1
|
Liu Y, Wang F, Mei Z, Shen Q, Liao K, Zhang S, Wang H, Ma S, Wang L. Advances in cellulose-based self-powered ammonia sensors. Carbohydr Polym 2025; 351:123074. [PMID: 39779004 DOI: 10.1016/j.carbpol.2024.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Ammonia sensors are widely used across applications in food monitoring, environmental surveillance, and medical research, where high safety standards are essential. Cellulose-based materials are particularly well-suited to meet these stringent requirements, with significant potential for innovation due to their biodegradability and biocompatibility. Of the various cellulose-based ammonia sensors available, self-powered sensors, especially those based on triboelectric nanogenerators (TENGs), stand out for their unique advantages, including the absence of an external power supply, environmental sustainability, and ease of integration. This review offers a detailed overview of the integration of cellulose-based materials with ammonia-sensitive components, highlighting their ease of processing and modification. It further classifies and compares cellulose-based ammonia sensors based on their sensing mechanisms, emphasizing TENG-based sensors specifically. The review concludes with a summary of current applications and explores optimization strategies. Finally, it discusses future opportunities and challenges for cellulose-based self-powered ammonia sensors and provides valuable insights into ongoing innovation and potential.
Collapse
Affiliation(s)
- Yuefan Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhixuan Mei
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Qianru Shen
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Kaixin Liao
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shenzhuo Zhang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Novikov IV, Krasnikov DV, Lee IH, Agafonova EE, Serebrennikova SI, Lee Y, Kim S, Nam JS, Kondrashov VA, Han J, Rakov II, Nasibulin AG, Jeon I. Aerosol CVD Carbon Nanotube Thin Films: From Synthesis to Advanced Applications: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413777. [PMID: 39811988 DOI: 10.1002/adma.202413777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability. This review elucidates the complex interrelations between aerosol CVD reactor synthesis conditions and the resulting properties of the CNTs. A unified approach connecting all stages of the synthesis process is proposed as a comprehensive guide. This review examines the correlations between CNT structural parameters (length and diameter) and resultant film properties (conductivity, optical, and mechanical characteristics) to establish a comprehensive framework for optimizing CNT thin film synthesis. The analysis encompasses characterization methodologies specific to aerosol CVD-synthesized CNTs and evaluates how their properties influence applications across diverse domains, from energy devices to optoelectronics. The review concludes by addressing current challenges and prospects in this field.
Collapse
Affiliation(s)
- Ilya V Novikov
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Dmitry V Krasnikov
- Skolkovo Institute of Science and Technology, Nobel 3, Moscow, 121205, Russia
| | - Il Hyun Lee
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | | | | | - Yeounggyu Lee
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sihyeok Kim
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jeong-Seok Nam
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | | | - Jiye Han
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Ignat I Rakov
- Skolkovo Institute of Science and Technology, Nobel 3, Moscow, 121205, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, Nobel 3, Moscow, 121205, Russia
| | - Il Jeon
- Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
3
|
Chavan SG, Rathod PR, Koyappayil A, Hwang S, Lee MH. Recent advances of electrochemical and optical point-of-care biosensors for detecting neurotransmitter serotonin biomarkers. Biosens Bioelectron 2025; 267:116743. [PMID: 39270361 DOI: 10.1016/j.bios.2024.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Since its discovery in 1984, the monoamine serotonin (5-HT) has been recognized for its critical role as a neuromodulator in both the central and peripheral nervous systems. Recent research reveals that serotonin also significantly influences various neuronal activities. Historically, it was believed that peripheral serotonin, produced by tryptophan hydroxylase in intestinal cells, functioned primarily as a hormone. However, new insights have expanded its known roles, necessitating advanced detection methods. Biosensors have emerged as indispensable tools in biomedical diagnostics, enabling the rapid and minimally invasive detection of target analytes with high spatial and temporal resolution. This review summarizes the progress made in the past decade in developing optical and electrochemical biosensors for serotonin detection. We evaluate various sensing strategies that optimize performance in terms of detection limits, sensitivity, and specificity. The study also explores recent innovations in biosensing technologies utilizing surface-modified electrodes with nanomaterials, including gold, graphite, carbon nanotubes, and metal oxide particles. Applications range from in vivo studies to chemical imaging and diagnostics, highlighting future prospects in the field.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Pooja Ramrao Rathod
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Seowoo Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
4
|
Kim M, Hong S, Khan R, Park JJ, In JB, Ko SH. Recent Advances in Nanomaterial-Based Biosignal Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405301. [PMID: 39610205 DOI: 10.1002/smll.202405301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Indexed: 11/30/2024]
Abstract
Recent research for medical fields, robotics, and wearable electronics aims to utilize biosignal sensors to gather bio-originated information and generate new values such as evaluating user well-being, predicting behavioral patterns, and supporting disease diagnosis and prevention. Notably, most biosignal sensors are designed for body placement to directly acquire signals, and the incorporation of nanomaterials such as metal-based nanoparticles or nanowires, carbon-based or polymer-based nanomaterials-offering stretchability, high surface-to-volume ratio, and tunability for various properties-enhances their adaptability for such applications. This review categorizes nanomaterial-based biosignal sensors into three types and analyzes them: 1) biophysical sensors that detect deformation such as folding, stretching, and even pulse, 2) bioelectric sensors that capture electric signal originating from human body such as heart and nerves, and 3) biochemical sensors that catch signals from bio-originated fluids such as sweat, saliva and blood. Then, limitations and improvements to nanomaterial-based biosignal sensors is depicted. Lastly, it is highlighted on deep learning-based signal processing and human-machine interface applications, which can enhance the potential of biosignal sensors. Through this paper, it is aim to provide an understanding of nanomaterial-based biosignal sensors, outline the current state of the technology, discuss the challenges that be addressed, and suggest directions for development.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoo Hong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rizwan Khan
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Bin In
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research / Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Baskaran N, Sakthivel R, Karthik CS, Lin YC, Liu X, Wen HW, Yang W, Chung RJ. Polydopamine-modified 3D flower-like ZnMoO 4 integrated MXene-based label-free electrochemical immunosensor for the food-borne pathogen Listeria monocytogenes detection in milk and seafood. Talanta 2025; 282:127008. [PMID: 39406096 DOI: 10.1016/j.talanta.2024.127008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/20/2024]
Abstract
Listeria monocytogenes is a gram-positive bacterium that causes listeriosis in humans. This contaminates the ready-to-eat food products and compromises their safety. Thus, detecting its presence in food samples with high sensitivity and reliability is necessary. Herein, we propose a label-free electrochemical immunosensor based on a mussel-inspired polydopamine-modified zinc molybdate/MXene (PDA@ZnMoO4/MXene) composite for effective and rapid detection of L. monocytogenes in food products. Spectrophotometry approaches were employed to examine the resulting composites. Voltammetry and impedimetry techniques were used to confirm the step-by-step assembly of the immunosensor and its sensitive detection of L. monocytogenes in various food products, such as milk and smoked seafood. The results demonstrated the practicality of the constructed immunosensor, with an appreciable linearity of 10-107 CFU/ml and a reasonably low detection limit (LOD, 12 CFU/ml). Moreover, the immunosensor exhibited excellent selectivity for microbial cocktails and acceptable repeatability, reproducibility, and storage stability. Thus, we believe that the proposed sensitive, reliable, and label-free immunosensor based on the PDA surface modification technique for detecting L. monocytogenes can be extended to monitor various food-borne pathogens to ensure food safety.
Collapse
Affiliation(s)
- Nareshkumar Baskaran
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | | | - Yu-Chien Lin
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan; ZhongSun Co., LTD, New Taipei City, 220031, Taiwan
| | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen, 518060, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402202, Taiwan; Food and Animal Product Safety Inspection Center, National Chung Hsing University, Taichung, 402202, Taiwan.
| | - Wei Yang
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
6
|
Hou L, Duan J, Xiong F, Carraro C, Shi T, Maboudian R, Long H. Low Power Gas Sensors: From Structure to Application. ACS Sens 2024; 9:6327-6357. [PMID: 39535966 DOI: 10.1021/acssensors.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Gas sensors are pivotal across industries, encompassing environmental monitoring, industrial safety, and healthcare. Recently, a surge in demand for low power gas sensors has emerged, driven by the huge need for applications in portable devices, wireless sensor networks, and the Internet of things (IoT). The practical realization of a densely interconnected sensor network demands gas sensors to have low power consumption for energy-efficient operation. This Perspective offers a comprehensive overview of the progress of low-power sensors for gas and volatile organic compound detection, with a keen focus on the interplay between sensing materials (including metal oxide semiconductors, metal-organic frameworks, and two-dimensional materials), sensor structures, and power consumption. The main gas sensing mechanisms are discussed, and we delve into the mechanisms for achieving low power consumption including material properties and sensor design. Furthermore, typical applications of low power gas sensors are also presented, including wearable technology, food safety, and environmental monitoring. The review will end by discussing some open questions and ongoing needs.
Collapse
Affiliation(s)
- Linlin Hou
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Jian Duan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Feng Xiong
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Carlo Carraro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Roya Maboudian
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Hu Long
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| |
Collapse
|
7
|
Motoori J, Kinoshita T, Chai H, Li MS, Wang SM, Jiang W, Fukuhara G. Dynamic Control of Chiral Recognition in Water-Soluble Naphthotubes Induced by Hydrostatic Pressure. ACS NANOSCIENCE AU 2024; 4:435-442. [PMID: 39713726 PMCID: PMC11659898 DOI: 10.1021/acsnanoscienceau.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
The dynamic control of chiral (enantiomeric) responses in chiral host-guest complexes through external stimuli is a significant challenge in modern chemistry for developing smart stimuli-responsive materials. Herein, we report the (chir)optical properties and chiral recognition behavior of water-soluble chiral naphthotubes (1) under the influence of hydrostatic pressure as an external stimulus. The hydrostatic pressure spectral profiles compared to those obtained at normal pressure revealed the dynamic behavior of 1 under hydrostatic pressure, owing to the flexible linker. In chiral recognition experiments, hydrophilic amino acids such as phenylalanine (Phe) and tryptophan (Trp) exhibited reaction volume changes (ΔV°) of -0.9 cm3 mol-1 for d-Phe, -1.2 cm3 mol-1 for l-Phe, -5.6 cm3 mol-1 for d-Trp, and -7.0 cm3 mol-1 for l-Trp, with enantioselectivity ranging from 1.2 to 1.6. In contrast, hydrophobic chiral styrene oxide (2) showed ΔV° values of 1.5 cm3 mol-1 for R-2 and 3.5 cm3 mol-1 for S- 2, with a relatively higher enantioselectivity of up to 7.6. These contrasting effects of hydrostatic pressure primarily originate from the dynamics of chiral naphthotubes.
