen Xia
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China
| |
Collapse
|
24
|
Pagès L, Kurpik G, Mollfulleda R, Abdine RAA, Walczak A, Monnier F, Swart M, Stefankiewicz AR, Taillefer M. Copper-Catalysed Synthesis of (E)-Allylic Organophosphorus Derivatives: A Low Toxic, Mild, Economical, and Ligand-Free Method. CHEMSUSCHEM 2024:e202401450. [PMID: 39207806 DOI: 10.1002/cssc.202401450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Organophosphorus compounds are fundamental for the chemical industry due to their broad applications across multiple sectors, including pharmaceuticals, agrochemicals, and materials science. Despite their high importance, the sustainable and cost-effective synthesis of organophoshoryl derivatives remains very challenging. Here, we report the first successful regio- and stereoselective hydrophosphorylation of terminal allenamides using an affordable copper catalyst system. This reaction offers an efficient protocol for the synthesis of (E)-allylic organophosphorus derivatives from various types of P-nucleophiles, such as H-phosphonates, H-phosphinates, and secondary phosphine oxides. Key advantages of this ligand-free and atom-economic strategy include low toxicity of the Cu-based catalyst, cost effectiveness, mild reaction conditions, and experimental simplicity, making it competitive with methods that use toxic and expensive Pd-based catalysts. In an effort to comprehend this process, we conducted extensive DFT calculations on this system to uncover the mechanistic insights of this process.
Collapse
Affiliation(s)
- Lucas Pagès
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gracjan Kurpik
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Rosa Mollfulleda
- IQCC and Department of Chemistry, Universitat de Girona, c/M.A. Capmany 69, 17003, Girona, Spain
| | | | - Anna Walczak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Florian Monnier
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Marcel Swart
- IQCC and Department of Chemistry, Universitat de Girona, c/M.A. Capmany 69, 17003, Girona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Marc Taillefer
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
25
|
Seitz A, Maddigan-Wyatt JT, Cao J, Breugst M, Lupton DW. Enantioselective Synthesis of Cyclopentenes by (3+2) Annulation via a 2-Carbon Phosphonium. Angew Chem Int Ed Engl 2024; 63:e202408397. [PMID: 38747007 DOI: 10.1002/anie.202408397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Herein we report a catalytic enantioselective (3+2) annulation, in which a vinyl phosphonium intermediate serves as the 2-carbon component. The reaction involves an α-umpolung β-umpolung coupling sequence, enabled by β-haloacrylates and chiral enantioenriched phosphepine catalysts. The reaction shows good generality, providing access to an array of cyclopentenes, with mechanistic studies supporting stereospecific formation of the vinyl phosphonium intermediate which, then undergoes annulation with turn over limiting catalyst elimination. Beyond defining a new approach to cyclopentenes, these studies demonstrate that β-haloacrylates can replace ynoates in reaction designs that require exclusive umpolung coupling at the α- and β-positions.
Collapse
Affiliation(s)
- Antonia Seitz
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | | | - Jing Cao
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany
| | - David W Lupton
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| |
Collapse
|
26
|
Qian J, Zhou L, Wang Y, Zhou X, Tong X. Transition from Kwon [4+2]- to [3+2]-cycloaddition enabled by AgF-assisted phosphine catalysis. Nat Commun 2024; 15:6995. [PMID: 39143094 PMCID: PMC11324788 DOI: 10.1038/s41467-024-51295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Phosphine catalysis generally relies on the potential of carbanion-phosphonium zwitterions that are generated via nucleophilic addition of phosphine catalyst to electrophilic reactants. Consequently, structural modification of zwitterions using distinct electrophilic reactants has emerged as a prominent strategy to enhance catalysis diversity. Herein, we present an alternative strategy that utilizes AgF additive to expand phosphine catalysis. We find that AgF can readily transform the canonical carbanion-phosphonium zwitterion into silver enolate-fluorophosphorane intermediate, eventually furnishing a P(III)/P(V) catalytic cycle. This strategy has been successfully applied to the phosphine-catalyzed reaction of 2-substituted allenoate and imine, resulting in the transition from Kwon [4 + 2] cycloaddition to [3 + 2] cycloaddition. This [3 + 2] cycloaddition features remarkable diastereoselectivity, high yield, and broad substrate scope. Experimental and computational studies have validated the proposed mechanism. Given the prevalence of carbanion-phosphonium zwitterions in phosphine catalysis, this AgF-assisted strategy is believed to hold significant potential for advancing P(III)/P(V) catalysis.
