1
|
Zhong W, Budimir ZL, Johnson LO, Parkinson EI, Agarwal V. Activity and Biocatalytic Potential of an Indolylamide Generating Thioesterase. Org Lett 2024; 26:9378-9382. [PMID: 39432510 PMCID: PMC11536411 DOI: 10.1021/acs.orglett.4c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
The chemical synthesis of N-acyl indoles is hindered by the poor nucleophilicity of indolic nitrogen, necessitating the use of strongly basic reaction conditions that encumber elaboration of highly functionalized scaffolds. Herein, we describe the total chemoenzymatic synthesis of the bulbiferamide natural products by the biochemical activity reconstitution of a nonribosomal peptide synthetase assembly line-derived (NRPS-derived) thioesterase that neatly installs the macrocyclizing indolylamide. The enzyme represents a starting point for biocatalytic access to macrocyclic indolylamide peptides and natural products.
Collapse
Affiliation(s)
- Weimao Zhong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Zachary L. Budimir
- James
Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lucas O. Johnson
- James
Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Elizabeth I. Parkinson
- James
Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Borch
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vinayak Agarwal
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Cui Y, Han D, Bai X, Shi W. Development and applications of enzymatic peptide and protein ligation. J Pept Sci 2024:e3657. [PMID: 39433441 DOI: 10.1002/psc.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Chemical synthesis of complex peptides and proteins continues to play increasingly important roles in industry and academia, where strategies for covalent ligation of two or more peptide fragments to produce longer peptides and proteins in convergent manners have become critical. In recent decades, efficient and site-selective ligation strategies mediated by exploiting the biocatalytic capacity of nature's diverse toolkit (i.e., enzymes) have been widely recognized as a powerful extension of existing chemical strategies. In this review, we present a chronological overview of the development of proteases, transpeptidases, transglutaminases, and ubiquitin ligases. We survey the different properties between the ligation reactions of various enzymes, including the selectivity and efficiency of the reaction, the ligation "scar" left in the product, the type of amide bond formed (natural or isopeptide), the synthetic availability of the reactants, and whether the enzymes are orthogonal to another. This review also describes how the inherent specificity of these enzymes can be exploited for peptide and protein ligation.
Collapse
Affiliation(s)
- Yan Cui
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Dongyang Han
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xuerong Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Weiwei Shi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Rehm FBH, Tyler TJ, Zhou Y, Huang YH, Wang CK, Lawrence N, Craik DJ, Durek T. Repurposing a plant peptide cyclase for targeted lysine acylation. Nat Chem 2024; 16:1481-1489. [PMID: 38789555 PMCID: PMC11374674 DOI: 10.1038/s41557-024-01520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/25/2024] [Indexed: 05/26/2024]
Abstract
Transpeptidases are powerful tools for protein engineering but are largely restricted to acting at protein backbone termini. Alternative enzymatic approaches for internal protein labelling require bulky recognition motifs or non-proteinogenic reaction partners, potentially restricting which proteins can be modified or the types of modification that can be installed. Here we report a strategy for labelling lysine side chain ε-amines by repurposing an engineered asparaginyl ligase, which naturally catalyses peptide head-to-tail cyclization, for versatile isopeptide ligations that are compatible with peptidic substrates. We find that internal lysines with an adjacent leucine residue mimic the conventional N-terminal glycine-leucine substrate. This dipeptide motif enables efficient intra- or intermolecular ligation through internal lysine side chains, minimally leaving an asparagine C-terminally linked to the lysine side chain via an isopeptide bond. The versatility of this approach is demonstrated by the chemoenzymatic synthesis of peptides with non-native C terminus-to-side chain topology and the conjugation of chemically modified peptides to recombinant proteins.
Collapse
Affiliation(s)
- Fabian B H Rehm
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tristan J Tyler
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Yan Zhou
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Gharios R, Li A, Kopyeva I, Francis RM, DeForest CA. One-Step Purification and N-Terminal Functionalization of Bioactive Proteins via Atypically Split Inteins. Bioconjug Chem 2024; 35:750-757. [PMID: 38815180 PMCID: PMC11262789 DOI: 10.1021/acs.bioconjchem.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Site-specific installation of non-natural functionality onto proteins has enabled countless applications in biotechnology, chemical biology, and biomaterials science. Though the N-terminus is an attractive derivatization location, prior methodologies targeting this site have suffered from low selectivity, a limited selection of potential chemical modifications, and/or challenges associated with divergent protein purification/modification steps. In this work, we harness the atypically split VidaL intein to simultaneously N-functionalize and purify homogeneous protein populations in a single step. Our method─referred to as VidaL-tagged expression and protein ligation (VEPL)─enables modular and scalable production of N-terminally modified proteins with native bioactivity. Demonstrating its flexibility and ease of use, we employ VEPL to combinatorially install 4 distinct (multi)functional handles (e.g., biotin, alkyne, fluorophores) to the N-terminus of 4 proteins that span three different classes: fluorescent (Enhanced Green Fluorescent Protein, mCherry), enzymatic (β-lactamase), and growth factor (epidermal growth factor). Moving forward, we anticipate that VEPL's ability to rapidly generate and isolate N-modified proteins will prove useful across the growing fields of applied chemical biology.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Annabella Li
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Ryan M Francis
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98105, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98105, United States
- Institute for Protein Design, University of Washington, Seattle ,Washington 98105, United States
| |
Collapse
|
6
|
Matsuda K, Wakimoto T. Penicillin-binding protein-type thioesterases: An emerging family of non-ribosomal peptide cyclases with biocatalytic potentials. Curr Opin Chem Biol 2024; 80:102465. [PMID: 38759287 DOI: 10.1016/j.cbpa.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
Macrocyclization of peptides reduces conformational flexibilities, potentially leading to improved drug-like properties, such as target specificities and metabolic stabilities. As chemical methodologies often allow side reactions like epimerization and oligomerization, keen attention has been directed toward enzymatic peptide cyclization using peptide cyclases from specialized metabolic pathways. Penicillin-binding protein-type thioesterases (PBP-type TEs) are a recently identified family of peptide cyclases involved in the biosynthesis of non-ribosomal peptides in actinobacteria. PBP-type TEs have undergone intensive investigation due to their outstanding potential as biocatalysts. This review summarizes the rapidly growing knowledge on PBP-type TEs, with special emphasis on their functions, scopes, and structures, and efforts towards their biocatalytic applications.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
7
|
Zhang Y, Yang Z, Saimi D, Shen X, Ye J, Yu B, Pefaur N, Scheer JM, Nixon AE, Chen Z. Geometric Antibody Engineering Reveals the Spatial Factor on the Efficacy of Bispecific T Cell Engagers. ACS Chem Biol 2024; 19:916-925. [PMID: 38491942 DOI: 10.1021/acschembio.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Bispecific antibodies (BsAbs) represent an emerging class of biologics that can recognize two different antigens or epitopes. T-cell engagers (TcEs) bind two targets in trans on the cell surface of the effector and target cell to induce proximal immune effects, opening exciting windows for immunotherapies. To date, the engineering of BsAbs has been mainly focused on tuning the molecular weight and valency. However, the effects of spatial factors on the biological functions of BsAbs have been less explored due to the lack of biochemical methods to precisely manipulate protein geometry. Here, we studied the geometric effects of the TcEs. First, by genetically inserting rigidly designed ankyrin repeat proteins into TcEs, we revealed that the efficacy progressively decreased as the spacer distance of the two binding domains increased. Then, we constructed 26 pairs of TcEs with the same size but varying orientations using click chemistry-mediated conjugation at different mutation sites. We found that linear ligation sites play a minor role in modulating cell-killing efficacy. Next, we rendered the TcEs' advanced topology by cyclization chemistry using the SpyTag/SpyCatcher pair or sortase ligation approaches. Cyclized TcEs were generally more potent than their linear counterparts. Particularly, sortase A cyclized TcEs, bearing a minimal tagging motif, exhibited better cell-killing efficacy in vitro and improved stability both in vitro and in vivo compared to the linear TcE. This work combines modern bioconjugation chemistry and protein engineering tools for antibody engineering, shedding light on the elusive spatial factors of BsAbs functionality.