Collapse
Affiliation(s)
- Junnosuke Motoori
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomokazu Kinoshita
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hongxin Chai
- Shenzhen
Xinhua Middle School, Shenzhen 518109, China
| | - Ming-Shuang Li
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Song-Meng Wang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Wei Jiang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Gaku Fukuhara
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
8
|
Lee J, Lee H. Valence State and Catalytic Activity of Ni-Fe Oxide Embedded in Carbon Nanotube Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2004. [PMID: 39728539 PMCID: PMC11728845 DOI: 10.3390/nano14242004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
The catalytic activity of Ni-Fe oxide embedded in CNTs was investigated in terms of valence states and active oxygen species. Ni-Fe oxides were prepared by the sol-gel combustion process, and Ni-Fe oxides embedded in CNT catalysts were synthesized by the catalytic chemical vapor deposition (CCVD) method. The lattice structure of the Ni-Fe oxide catalysts was analyzed, and the lattice distortion was increased with the addition of Fe. The specific surface areas and pore structures of the Ni-Fe oxides embedded in CNTs were determined through the BET method. The nano-sized Ni-Fe oxides embedded in CNTs were observed using morphology analysis. The crystallinity and defects of CNTs were analyzed by Raman spectroscopy, and the ID/IG ratio of Ni1.25Fe0.75O/CNT was the lowest at 0.36, representing the high graphitization and low structural defects of the CNT surface. The valence states of Fe and Ni were changed by the interaction between catalysts and CNTs. The redox property of the catalysts was evaluated by H2-TPR analysis, and the H2 consumption of Ni1.25Fe0.75O/CNT was the highest at 2.764 mmol/g. The catalytic activity of Ni-Fe oxide embedded in CNT exhibited much higher activity than Ni-Fe oxide for the selective catalytic reduction of NOx with NH3 in the temperature range of 100 °C to 450 °C.
Collapse
Affiliation(s)
| | - Heesoo Lee
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
9
|
Zhexembekova A, Lim S, Lee C, Kim YT, Lee CY. A Liquid Metal Balloon for the Exfoliation of an Ultrathin and Uniform Gallium Oxide Layer. Molecules 2024; 29:5894. [PMID: 39769983 PMCID: PMC11677224 DOI: 10.3390/molecules29245894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
We report the exfoliation of ultrathin gallium oxide (Ga2O3) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium-indium alloy (eGaIn). These Ga2O3 films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on Ga2O3 provides a versatile platform for device fabrication. As an example application, we fabricated a chemiresistive gas sensor for detecting simulants of chemical warfare agents (CWAs), including diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), and triethyl phosphate (TEP). The sensor exhibited reversible responses, high sensitivity, and low limits of detection (13 ppb for DIMP, 28 ppb for DMMP, and 53 ppb for TEP). These findings highlight the potential of Ga2O3 films derived from liquid metal balloons for integrating CNTs into functional electronic devices.
Collapse
Affiliation(s)
- Anar Zhexembekova
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Seongyeop Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Cheongha Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Yun-Tae Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
10
|
Dunlap JH, Feng H, Pioch T, Volk AA, Giordano AN, Reidell A, Tran LD, Hampton CM, Luo SXL, Rao R, Crouse CA, Swager TM, Baldwin LA. Continuous Flow Chemistry and Bayesian Optimization for Polymer-Functionalized Carbon Nanotube-Based Chemiresistive Methane Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68181-68196. [PMID: 39592136 DOI: 10.1021/acsami.4c14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
We report the preparation of poly(ionic) polymer-wrapped single-walled carbon nanotube dispersions for chemiresistive methane (CH4) sensors with improved humidity tolerance. Single-walled CNTs (SWCNTs) were noncovalently functionalized by poly(4-vinylpyridine) (P4VP) with varied amounts of a poly(ethylene glycol) (PEG) moiety bearing a Br and terminal azide group (Br-R1). The quaternization of P4VP with Br-R1 was performed using continuous flow chemistry and Bayesian optimization-guided reaction selection. Polymers (PyBrR1) with different degrees of functionalization were used to disperse SWCNTs and subsequently incorporated into sensors containing a platinum complex as an aerobic oxidative catalyst with a polyoxometalate (POM) redox mediator to facilitate room-temperature CH4 sensing. As the degree of quaternization in the PyBrR1-CNT composites increased, improvements in response magnitude were observed, with nominally 10% quaternized PyBrR1 giving the largest response. Incorporation of PEG improved sensor stability at relative humidities between 57-90% versus sensors fabricated from CNT dispersions with unfunctionalized P4VP. Devices fabricated with these dispersions outperformed those prepared in situ under dry conditions, and exhibited greater stability at elevated humidities. The influence of Keggin-type POM character was also evaluated to identify alternative POMs for enhanced sensor performance at high humidity. In an effort to identify areas for further improvement in algorithm performance for polymer functionalization, a kinetically informed machine learning model was explored as a route to predict reactivity of pyridine units and alkyl bromides under flow conditions.
Collapse
Affiliation(s)
- John H Dunlap
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- BlueHalo, Dayton, Ohio 45432, United States
| | - Haosheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas Pioch
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda A Volk
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- National Research Council, Washington, District of Columbia 20001, United States
| | - Andrea N Giordano
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- National Research Council, Washington, District of Columbia 20001, United States
| | - Alexander Reidell
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- BlueHalo, Dayton, Ohio 45432, United States
| | - Ly D Tran
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- BlueHalo, Dayton, Ohio 45432, United States
| | - Cheri M Hampton
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- BlueHalo, Dayton, Ohio 45432, United States
| | - Shao-Xiong Lennon Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rahul Rao
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Christopher A Crouse
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Luke A Baldwin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
11
|
Liu YY, Li Z, Liang Y, Tang T, Zhuang JH, Zhang WJ, Zhang BY, Ou JZ. Recent advances in nanomaterial-enabled chemiresistive hydrogen sensors. Chem Commun (Camb) 2024; 60:14497-14520. [PMID: 39569983 DOI: 10.1039/d4cc05430j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
With the growing adoption of hydrogen energy and the rapid advancement of Internet of Things (IoT) technologies, there is an increasing demand for high-performance hydrogen gas (H2) sensors. Among various sensor types, chemiresistive H2 sensors have emerged as particularly promising due to their excellent sensitivity, fast response times, cost-effectiveness, and portability. This review comprehensively examines the recent progress in chemiresistive H2 sensors, focusing on developments over the past five years in nanostructured materials such as metals, metal oxide semiconductors, and emerging alternatives. This review delves into the underlying sensing mechanisms, highlighting the enhancement strategies that have been employed to improve sensing performance. Finally, current challenges are identified, and future research directions are proposed to address the limitations of existing chemiresistive H2 sensor technologies. This work provides a critical synthesis of the most recent advancements, offering valuable insights into both current challenges and future directions. Its emphasis on innovative material designs and sensing strategies will significantly contribute to the ongoing development of next-generation H2 sensors, fostering safer and more efficient energy applications.
Collapse
Affiliation(s)
- Yao Yang Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
| | - Yi Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Tao Tang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jing Hao Zhuang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Wen Ji Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
12
|
Afrin S, Zeng Z, Kesavan G, Shao W, He Y, Rosi NL, Star A. Nanoelectronic Detection of Acetone with MIL-53(Al)-NH 2 Metal-Organic Framework on Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66377-66386. [PMID: 39570752 PMCID: PMC11622181 DOI: 10.1021/acsami.4c16016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/08/2024]
Abstract
A new composite material has been synthesized by incorporating an amine-functionalized MIL-53 (Al) metal-organic framework (MOF) and single-walled carbon nanotubes (SWCNT) under hydrothermal conditions. This hybrid material combines the porosity of the MOF with the electrical conductivity of SWCNT. The preservation of MIL-53(Al)-NH2 MOF structure and morphology in the composite with SWCNT was verified by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller surface area analysis. A characteristic current-voltage (I-V) curve showed the electrical conductivity of this composite and gave a linear response in the chemiresistive sensor with increasing concentrations of acetone. The MIL-53(Al)-NH2/SWCNT composite also displayed fluorescence quenching tendencies across various acetone concentrations, likely attributable to the impact of guest molecules influencing the framework. An alternative approach utilizing layer-by-layer sensor device fabrication was employed for growing this MOF on carbon nanotubes directly onto a silicon chip, demonstrating its potential for versatile on-chip-sensing applications.
Collapse
Affiliation(s)
- Samia Afrin
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ganesh Kesavan
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wenting Shao
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yiwen He
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
13
|
Han SH, Pioch TN, Swager TM. Chemi-Impeditive Sensing Platform Based on Single-Walled Carbon Nanotubes. J Am Chem Soc 2024; 146:31486-31496. [PMID: 39501450 DOI: 10.1021/jacs.4c07986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Chemical sensing methodology based on electrochemical impedance spectroscopy (EIS) targeting analytes in aqueous samples on functionalized single-walled carbon nanotube (SWCNT) is reported. The SWCNT in contact with electrolyte shows unique impedance spectra that cannot be analyzed with classical equivalent circuit models. Inspired by the charge transport property of mixed ionic-electronic conductors, we propose an equivalent circuit based on transmission line model (TLM), by which the impedance of the CNT-electrolyte system can be analyzed to track down all the equivalent circuit parameters. By combining multiple pieces of information, which are technically immeasurable with conventional chemiresistive or chemicapacitive techniques, several analyte species responding to the sensor can be differentiated from each other. We demonstrate the "chemi-impeditive" concept on chemically modified SWCNTs for detecting perfluoroalkyl substances (PFAS) in aqueous solutions. The EIS coupled with a fluorination chemistry on SWCNT surface provides unique changes in equivalent circuit components for each PFAS, i.e., changes in CNT and solution resistances, as well as interfacial CNT-solution capacitance, through which perfluorooctanesulfonic acid, perfluorooctanoic acid, hexafluoropropylene oxide dimer acid, and perfluorobutanesulfonic acid are detected in a discriminative manner. The new impedimetric method opens up new vistas in chemical sensing in that the EIS analysis provides an additional dimension of information beyond the single resistance or capacitance typically measured by many conventional types of sensors.