Collapse
Affiliation(s)
- Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yuyi Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Xiaoyu Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
27
|
Cao D, Xia S, Li L, Zeng H, Li CJ. PPh 3-Promoted Direct Deoxygenation of Epoxides to Alkenes. Org Lett 2024; 26:6418-6423. [PMID: 39046430 DOI: 10.1021/acs.orglett.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Deoxygenation of epoxides into alkenes is one of the most important strategies in organic synthesis, biomass conversions, and medicinal chemistry. Although metal-catalyzed direct deoxygenation provides one of the most commonly encountered protocols for the conversion of epoxides to alkenes, the requirement of expensive catalysts and extra reductants has largely limited their universal applicability. Herein, we report an efficient PPh3-promoted metal-free strategy for deoxygenation of epoxides to generate alkene derivatives. The success of deoxyalkenylation of epoxides bearing a wide range of functional groups to give terminal, 1,1-disubstituted, and 1,2-disubstituted alkenes manifests the powerfulness and versatility of this strategy. Moreover, gram-scale synthesis with excellent yield and modification of biologically active molecules exemplifies its generality and practicability.
Collapse
Affiliation(s)
- Dawei Cao
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Shumei Xia
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Lijuan Li
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
28
|
Chauhan S, Swamy KCK. Phosphine vs DBU-Catalyzed Annulation Reactions of β'-Acetoxy Allenoates with Acyl-Tethered Benzothiazole Bisnucleophiles: (4 + 3) or (4 + 1) vs (3 + 3) Annulation. J Org Chem 2024; 89:10816-10830. [PMID: 39007762 DOI: 10.1021/acs.joc.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dearomative annulation reaction of acyl-tethered benzothiazole bisnucleophiles with β'-acetoxy allenoates by switching the Lewis base is developed. The DBU-catalyzed reaction gives benzothiazole-fused 1,4-dihydropyridine carboxylates by (3 + 3) annulation chemoselectively. By contrast, the PR3-catalyzed reaction gives benzothiazole-fused azepines by (4 + 3) annulation and cyclopentene carboxylates by (4 + 1) annulation; the ratio of the latter two products depends on the solvent. A possible rationale for the difference in the reactivity, based on the 1,4/1,5-addition of the 2-acyl-tethered benzothiazole to the key phosphonium intermediate, is provided.
Collapse
Affiliation(s)
- Sachin Chauhan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
29
|
Bao M, Zhou Y, Yuan H, Dong G, Li C, Xie X, Chen K, Hong K, Yu ZX, Xu X. Catalytic (4+2) Annulation via Regio- and Enantioselective Interception of in-situ Generated Alkylgold Intermediate. Angew Chem Int Ed Engl 2024; 63:e202401557. [PMID: 38775225 DOI: 10.1002/anie.202401557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 07/02/2024]
Abstract
A regio- and stereoselective stepwise (4+2) annulation of N-propargylamides and α,β-unsaturated imines/ketones has been accomplished with synergetic catalysis by a combination of a gold-complex and a chiral quinine-derived squaramide (QN-SQA), leading to highly functionalized chiral tetrahydropyridines/dihydropyrans in good to high yields with generally excellent enantioselectivity. Mechanistic studies and DFT calculations indicate that the in situ formed alkylgold species is the key intermediate in this transformation, and the amide group served as a traceless directing group in this highly selective transformation. This method complements the enantioselective (4+2) annulation of allene reagents, providing the formal internal C-C π-bond cycloaddition products, which is challenging and remains elusive.