Collapse
Affiliation(s)
- Yu Zhang
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhe Yang
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Dilizhatai Saimi
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaowen Shen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junqing Ye
- Department of Research Beyond Borders, Boehringer Ingelheim, Investment Co., Ltd., Beijing 100027, China
| | - Bingke Yu
- Department of Research Beyond Borders, Boehringer Ingelheim, Investment Co., Ltd., Shanghai 200040, China
| | - Noah Pefaur
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Justin M Scheer
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Andrew E Nixon
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Tang J, Hao M, Liu J, Chen Y, Wufuer G, Zhu J, Zhang X, Zheng T, Fang M, Zhang S, Li T, Ge S, Zhang J, Xia N. Design of a recombinant asparaginyl ligase for site-specific modification using efficient recognition and nucleophile motifs. Commun Chem 2024; 7:87. [PMID: 38637620 PMCID: PMC11026461 DOI: 10.1038/s42004-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Asparaginyl ligases have been extensively utilized as valuable tools for site-specific bioconjugation or surface-modification. However, the application is hindered by the laborious and poorly reproducible preparation processes, unstable activity and ambiguous substrate requirements. To address these limitations, this study employed a structure-based rational approach to obtain a high-yield and high-activity protein ligase called OaAEP1-C247A-aa55-351. It was observed that OaAEP1-C247A-aa55-351 exhibits appreciable catalytic activities across a wide pH range, and the addition of the Fe3+ metal ion effectively enhances the catalytic power. Importantly, this study provides insight into the recognition and nucleophile peptide profiles of OaAEP1-C247A-aa55-351. The ligase demonstrates a higher recognition ability for the "Asn-Ala-Leu" motif and an N-terminus "Arg-Leu" as nucleophiles, which significantly increases the reaction yield. Consequently, the catalytic activity of OaAEP1-C247A-aa55-351 with highly efficient recognition and nucleophile motif, "Asn-Ala-Leu" and "Arg-Leu" under the buffer containing Fe3+ is 70-fold and 2-fold higher than previously reported OaAEP1-C247A and the most efficient butelase-1, respectively. Thus, the designed OaAEP1-C247A-aa55-351, with its highly efficient recognition and alternative nucleophile options, holds promising potential for applications in protein engineering, chemo-enzymatic modification, and the development of drugs.
Collapse
Affiliation(s)
- Jiabao Tang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Mengling Hao
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Junxian Liu
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Yaling Chen
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Gulimire Wufuer
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Jie Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, China
| | - Xuejie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Tingquan Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Shiyin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Tingdong Li
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China.
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| |
Collapse
|
9
|
Zhou Y, Durek T, Craik DJ, Rehm FBH. Sortase-Catalyzed Protein Domain Inversion. Angew Chem Int Ed Engl 2024; 63:e202316777. [PMID: 38366985 DOI: 10.1002/anie.202316777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Topological transformations and permutations of proteins have attracted significant interest as strategies to generate new protein functionalities or stability. These efforts have mainly been inspired by naturally occurring post-translational modifications, such as head-to-tail cyclization, circular permutation, or lasso-like entanglement. Such approaches can be realized experimentally via genetic encoding, in the case of circular permutation, or via enzymatic processing, in the case of cyclization. Notably, these previously described strategies leave the polypeptide backbone orientation unaltered. Here we describe an unnatural protein permutation, the protein domain inversion, whereby a C-terminal portion of a protein is enzymatically inverted from the canonical N-to-C to a C-to-C configuration with respect to the N-terminal part of the protein. The closest conceptually analogous biological process is perhaps the inversion of DNA segments as catalyzed by recombinases. We achieve these inversions using an engineered sortase A, a widely used transpeptidase. Our reactions proceed efficiently under mild conditions at 4-25 °C and are compatible with entirely heterologously-produced protein substrates.
Collapse
Affiliation(s)
- Yan Zhou
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas Durek
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Fabian B H Rehm
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
10
|
Kobayashi M, Onozawa N, Matsuda K, Wakimoto T. Chemoenzymatic tandem cyclization for the facile synthesis of bicyclic peptides. Commun Chem 2024; 7:67. [PMID: 38548970 PMCID: PMC10978974 DOI: 10.1038/s42004-024-01147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Bicyclic peptides exhibit improved metabolic stabilities and target specificities when compared to their linear or mono-cyclic counterparts; however, efficient and straightforward synthesis remains challenging due to their intricate architectures. Here, we present a highly selective and operationally simple one-pot chemoenzymatic tandem cyclization approach to synthesize bicyclic peptides with small to medium ring sizes. Penicillin-binding protein-type thioesterases (PBP-type TEs) efficiently cyclized azide/alkyne-containing peptides in a head-to-tail manner. Successive copper (I)-catalyzed azide-alkyne cycloaddition generated bicyclic peptides in one-pot, thus omitting the purification of monocyclic intermediates. This chemoenzymatic strategy enabled the facile synthesis of bicyclic peptides bearing hexa-, octa-, and undecapeptidyl head-to-tail cyclic scaffolds.
Collapse
Affiliation(s)
- Masakazu Kobayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Naho Onozawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
11
|
Bridge HN, Leiter W, Frazier CL, Weeks AM. An N terminomics toolbox combining 2-pyridinecarboxaldehyde probes and click chemistry for profiling protease specificity. Cell Chem Biol 2024; 31:534-549.e8. [PMID: 37816350 PMCID: PMC10960722 DOI: 10.1016/j.chembiol.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Proteomic profiling of protease-generated N termini provides key insights into protease function and specificity. However, current technologies have sequence limitations or require specialized synthetic reagents for N-terminal peptide isolation. Here, we introduce an N terminomics toolbox that combines selective N-terminal biotinylation using 2-pyridinecarboxaldehyde (2PCA) reagents with chemically cleavable linkers to enable efficient enrichment of protein N termini. By incorporating a commercially available alkyne-modified 2PCA in combination with Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), our strategy eliminates the need for chemical synthesis of N-terminal probes. Using these reagents, we developed PICS2 (Proteomic Identification of Cleavage Sites with 2PCA) to profile the specificity of subtilisin/kexin-type proprotein convertases (PCSKs). We also implemented CHOPPER (chemical enrichment of protease substrates with purchasable, elutable reagents) for global sequencing of apoptotic proteolytic cleavage sites. Based on their broad applicability and ease of implementation, PICS2 and CHOPPER are useful tools that will advance our understanding of protease biology.
Collapse
Affiliation(s)
- Haley N Bridge
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - William Leiter
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Clara L Frazier
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Amy M Weeks
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Gomez-Cardona E, Eskandari-Sedighi G, Fahlman R, Westaway D, Julien O. Application of N-Terminal Labeling Methods Provide Novel Insights into Endoproteolysis of the Prion Protein in Vivo. ACS Chem Neurosci 2024; 15:134-146. [PMID: 38095594 PMCID: PMC10768724 DOI: 10.1021/acschemneuro.3c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024] Open
Abstract
Alternative α- and β-cleavage events in the cellular prion protein (PrPC) central region generate fragments with distinct biochemical features that affect prion disease pathogenesis, but the assignment of precise cleavage positions has proven challenging. Exploiting mouse transgenic models expressing wild-type (WT) PrPC and an octarepeat region mutant allele (S3) with increased β-fragmentation, cleavage sites were defined using LC-MS/MS in conjunction with N-terminal enzymatic labeling and chemical in-gel acetylation. Our studies profile the net proteolytic repertoire of the adult brain, as deduced from defining hundreds of proteolytic events in other proteins, and position individual cleavage events in PrPC α- and β-target areas imputed from earlier, lower resolution methods; these latter analyses established site heterogeneity, with six cleavage sites positioned in the β-cleavage region of WT PrPC and nine positions for S3 PrPC. Regarding α-cleavage, aside from reported N-termini at His110 and Val111, we identified a total of five shorter fragments in the brain of both mice lines. We infer that aminopeptidase activity in the brain could contribute to the ragged N-termini observed around PrPC's α- and β-cleavage sites, with this work providing a point of departure for further in vivo studies of brain proteases.