Collapse
Affiliation(s)
- Seok Hee Han
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas N Pioch
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Pan Y, Baster D, Käch D, Reger J, Wettstein L, Krumeich F, El Kazzi M, Bezdek MJ. Triphenylphosphine Oxide: A Versatile Covalent Functionality for Carbon Nanotubes. Angew Chem Int Ed Engl 2024; 63:e202412084. [PMID: 39087346 DOI: 10.1002/anie.202412084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Broadening the scope of functionalities that can be covalently bound to single-walled carbon nanotubes (SWCNTs) is crucial for enhancing the versatility of this promising nanomaterial class in applied settings. Here we report the covalent linkage of triphenylphosphine oxide [Ph3P(O)] to SWCNTs, a hitherto overlooked surface functionality. We detail the synthesis and structural characterization of a new family of phosphine oxide-functionalized diaryliodonium salts that can facilitate direct Ph3P(O) transfer and afford novel SWCNTs with tunable Ph3P(O) content (SWCNT-P). The molecularly-distributed and robust nature of the covalent Ph3P(O) attachment in SWCNT-P was supported by a combination of characterization methods including Raman, infrared, UV/Vis-NIR and X-ray photoelectron spectroscopies coupled with thermogravimetric analysis. Electron microscopy further revealed the effectiveness of the Ph3P(O) moiety for de-bundling SWCNTs to yield SWCNT-P with superior dispersibility and processability. Finally, electrochemical studies established that SWCNT-P is sensitive to the presence of Li+, Na+ and K+ wherein the Gutmann-Beckett Lewis acidity parameters of the ions were quantitatively transduced by Ph3P(O) to electrochemical responses. This work hence presents a synthetic, structural, spectroscopic and electrochemical foundation for a new phosphorus-enriched responsive nanomaterial platform featuring the Ph3P(O) functionality.
Collapse
Affiliation(s)
- Yanlin Pan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Dominika Baster
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Daniel Käch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Jan Reger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Lionel Wettstein
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Mario El Kazzi
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Máté J Bezdek
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| |
Collapse
|
15
|
Bai M, Shao X, Wang C, Wang J, Wang X, Guan P, Hu X. Application of carbon-based nanomaterials in Alzheimer's disease. MATERIALS HORIZONS 2024. [PMID: 39526325 DOI: 10.1039/d4mh01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder marked by permanent impairment of brain function across the whole brain. This condition results in a progressive deterioration of cognitive function in patients and is frequently associated with psychological symptoms such as agitation and anxiety, imposing a significant burden on both patients and their families. Nanomaterials possess numerous distinctive physical and chemical features that render them extensively utilized. In the biomedical domain, nanomaterials can be utilized for disease prevention and therapy, including medication delivery systems, biosensors, and tissue engineering. This article explores the etiology and potential molecular processes of AD, as well as the application of carbon-based nanomaterials in the diagnosis and treatment of AD. Some of such nanomaterials are carbon quantum dots, carbon nanotubes, and graphene, among others. These materials possess distinctive physicochemical features that render them highly promising for applications in biosensing, drug delivery, neuroprotection, and photothermal treatment. In addition, this review explored various therapeutic approaches for AD in terms of reducing inflammation, preventing oxidative damage, and inhibiting Aβ aggregation. The advent of carbon nanomaterials in nanotechnology has facilitated the development of novel treatment approaches for Alzheimer's disease. These strategies provide promising approaches for early diagnosis, effective intervention and neuroprotection of the disease.
Collapse
Affiliation(s)
- Mengyao Bai
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Juanxia Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
16
|
Zheng S, Gao Y, Xia S, Qiu J, Xi X, Li J, Li T, Yang D, Dong A. Densely Branched Carbon Nanotubes for Boosting the Electrochemical Performance of Li-S Batteries. CHEMSUSCHEM 2024; 17:e202400799. [PMID: 38790081 DOI: 10.1002/cssc.202400799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
To address the inherent limitations of conventional carbon nanotubes (CNTs), such as their tendency to agglomerate and scarcity of catalytic sites, the development of branched carbon nanotubes (BCNTs) with a unique hierarchical structure has emerged as a promising solution. Herein, gram scale quantities of densely branched and structurally consistent Ni-Fe decorated branched CNTs (Ni-Fe@BCNT) have been prepared. This uniform and densely branched architecture ensures excellent dispersibility and superior electrical conductivity. Additionally, each branched tip is equipped with Ni-Fe particles, thereby providing numerous catalytic sites which endow them with exceptional catalytic activity for the conversion of polysulfides. The polypropylene (PP) separator modified with Ni-Fe@BCNT interlayer is fabricated as a multifunctional barrier for Li-S batteries. The experimental results demonstrate that Ni-Fe@BCNT interlayer can effectively suppress the shuttle effect of polysulfides and enhance their redox kinetics. The outstanding catalytic ability of Ni-Fe@BCNT interlayer enables batteries with high specific capacities, outstanding rate performance, and remarkable cycling stability. This approach proposed in this work paves a new path for synthesizing BCNTs and shows great potential for scaling up the production of BCNTs to address more demanding applications.
Collapse
Affiliation(s)
- Shuoran Zheng
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yifan Gao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shenxin Xia
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Junjie Qiu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Xiangyun Xi
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jianfeng Li
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Tongtao Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
17
|
Kim J. Spectroscopic Differentiation of Structural Transitions from Carbon Nanobelts to Carbon Nanotubes. J Phys Chem Lett 2024; 15:11155-11161. [PMID: 39480118 DOI: 10.1021/acs.jpclett.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In this study, simulated X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were utilized to differentiate the early stage structures as carbon nanobelts (CNBs) evolved into carbon nanotubes (CNTs). The effects of edge type, length, and diameter on the spectroscopic characteristics of armchair and zigzag CNTs were examined. Variations in XPS spectra were found to correspond to changes in the bandgap, while Raman spectra provided distinct bands associated with specific structural features. Notably, in armchair CNTs, the C 1s XPS peak positions exhibited clear differences depending on the structure. Additionally, the Kekulé vibration band and other characteristic bands in Raman spectra varied with length and diameter, enabling differentiation of armchair CNT structures. Although the structural analysis of zigzag CNTs was challenging using XPS, Raman spectroscopy proved to be effective in distinguishing structural differences. This study lays the groundwork for future spectroscopic analyses, contributing to the broader understanding of nanocarbon materials such as CNBs and CNTs and their potential applications in advanced electronic materials.
Collapse
Affiliation(s)
- Jungpil Kim
- Carbon & Light Materials Group, Korea Institute of Industrial Technology (KITECH), 222 Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| |
Collapse
|
18
|
Saleh M, Gul A, Nasir A, Moses TO, Nural Y, Yabalak E. Comprehensive review of Carbon-based nanostructures: Properties, synthesis, characterization, and cross-disciplinary applications. J IND ENG CHEM 2024. [DOI: 10.1016/j.jiec.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Kim HJ, Lee SH, Jeon D, Lee SN. High-Performance Sol-Gel-Derived CNT-ZnO Nanocomposite-Based Photodetectors with Controlled Surface Wrinkles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5325. [PMID: 39517597 PMCID: PMC11547469 DOI: 10.3390/ma17215325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
We investigate the effects of incorporating single-walled carbon nanotubes (CNTs) into sol-gel-derived ZnO thin films to enhance their optoelectronic properties for photodetector applications. ZnO thin films were fabricated on c-plane sapphire substrates with varying CNT concentrations ranging from 0 to 2.0 wt%. Characterization techniques, including high-resolution X-ray diffraction, photoluminescence, and atomic force microscopy, demonstrated the preferential growth of the ZnO (002) facet and improved optical properties with the increase in the CNT content. Electrical measurements revealed that the optimal CNT concentration of 1.5 wt% resulted in a significant increase in the dark current (from 0.34 mA to 1.7 mA) and peak photocurrent (502.9 µA), along with enhanced photoresponsivity. The rising and falling times of the photocurrent were notably reduced at this concentration, indicating improved charge dynamics due to the formation of a p-CNT/n-ZnO heterojunction. The findings suggest that the incorporation of CNTs not only modifies the structural and optical characteristics of ZnO thin films but also significantly enhances their electrical performance, positioning CNT-ZnO composites as promising candidates for advanced photodetector technologies in optoelectronic applications.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Department of IT & Semiconductor Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
| | - Seung Hun Lee
- Department of IT & Semiconductor Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
| | - Dabin Jeon
- Department of IT & Semiconductor Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
| | - Sung-Nam Lee
- Department of IT & Semiconductor Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
- Department of Nano & Semiconductor Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
| |
Collapse
|
20
|
Wang W, Zhang B, Feng H, Wei Z, Dai Z, Zhang H, Ma H, Yalikun Y, Shang C, Yang Y. A Three-Dimensional Surface-Adaptive Stretchable Sensor for Online Monitoring of Composite Materials Curing. ACS Sens 2024. [PMID: 39469859 DOI: 10.1021/acssensors.4c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Recently, rigid sensors have been commonly applied to online monitoring of the core curing processes of composite materials to prevent both overcuring and under-curing. However, conventional rigid sensors are prone to causing cracks and bubbles in composite materials during the curing process, thereby affecting both the mechanical performance and the overall reliability of the materials. Herein, stretchable interdigital dielectric sensors with flexible substrates and electrodes are designed to conform to complex 3D surfaces, thus enabling embedded nondestructive monitoring of composite curing processes. The sensors obtained can endure 1000 cycles of bending from 0° to 180° and 1000 cycles of stretching at 30% strain while still conforming perfectly to complex 3D surfaces, thus overcoming the inability of traditional curing monitoring sensors to bend. Additionally, sensor integration with an electronic circuit enables real-time data collection and transmission, which makes the device more portable, compact, and lightweight. Moreover, after atmospheric exposure for 5 months, the unit sensitivity of the sensor decreased by only 0.1%, thus demonstrating its excellent reliability and stability. Furthermore, during curing monitoring of the complex three-dimensional surfaces of the Fendouzhe deep-sea submersible, the unit's sensitivity is close to that of conventional planar monitoring equipment, decreasing by only 0.4%. The proposed online nondestructive monitoring technology demonstrates high sensitivity, high monitoring accuracy, and high reliability during surface monitoring, thus enabling long-term curing monitoring under complex nonplanar conditions.