Collapse
Affiliation(s)
- Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Haoxuan Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Guizhi Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
30
|
Lai J, Cai W, Huang Y. Enantioselective phosphine-catalyzed [6 + 1] annulations of α-allyl allenoates with 1,1-bisnucleophiles. Chem Sci 2024; 15:11515-11520. [PMID: 39055021 PMCID: PMC11268462 DOI: 10.1039/d4sc02487g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Organocatalytic annulations between allenes and bisnucleophiles represent one of the most convenient routes to various carbocycles and heterocycles. However, most examples are limited to the formation of five- and six-membered rings, probably owing to relatively easy handling of short-chained biselectrophiles. Here we report long-chained α-allyl allenoate-derived 1,6-biselectrophiles for the first time, enabling a phosphine catalyzed [6 + 1] annulation with readily available 1,1-bisnucleophilic reagents. The reaction proceeds via a tandem γ-umpolung addition and δ'-addition process, smoothly constructing both seven-membered N-heterocycles and carbocycles with a broad scope of substrates, high atom economy and excellent enantioselectivity (up to 99% yield and up to 96% ee). Mechanistic experiments revealed a conversion of the 1,6-dipole into a 1,6-biselectrophilic intermediate through proton abstraction.
Collapse
Affiliation(s)
- Jingxiong Lai
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Wei Cai
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - You Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
31
|
Zhou H, Xue Y, Zhou X, Yao H, Lin A. Palladium-Catalyzed Asymmetric Desymmetrization for the Simultaneous Construction of Chiral Phosphorus and Quaternary Carbon Stereocenters. Org Lett 2024; 26:5934-5939. [PMID: 38967969 DOI: 10.1021/acs.orglett.4c01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
A palladium-catalyzed asymmetric tandem Heck and carbonylation of bisallyl-phosphine oxides has been developed. This desymmetrization process provided an efficient route to the simultaneous synthesis of a chiral P-stereogenic center and a chiral quaternary carbon stereocenter in good yields with good diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Hengrui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yiji Xue
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiang Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
32
|
Wang H, Wei Y, He Y, He TJ, Lin YW. Phosphine-Catalyzed Ring-Opening Regioselective Addition of Cyclopropenones with Amides. J Org Chem 2024; 89:10093-10098. [PMID: 38935753 DOI: 10.1021/acs.joc.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A series of amides, including α-bromo hydroxamates, N-alkoxyamides, and N-aryloxyamides, were subjected to phosphine-catalyzed ring-opening O-selective addition with cyclopropenones, producing various special α,β-unsaturated esters containing oxime ether motif, in moderate to excellent yields, with high regioselectivity, and exclusive O-selectivity. The methodology is highly atom-economical, with simple operation procedures, and compatible with a wide substrate scope (more than 44 examples).
Collapse
Affiliation(s)
- Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Yibo Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Yongjun He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Tian-Juan He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
- Hengyang Medical College, University of South China, Hengyang 421001, P. R. China
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, P. R. China
| |
Collapse
|
33
|
Maurya JP, Swain SS, Ramasastry SSV. Phosphine-promoted intramolecular Rauhut-Currier/Wittig reaction cascade to access (hetero)arene-fused diquinanes. Org Biomol Chem 2024; 22:5718-5723. [PMID: 38919118 DOI: 10.1039/d4ob00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
We describe the first phosphine-promoted intramolecular Rauhut-Currier reaction that triggers an intramolecular Wittig process assembling new classes of diquinanes. The one-pot strategy provides ready access to simple diquinanes and various (hetero)arene-fused diquinanes incorporated with up to two contiguous all-carbon quaternary centers under metal-free and neutral conditions. We showcased the generality of the method on a broad range of substrates and demonstrated its synthetic utility in accessing various advanced intermediates relevant to natural product synthesis and material science.