Collapse
Affiliation(s)
- Erik Gomez-Cardona
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ghazaleh Eskandari-Sedighi
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Center
for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - David Westaway
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Center
for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
- Department
of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
13
|
Liu L, Gray JL, Tate EW, Yang A. Bacterial enzymes: powerful tools for protein labeling, cell signaling, and therapeutic discovery. Trends Biotechnol 2023; 41:1385-1399. [PMID: 37328400 DOI: 10.1016/j.tibtech.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Bacteria have evolved a diverse set of enzymes that enable them to subvert host defense mechanisms as well as to form part of the prokaryotic immune system. Due to their unique and varied biochemical activities, these bacterial enzymes have emerged as key tools for understanding and investigating biological systems. In this review, we summarize and discuss some of the most prominent bacterial enzymes used for the site-specific modification of proteins, in vivo protein labeling, proximity labeling, interactome mapping, signaling pathway manipulation, and therapeutic discovery. Finally, we provide a perspective on the complementary advantages and limitations of using bacterial enzymes compared with chemical probes for exploring biological systems.
Collapse
Affiliation(s)
- Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Janine L Gray
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
14
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
15
|
Keeble AH, Wood DP, Howarth M. Design and Evolution of Enhanced Peptide-Peptide Ligation for Modular Transglutaminase Assembly. Bioconjug Chem 2023. [PMID: 37289810 DOI: 10.1021/acs.bioconjchem.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Robust and precise tools are needed to enhance the functionality and resilience of synthetic nanoarchitectures. Here, we have employed directed evolution and rational design to build a fast-acting molecular superglue from a bacterial adhesion protein. We have generated the SnoopLigase2 coupling system, a genetically encoded route for efficient transamidation between SnoopTag2 and DogTag2 peptides. Each peptide was selected for rapid reaction by phage display screening. The optimized set allows more than 99% completion and is compatible with diverse buffers, pH values, and temperatures, accelerating the reaction over 1000-fold. SnoopLigase2 directs a specific reaction in the mammalian secretory pathway, allowing covalent display on the plasma membrane. Transglutaminase 2 (TG2) has a network of interactions and substrates amidst the mammalian cell surface and extracellular matrix. We expressed a modified TG2 with resistance to oxidative inactivation and minimal self-reactivity. SnoopLigase2 enables TG2 functionalization with transforming growth factor alpha (TGFα) in routes that would be impossible through genetic fusion. The TG2:TGFα conjugate retained transamidase activity, stably anchored TGFα for signal activation in the extracellular environment, and reprogrammed cell behavior. This modular toolbox should create new opportunities for molecular assembly, both for novel biomaterials and complex cellular environments.
Collapse
Affiliation(s)
- Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Dominic P Wood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
16
|
Bridge HN, Weeks AM. Proteome-Derived Peptide Libraries for Deep Specificity Profiling of N-terminal Modification Reagents. Curr Protoc 2023; 3:e798. [PMID: 37283519 PMCID: PMC10338020 DOI: 10.1002/cpz1.798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein and peptide N termini are important targets for selective modification with chemoproteomics reagents and bioconjugation tools. The N-terminal ⍺-amine occurs only once in each polypeptide chain, making it an attractive target for protein bioconjugation. In cells, new N termini can be generated by proteolytic cleavage and captured by N-terminal modification reagents that enable proteome-wide identification of protease substrates through tandem mass spectrometry (LC-MS/MS). An understanding of the N-terminal sequence specificity of the modification reagents is critical for each of these applications. Proteome-derived peptide libraries in combination with LC-MS/MS are powerful tools for profiling the sequence specificity of N-terminal modification reagents. These libraries are highly diverse, and LC-MS/MS enables analysis of the modification efficiencies of tens of thousands of sequences in a single experiment. Proteome-derived peptide libraries are a powerful tool for profiling the sequence specificities of enzymatic and chemical peptide labeling reagents. Subtiligase, an enzymatic modification reagent, and 2-pyridinecarboxaldehyde (2PCA), a chemical modification reagent, are two reagents that have been developed for selective N-terminal peptide modification and can be studied using proteome-derived peptide libraries. This protocol outlines the steps for generating N-terminally diverse proteome-derived peptide libraries and for applying these libraries to profile the specificity of N-terminal modification reagents. Although we detail the steps for profiling the specificity of 2PCA and subtiligase in Escherichia coli and human cells, these protocols can easily be adapted to alternative proteome sources and other N-terminal peptide labeling reagents. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of N-terminally diverse proteome-derived peptide libraries from E. coli Alternate Protocol: Generation of N-terminally diverse proteome-derived peptide libraries from human cells Basic Protocol 2: Characterizing the specificity of 2-pyridinecarboxaldehyde using proteome-derived peptide libraries Basic Protocol 3: Characterizing the specificity of subtiligase using proteome-derived peptide libraries.
Collapse
Affiliation(s)
- Haley N. Bridge
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
17
|
Solari FA, Krahn D, Swieringa F, Verhelst S, Rassaf T, Tasdogan A, Zahedi RP, Lorenz K, Renné T, Heemskerk JWM, Sickmann A. Multi-omics approaches to study platelet mechanisms. Curr Opin Chem Biol 2023; 73:102253. [PMID: 36689818 DOI: 10.1016/j.cbpa.2022.102253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 01/22/2023]
Abstract
Platelets are small anucleate cell fragments (2-4 μm in diameter) in the blood, which play an essential role in thrombosis and hemostasis. Genetic or acquired platelet dysfunctions are linked to bleeding, increased risk of thromboembolic events and cardiovascular diseases. Advanced proteomic approaches may pave the way to a better understanding of the roles of platelets in hemostasis, and pathophysiological processes such as inflammation, metastatic spread and thrombosis. Further insights into the molecular biology of platelets are crucial to aid drug development and identify diagnostic markers of platelet activation. Platelet activation is known to be an extremely rapid process and involves multiple post-translational mechanisms at sub second time scale, including proteolysis and phosphorylation. Multi-omics technologies and biochemical approaches can be exploited to precisely probe and define these posttranslational pathways. Notably, the absence of a nucleus in platelets significantly reduces the number of present proteins, simplifying mass spectrometry-based proteomics and metabolomics approaches.
Collapse
Affiliation(s)
- Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany
| | - Daniel Krahn
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany
| | - Frauke Swieringa
- Synapse Research Institute Maastricht, 6217 KD, Maastricht, the Netherlands
| | - Steven Verhelst
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - Tienush Rassaf
- Clinic for Cardiology and Angiology, University Hospital Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany
| | - Rene P Zahedi
- Department of Internal Medicine, University of Manitoba, Canada
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Thomas Renné
- Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
18
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Xia Y, Li F, Zhang X, Balamkundu S, Tang F, Hu S, Lescar J, Tam JP, Liu CF. A Cascade Enzymatic Reaction Scheme for Irreversible Transpeptidative Protein Ligation. J Am Chem Soc 2023; 145:6838-6844. [PMID: 36924109 DOI: 10.1021/jacs.2c13628] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Enzymatic peptide ligation holds great promise in the study of protein functions and development of protein therapeutics. Owing to their high catalytic efficiency and a minimal tripeptide recognition motif, peptidyl asparaginyl ligases (PALs) are particularly useful tools for bioconjugation. However, as an inherent limitation of transpeptidases, PAL-mediated ligation is reversible, requiring a large excess of one of the ligation partners to shift the reaction equilibrium in the forward direction. Herein, we report a method to make PAL-mediated intermolecular ligation irreversible by coupling it to glutaminyl cyclase (QC)-catalyzed pyroglutamyl formation. In this method, the acyl donor substrate of PALs is designed to have glutamine at the P1' position of the Asn-P1'-P2' tripeptide PAL recognition motif. Upon ligation with an acyl acceptor substrate, the acyl donor substrate releases a leaving group in which the exposed N-terminal glutamine is cyclized by QC, quenching the Gln Nα-amine in a lactam. Using this method, PAL-mediated ligation can achieve near-quantitative yields even at an equal molar ratio between the two ligation partners. We have demonstrated this method for a wide range of applications, including protein-to-protein ligations. We anticipate that this cascade enzymatic reaction scheme will make PAL enzymes well suited for numerous new uses in biotechnology.