Collapse
Affiliation(s)
- Wei Wang
- School of Electrical Engineering, Tiangong University, Tianjin 300387, China
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Bowen Zhang
- School of Electrical Engineering, Tiangong University, Tianjin 300387, China
| | - Haonan Feng
- School of Electrical Engineering, Tiangong University, Tianjin 300387, China
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zihong Wei
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zhuhang Dai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hai Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Haoxiang Ma
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yang Yang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
21
|
Zhang D, Huang X, Meng W, Yuan J, Guo F, Xu J, Zhang Y, Pang R, Shang Y, Cao A. Room-Temperature Flexible CNT/Fe 2O 3 Film Sensor for ppb-Level H 2S Detection. ACS Sens 2024; 9:5197-5205. [PMID: 39356476 DOI: 10.1021/acssensors.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Carbon nanotubes (CNTs) had room temperature response, large surface area, and excellent mechanical properties, making them favorable for the design of flexible, wearable, and portable gas sensors. However, CNTs were lacking in response and selective response to different gases, such as H2S. Here, we demonstrated a flexible H2S ppb-level gas sensor based on a carbon nanotube/amorphous Fe2O3 (CNT/Fe2O3) film at room temperature, which was fabricated via a simple one-step solvent-thermal method. The CNT/Fe2O3 film gas sensor exhibited a high selective response to H2S (with a response of 55.1% to 100 ppb H2S), rapid reversible response at room temperature (with a response time of ∼127 s to 100 ppb H2S), and low limit of detection to about 2 ppb. Additionally, the CNT/Fe2O3 film maintained good sensing performance under various bending conditions and could be further fabricated into the fiber gas sensor device via wet stretching, retaining response at the ppb level (with a response of 18.6% to 100 ppb H2S). This research on a flexible gas sensor device based on the CNT film/fiber opened up new possibilities for wearable portable electronic device applications.
Collapse
Affiliation(s)
- Ding Zhang
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Xinguang Huang
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Weixue Meng
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Junge Yuan
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Fengmei Guo
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Jie Xu
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjiu Zhang
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Rui Pang
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Yuanyuan Shang
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Liu X, Li K, Qian S, Niu L, Chen W, Wu H, Song X, Zhang J, Bi X, Yu J, Hou X, He J, Chou X. A high-sensitivity flexible bionic tentacle sensor for multidimensional force sensing and autonomous obstacle avoidance applications. MICROSYSTEMS & NANOENGINEERING 2024; 10:149. [PMID: 39428516 PMCID: PMC11491448 DOI: 10.1038/s41378-024-00749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 10/22/2024]
Abstract
Bionic tentacle sensors are important in various fields, including obstacle avoidance, human‒machine interfaces, and soft robotics. However, most traditional tentacle sensors are based on rigid substrates, resulting in difficulty in detecting multidirectional forces originating from the external environment, which limits their application in complex environments. Herein, we proposed a high-sensitivity flexible bionic tentacle sensors (FBTSs). Specifically, the FBTS featured an ultrahigh sensitivity of 37.6 N-1 and an ultralow detection limit of 2.4 mN, which benefited from the design of a whisker-like signal amplifier and crossbeam architecture. Moreover, the FBTS exhibited favorable linearity (R2 = 0.98) and remarkable durability (more than 5000 cycles). This was determined according to the improvement in the uniformity of the sensing layer through a high-shear dispersion process. In addition, the FBTS could accurately distinguish the direction of external stimuli, resulting in the FBTS achieving roughness recognition, wind speed detection and autonomous obstacle avoidance. In particular, the ability of autonomous obstacle avoidance was suitably demonstrated by leading a bionic rat through a maze with the FBTS. Notably, the proposed FBTS could be widely applied in tactile sensing, orientation perception, and obstacle avoidance.
Collapse
Affiliation(s)
- Xinyu Liu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Kunru Li
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Shuo Qian
- School of Software, North University of China, 030051, Taiyuan, China
| | - Lixin Niu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Wei Chen
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Hui Wu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Xiaoguang Song
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Jie Zhang
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Xiaoxue Bi
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Junbin Yu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| | - Xiaojuan Hou
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China.
| | - Jian He
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China.
| | - Xiujian Chou
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, 030051, Taiyuan, China
| |
Collapse
|
23
|
Chen WK, Zhao X, Liu XY, Xie XY, Zeng Y, Cui G. Photoinduced Nonadiabatic Dynamics of a Single-Walled Carbon Nanotube-Porphyrin Complex. J Phys Chem A 2024; 128:8803-8815. [PMID: 39344670 DOI: 10.1021/acs.jpca.4c04544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) have gained a lot of attention in the past few decades due to their promising optoelectronic properties. In addition, SWCNTs can form complexes that have good chemical stability and transport properties with other optical functional materials through noncovalent interactions. Elucidating the detailed mechanism of these complexes is of great significance for improving their optoelectronic properties. Nevertheless, simulating the photoinduced dynamics of these complexes accurately is rather challenging since they usually contain hundreds of atoms. To save computational efforts, most of the previous works have ignored the excitonic effects by employing nonadiabatic carrier (electron and hole) dynamics simulations. To properly consider the influence of excitonic effects on the photoinduced ultrafast processes of the SWCNT-tetraphenyl porphyrin (H2TPP) complex and to further improve the computational efficiency, we developed the nonadiabatic molecular dynamics (NAMD) method based on the extended tight binding-based simplified Tamm-Dancoff approximation (sTDA-xTB), which is applied to study the ultrafast photoinduced dynamics of the noncovalent SWCNT-porphyrin complex. In combination with statically electronic structure calculations, the present work successfully reveals the detailed microscopic mechanism of the ultrafast excitation energy transfer process of the complex. Upon local excitation on the H2TPP molecule, an ultrafast energy transfer process occurs from H2TPP (SWCNT-H2TPP*) to SWCNT (SWCNT*-H2TPP) within 10 fs. Then, two slower processes corresponding to the energy transfer from H2TPP to SWCNT and hole transfer from H2TPP to SWCNT take place in the 1 ps time scale. The sTDA-xTB-based electronic structure calculation and NAMD simulation results not only match the previous experimental observations from static and transient spectra but also provide more insights into the detailed information on the complex's photoinduced dynamics. Therefore, the sTDA-xTB-based NAMD method is a powerful theoretical tool for studying the ultrafast photoinduced dynamics in large extended systems with a large number of electronically excited states, which could be helpful for the subsequent design of SWCNT-based functional materials.
Collapse
Affiliation(s)
- Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xi Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiao-Ying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Choi SH, Lee JS, Lee S, Jeong HS, Choi SJ. Dual-Hydrogen Bond Donor-Functionalized Carbon Nanotube Fibers: Enhancing Anion-Sensing Performance Through Functionalization Approaches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405070. [PMID: 39388442 DOI: 10.1002/smll.202405070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Indexed: 10/12/2024]
Abstract
In this study, chemiresistive anion sensors are developed using carbon nanotube fibers (CNTFs) functionalized with squaramide-based dual-hydrogen bond donors (SQ1 and SQ2) and systematically compared the sensing properties attained by two different functionalization methods. Model structures of the selectors are synthesized based on a squaramide motif incorporating an electron-withdrawing group. Anion-binding studies of SQ1 and SQ2 are conducted using UV-vis titrations to elucidate the anion-binding properties of the selectors. These studies revealed that the chemical interaction with acetate (AcO-) induced the deprotonation of both SQ1 and SQ2. Selectors are functionalized onto the CNTFs using either covalent or non-covalent functionalization. For covalent functionalization, SQ1 is chemically formed on the surface of the CNTFs, whereas SQ2 is non-covalently functionalized to the surface of the CNTFs assisted by poly(4-vinylpyridine). The results showed that non-covalently functionalized CNTFs exhibited a 3.6-fold higher sensor response toward 33.33 mm AcO- than covalently functionalized CNTFs. The selector library is expanded using diverse selectors, such as TU- and CA-based selectors, which are non-covalently functionalized on CNTFs and presented selective AcO--sensing properties. To demonstrate on-site and real-time anion detection, anion sensors are integrated into a sensor module that transferred the sensor resistance to a smartphone via wireless communication.
Collapse
Affiliation(s)
- Seung-Ho Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Joon-Seok Lee
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sungju Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Hyeon Su Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Jeonrabuk-do, Wanju-gun, 55324, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
25
|
Yang ZM, Han X, Zhang MH, Liu C, Liu QL, Tang L, Gao F, Su J, Ding M, Zuo JL. Dynamic Interchain Motion in 1D Tetrathiafulvalene-Based Coordination Polymers for Highly Sensitive Molecular Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402255. [PMID: 38837847 DOI: 10.1002/smll.202402255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The application of electrically conductive 1D coordination polymers (1D CPs) in nanoelectronic molecular recognition is theoretically promising yet rarely explored due to the challenges in their synthesis and optimization of electrical properties. In this regard, two tetrathiafulvalene-based 1D CPs, namely [Co(m-H2TTFTB)(DMF)2(H2O)]n (Co-m-TTFTB), and {[Ni(m-H2TTFTB)(CH3CH2OH)1.5(H2O)1.5]·(H2O)0.5}n (Ni-m-TTFTB) are successfully constructed. The shorter S···S contacts between the [M(solvent)3(m-H2TTFTB)]n chains contribute to a significant improvement in their electrical conductivities. The powder X-ray diffraction (PXRD) under different organic solvents reveals the flexible and dynamic structural characteristic of M-m-TTFTB, which, combined with the 1D morphology, lead to their excellent performance for sensitive detection of volatile organic compounds. Co-m-TTFTB achieves a limit of detection for ethanol vapor down to 0.5 ppm, which is superior to the state-of-the-art chemiresistive sensors based on metal-organic frameworks or organic polymers at room temperature. In situ diffuse reflectance infrared Fourier transform spectroscopy, PXRD measurements and density functional theory calculations reveal the molecular insertion sensing mechanism and the corresponding structure-function relationship. This work expands the applicable scenario of 1D CPs and opens a new realm of 1D CP-based nanoelectronic sensors for highly sensitive room temperature gas detection.