Collapse
Affiliation(s)
- Jay Prakash Maurya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - Subham S Swain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| |
Collapse
|
34
|
Xu W, Xu T. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Couplings: Just a Change of the Reduction System? Acc Chem Res 2024; 57:1997-2011. [PMID: 38961540 DOI: 10.1021/acs.accounts.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
ConspectusIn recent years, nickel-catalyzed asymmetric coupling reactions have emerged as efficient methods for constructing chiral C(sp3) carbon centers. Numerous novel approaches have been reported to rapidly construct chiral carbon-carbon bonds through nickel-catalyzed asymmetric couplings between electrophiles and nucleophiles or asymmetric reductive cross-couplings of two different electrophiles. Building upon these advances, our group has been devoted to interrogating dual nickel- and photoredox-catalyzed asymmetric reductive cross-coupling reactions.In our endeavors over the past few years, we have successfully developed several dual Ni-/photoredox-catalyzed asymmetric reductive cross-coupling reactions involving organohalides. While some probably think that this system is just a change of the reduction system from traditional metal reductants to a photocatalysis system, a question that we also pondered at the beginning of our studies, both the achievable reaction types and mechanisms suggest a different conclusion: that this dual catalysis system has its own advantages in the chiral carbon-carbon bond formation. Even in certain asymmetric reactions where the photocatalysis regime functions only as a reducing system, the robust reducing capability of photocatalysts can effectively accelerate the regeneration of low-valent nickel species, thus expanding the selectable scope of chiral ligands. More importantly, in many transformations, besides reducing nickel catalysts, the photocatalysis system can also undertake the responsibility of alkyl radical formation, thereby establishing two coordinated, yet independent catalytic cycles. This catalytic mode has been proven to play a crucial role in achieving diverse asymmetric coupling reactions with great challenges.In this Account, we elucidate our understanding of this system based on our experience and findings. In the Introduction, we provide an overview of the main distinctions between this system and traditional Ni-catalyzed asymmetric reductive cross-couplings with metal reductants and the potential opportunities arising from these differences. Subsequently, we outline various chiral carbon-carbon bond-forming types obtained by this dual Ni/photoredox catalysis system and their mechanisms. In terms of chiral C(sp3)-C(sp2) bond formation, extensive discussion focuses on the asymmetric arylations of α-chloroboronates, α-trifluoromethyl alkyl bromides, α-bromophosphonates, and so on. In the realm of chiral C(sp3)-C(sp) bond formation, asymmetric alkynylations of α-bromophosphonates and α-trifluoromethyl alkyl bromides have been presented herein. Regarding C(sp3)-C(sp3) bond formation, we take the asymmetric alkylation of α-chloroboronates as a compelling example to illustrate the great efficiency of this dual catalysis system. This summary would enable a better grasp of the advantages of this dual catalysis system and clarify how the photocatalysis regime facilitates enantioselective transformations. We anticipate that this Account will offer valuable insights and contribute to the development of new methodologies in this field.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
35
|
Liu J, Deng R, Liang X, Zhou M, Zheng P, Chi YR. Carbene-Catalyzed and Pnictogen Bond-Assisted Access to P III-Stereogenic Compounds. Angew Chem Int Ed Engl 2024; 63:e202404477. [PMID: 38669345 DOI: 10.1002/anie.202404477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 04/28/2024]
Abstract
Intermolecular pnictogen bonding (PnB) catalysis has received increased interest in non-covalent organocatalysis. It has been demonstrated that organic electron-deficient pnictogen atoms can act as prospective Lewis acids. Here, we present a catalytic approach for the asymmetric synthesis of chiral PIII compounds by combining intramolecular PnB interactions and carbene catalysis. Our design features a pre-chiral phosphorus molecule bearing two electron-withdrawing benzoyl groups, resulting in the formation of a σ-hole at the P atom. X-ray and non-covalent interaction (NCI) analysis indicate that the model substrates exhibit intrinsic PnB interaction between the oxygen atom of the formyl group and the phosphorus atom. This induces a conformational locking effect, leading to the crystallization of the phosphorus substrate in a preferred conformation (P212121 chiral group). Under the catalysis of N-heterocyclic carbene, the aldehyde moiety activated by the pnictogen bond selectively reacts with an alcohol to yield the corresponding chiral monoester/phosphorus product with excellent enantioselectivity. This Lewis acidic phosphorus center, aroused by the non-polarized intramolecular pnictogen bond interaction, assists in conformational and selective regulations, providing unique opportunities for catalysis and beyond.
Collapse
Affiliation(s)
- Jianjian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Rui Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Xuyang Liang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Mali Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
- School of chemistry, chemical engineering, and biotechnology, Nanyang Technological University, 637371, Singapore, Singapore
| |
Collapse
|
36
|
Ren Y, Shi W, Tang Y, Guo H. Phosphine-catalyzed (3+3) annulation of cinnamaldehyde-derived Morita-Baylis-Hillman carbonates with dinucleophiles. Chem Commun (Camb) 2024; 60:6897-6900. [PMID: 38881324 DOI: 10.1039/d4cc01989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The phosphine-catalyzed (3+3) annulation reaction of cinnamaldehyde-derived Morita-Baylis-Hillman (MBH) carbonates with 1,3-dicarbonyl compounds as dinucleophiles has been developed, giving hexahydrochromenone derivatives in high yields with moderate to good diastereoselectivities. The reaction worked through double conjugate addition of 1,3-dicarbonyl compounds to the phosphonium intermediates generated from the cinnamaldehyde-derived MBH carbonates.