Collapse
Affiliation(s)
- Yiyin Xia
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Fupeng Li
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Fan Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Side Hu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
20
|
Miyata T, Shimamura H, Asano R, Yoshida W. Universal Design of Luciferase Fusion Proteins for Epigenetic Modifications Detection Based on Bioluminescence Resonance Energy Transfer. Anal Chem 2023; 95:3799-3805. [PMID: 36748925 DOI: 10.1021/acs.analchem.2c05066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Global hypomethylation and promoter hypermethylation of tumor-suppressor genes are the hallmarks of cancer. We previously reported a global DNA methylation level sensing system based on dual-color bioluminescence resonance energy transfer (BRET) using methyl-CpG binding domain (MBD)-fused firefly luciferase (Fluc) and unmethyl-CpG binding domain (CXXC)-fused Oplophorus luciferase (Oluc). Moreover, BRET-based hydroxymethylation and hemi-methylation level sensing systems have been developed using hydroxymethyl-CpG and hemi-methyl-CpG binding domain-fused Fluc. These studies suggest that target epigenetic modifications can be simultaneously quantified using target-modification-binding protein-fused luciferases. In this study, we focused on the SnoopTag (SnT)/SnoopCatcher (SnC) protein ligation system to establish a universal design for fusion protein construction for any combination. SnT spontaneously forms an isopeptide bond with SnC; therefore, any kind of fusion protein would be constructed by the SnT/SnC system. To establish the proof of concept, MBD-SnT, CXXC-SnT, and SnC-Oluc were prepared and ligated MBD-SnT or CXXC-SnT to SnC-Oluc. The ligation products of MBD-SnT-SnC-Oluc and CXXC-SnT-SnC-Oluc showed luciferase activity and specific binding activity to methyl-CpG and unmethyl-CpG, respectively. The BRET signal using MBD-SnT-SnC-Oluc and CXXC-SnT-SnC-Oluc increased the amount of methyl-CpG and unmethyl-CpG in genomic DNA, respectively. There was a significant negative correlation between the BRET signals; therefore, the global DNA methylation level was quantified using the BRET signals (R2 = 0.99, and R.S.D. <3.5%). These results indicate that the SnT/SnC protein ligation system can be utilized to construct target modification-binding protein-fused luciferases in any combination that detects target modifications in genomic DNA based on BRET.
Collapse
Affiliation(s)
- Takamichi Miyata
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan
| | - Hazuki Shimamura
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo184-8588, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan.,School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan
| |
Collapse
|
21
|
Kobayashi M, Fujita K, Matsuda K, Wakimoto T. Streamlined Chemoenzymatic Synthesis of Cyclic Peptides by Non-ribosomal Peptide Cyclases. J Am Chem Soc 2023; 145:3270-3275. [PMID: 36638272 DOI: 10.1021/jacs.2c11082] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Macrocyclization improves the pharmaceutical properties of peptides; however, regio- and chemoselective intramolecular cyclizations remain challenging. Here we developed a streamlined chemoenzymatic approach to synthesize cyclic peptides by exploiting non-ribosomal peptide (NRP) cyclases. Linear peptides linked to the resin through a C-terminal diol ester functionality are synthesized on a solid support, to circumvent the installation of leaving groups to the peptidic substrates in the liquid phase which often triggers undesirable epimerization. Cleavage of the resin-bound peptides yielded the diol esters with sufficient purity to be readily cyclized in a head-to-tail manner by SurE, a representative penicillin-binding protein-type thioesterase (PBP-type TE). Explorations of homologous wild-type enzymes as well as rational protein engineering have broadened the scope of the enzymatic macrolactamization. This method will potentially accelerate the exploitation of NRP cyclases as biocatalysts.
Collapse
Affiliation(s)
- Masakazu Kobayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan
| | - Kei Fujita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo060-0812, Japan
| |
Collapse
|
22
|
Wang X, Qin X, Tong L, Zheng J, Dong T, Wang X, Wang Y, Huang H, Yao B, Zhang H, Luo H. Improving the catalytic activity of a detergent-compatible serine protease by rational design. Microb Biotechnol 2023; 16:947-960. [PMID: 36636777 PMCID: PMC10128134 DOI: 10.1111/1751-7915.14218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Serine proteases are among the most important biological additives in various industries such as detergents, leather, animal feed and food. A serine protease gene, Fgapt4, from Fusarium graminearum 2697 was identified, cloned and expressed in Pichia pastoris. The optimal pH and temperature of FgAPT4 were 8.5 and 40°C, respectively. The relative activity was >30% even at 10°C. It had a wide range of pH stability (4.0-12.0) and detergent compatibility. To improve the catalytic activity, a strategy combining molecular docking and evolutionary analysis was adopted. Twelve amino acid residue sites and three loops (A, B and C) were selected as potential hot spots that might play critical roles in the enzyme's functional properties. Twenty-eight mutants targeting changes in individual sites or loops were designed, and mutations with good performance were combined. The best mutant was FgAPT4-M3 (Q70N/D142S/A143S/loop C). The specific activity and catalytic efficiency of FgAPT4-M3 increased by 1.6 (1008.5 vs. 385.9 U/mg) and 2.2-fold (3565.1 vs. 1106.3/s/mM), respectively. Computational analyses showed that the greater flexibility of the substrate pocket may be responsible for the increased catalytic activity. In addition, its application in detergents indicated that FgAPT4-M3 has great potential in washing.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lige Tong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Okuda A, Shimizu M, Inoue R, Urade R, Sugiyama M. Efficient Multiple Domain Ligation for Proteins Using Asparaginyl Endopeptidase by Selection of Appropriate Ligation Sites Based on Steric Hindrance. Angew Chem Int Ed Engl 2023; 62:e202214412. [PMID: 36347766 DOI: 10.1002/anie.202214412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Three domain fragments of a multi-domain protein, ER-60, were ligated in two short linker regions using asparaginyl endopeptidase not involving denaturation. To identify appropriate ligation sites, by selecting several potential ligation sites with fewer mutations around two short linker regions, their ligation efficiencies and the functions of the ligated ER-60s were examined experimentally. To evaluate the dependence of ligation efficiencies on the ligation sites computationally, steric hinderances around the sites for the ligation were calculated through molecular dynamics simulations. Utilizing the steric hindrance, a site-dependent ligation potential index was introduced as reproducing the experimental ligation efficiency. Referring to this index, the reconstruction of ER-60 was succeeded by the ligation of the three domains for the first time. In addition, the new ligation potential index well-worked for application to other domain ligations. Therefore, the index may serve as a more time-effective tool for multi-site ligations.
Collapse
Affiliation(s)
- Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
24
|
Adelakun N, Parrish J, Chu N. Analyzing protein posttranslational modifications using enzyme-catalyzed expressed protein ligation. Methods Enzymol 2023; 682:319-350. [PMID: 36948706 DOI: 10.1016/bs.mie.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Expressed protein ligation (EPL) allows for the attachment of a synthetic peptide into the N- or C-terminus of a recombinant protein fragment to generate a site-specifically modified protein with substantial yields for biochemical and biophysical studies. In this method, multiple posttranslational modifications (PTMs) can be incorporated into a synthetic peptide containing an N-terminal Cysteine, which selectively reacts with a protein C-terminal thioester to afford an amide bond formation. However, the requirement of a Cysteine at the ligation site can limit EPL's potential applications. Here, we describe a method called enzyme-catalyzed EPL, which uses subtiligase to ligate protein thioesters with Cysteine-free peptides. The procedure includes generating protein C-terminal thioester and peptide, performing the enzymatic EPL reaction, and purifying the protein ligation product. We exemplify this method by generating phospholipid phosphatase PTEN with site-specific phosphorylations installed onto its C-terminal tail for biochemical assays.