Collapse
Affiliation(s)
- Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao Han
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Hang Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qing-Long Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Lingyu Tang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
26
|
Feng B, Zhao W, Zhang M, Fan X, He T, Luo Q, Yan J, Sun J. Lignin-Based Carbon Nanomaterials for Biochemical Sensing Applications. Chem Asian J 2024; 19:e202400611. [PMID: 38995858 DOI: 10.1002/asia.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Lignin-based carbon nanomaterials offer several advantages, including biodegradability, biocompatibility, high specific surface area, ease of functionalization, low toxicity, and cost-effectiveness. These materials show promise in biochemical sensing applications, particularly in the detection of metal ions, organic compounds, and human biosignals. Various methods can be employed to synthesize carbon nanomaterials with different dimensions ranging from 0D-3D, resulting in diverse structures and physicochemical properties. This study provides an overview of the preparation techniques and characteristics of multidimensional (0-3D) lignin-based carbon nanomaterials, such as carbon dots (CDs), carbon nanotubes (CNTs), graphene, and carbon aerogels (CAs). Additionally, the sensing capabilities of these materials are compared and summarized, followed by a discussion on the potential challenges and future prospects in sensor development.
Collapse
Affiliation(s)
- Baofang Feng
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063015, P.R. China
| | - Min Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xu Fan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Ting He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Qizhen Luo
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jipeng Yan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Beijing Engineering Research Center of Cellulose and Its Derivatives, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
27
|
Dolan M, Hughes LN, Tvrdy K. Hydrogel Composition Effects on Performance as Single-Walled Carbon Nanotube Purification Media. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:15923-15936. [PMID: 39371221 PMCID: PMC11448389 DOI: 10.1021/acs.jpcc.4c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Hydrogel microsphere media allows for postsynthetic purification of single-walled carbon nanotubes (SWNTs), affording characterization and application of their unique (n,m) chirality-dependent properties. This work reports the characterization of five hydrogel resins, Sephacryl S-100, S-200, S-300, S-400, and S-500, and the implementation of each as a SWNT purification medium. The physiochemical properties of each resin were explored spectroscopically through elemental analyses and with both light and electron microscopy. Both surface porosity and hydrogel swelling ratio were found to increase as the concentration of component allyl dextran (aDEX) decreased, each with an increasing Sephacryl S-number. Conversely, invariant properties included a hydrogel microsphere size distribution and concentrations of components methylenebisacrylamide and ammonium persulfate. When employed within gel-based SWNT purification schemes in overloading conditions, Sephacryl formulations of larger S-number adsorbed fewer SWNTs, but the chirality dependence of SWNT adsorption and elution was approximately consistent across all resins. In underloading conditions, approximately one-third of introduced SWNTs passed through each resin unabsorbed, while the resins showed varying chirality-dependent adsorption efficiencies. These observations collectively identify aDEX-rich gel regions as being responsible for SWNT purification, along with a SWNT-exclusive parameter other than chirality (speculated as length) that convolutes the effectiveness of gel-based single-chirality purification.
Collapse
Affiliation(s)
- Marshal Dolan
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Laurique N Hughes
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Kevin Tvrdy
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
28
|
Ono S, Kinoshita T, Iwasaki H, Imai Y, Fukuhara G. Ratiometric Chemosensors That Are Capable of Quantifying Hydrostatic Pressure Stimulus: A Case of Porphyrin Tweezers. ACS PHYSICAL CHEMISTRY AU 2024; 4:510-521. [PMID: 39364353 PMCID: PMC11447962 DOI: 10.1021/acsphyschemau.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Investigating chemosensors that are capable of quantifying pressure in solution, particularly hydrostatic pressure, which is one of the mechanical forces, is an attractive challenge in chemistry from the viewpoint of "mechano"-science. Herein, we report the investigation of chiral porphyrin tweezers, Por-Cy and Por-DPhEt, comprising different flexible linkers; Por-Cy and Por-DPhEt displayed distinct ratiometric signaling by using the higher excited S2 state with a standard excited S1 level. A novel operative mechanism using the S1/S2 fluorescence ratio was revealed using hydrostatic pressure-ultraviolet/visible (UV/vis), fluorescence/excitation, circular dichroism spectroscopy, and lifetime measurements, which can be further controlled by the open-closed conformational change inherent in the tweezer skeleton. Furthermore, the fluorescent chiral tweezers exhibited a promising |g lum| of 2.9 × 10-3, indicating that they are potential candidates for sensory applications in chiral environments. This study provides opportunities for the development of smart pressure-responsive chemosensors.
Collapse
Affiliation(s)
- Seiya Ono
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomokazu Kinoshita
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hiroshi Iwasaki
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitane Imai
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Gaku Fukuhara
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
29
|
Fujimoto Y. Formation, Structure, Electronic, and Transport Properties of Nitrogen Defects in Graphene and Carbon Nanotubes. MICROMACHINES 2024; 15:1172. [PMID: 39337832 PMCID: PMC11434441 DOI: 10.3390/mi15091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The substitutional doping of nitrogen is an efficient way to modulate the electronic properties of graphene and carbon nanotubes (CNTs). Therefore, it could enhance their physical and chemical properties as well as offer potential applications. This paper provides an overview of the experimental and theoretical investigations regarding nitrogen-doped graphene and CNTs. The formation of various nitrogen defects in nitrogen-doped graphene and CNTs, which are identified by several observations, is reviewed. The electronic properties and transport characteristics for nitrogen-doped graphene and CNTs are also reviewed for the development of high-performance electronic device applications.
Collapse
Affiliation(s)
- Yoshitaka Fujimoto
- Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
Natsuki J, Lei XW, Wu S, Natsuki T. Modeling and Vibration Analysis of Carbon Nanotubes as Nanomechanical Resonators for Force Sensing. MICROMACHINES 2024; 15:1134. [PMID: 39337794 PMCID: PMC11434519 DOI: 10.3390/mi15091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024]
Abstract
Carbon nanotubes (CNTs) have attracted considerable attention as nanomechanical resonators because of their exceptional mechanical properties and nanoscale dimensions. In this study, a novel CNT-based probe is proposed as an efficient nanoforce sensing nanomaterial that detects external pressure. The CNT probe was designed to be fixed by clamping tunable outer CNTs. By using the mobile-supported outer CNT, the position of the partially clamped outer CNT can be controllably shifted, effectively tuning its resonant frequency. This study comprehensively investigates the modeling and vibration analysis of gigahertz frequencies with loaded CNTs used in sensing applications. The vibration frequency of a partially clamped CNT probe under axial loading was modeled using continuum mechanics, considering various parameters such as the clamping location, length, and boundary conditions. In addition, the interaction between external forces and CNT resonators was investigated to evaluate their sensitivity for force sensing. Our results provide valuable insights into the design and optimization of CNT-based nanomechanical resonators for high-performance force sensing applications.
Collapse
Affiliation(s)
- Jun Natsuki
- Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan
| | - Xiao-Wen Lei
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Shihong Wu
- Department of Electrical and Electronic Engineering, College of Intelligent Science and Engineering, Yantai Nanshan University, Longkou 265713, China
| | - Toshiaki Natsuki
- Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan
- College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| |
Collapse
|
31
|
Ranne M, Ourabi M, Lessard BH, Adronov A. CO 2 Responsive Thin-Film Transistors Using Conjugated Polymer Complexes with Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46600-46608. [PMID: 39185575 DOI: 10.1021/acsami.4c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Introduction of amidine groups within the side chains of a conjugated polyfluorene was carried out using copper-catalyzed azide-alkyne cycloaddition. The resulting polymer was shown to form strong supramolecular interactions with the sidewalls of single-walled carbon nanotubes (SWNTs), forming polymer-nanotube complexes that exhibited solubility in various organic solvents. It was shown that the polymer-SWNT complexes were responsive to CO2, where the amidine groups formed amidinium bicarbonate salts upon CO2 exposure, causing the polymer-SWNT complexes to precipitate. This reaction could be reversed by bubbling N2 through the solution, which caused the polymer-SWNT complexes to redissolve. Incorporation of the polymer-SWNT complexes within thin-film transistor (TFT) devices as the active layer resulted in a CO2-responsive TFT sensor. It was found that the sensory device underwent a reversible shift in its threshold voltage from 5 to -1 V as well as a 1 order of magnitude decrease in its on-current upon exposure to CO2. This work shows that conjugated polymer-wrapped SWNTs having sensory elements within the polymer side chain can be used as the active layer within functional SWNT-based TFT sensors.
Collapse
Affiliation(s)
- Mokhamed Ranne
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - May Ourabi
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
32
|
Zhang Y, Huang C, Xiong R. Advanced materials for intracellular delivery of plant cells: Strategies, mechanisms and applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 160:100821. [DOI: 10.1016/j.mser.2024.100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Nasiri H, Abbasian K, Salahandish M, Elyasi SN. Sensitive surface plasmon resonance biosensor by optimized carboxylate functionalized carbon nanotubes/chitosan for amlodipine detecting. Talanta 2024; 276:126249. [PMID: 38743970 DOI: 10.1016/j.talanta.2024.126249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The adoption of biophotonic sensing technologies holds significant promise for application in health care and biomedical industries in all aspects of human life. Then, this piece of writing employs the powerful effective medium theory and FDTD simulation to anticipate the most favorable state and plasmonic attributes of a magnificent nanocomposite, comprising carboxylate functionalized carbon nanotubes and chitosan (CS). Furthermore, it thoroughly explores the exhibited surface plasmon resonance behaviors of this composite versus the quantity of CS variation. Subsequently, enlightening simulations are conducted on the nanocomposite with a delicate layer and a modified golden structure integrating as a composite. The intricate simulations eventually unveil an optimal combination to pave the way for crafting an exceptional specific biosensor that far surpasses its counterpart as a mere Au thin layer in terms of excellence. The proposed biosensor demonstrated linear behavior across a wide range from 0.01 μM to 150 μM and achieved a detection limit of 10 nM, with a sensitivity of 134◦RIU-1.