Collapse
Affiliation(s)
- Yue Ren
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
37
|
He Y, He TJ, Cheng X, Wei Y, Wang H, Lin YW. Phosphine-catalyzed dearomative [3+2] cycloaddition of 4-nitroisoxazoles with allenoates or Morita-Baylis-Hillman carbonates. Chem Commun (Camb) 2024; 60:6961-6964. [PMID: 38887994 DOI: 10.1039/d4cc02231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An efficient phosphine-catalyzed dearomative [3+2] annulation of 4-nitroisoxazoles with allenoates or Morita-Baylis-Hillman carbonates has been established for the convenient synthesis of bicyclic isoxazoline derivatives. This reaction approach showed a broad substrate scope, high functional group compatibility, and excellent regioselectivity and diastereoselectivity. Furthermore, the success at the gram-scale and synthetic applications of the obtained compound 3a demonstrate the great potential of this methodology for practical applications in organic synthesis.
Collapse
Affiliation(s)
- Yongjun He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Tian-Juan He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Xiufang Cheng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Yibo Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang, P. R. China
| |
Collapse
|
38
|
Li S, Xu D, Yao H, Tan M, Li X, Liu M, Wang L, Huang N, Wang N. Facile synthesis of 2-vinylindolines via a phosphine-mediated α-umpolung/Wittig olefination/cyclization cascade process. Chem Commun (Camb) 2024; 60:6773-6776. [PMID: 38864654 DOI: 10.1039/d4cc01851f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A novel phosphine-mediated α-umpolung/Wittig olefination/cyclization cascade process between o-aminobenzaldehydes and Morita-Baylis-Hillman (MBH) carbonates has been ingeniously developed. This protocol serves as a practical tool for the facile synthesis of a broad range of 2-vinylindolines in moderate to good yields under mild reaction conditions. The applicability of this method was demonstrated with gram-scale reaction and various transformations of the corresponding product.
Collapse
Affiliation(s)
- Shuhui Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Dan Xu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
| | - Mengting Tan
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Xiaoxuan Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Mingguo Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Long Wang
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang Hubei 443002, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
| |
Collapse
|
39
|
Gao Z, Zhou X, Nie B, Lu H, Chen X, Wu J, Wang X, Li L. Synthesis of 3,4-Disubstituted Maleimide Derivatives via Phosphine-Catalyzed Isomerization of α-Succinimide-Substituted Allenoates Cascade γ'-Addition with Aryl Imines. Int J Mol Sci 2024; 25:6916. [PMID: 39000025 PMCID: PMC11241244 DOI: 10.3390/ijms25136916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
3,4-disubstituted maleimides find wide applications in various pharmacologically active compounds. This study presents a highly effective approach for synthesizing derivatives of 3,4-disubstituted maleimides through the direct isomerization of α-succinimide-substituted allenoates, followed by a cascade γ'-addition and aryl imines using PR3 as a catalyst. The resulting series of 3,4-disubstituted maleimides exhibited excellent stereoselectivities, achieving yields of up to 86%. To our knowledge, the phosphine-mediated γ'-addition reaction of allenoates is seldom reported.
Collapse
Affiliation(s)
- Zhenzhen Gao
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Xiaoming Zhou
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Baoshen Nie
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Hanchong Lu
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Xiaotong Chen
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Jiahui Wu
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Lei Li
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
40
|
Hou J, Hao W, Chen Y, Wang Z, Yao W. Phosphine-Catalyzed Stereospecific and Enantioselective Desymmetrizative [3+2] Cycloaddition of MBH Carbonates and N-(2- tert-Butylphenyl)maleimides. J Org Chem 2024; 89:9068-9077. [PMID: 38822804 DOI: 10.1021/acs.joc.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Herein, we report an l-valine-derived amide phosphine-catalyzed [3+2] cyclization of MBH carbonates and N-(2-tert-butylphenyl)maleimides via asymmetric desymmetrization. Bicyclic N-aryl succinimide derivatives bearing three continuous chiral centers with a remote C-N atropisomeric chirality were constructed stereospecifically and enantioselectively. A wide variety of MBH carbonates could be employed in this process to deliver highly optically pure succinimide derivatives in moderate to excellent yields.