Collapse
Affiliation(s)
- Niyi Adelakun
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jordan Parrish
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Nam Chu
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
25
|
Kobayashi M, Fujita K, Matsuda K, Wakimoto T. Chemo-Enzymatic Synthesis of Non-ribosomal Macrolactams by a Penicillin-Binding Protein-Type Thioesterase. Methods Mol Biol 2023; 2670:127-144. [PMID: 37184702 DOI: 10.1007/978-1-0716-3214-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Penicillin-binding protein-type thioesterases (PBP-type TEs) are an emerging family of non-ribosomal peptide cyclases. PBP-type TEs exhibit distinct substrate scopes from the well-exploited ribosomal peptide cyclases and traditional non-ribosomal peptide cyclases. Their unique properties, as well as their stand-alone nature, highlight PBP-type TEs as valuable candidates for development as biocatalysts for peptide macrocyclization. Here in this chapter, we describe the scheme for the chemoenzymatic synthesis of non-ribosomal macrolactam by SurE, a representative member of PBP-type TEs.
Collapse
Affiliation(s)
| | - Kei Fujita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
26
|
Morgan H, Arnott ZLP, Kamiński TP, Turnbull WB, Webb ME. Combined Application of Orthogonal Sortases and Depsipeptide Substrates for Dual Protein Labeling. Bioconjug Chem 2022; 33:2341-2347. [PMID: 36356167 PMCID: PMC9782347 DOI: 10.1021/acs.bioconjchem.2c00411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Staphylococcus aureus sortase A is a transpeptidase that has been extensively exploited for site-specific modification of proteins and was originally used to attach a labeling reagent containing an LPXTG recognition sequence to a protein or peptide with an N-terminal glycine. Sortase mutants with other recognition sequences have also been reported, but in all cases, the reversibility of the transpeptidation reaction limits the efficiency of sortase-mediated labeling reactions. For the wildtype sortase, depsipeptide substrates, in which the scissile peptide bond is replaced with an ester, allow effectively irreversible sortase-mediated labeling as the alcohol byproduct is a poor competing nucleophile. In this paper, the use of depsipeptide substrates for evolved sortase variants is reported. Substrate specificities of three sortases have been investigated allowing identification of an orthogonal pair of enzymes accepting LPEToG and LPESoG depsipeptides, which have been applied to dual N-terminal labeling of a model protein mutant containing a second, latent N-terminal glycine residue. The method provides an efficient orthogonal site-specific labeling technique that further expands the biochemical protein labeling toolkit.
Collapse
|
27
|
Schaefer K, Lui I, Byrnes JR, Kang E, Zhou J, Weeks AM, Wells JA. Direct Identification of Proteolytic Cleavages on Living Cells Using a Glycan-Tethered Peptide Ligase. ACS CENTRAL SCIENCE 2022; 8:1447-1456. [PMID: 36313159 PMCID: PMC9615116 DOI: 10.1021/acscentsci.2c00899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 06/16/2023]
Abstract
Proteolytic cleavage of cell surface proteins triggers critical processes including cell-cell interactions, receptor activation, and shedding of signaling proteins. Consequently, dysregulated extracellular proteases contribute to malignant cell phenotypes including most cancers. To understand these effects, methods are needed that identify proteolyzed membrane proteins within diverse cellular contexts. Herein we report a proteomic approach, called cell surface N-terminomics, to broadly identify precise cleavage sites (neo-N-termini) on the surface of living cells. First, we functionalized the engineered peptide ligase, called stabiligase, with an N-terminal nucleophile that enables covalent attachment to naturally occurring glycans. Upon the addition of a biotinylated peptide ester, glycan-tethered stabiligase efficiently tags extracellular neo-N-termini for proteomic analysis. To demonstrate the versatility of this approach, we identified and characterized 1532 extracellular neo-N-termini across a panel of different cell types including primary immune cells. The vast majority of cleavages were not identified by previous proteomic studies. Lastly, we demonstrated that single oncogenes, KRAS(G12V) and HER2, induce extracellular proteolytic remodeling of proteins involved in cancerous cell growth, invasion, and migration. Cell surface N-terminomics is a generalizable platform that can reveal proteolyzed, neoepitopes to target using immunotherapies.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Irene Lui
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James R. Byrnes
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Emily Kang
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Jie Zhou
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Amy M. Weeks
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
28
|
Lee HJ, Choi ES, Maruoka K. Development of a catalytic ester activation protocol for the efficient formation of amide bonds using an Ar‐I/HF•pyridine/mCPBA system. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyo-Jun Lee
- Kunsan National University Department of Chemistry KOREA, REPUBLIC OF
| | - Eun-Sol Choi
- Kunsan National University Department of Chemistry KOREA, REPUBLIC OF
| | - Keiji Maruoka
- Kyoto University Graduate School of Pharmaceutical Sciences Sakyo 606-8501 Kyoto JAPAN
| |
Collapse
|
29
|
Su X, Zhang L, Zhao L, Pan B, Chen B, Chen J, Zhai C, Li B. Efficient Protein–Protein Couplings Mediated by Small Molecules under Mild Conditions. Angew Chem Int Ed Engl 2022; 61:e202205597. [DOI: 10.1002/anie.202205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xun‐Cheng Su
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ling‐Yang Zhang
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Li‐Na Zhao
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bin‐Bin Pan
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ben‐Guang Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jia‐Liang Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Cheng‐Liang Zhai
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
30
|
Allen GL, Grahn AK, Kourentzi K, Willson RC, Waldrop S, Guo J, Kay BK. Expanding the chemical diversity of M13 bacteriophage. Front Microbiol 2022; 13:961093. [PMID: 36003937 PMCID: PMC9393631 DOI: 10.3389/fmicb.2022.961093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Bacteriophage M13 virions are very stable nanoparticles that can be modified by chemical and genetic methods. The capsid proteins can be functionalized in a variety of chemical reactions without loss of particle integrity. In addition, Genetic Code Expansion (GCE) permits the introduction of non-canonical amino acids (ncAAs) into displayed peptides and proteins. The incorporation of ncAAs into phage libraries has led to the discovery of high-affinity binders with low nanomolar dissociation constant (K D) values that can potentially serve as inhibitors. This article reviews how bioconjugation and the incorporation of ncAAs during translation have expanded the chemistry of peptides and proteins displayed by M13 virions for a variety of purposes.
Collapse
Affiliation(s)
| | | | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Sean Waldrop
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Brian K. Kay
- Tango Biosciences, Inc., Chicago, IL, United States
| |
Collapse
|
31
|
Fottner M, Heimgärtner J, Gantz M, Mühlhofer R, Nast-Kolb T, Lang K. Site-Specific Protein Labeling and Generation of Defined Ubiquitin-Protein Conjugates Using an Asparaginyl Endopeptidase. J Am Chem Soc 2022; 144:13118-13126. [PMID: 35850488 PMCID: PMC9335880 DOI: 10.1021/jacs.2c02191] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Asparaginyl endopeptidases
(AEPs) have recently been widely utilized
for peptide and protein modification. Labeling is however restricted
to protein termini, severely limiting flexibility and scope in creating
diverse conjugates as needed for therapeutic and diagnostic applications.
Here, we use genetic code expansion to site-specifically modify target
proteins with an isopeptide-linked glycylglycine moiety that serves
as an acceptor nucleophile in AEP-mediated transpeptidation with various
probes containing a tripeptidic recognition motif. Our approach allows
simple and flexible labeling of recombinant proteins at any internal
site and leaves a minimal, entirely peptidic footprint (NGG) in the
conjugation product. We show site-specific labeling of diverse target
proteins with various biophysical probes, including dual labeling
at an internal site and the N-terminus. Furthermore, we harness AEP-mediated
transpeptidation for generation of ubiquitin- and ubiquitin-like-modifier
conjugates bearing a native isopeptide bond and only one point mutation
in the linker region.