Collapse
Affiliation(s)
- Hassan Nasiri
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
| | - Karim Abbasian
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Mohammad Salahandish
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
34
|
Kinoshita T, Sakamaki D, Fukuhara G. Multidimensional Dynamic Control of Supramolecular Phthalocyanine Gear: A Self-Assembly System Responding to Solvent, Temperature, and Hydrostatic Pressure. ACS OMEGA 2024; 9:34719-34724. [PMID: 39157123 PMCID: PMC11325503 DOI: 10.1021/acsomega.4c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Smart supramolecular materials that respond toward various external stimuli hold great promise for various applications in molecular memories, logic gates, and drug delivery systems. In this study, the active control over the self-assembly of phathalocyanine gear was achieved by combining temperature and hydrostatic pressure stimuli with a dynamic solvent. Eventually, we found that the supramolecular gear can behave as a logic gate; "engaged" (+1) or "not" (0) state is switchable by solvent, temperature, and hydrostatic pressure. This paper describes not only new aspects for the rational design of smart stimuli-responsive supramolecular materials but also the significance of multidimensional dynamic control.
Collapse
Affiliation(s)
- Tomokazu Kinoshita
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Daisuke Sakamaki
- Department
of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Gaku Fukuhara
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
35
|
Khan R, Rahman NU, Hayat MF, Ghernaout D, Salih AAM, Ashraf GA, Samad A, Mahmood MA, Rahman N, Sohail M, Iqbal S, Abdullaev S, Khan A. Unveiling cutting-edge developments: architectures and nanostructured materials for application in optoelectronic artificial synapses. NANOSCALE 2024; 16:14589-14620. [PMID: 39011743 DOI: 10.1039/d4nr00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
One possible result of low-level characteristics in the traditional von Neumann formulation system is brain-inspired photonics technology based on human brain idea. Optoelectronic neural devices, which are accustomed to imitating the sensory role of biological synapses by adjusting connection measures, can be used to fabricate highly reliable neurologically calculating devices. In this case, nanosized materials and device designs are attracting attention since they provide numerous potential benefits in terms of limited cool contact, rapid transfer fluidity, and the capture of photocarriers. In addition, the combination of classic nanosized photodetectors with recently generated digital synapses offers promising results in a variety of practical applications, such as data processing and computation. Herein, we present the progress in constructing improved optoelectronic synaptic devices that rely on nanomaterials, for example, 0-dimensional (quantum dots), 1-dimensional, and 2-dimensional composites, besides the continuously developing mixed heterostructures. Furthermore, the challenges and potential prospects linked with this field of study are discussed in this paper.
Collapse
Affiliation(s)
- Rajwali Khan
- National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
- Department of Physics, University of Lakki Marwat, Lakki Marwat, 2842, KP, Pakistan
| | - Naveed Ur Rahman
- National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
- Department of Physics, University of Lakki Marwat, Lakki Marwat, 2842, KP, Pakistan
| | | | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il 81441, Saudi Arabia
- Chemical Engineering Department, Faculty of Engineering, University of Blida, PO Box 270, Blida 09000, Algeria
| | - Alsamani A M Salih
- Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il 81441, Saudi Arabia
- Department of Chemical Engineering, Faculty of Engineering, Al Neelain University, Khartoum 12702, Sudan
| | | | - Abdus Samad
- Department of Physics, University of Lakki Marwat, Lakki Marwat, 2842, KP, Pakistan
| | | | - Nasir Rahman
- Department of Physics, University of Lakki Marwat, Lakki Marwat, 2842, KP, Pakistan
| | - Mohammad Sohail
- Department of Physics, University of Lakki Marwat, Lakki Marwat, 2842, KP, Pakistan
| | - Shahid Iqbal
- Department of Physics, University of Wisconsin, La Crosse, WI 54601, USA
| | - Sherzod Abdullaev
- Senior Researcher, Engineering School, Central Asian University, Tashkent, Uzbekistan
- Senior Researcher, Scientific and Innovation Department, Tashkent State Pedagogical University, Uzbekistan
| | - Alamzeb Khan
- Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Ono Y, Yamamoto E, Yasuoka K. Water structures in tip-charged carbon nanotubes. J Chem Phys 2024; 161:054702. [PMID: 39087547 DOI: 10.1063/5.0218315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
Carbon nanotubes (CNTs) have potential applications in separation membranes and nanofluidic devices. It is well known that the behavior of water molecules confined in CNTs is affected by surface functional groups and external electric fields, leading to structural changes. The understanding of these structural changes of water within various CNTs is crucial, particularly in the context of material separation. While there have been many investigations into the effects of individual specific functional groups, a comprehensive understanding of the effect of these functional groups and the electric fields they generate on water molecules remains elusive. In this study, we investigate the properties of water molecules in tip-charged CNTs of (8,8), (10,10), and (12,12) chiral vectors with positive charges at one tip and negative charges at the other tip. Abstraction of ionized functional groups as tip charges enables a comprehensive understanding that is independent of individual functional groups. The symmetrically arranged tip-charges spontaneously generate a strong and symmetric electric field in the CNTs. However, the strength and directionality of the electric field are non-uniform and complex. In the interiors of (8,8) and (10,10) tip-charged CNTs, helical and square structures, which have disturbances caused by the non-uniformity of the electric field, are observed. The properties of the water molecules differed significantly in the center of the CNTs and near positive and negative charges, despite the electric field symmetry. In (12,12) tip-charged CNTs with 12 charges, a local ring structure is observed in the vicinity of negative charges but not in the vicinity of positive charges. It is concluded that the water structures in tip-charged CNTs have different characteristics from those in plain CNTs under a uniform electric field.
Collapse
Affiliation(s)
- Yûi Ono
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
37
|
Yan W, Liu A, Luo Y, Chen Z, Wu G, Chen J, Huang Q, Yang Y, Ye M, Guo W. A Highly Sensitive and Stretchable Core-Shell Fiber Sensor for Gesture Recognition and Surface Pressure Distribution Monitoring. Macromol Rapid Commun 2024; 45:e2400109. [PMID: 38594026 DOI: 10.1002/marc.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/04/2024] [Indexed: 04/11/2024]
Abstract
This work reports a highly-strain flexible fiber sensor with a core-shell structure utilizes a unique swelling diffusion technique to infiltrate carbon nanotubes (CNTs) into the surface layer of Ecoflex fibers. Compared with traditional blended Ecoflex/CNTs fibers, this manufacturing process ensures that the sensor maintains the mechanical properties (923% strain) of the Ecoflex fiber while also improving sensitivity (gauge factor is up to 3716). By adjusting the penetration time during fabrication, the sensor can be customized for different uses. As an application demonstration, the fiber sensor is integrated into the glove to develop a wearable gesture language recognition system with high sensitivity and precision. Additionally, the authors successfully monitor the pressure distribution on the curved surface of a soccer ball by winding the fiber sensor along the ball's surface.
Collapse
Affiliation(s)
- Weizhe Yan
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
- Jiujiang Research Institute, Xiamen University, Jiujiang, 332000, P. R. China
| | - Andeng Liu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
- Jiujiang Research Institute, Xiamen University, Jiujiang, 332000, P. R. China
| | - Yingjin Luo
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
- Jiujiang Research Institute, Xiamen University, Jiujiang, 332000, P. R. China
| | - Zhuomin Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Guoxu Wu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianfeng Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
- Jiujiang Research Institute, Xiamen University, Jiujiang, 332000, P. R. China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Meidan Ye
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Wenxi Guo
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
- Jiujiang Research Institute, Xiamen University, Jiujiang, 332000, P. R. China
| |
Collapse
|
38
|
Valleroy C, d'Ambrosio R, Blanc C, Anglaret E, Firlej L, Wexler C. Temperature dependence of the near infrared absorption spectrum of single-wall carbon nanotubes dispersed by sodium dodecyl sulfate in aqueous solution: experiments and molecular dynamics study. J Mol Model 2024; 30:286. [PMID: 39066924 DOI: 10.1007/s00894-024-06068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
CONTEXT Single-wall carbon nanotubes (SWCNT) dispersed in water with the help of sodium dodecyl sulfate (SDS) surfactants exhibit a temperature dependent near infrared (NIR) exciton spectrum. Due to their biocompatibility and NIR spectrum falling within the transparent window for biological tissue, SWCNTs hold potential for sensing temperature inside cells. Here, we seek to elucidate the mechanism responsible for this temperature dependence, focusing on changes in the water coverage of the SWCNT as the surfactant structure changes with temperature. We compare optical absorption spectra in the UV-Vis-IR range and fully atomistic molecular dynamics (MD) simulations. The observed temperature dependence of the spectra for various SWCNTs may be attributed to changes in the dielectric environment and its impact on excitons. MD simulations reveal that the adsorbed SDS molecules effectively shield the SWCNT, with ~ 70% of water molecules removed from the first two adlayers; this coverage shows a modest temperature dependence. Although we are not able to directly demonstrate how this influences the NIR spectrum, this represents a potential pathway given the strong influence of the water environment on the excitons in SWCNTs. METHODS Optical absorption measurements were carried out in the UV-Vis-NIR range using a Varian Cary 5000 spectrophotometer in a temperature-controlled environment. PeakFit™ v. 4.06 was used as peak-fitting program in the spectral range 900-1400 nm (890-1380 meV) as a function of the temperature. Fully atomistic molecular dynamics simulations were conducted using the NAMD2 package. The CHARMM force field comprising two-body bond stretching, three-body angle deformation, four-body dihedral angle deformation, and nonbonded interactions (electrostatic and Lennard-Jones 6-16 potentials) was employed.