Collapse
Affiliation(s)
- Jie Hou
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
41
|
Tan Z, Liu Y, Feng X. Photoredox-catalyzed C( sp3)─H radical functionalization to enable asymmetric synthesis of α-chiral alkyl phosphine. SCIENCE ADVANCES 2024; 10:eadn9738. [PMID: 38838147 DOI: 10.1126/sciadv.adn9738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
α-Chiral alkyl phosphines are privileged structural motifs with a wide application in organic and medical synthesis. It is highly desirable to develop stereoselective methods to prepare these enantioenriched molecules. The incorporation of C(sp3)─H functionalization and chiral phosphine chemistry is much less explored, probably because of the weak reactivity of C(sp3)─H bonds and/or the challenging site- and stereoselectivity issues. Herein, we disclose a synergistic catalysis system to enable an enantioselective radical addition process of α-substituted vinylphosphine oxides. An array of diverse α-chiral alkyl phosphors compounds is smoothly accessed by using the readily available chemicals as the inert C(sp3)─H bond reagent, such as sulfides, amines, alkenes, and toluene derivatives, exerting remarkable chemo-, site-, and enantioselectivity. On the basis of the mechanistic studies, both the C(sp3)─H bond activation and the stereochemistry-determining step are proposed to involve a single-electron transfer/proton transfer process.
Collapse
Affiliation(s)
- Zhenda Tan
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
42
|
Gao Z, Zhou X, Liu D, Nie B, Lu H, Chen X, Wu J, Li L, Wang X. Phosphine-Catalyzed γ'-Carbon 1,6-Conjugate Addition of α-Succinimide Substituted Allenoates with Para-Quinone Methides: Synthesis of 4-Diarylmethylated 3,4-Disubstituted Maleimides. Molecules 2024; 29:2593. [PMID: 38893468 PMCID: PMC11173458 DOI: 10.3390/molecules29112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
In this paper, an interesting γ'-carbon 1,6-conjugate addition for phosphine-catalyzed α-succinimide substituted allenoates has been disclosed. A wide array of substrates was found to participate in the reaction, resulting in the production of diverse 4-diarylmethylated 3,4-disubstituted maleimides with satisfactory to outstanding yields. Furthermore, a plausible mechanism for the reaction was proposed by the investigators.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lei Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (X.Z.); (D.L.); (B.N.); (H.L.); (X.C.); (J.W.)
| | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (X.Z.); (D.L.); (B.N.); (H.L.); (X.C.); (J.W.)
| |
Collapse
|
43
|
Cao Q, Li MM, Mao X, Zhou QQ, Ding W. Visible-Light-Induced Regioselective Radical-Polar Crossover 1,4-Hydrophosphinylation of 1,3-Enynes: Access to Trisubstituted Allenes Bearing a Phosphine Oxide Group. Org Lett 2024. [PMID: 38787784 DOI: 10.1021/acs.orglett.4c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The radical 1,4-functionalizations of 1,3-enynes have emerged as a powerful strategy for the synthesis of multisubstituted allenes. However, the phosphorus-centered radical-initiated transformations remain largely elusive. Herein, visible-light photoredox catalytic regioselective radical hydrophosphinylation of 1,3-enynes with diaryl phosphine oxides as phosphinoyl radical precursors has been realized. This protocol features mild conditions, a wide substrate scope, and good functional group tolerance, producing a diverse range of phosphinoyl-substituted allenes in moderate to good yields with high atom economy. Detailed mechanistic experiments revealed a radical-polar crossover process in the reaction.