Collapse
Affiliation(s)
- Maximilian Fottner
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Johannes Heimgärtner
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maximilian Gantz
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Rahel Mühlhofer
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Timon Nast-Kolb
- Center for Protein Assemblies (CPA) and Lehrstuhl für Biophysik (E27), Physics Department, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Kathrin Lang
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.,Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
32
|
Zhu T, Cui Y, Geng W, Liu G, Jiang H, Li R, Wu B. Creating an Unusual Glycine-Rich Motif in a Peptide Amidase Leads to Versatile Protein C-Terminal Traceless Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchao Geng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guoxia Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Su XC, Zhang LY, Zhao LN, Pan BB, Chen BG, Chen JL, Zhai CL, Li B. Efficient Protein‐Protein Couplings Mediated by Small Molecules under Mild Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xun-Cheng Su
- Nankai University College of Chemistry Stat Key Laboratory of Elemento-organic Chemistry Weijing Road 94 300071 Tianjin CHINA
| | | | - Li-Na Zhao
- Nankai University college of chemistry CHINA
| | - Bin-Bin Pan
- Nankai University college of chemistry CHINA
| | | | | | | | - Bin Li
- Nankai University college of chemistry CHINA
| |
Collapse
|
34
|
Li R, Schmidt M, Zhu T, Yang X, Feng J, Tian Y, Cui Y, Nuijens T, Wu B. Traceless enzymatic protein synthesis without ligation sites constraint. Natl Sci Rev 2022; 9:nwab158. [PMID: 35663243 PMCID: PMC9155641 DOI: 10.1093/nsr/nwab158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis and semisynthesis offer immense promise for life sciences and have impacted pharmaceutical innovation. The absence of a generally applicable method for traceless peptide conjugation with a flexible choice of junction sites remains a bottleneck for accessing many important synthetic targets, however. Here we introduce the PALME (protein activation and ligation with multiple enzymes) platform designed for sequence-unconstrained synthesis and modification of biomacromolecules. The upstream activating modules accept and process easily accessible synthetic peptides and recombinant proteins, avoiding the challenges associated with preparation and manipulation of activated peptide substrates. Cooperatively, the downstream coupling module provides comprehensive solutions for sequential peptide condensation, cyclization and protein N/C-terminal or internal functionalization. The practical utility of this methodology is demonstrated by synthesizing a series of bioactive targets ranging from pharmaceutical ingredients to synthetically challenging proteins. The modular PALME platform exhibits unprecedentedly broad accessibility for traceless protein synthesis and functionalization, and holds enormous potential to extend the scope of protein chemistry and synthetic biology.
Collapse
Affiliation(s)
- Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Marcel Schmidt
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen 6167 RD, the Netherlands
| | - Tong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu'e Tian
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Timo Nuijens
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen 6167 RD, the Netherlands
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
Site directed spin labeling to elucidating the mechanism of the cyanobacterial circadian clock. Methods Enzymol 2022; 666:59-78. [PMID: 35465929 DOI: 10.1016/bs.mie.2022.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that provides structural and dynamic information on unpaired spins and their surrounding environments. Introduction of exogenous spin labels via site directed spin labeling (SDSL) enables characterization of systems of interests lacking intrinsic unpaired spins. This chapter describes the use of SDSL in quantifying KaiB-KaiC binding in the cyanobacterial circadian clock (Kai Clock), exploiting the changes in mobility of the local environment around the spin label on KaiB-KaiC interactions. While the Kai system serves as our model system to demonstrate SDSL-EPR utility in quantifying protein-protein interactions, this technique is readily amenable to other systems of interest whenever specific protein-protein interactions need to be isolated. We first present a protocol for spin labeling KaiB. Then, we detail the sample preparation and acquisition processes to maximize signal-to-noise for downstream analysis. We close this chapter by highlighting recent advances in SDSL technology to incorporate spin labels into proteins of interest and in EPR technology to improve detection sensitivity that may allow greater flexibilities to the types of experiments possible.
Collapse
|
36
|
Dionne U, Gingras AC. Proximity-Dependent Biotinylation Approaches to Explore the Dynamic Compartmentalized Proteome. Front Mol Biosci 2022; 9:852911. [PMID: 35309513 PMCID: PMC8930824 DOI: 10.3389/fmolb.2022.852911] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, proximity-dependent biotinylation approaches, including BioID, APEX, and their derivatives, have been widely used to define the compositions of organelles and other structures in cultured cells and model organisms. The associations between specific proteins and given compartments are regulated by several post-translational modifications (PTMs); however, these effects have not been systematically investigated using proximity proteomics. Here, we discuss the progress made in this field and how proximity-dependent biotinylation strategies could elucidate the contributions of PTMs, such as phosphorylation, to the compartmentalization of proteins.
Collapse
Affiliation(s)
- Ugo Dionne
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Anne-Claude Gingras,
| |
Collapse
|
37
|
Guan I, Williams K, Liu JST, Liu X. Synthetic Thiol and Selenol Derived Amino Acids for Expanding the Scope of Chemical Protein Synthesis. Front Chem 2022; 9:826764. [PMID: 35237567 PMCID: PMC8883728 DOI: 10.3389/fchem.2021.826764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023] Open
Abstract
Cells employ post-translational modifications (PTMs) as key mechanisms to expand proteome diversity beyond the inherent limitations of a concise genome. The ability to incorporate post-translationally modified amino acids into protein targets via chemical ligation of peptide fragments has enabled the access to homogeneous proteins bearing discrete PTM patterns and empowered functional elucidation of individual modification sites. Native chemical ligation (NCL) represents a powerful and robust means for convergent assembly of two homogeneous, unprotected peptides bearing an N-terminal cysteine residue and a C-terminal thioester, respectively. The subsequent discovery that protein cysteine residues can be chemoselectively desulfurized to alanine has ignited tremendous interest in preparing unnatural thiol-derived variants of proteogenic amino acids for chemical protein synthesis following the ligation-desulfurization logic. Recently, the 21st amino acid selenocysteine, together with other selenyl derivatives of amino acids, have been shown to facilitate ultrafast ligation with peptidyl selenoesters, while the advancement in deselenization chemistry has provided reliable bio-orthogonality to PTMs and other amino acids. The combination of these ligation techniques and desulfurization/deselenization chemistries has led to streamlined synthesis of multiple structurally-complex, post-translationally modified proteins. In this review, we aim to summarize the latest chemical synthesis of thiolated and selenylated amino-acid building blocks and exemplify their important roles in conquering challenging protein targets with distinct PTM patterns.
Collapse
Affiliation(s)
- Ivy Guan
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Kayla Williams
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Joanna Shu Ting Liu
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Xuyu Liu
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Xuyu Liu,
| |
Collapse
|
38
|
Rodríguez V. Insights into post-translational modification enzymes from RiPPs: A toolkit for applications in peptide synthesis. Biotechnol Adv 2022; 56:107908. [PMID: 35032597 DOI: 10.1016/j.biotechadv.2022.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 11/02/2022]
Abstract
The increasing length and complexity of peptide drug candidates foster the development of novel strategies for their manufacture, which should include sustainable and efficient technologies. In this context, including enzymatic catalysis in the production of peptide molecules has gained interest. Here, several enzymes from ribosomally synthesized and post-translationally modified peptides biosynthesis pathways are reviewed, with attention to their capacity to introduce stability-promoting structural features on peptides, providing an initial framework towards their use in therapeutic peptide production processes.