Collapse
Affiliation(s)
- Corey Valleroy
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA.
| | | | | | - Eric Anglaret
- L2C, Université de Montpellier, CNRS, Montpellier, France
| | - Lucyna Firlej
- L2C, Université de Montpellier, CNRS, Montpellier, France
| | - Carlos Wexler
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
- Materials Science & Engineering Institute, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
39
|
Jo YM, Kim DH, Wang J, Oppenheim JJ, Dincă M. Humidity-Mediated Dual Ionic-Electronic Conductivity Enables High Sensitivity in MOF Chemiresistors. J Am Chem Soc 2024; 146:20213-20220. [PMID: 38985955 DOI: 10.1021/jacs.4c05343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In the presence of water, the electrically conductive metal-organic framework (MOF) Cu3HHTT2 (H6HHTT = 2,3,7,8,12,13-hexahydroxy-4b1,5,10,15-tetraazanaphtho[1,2,3-gh]tetraphene) provides a conduit for proton transport, thereby becoming a dual ionic-electronic conductor. Owing to its dual conducting nature and its high density of imine and open metal sites, the MOF operates as a particularly sensitive chemiresistor, whose sensing mechanism changes with relative humidity. Thus, the interaction of NH3 gas with the MOF under low humidity promotes proton transport, which translates to high sensitivity for ammonia detection. Conversely, NO2 gas hinders proton conductivity, even under high relative humidity conditions, leading to large resistance variations in the humid regime. This dual ionic-electronic conduction-based gas sensor provides superior sensitivity compared to other conventional chemiresistors under similar conditions and highlights its potential as a platform for room-temperature gas sensors.
Collapse
Affiliation(s)
- Young-Moo Jo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dong-Ha Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jiande Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Luo Y, Kasturi PR, Barwa TN, Dempsey E, Breslin CB. Amplifying Flutamide Sensing through the Synergetic Combination of Actinidia-Derived Carbon Particles and WS 2 Platelets. ACS OMEGA 2024; 9:29598-29608. [PMID: 39005762 PMCID: PMC11238225 DOI: 10.1021/acsomega.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The development of electrochemical sensors for flutamide detection is a crucial step in biomedical research and environmental monitoring. In this study, a composite of Actinidia-derived carbon particles (CPs) and tungsten disulfide (WS2) was formed and used as an electrocatalyst for the electrochemical detection of flutamide. The CPs had an average diameter of 500 nm and contained surface hydroxyl and carbonyl groups. These groups may help anchor the CPs onto the WS2 platelets, resulting in the formation of a CPs-WS2 nanocomposite with a high surface area and a conducting network, enabling electron transfer. Using the CPs-WS2 composite supported at a glassy carbon electrode, a linear concentration range extending from 1 nM to 104 μM, a limit of detection of 0.74 nM, and a sensitivity of 26.9 ± 0.7 μA μM-1 cm-2 were obtained in the detection of flutamide in a phosphate buffer. The sensor showed good recovery, ranging from 88.47 to 95.02%, in river water samples, and exhibited very good selectivity in the presence of inorganic ions, including Al3+, Co2+, Cu2+, Fe3+, Zn2+, NO3 -, SO4 2-, CO3 2-, and Cl-.
Collapse
Affiliation(s)
- Yiran Luo
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - P Rupa Kasturi
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Tara N Barwa
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Eithne Dempsey
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
- Kathleen Lonsdale Institute, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Carmel B Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
- Kathleen Lonsdale Institute, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| |
Collapse
|
41
|
Dey K, Koner K, Mukhopadhyay RD, Shetty D, Banerjee R. Porous Organic Nanotubes: Chemistry of One-Dimensional Space. Acc Chem Res 2024; 57:1839-1850. [PMID: 38886130 DOI: 10.1021/acs.accounts.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ConspectusOne-dimensional organic nanotubes feature unique properties, such as confined chemical environments and transport channels, which are highly desirable for many applications. Advances in synthetic methods have enabled the creation of different types of organic nanotubes, including supramolecular, hydrogen-bonded, and carbon nanotube analogues. However, challenges associated with chemical and mechanical stability along with difficulties in controlling aspect ratios remain a significant bottleneck. The fascination with structured porous materials has paved the way for the emergence of reticular solids such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and organic cages. Reticular materials with tubular morphology promise architectural stability with the additional benefit of permeant porosity. Despite this, the current synthetic approaches to these reticular nanotubes focus more on structural design resulting in less reliable morphological uniformity. This Account, highlights the design motivation behind various classes of organic nanotubes, emphasizing their porous interior space. We explore the strategic assembly of organic nanotubes based on their bonding characteristics, from weak supramolecular to robust covalent interactions. Special attention is given to reticular nanotubes, which have gained prominence over the past two decades due to their distinctive micro and mesoporous structures. We examine the synergy of covalent and noncovalent interactions in constructing assembly of these nanotube structures.This Account furnishes a comprehensive overview of our efforts and advancements in developing porous covalent organic nanotubes (CONTs). We describe a general synthetic approach for creating robust imine-linked nanotubes based on the reticular chemistry principles. The use of spatially oriented tetratopic triptycene-based amine and linear ditopic aldehyde building blocks facilitates one-dimensional nanotube growth. The interplay between directional covalent bonds and solvophobic interactions is crucial for forming uniform, well-defined, and high aspect ratio nanotubes. The nanotubes derive their permeant porosity and thermal and chemical stability from their covalent architecture. We also highlight the adaptability of our synthetic methodology to guide the transformation of one-dimensional nanotubes to toroidal superstructures and two-dimensional thin fabrics. Such morphological transformation can be directed by tuning the reaction time or incorporating additional intermolecular interactions to control the intertwining behavior of individual nanotubes. The cohesion of covalent and noncovalent interactions in the tubular nanostructures manifests superior viscoelastic mechanical properties in the assembled CONT fabrics. We establish a strong correlation between structural framework design and nanostructures by translating reticular synthesis to morphological space and gaining insights into the assembly processes. We anticipate that the present Account will lay the foundation for exploring new designs and chemistry of organic nanotubes for many application platforms.
Collapse
Affiliation(s)
- Kaushik Dey
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Kalipada Koner
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Rahul Dev Mukhopadhyay
- Department of Chemistry, Faculty of Engineering & Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Tamil Nadu India
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University Science and Technology, Abu Dhabi, 127788 United Arab Emirates
- Center for Catalysis & Separations (CeCaS), Khalifa University Science and Technology, Abu Dhabi, 127788 United Arab Emirates
| | - Rahul Banerjee
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
- College of Science, Korea University, 145 Anam-ro Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
42
|
Gao L, Tian Y, Gao W, Xu G. Recent Developments and Challenges in Solid-Contact Ion-Selective Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:4289. [PMID: 39001071 PMCID: PMC11244314 DOI: 10.3390/s24134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) have the advantages of easy miniaturization, even chip integration, easy carrying, strong stability, and more favorable detection in complex environments. They have been widely used in conjunction with portable, wearable, and intelligent detection devices, as well as in on-site analysis and timely monitoring in the fields of environment, industry, and medicine. This article provides a comprehensive review of the composition of sensors based on redox capacitive and double-layer capacitive SC-ISEs, as well as the ion-electron transduction mechanisms in the solid-contact (SC) layer, particularly focusing on strategies proposed in the past three years (since 2021) for optimizing the performance of SC-ISEs. These strategies include the construction of ion-selective membranes, SC layer, and conductive substrates. Finally, the future research direction and possibilities in this field are discussed and prospected.
Collapse
Affiliation(s)
- Lili Gao
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
| | - Ye Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wenyue Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
43
|
Jang YW, Kim J, Shin J, Jo JW, Shin JW, Kim YH, Cho SW, Park SK. Autonomous Artificial Olfactory Sensor Systems with Homeostasis Recovery via a Seamless Neuromorphic Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400614. [PMID: 38689548 DOI: 10.1002/adma.202400614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Neuromorphic olfactory systems have been actively studied in recent years owing to their considerable potential in electronic noses, robotics, and neuromorphic data processing systems. However, conventional gas sensors typically have the ability to detect hazardous gas levels but lack synaptic functions such as memory and recognition of gas accumulation, which are essential for realizing human-like neuromorphic sensory system. In this study, a seamless architecture for a neuromorphic olfactory system capable of detecting and memorizing the present level and accumulation status of nitrogen dioxide (NO2) during continuous gas exposure, regulating a self-alarm implementation triggered after 147 and 85 s at a continuous gas exposure of 20 and 40 ppm, respectively. Thin-film-transistor type gas sensors utilizing carbon nanotube semiconductors detect NO2 gas molecules through carrier trapping and exhibit long-term retention properties, which are compatible with neuromorphic excitatory applications. Additionally, the neuromorphic inhibitory performance is also characterized via gas desorption with programmable ultraviolet light exposure, demonstrating homeostasis recovery. These results provide a promising strategy for developing a facile artificial olfactory system that demonstrates complicated biological synaptic functions with a seamless and simplified system architecture.