Collapse
Affiliation(s)
- Qingzhi Cao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao-Miao Li
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xudong Mao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Quan-Quan Zhou
- College of Chemistry and Chemical Engineering, Institute of Advanced Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Wei Ding
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
44
|
Lu G, Xiao L, Que Q, Leng T, Li J, Guo Y, Fan B. Metal-Free Enantioselective 1,4-Addition of Diarylphosphine Oxides to α,β-Unsaturated Carboxylic Esters. J Org Chem 2024. [PMID: 38781561 DOI: 10.1021/acs.joc.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The catalytic asymmetric conjugate addition of phosphorus nucleophiles to unsaturated compounds, catalyzed by metallic or nonmetallic catalysts, has been extensively developed. However, the enantioselective transformations involving α,β-unsaturated carboxylic esters for constructing chiral c-p bonds have been rarely reported, particularly in metal-free processes. In this study, we present a novel metal-free methodology for enantioselective 1,4-addition of diarylphosphine oxides to α,β-unsaturated carboxylic esters using classical chiral oxazaborolidine catalysts. Remarkably high yields and enantioselectivities were obtained for most of the products. Furthermore, these valuable chiral phosphorus esters serve as crucial intermediates that can be transformed into various derivatives including amides, acids, and alcohols in a single step.
Collapse
Affiliation(s)
- Guangfu Lu
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua Road, Kunming 650500, China
| | - Liangrui Xiao
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua Road, Kunming 650500, China
| | - Qitao Que
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua Road, Kunming 650500, China
| | - Tao Leng
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua Road, Kunming 650500, China
| | - Jiuling Li
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua Road, Kunming 650500, China
| | - Yafei Guo
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua Road, Kunming 650500, China
| | - Baomin Fan
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua Road, Kunming 650500, China
| |
Collapse
|
45
|
Yang H, Zhang J, Zhang S, Xue Z, Hu S, Chen Y, Tang Y. Chiral Bisphosphine-Catalyzed Asymmetric Staudinger/aza-Wittig Reaction: An Enantioselective Desymmetrizing Approach to Crinine-Type Amaryllidaceae Alkaloids. J Am Chem Soc 2024; 146:14136-14148. [PMID: 38642063 DOI: 10.1021/jacs.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
An unprecedented chiral bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction of 2,2-disubstituted cyclohexane-1,3-diones is reported, enabling the facile access of a broad range of cis-3a-arylhydroindoles in high yields with excellent enantioselectivities. The key to the success of this work relies on the first application of chiral bisphosphine DuanPhos to the asymmetric Staudinger/aza-Wittig reaction. An effective reductive system has been established to address the challenging PV═O/PIII redox cycle associated with the chiral bisphosphine catalyst. In addition, comprehensive experimental and computational investigations were carried out to elucidate the mechanism of the asymmetric reaction. Leveraging the newly developed chemistry, the enantioselective total syntheses of several crinine-type Amaryllidaceae alkaloids, including (+)-powelline, (+)-buphanamine, (+)-vittatine, and (+)-crinane, have been accomplished with remarkable conciseness and efficiency.
Collapse
Affiliation(s)
- Hongzhi Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sen Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhengwen Xue
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shengkun Hu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yi Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Zhang J, Kong WY, Guo W, Tantillo DJ, Tang Y. Combined Computational and Experimental Study Reveals Complex Mechanistic Landscape of Brønsted Acid-Catalyzed Silane-Dependent P═O Reduction. J Am Chem Soc 2024; 146:13983-13999. [PMID: 38736283 DOI: 10.1021/jacs.4c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The reaction mechanism of Brønsted acid-catalyzed silane-dependent P═O reduction has been elucidated through combined computational and experimental methods. Due to its remarkable chemo- and stereoselective nature, the Brønsted acid/silane reduction system has been widely employed in organophosphine-catalyzed transformations involving P(V)/P(III) redox cycle. However, the full mechanistic profile of this type of P═O reduction has yet to be clearly established to date. Supported by both DFT and experimental studies, our research reveals that the reaction likely proceeds through mechanisms other than the widely accepted "dual activation mode by silyl ester" or "acid-mediated direct P═O activation" mechanism. We propose that although the reduction mechanisms may vary with the substitution patterns of silane species, Brønsted acid generally activates the silane rather than the P═O group in transition structures. The proposed activation mode differs significantly from that associated with traditional Brønsted acid-catalyzed C═O reduction. The uniqueness of P═O reduction originates from the dominant Si/O═P orbital interactions in transition structures rather than the P/H-Si interactions. The comprehensive mechanistic landscape provided by us will serve as a guidance for the rational design and development of more efficient P═O reduction systems as well as novel organophosphine-catalyzed reactions involving P(V)/P(III) redox cycle.