Collapse
Affiliation(s)
- Vida Rodríguez
- Faculty of Engineering, Science and Technology, Bernardo O'Higgins University, Viel 1497, Santiago, Chile.
| |
Collapse
|
39
|
Narayanan KB, Han SS. Peptide ligases: A Novel and potential enzyme toolbox for catalytic cross-linking of protein/peptide-based biomaterial scaffolds for tissue engineering. Enzyme Microb Technol 2022; 155:109990. [PMID: 35030384 DOI: 10.1016/j.enzmictec.2022.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
The fabrication of novel biomaterial scaffolds with improved biological interactions and mechanical properties is an important aspect of tissue engineering. The three-dimensional (3D) protein/peptide-based polymeric scaffolds are promising in vitro biomaterials to replicate the in vivo microenvironment mimicking the extracellular matrix (ECM) for cell differentiation and subsequent tissue formation. Among different strategies in the fabrication of scaffolds, bioorthogonal enzymatic reactions for rapid in situ zero-length cross-linking are advantageous. Peptide ligases as a novel toolbox have the potentiality to enzymatically cross-link natural/synthetic protein/peptide-based polymeric chains for a wide range of biomedical applications. Although natural peptide ligases, such as sortases and butelase 1 are known cysteine proteases with ligase activity, some serine proteases, such as trypsin and subtilisin, are protein engineered to form trypsiligase and subtiligase, respectively, which exhibited efficient ligase activity by linking proteins/peptides with a great variety of molecules. Peptide ligase activity by these engineered proteases is more efficient than the hydrolysis of peptide bonds (peptidase activity). Peptide esters form acyl-enzyme intermediate with serine/cysteine residues of these proteases, with subsequent aminolysis forming covalent peptide bond with N-terminal residue of another polymeric chain. In addition, peptide ligases have the potential to conjugate with cell-adhesive ECM proteins or motifs and growth factors to (bio)polymeric networks to enhance cell attachment, growth, and differentiation. Here, we review the potential and limitations of natural and engineered peptide ligases as an enzyme toolbox with a focus on sortases (classes A-D), butelase 1, trypsiligase, and subtilisin variants, and the mechanisms for their zero-length cross-linking of (bio)polymeric scaffolds for various tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
40
|
Wang Z, Zhang D, Hu S, Bi X, Lescar J, Tam JP, Liu CF. PAL-Mediated Ligation for Protein and Cell-Surface Modification. Methods Mol Biol 2022; 2530:177-193. [PMID: 35761050 DOI: 10.1007/978-1-0716-2489-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peptidyl Asx-specific ligases (PALs) effect peptide ligation by catalyzing transpeptidation reactions at Asn/Asp-peptide bonds. Owing to their high efficiency and mild aqueous reaction conditions, these ligases have emerged as powerful biotechnological tools for protein manipulation in recent years. PALs are enzymes of the asparaginyl endopeptidase (AEP) superfamily but have predominant transpeptidase activity as opposed to typical AEPs which are predominantly hydrolases. Butelase-1 and VyPAL2, two PALs discovered by our teams, have been used successfully in a wide range of applications, including macrocyclization of synthetic peptides and recombinant proteins, protein N- or C-terminal modification, and cell-surface labeling. As shown in numerous reports, PAL-mediated ligation is highly efficient at Asn junctions. Although considerably less efficient, Asp-specific ligation has also been shown to be practically useful under suitable conditions. Herein, we describe the methods of using VyPAL2 for protein macrocyclization and labeling at an Asp residue as well as for protein dual labeling through orthogonal Asp- and Asn-directed ligations. We also describe a method for cell-surface protein modification using butelase-1, demonstrating its advantageous features over previous methods.
Collapse
Affiliation(s)
- Zhen Wang
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - Dingpeng Zhang
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - Side Hu
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - Xiaobao Bi
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, China
| | - Julien Lescar
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - James P Tam
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - Chuan-Fa Liu
- School of Biological Science, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
41
|
Jiang H, Chen W, Wang J, Zhang R. Selective N-terminal modification of peptides and proteins: Recent progresses and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Abstract
N terminomics methods combine selective isolation of protein N-terminal peptides with mass spectrometry (MS)-based proteomics for global profiling of proteolytic cleavage sites. However, traditional N terminomics workflows require cell lysis before N-terminal enrichment and provide poor coverage of N termini derived from cell surface proteins. Here, we describe application of subtiligase-TM, a plasma membrane-targeted peptide ligase, for selective biotinylation of cell surface N termini, enabling their enrichment and analysis by liquid chromatography-tandem MS (LC-MS/MS). This method provides increased coverage of and specificity for cell surface N termini and is compatible with existing quantitative LC-MS/MS workflows.
Collapse
Affiliation(s)
- Aspasia A Amiridis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy M Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
43
|
Zhang D, Wang Z, Hu S, Lescar J, Tam JP, Liu CF. Vypal2: A Versatile Peptide Ligase for Precision Tailoring of Proteins. Int J Mol Sci 2021; 23:ijms23010458. [PMID: 35008882 PMCID: PMC8745061 DOI: 10.3390/ijms23010458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
The last two decades have seen an increasing demand for new protein-modification methods from the biotech industry and biomedical research communities. Owing to their mild aqueous reaction conditions, enzymatic methods based on the use of peptide ligases are particularly desirable. In this regard, the recently discovered peptidyl Asx-specific ligases (PALs) have emerged as powerful biotechnological tools in recent years. However, as a new class of peptide ligases, their scope and application remain underexplored. Herein, we report the use of a new PAL, VyPAL2, for a diverse range of protein modifications. We successfully showed that VyPAL2 was an efficient biocatalyst for protein labelling, inter-protein ligation, and protein cyclization. The labelled or cyclized protein ligands remained functionally active in binding to their target receptors. We also demonstrated on-cell labelling of protein ligands pre-bound to cellular receptors and cell-surface engineering via modifying a covalently anchored peptide substrate pre-installed on cell-surface glycans. Together, these examples firmly establish Asx-specific ligases, such as VyPAL2, as the biocatalysts of the future for site-specific protein modification, with a myriad of applications in basic research and drug discovery.
Collapse
|
44
|
Cong M, Tavakolpour S, Berland L, Glöckner H, Andreiuk B, Rakhshandehroo T, Uslu S, Mishra S, Clark L, Rashidian M. Direct N- or C-Terminal Protein Labeling Via a Sortase-Mediated Swapping Approach. Bioconjug Chem 2021; 32:2397-2406. [PMID: 34748323 PMCID: PMC9595177 DOI: 10.1021/acs.bioconjchem.1c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Site-specific protein labeling is important in biomedical research and biotechnology. While many methods allow site-specific protein modification, a straightforward approach for efficient N-terminal protein labeling is not available. We introduce a novel sortase-mediated swapping approach for a one-step site-specific N-terminal labeling with a near-quantitative yield. We show that this method allows rapid and efficient cleavage and simultaneous labeling of the N or C termini of fusion proteins. The method does not require any prior modification beyond the genetic incorporation of the sortase recognition motif. This new approach provides flexibility for protein engineering and site-specific protein modifications.
Collapse
Affiliation(s)
- Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06100 Nice, France
| | - Hannah Glöckner
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Bohdan Andreiuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara, 06230, Turkey
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
45
|
Lee BS, Choi WJ, Lee SW, Ko BJ, Yoo TH. Towards Engineering an Orthogonal Protein Translation Initiation System. Front Chem 2021; 9:772648. [PMID: 34765589 PMCID: PMC8576571 DOI: 10.3389/fchem.2021.772648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
In the last two decades, methods to incorporate non-canonical amino acids (ncAAs) into specific positions of a protein have advanced significantly; these methods have become general tools for engineering proteins. However, almost all these methods depend on the translation elongation process, and strategies leveraging the initiation process have rarely been reported. The incorporation of a ncAA specifically at the translation initiation site enables the installation of reactive groups for modification at the N-termini of proteins, which are attractive positions for introducing abiological groups with minimal structural perturbations. In this study, we attempted to engineer an orthogonal protein translation initiation system. Introduction of the identity elements of Escherichia coli initiator tRNA converted an engineered Methanococcus jannaschii tRNATyr into an initiator tRNA. The engineered tRNA enabled the site-specific incorporation of O-propargyl-l-tyrosine (OpgY) into the amber (TAG) codon at the translation initiation position but was inactive toward the elongational TAG codon. Misincorporation of Gln was detected, and the engineered system was demonstrated only with OpgY. We expect further engineering of the initiator tRNA for improved activity and specificity to generate an orthogonal translation initiation system.