Collapse
Affiliation(s)
- Young-Woo Jang
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, South Korea
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jaehyun Kim
- Department of Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jaewon Shin
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, South Korea
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jeong-Wan Jo
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Jong Wook Shin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung Woon Cho
- Department of Advanced Components and Materials Engineering, Sunchon National University, Sunchon, 57922, Republic of Korea
| | - Sung Kyu Park
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, South Korea
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
44
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
45
|
Yu X, Adronov A. Conjugated Polymers with Self-Immolative Sidechain Linkers for Carbon Nanotube Dispersion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310257. [PMID: 38497846 DOI: 10.1002/smll.202310257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Indexed: 03/19/2024]
Abstract
Single-walled carbon nanotubes (SWNTs) are promising materials for generating high-performance electronic devices. However, these applications are greatly restricted by their lack of purity and solubility. Commercially available SWNTs are a mixture of semi-conducting (sc-) and metallic (m-) SWNTs and are insoluble in common solvents. Conjugated polymers can selectively disperse either sc- or m-SWNTs and increase their solubility; however, the conductivity of conjugated polymer-wrapped SWNTs is largely affected by the polymer side chains. Here, a poly(fluorene-co-phenylene) polymer that contains a self-immolative linker as part of its sidechains is reported. The self-immolative linker is stabilized with a tert-butyldimethylsilyl ether group that, upon treatment with tetra-n-butylammonium fluoride (TBAF), undergoes a 1,6-elimination reaction to release the sidechain. Sonication of this polymer with SWNTs in tetrahydrofuran (THF) results in concentrated dispersions that are used to prepare polymer-SWNT thin films. Treatment with TBAF caused side-chain cleavage into carbon dioxide and the corresponding diol, which can be easily removed by washing with solvent. This process is characterized by a combination of absorption and Raman spectroscopy, as well as four-point probe measurements. The conductance of the SWNT thin films increased ≈60-fold upon simple TBAF treatment, opening new possibilities for producing high-conductivity SWNT materials for numerous applications.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
46
|
Pan Y, Chen F, Li Y, Yang W, Sun L, Yi Z. A carbon nanotube metamaterial sensor showing slow light properties based on double plasmon-induced transparency. Phys Chem Chem Phys 2024; 26:16096-16106. [PMID: 38780318 DOI: 10.1039/d4cp01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this study, we proposed a bifunctional sensor of high sensitivity and slow light based on carbon nanotubes (CNTs). An array of left semicircular ring (LSR), right semicircular ring (RSR), and circular ring (CR) resonators are utilized to form the proposed metamaterial. The proposed structure can achieve double plasmon-induced transparency (PIT) effects under the excitation of a TM-polarization wave. The double PIT originated from the destructive interference between two bright modes and a dark mode. A coupled harmonic oscillator model is used to describe the destructive interference between the two bright modes and a dark mode, and the simulation results agree well with the calculated results. Moreover, we investigate the influence of the coupling distance, period, and flare angle on the PIT spectra. The relationship between the resonant frequencies, full width at half maximum (FWHM), amplitudes, quality factors (Q), and the coupling distance is also studied. Finally, a high sensitivity of 1.02 THz RIU-1 is obtained, and the transmission performance can be maintained at a good level when the incident angle is less than 40°. Thus, the sensor can cope with situations where electromagnetic waves are not perpendicular to the structure's surface. The maximum figure of merit (FOM) can reach about 8.26 RIU-1; to verify the slow light property of the device, the slow light performance of the proposed structure is investigated, and a maximum time delay (TD) of 22.26 ps is obtained. The proposed CNT-based metamaterial can be used in electromagnetically induced transparency applications, such as sensors, optical memory devices, and flexible terahertz functional devices.
Collapse
Affiliation(s)
- Yizhao Pan
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Fang Chen
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Yuchang Li
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Wenxing Yang
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Lihui Sun
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
47
|
Shang H, Song G, Zhou W, Zhang T, Zhang X, Wang Y, Xiao J, Song Y. Synthesis, Photophysical, and Optical Limiting Properties of Twistacene-Functionalized Arenes. J Phys Chem B 2024; 128:5481-5488. [PMID: 38795040 DOI: 10.1021/acs.jpcb.4c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
To realize the relationship of structure and property, four novel twistacene-functionalized arenes, namely, 1,4-bis(2,7-di-tert-butyl-9,14-bis(4-(tert-butyl)phenyl)dibenzo[de,qr]tetracen-11-yl)buta-1,3-diyne (4), 1,4-bis(3,5,10,12-tetra-tert-butyltribenzo[a,d,g]coronen-16-yl)buta-1,3-diyne (7), 1,4-bis(2,7-di-tert-butyl-9,14-bis(4-(tert-butyl)phenyl)dibenzo[de,qr]tetracen-10-yl)buta-1,3-diyne (10), 1,4-bis(3,5,10,12-tetra-tert-butyltribenzo[a,d,g]coronen-15-yl)buta-1,3-diyne (13), linked with butadiyne as π bridges have been strategically synthesized and characterized. The nonlinear optical properties are detailly examined in solution through the open-aperture Z-scan method in a comparative manner, indicating that molecules 4 and 7 exhibit better nonlinear optical responses than 10 and 13. Among them, 4 and 7 exhibit excellent optical limiting responses with limiting thresholds of 0.17 and 0.19 J/cm2, respectively, being superior to the state-of-the-art material C60. The ultrafast transient absorption test and DFT calculations suggest that the nonlinear absorption mechanisms belong to TPA-induced ESA. In addition, the effective percentage calculated from TD-DFT can provide a brief glance to evaluate the optical limiting performance.
Collapse
Affiliation(s)
- Honglin Shang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Guanzheng Song
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Wenfa Zhou
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Tianwei Zhang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xueru Zhang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yuxiao Wang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jinchong Xiao
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Yinglin Song
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
48
|
Mizuno H, Nakazawa H, Miyagawa A, Yakiyama Y, Sakurai H, Fukuhara G. Amplification sensing manipulated by a sumanene-based supramolecular polymer as a dynamic allosteric effector. Sci Rep 2024; 14:12534. [PMID: 38822045 PMCID: PMC11143208 DOI: 10.1038/s41598-024-63304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
The synthesis of signal-amplifying chemosensors induced by various triggers is a major challenge for multidisciplinary sciences. In this study, a signal-amplification system that was flexibly manipulated by a dynamic allosteric effector (trigger) was developed. Herein, the focus was on using the behavior of supramolecular polymerization to control the degree of polymerization by changing the concentration of a functional monomer. It was assumed that this control was facilitated by a gradually changing/dynamic allosteric effector. A curved-π buckybowl sumanene and a sumanene-based chemosensor (SC) were employed as the allosteric effector and the molecular binder, respectively. The hetero-supramolecular polymer, (SC·(sumanene)n), facilitated the manipulation of the degree of signal-amplification; this was accomplished by changing the sumanene monomer concentration, which resulted in up to a 62.5-fold amplification of a steroid. The current results and the concept proposed herein provide an alternate method to conventional chemosensors and signal-amplification systems.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8551, Japan
| | - Hironobu Nakazawa
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Division of Applied Chemistry, Graduate School of Engineering and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
- Division of Applied Chemistry, Graduate School of Engineering and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
49
|
Kumari A, Gupta AK, Sharma S, Jadon VS, Sharma V, Chun SC, Sivanesan I. Nanoparticles as a Tool for Alleviating Plant Stress: Mechanisms, Implications, and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1528. [PMID: 38891334 PMCID: PMC11174413 DOI: 10.3390/plants13111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Plants, being sessile, are continuously exposed to varietal environmental stressors, which consequently induce various bio-physiological changes in plants that hinder their growth and development. Oxidative stress is one of the undesirable consequences in plants triggered due to imbalance in their antioxidant defense system. Biochemical studies suggest that nanoparticles are known to affect the antioxidant system, photosynthesis, and DNA expression in plants. In addition, they are known to boost the capacity of antioxidant systems, thereby contributing to the tolerance of plants to oxidative stress. This review study attempts to present the overview of the role of nanoparticles in plant growth and development, especially emphasizing their role as antioxidants. Furthermore, the review delves into the intricate connections between nanoparticles and plant signaling pathways, highlighting their influence on gene expression and stress-responsive mechanisms. Finally, the implications of nanoparticle-assisted antioxidant strategies in sustainable agriculture, considering their potential to enhance crop yield, stress tolerance, and overall plant resilience, are discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Ashish Kumar Gupta
- ICAR—National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India;
| | - Shivika Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Vikash S. Jadon
- School of Biosciences, Swami Rama Himalayan University, JollyGrant, Dehradun 248016, Uttarakhand, India;
| | - Vikas Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Se Chul Chun
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
50
|
Li Z, Li ZH, Zhang Y, Xu X, Cheng Y, Zhang Y, Zhao J, Wei N. Highly Sensitive Weaving Sensor of Hybrid Graphene Nanoribbons and Carbon Nanotubes for Enhanced Pressure Sensing Function. ACS Sens 2024; 9:2499-2508. [PMID: 38683974 DOI: 10.1021/acssensors.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Carbon nanotubes (CNTs) hold great promise in next-generation sensors because of their remarkable physical properties. Yet, maintaining precise stacking configurations of CNTs to make full use of their remarkable properties is challenging because of their susceptibility to spontaneous reconstruction. Inspired by the weaving technology, we propose a CNT-graphene nanoribbon hybrid woven model that can maintain the specific structure of CNTs to achieve their elaborately designed function. In this study, comprehensive molecular dynamics simulations are carried out to investigate the thermal stability of the CNT-graphene hybrid woven model, as well as their potential for pressure sensing applications by utilizing the unique response of thermal transport to mechanical deformation at heterojunctions. The thermal stability is sensitive to the size of the graphene nanoribbon, and the woven structure remains stable from 200-500 K when its width is greater than 2.0 nm. Moreover, it is exciting that the sensors are effective at predicting the shapes of externally loaded objects through the analysis of the thermal conductivity distribution, which can be derived from the relationship between the thermal conduction and the pressure. Our findings shed light on the bottom-up functional design of nanomaterials and expand wider applications of high-performance nanosensors in other related fields.
Collapse
Affiliation(s)
- Zhen Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology; Jiangsu Province Engineering Research Center of Micro-Nano Additive and Subtractive Manufacturing, Institute of Advanced Technology, Jiangnan University, Wuxi 214122, China
| | - Zhi-Hui Li
- China Aerodynamics Research and Development Center, Mianyang 621000, China
- National Laboratory for Computational Fluid Dynamics, Beijing 100191, China
| | - Yue Zhang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology; Jiangsu Province Engineering Research Center of Micro-Nano Additive and Subtractive Manufacturing, Institute of Advanced Technology, Jiangnan University, Wuxi 214122, China
| | - Xujun Xu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology; Jiangsu Province Engineering Research Center of Micro-Nano Additive and Subtractive Manufacturing, Institute of Advanced Technology, Jiangnan University, Wuxi 214122, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yingyan Zhang
- School of Engineering, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia
| | - Junhua Zhao
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology; Jiangsu Province Engineering Research Center of Micro-Nano Additive and Subtractive Manufacturing, Institute of Advanced Technology, Jiangnan University, Wuxi 214122, China
| | - Ning Wei
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology; Jiangsu Province Engineering Research Center of Micro-Nano Additive and Subtractive Manufacturing, Institute of Advanced Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|