Collapse
Affiliation(s)
- Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Ma M, Feng J, Cai W, Huang Y. Phosphine-Catalyzed Domino Annulation of γ-Vinyl Allenoates: Synthesis of Tetrahydrofuro[3,2- c]quinoline Derivatives. Org Lett 2024; 26:4037-4042. [PMID: 38717087 DOI: 10.1021/acs.orglett.4c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A novel phosphine-catalyzed domino annulation reaction of γ-vinyl allenoates and o-aminotrifluoacetophenones for the construction of terahydrofuro[3,2-c]quinoline derivatives has been developed. In this domino reaction, two kinds of terahydrofuro[3,2-c]quinoline compounds containing CF3 groups were obtained with good yields under mild conditions, three new C-N, C-C, and C-O bonds can be built in one step, and the reaction selectivity is achieved by adjusting the reaction conditions. Furthermore, preliminary studies on an asymmetric variant of this reaction proceeded with moderate enantioselectivity.
Collapse
Affiliation(s)
- Mengmeng Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiaxu Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
48
|
Gao Z, Zhou X, Xie L, Wang X, Wang S, Liu H, Guo H. Phosphine-Catalyzed (4 + 2) Annulation of Allenoates Bearing Acidic Hydrogen with 1,1-Dicyanoalkenes. J Org Chem 2024; 89:7169-7174. [PMID: 38679873 DOI: 10.1021/acs.joc.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
α-succinimide-substituted allenoates were employed as phosphine acceptors in phosphine-catalyzed (4 + 2) annulation with 1,1-dicyanoalkenes. They served as C4 synthons in the annulation reaction under mild reaction conditions and produced hexahydroisoindole derivatives in moderate to high yields with good to excellent diastereoselectivities.
Collapse
Affiliation(s)
- Zhenzhen Gao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Xiaoming Zhou
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Lei Xie
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Shiben Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Honglei Liu
- College of Materials Science and Engineering, Qingdao University, Qing dao, Shandong 266071, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
49
|
Li L, Yu K, An H, Cai X, Song Q. Enantioselective copper-catalyzed B-H bond insertion reaction of α-diazo phosphonates to access chiral α-boryl phosphonates. Chem Sci 2024; 15:7130-7135. [PMID: 38756804 PMCID: PMC11095379 DOI: 10.1039/d4sc01271b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Chiral phosphorus-containing compounds find applications across various fields, including asymmetric catalysis, medicinal chemistry, and materials science. Despite the abundance of reported highly enantioselective methods for synthesizing various chiral phosphorus compounds, the enantioselective synthesis of α-boryl phosphorus compounds still remains an unknown territory. Here, we report a method for the construction of chiral α-boryl phosphates by asymmetric B-H insertion reaction using α-diazo phosphates as carbene precursors, cheap and readily available copper salt as the catalyst and chiral oxazoline as the ligand. This method can directly afford a series of stable α-boryl phosphates with a yield up to 97% and an enantioselectivity up to 98% ee. The operating procedure of this method is straightforward, offering a broad substrate applicability, remarkable tolerance towards various functional groups, and gentle reaction conditions.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry and College of Materials Science at Fuzhou University Fuzhou Fujian 350108 China
| | - Kui Yu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry and College of Materials Science at Fuzhou University Fuzhou Fujian 350108 China
| | - Hejun An
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry and College of Materials Science at Fuzhou University Fuzhou Fujian 350108 China
| | - Xinping Cai
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry and College of Materials Science at Fuzhou University Fuzhou Fujian 350108 China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry and College of Materials Science at Fuzhou University Fuzhou Fujian 350108 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
50
|
Li WC, Ming J, Chen S. Kinetic Resolution of P-Chiral Phosphindole Oxides through Rhodium-Catalyzed Asymmetric Arylation. Org Lett 2024; 26:3987-3990. [PMID: 38690833 DOI: 10.1021/acs.orglett.4c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Highly efficient kinetic resolution of P-chiral phosphindole oxides via rhodium-catalyzed asymmetric arylation under mild conditions is described. Selectivity factors of up to 569 were achieved by employing chiral diene* as a ligand. The transformation of the enantiopure benzophosphole derivative into a useful P-chiral bisphosphine ligand is also demonstrated.
Collapse
Affiliation(s)
- Wen-Cong Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jialin Ming
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Shufeng Chen
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|