Collapse
Affiliation(s)
- Byeong Sung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Woon Jong Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sang Woo Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
46
|
Koudelka T, Winkels K, Kaleja P, Tholey A. Shedding light on both ends: An update on analytical approaches for N- and C-terminomics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119137. [PMID: 34626679 DOI: 10.1016/j.bbamcr.2021.119137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023]
Abstract
Though proteases were long regarded as nonspecific degradative enzymes, over time, it was recognized that they also hydrolyze peptide bonds very specifically with a limited substrate pool. This irreversible posttranslational modification modulates the fate and activity of many proteins, making proteolytic processing a master switch in the regulation of e.g., the immune system, apoptosis and cancer progression. N- and C-terminomics, the identification of protein termini, has become indispensable in elucidating protease substrates and therefore protease function. Further, terminomics has the potential to identify yet unknown proteoforms, e.g. formed by alternative splicing or the recently discovered alternative ORFs. Different strategies and workflows have been developed that achieve higher sensitivity, a greater depth of coverage or higher throughput. In this review, we summarize recent developments in both N- and C-terminomics and include the potential of top-down proteomics which inherently delivers information on both ends of analytes in a single analysis.
Collapse
Affiliation(s)
- Tomas Koudelka
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Konrad Winkels
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Patrick Kaleja
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
47
|
Vogl DP, Conibear AC, Becker CFW. Segmental and site-specific isotope labelling strategies for structural analysis of posttranslationally modified proteins. RSC Chem Biol 2021; 2:1441-1461. [PMID: 34704048 PMCID: PMC8496066 DOI: 10.1039/d1cb00045d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Posttranslational modifications can alter protein structures, functions and locations, and are important cellular regulatory and signalling mechanisms. Spectroscopic techniques such as nuclear magnetic resonance, infrared and Raman spectroscopy, as well as small-angle scattering, can provide insights into the structural and dynamic effects of protein posttranslational modifications and their impact on interactions with binding partners. However, heterogeneity of modified proteins from natural sources and spectral complexity often hinder analyses, especially for large proteins and macromolecular assemblies. Selective labelling of proteins with stable isotopes can greatly simplify spectra, as one can focus on labelled residues or segments of interest. Employing chemical biology tools for modifying and isotopically labelling proteins with atomic precision provides access to unique protein samples for structural biology and spectroscopy. Here, we review site-specific and segmental isotope labelling methods that are employed in combination with chemical and enzymatic tools to access posttranslationally modified proteins. We discuss illustrative examples in which these methods have been used to facilitate spectroscopic studies of posttranslationally modified proteins, providing new insights into biology.
Collapse
Affiliation(s)
- Dominik P Vogl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| | - Anne C Conibear
- The University of Queensland, School of Biomedical Sciences St Lucia Brisbane 4072 QLD Australia
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| |
Collapse
|
48
|
Dall E, Stanojlovic V, Demir F, Briza P, Dahms SO, Huesgen PF, Cabrele C, Brandstetter H. The Peptide Ligase Activity of Human Legumain Depends on Fold Stabilization and Balanced Substrate Affinities. ACS Catal 2021; 11:11885-11896. [PMID: 34621593 PMCID: PMC8491156 DOI: 10.1021/acscatal.1c02057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Protein modification by enzymatic breaking and forming of peptide bonds significantly expands the repertoire of genetically encoded protein sequences. The dual protease-ligase legumain exerts the two opposing activities within a single protein scaffold. Primarily localized to the endolysosomal system, legumain represents a key enzyme in the generation of antigenic peptides for subsequent presentation on the MHCII complex. Here we show that human legumain catalyzes the ligation and cyclization of linear peptides at near-neutral pH conditions, where legumain is intrinsically unstable. Conformational stabilization significantly enhanced legumain's ligase activity, which further benefited from engineering the prime substrate recognition sites for improved affinity. Additionally, we provide evidence that specific legumain activation states allow for differential regulation of its activities. Together these results set the basis for engineering legumain proteases and ligases with applications in biotechnology and drug development.
Collapse
Affiliation(s)
- Elfriede Dall
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Vesna Stanojlovic
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Peter Briza
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Sven O. Dahms
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Pitter F. Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52428 Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
- Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, 50674 Cologne, Germany
| | - Chiara Cabrele
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
49
|
Abstract
All living organisms depend on tightly regulated cellular networks to control biological functions. Proteolysis is an important irreversible post-translational modification that regulates most, if not all, cellular processes. Proteases are a large family of enzymes that perform hydrolysis of protein substrates, leading to protein activation or degradation. The 473 known and 90 putative human proteases are divided into 5 main mechanistic groups: metalloproteases, serine proteases, cysteine proteases, threonine proteases, and aspartic acid proteases. Proteases are fundamental to all biological systems, and when dysregulated they profoundly influence disease progression. Inhibiting proteases has led to effective therapies for viral infections, cardiovascular disorders, and blood coagulation just to name a few. Between 5 and 10% of all pharmaceutical targets are proteases, despite limited knowledge about their biological roles. More than 50% of all human proteases have no known substrates. We present here a comprehensive list of all current known human proteases. We also present current and novel biochemical tools to characterize protease functions in vitro, in vivo, and ex vivo. These tools make it achievable to define both beneficial and detrimental activities of proteases in health and disease.
Collapse
Affiliation(s)
- Longxiang Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kimberly Main
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Henry Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
50
|
Cable J, Pourquié O, Wellen KE, Finley LWS, Aulehla A, Gould AP, Teleman A, Tu WB, Garrett WS, Miguel-Aliaga I, Perrimon N, Hooper LV, Walhout AJM, Wei W, Alexandrov T, Erez A, Ralser M, Rabinowitz JD, Hemalatha A, Gutiérrez-Pérez P, Chandel NS, Rutter J, Locasale JW, Landoni JC, Christofk H. Metabolic decisions in development and disease-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:55-73. [PMID: 34414571 DOI: 10.1111/nyas.14678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022]
Abstract
There is an increasing appreciation for the role of metabolism in cell signaling and cell decision making. Precise metabolic control is essential in development, as evident by the disorders caused by mutations in metabolic enzymes. The metabolic profile of cells is often cell-type specific, changing as cells differentiate or during tumorigenesis. Recent evidence has shown that changes in metabolism are not merely a consequence of changes in cell state but that metabolites can serve to promote and/or inhibit these changes. Metabolites can link metabolic pathways with cell signaling pathways via several mechanisms, for example, by serving as substrates for protein post-translational modifications, by affecting enzyme activity via allosteric mechanisms, or by altering epigenetic markers. Unraveling the complex interactions governing metabolism, gene expression, and protein activity that ultimately govern a cell's fate will require new tools and interactions across disciplines. On March 24 and 25, 2021, experts in cell metabolism, developmental biology, and human disease met virtually for the Keystone eSymposium, "Metabolic Decisions in Development and Disease." The discussions explored how metabolites impact cellular and developmental decisions in a diverse range of model systems used to investigate normal development, developmental disorders, dietary effects, and cancer-mediated changes in metabolism.
Collapse
Affiliation(s)
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Stem Cell Institute, Boston, Massachusetts
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lydia W S Finley
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Aurelio Teleman
- German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - William B Tu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Wendy Sarah Garrett
- Harvard T. H. Chan School of Public Health and Dana-Farber Cancer, Boston, Massachusetts
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Howard Hughes Institute, Boston, Massachusetts
| | - Lora V Hooper
- Department of Immunology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - A J Marian Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Department of Biology and Stanford ChEM-H, Stanford University, Stanford, California
| | - Theodore Alexandrov
- Structural and Computational Biology Unit and Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.,Department of Biochemistry, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Anupama Hemalatha
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Paula Gutiérrez-Pérez
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Navdeep S Chandel
- Department of Medicine, Robert H. Lurie Cancer Center, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jared Rutter
- Department of Biochemistry and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Juan C Landoni
- Research Program in Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Heather Christofk
- Departments of Biological Chemistry and Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|