1
|
Hu T, Zhang M, Wei X, Xu Z, Li D, Deng J, Li Y, Zhang Y, Lin X, Wang J. Efficient Pb(II) removal from contaminated soils by recyclable, robust lignosulfonate/polyacrylamide double-network hydrogels embedded with Fe 2O 3 via one-pot synthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135712. [PMID: 39236531 DOI: 10.1016/j.jhazmat.2024.135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Soil heavy metal removal strategies are increasingly valued for effectively reducing contamination and preventing secondary pollution. In this work, a double network hydrogel (Fe2O3@LH), consisting of lignosulfonate (LS) and polyacrylamide with embedded Fe2O3 nanoparticles, was synthesized successfully via a one-pot method and subsequently applied to adsorb lead (Pb) from contaminated soil. Incorporating Fe2O3 into the hydrogel enhances the adsorption capacity of Fe2O3@LH for Pb(II). The Fe2O3@LH hydrogel demonstrates a maximum Pb(II) adsorption capacity of 143.11 mg g-1, with Pb(II) removal mechanisms involving electrostatic adsorption, cation exchange, precipitation reactions, and the formation of coordination complexes, achieving a 22.3 % maximum removal efficiency in soil cultivation experiments. Additionally, the application of Fe2O3@LH markedly reduces the concentrations of cadmium (Cd) and arsenic (As) in the soil, meanwhile enhances the levels of total nitrogen (TN), soil organic matter (SOM), and cation exchange capacity (CEC) by 23.1 %, 10.6 %, and 16.9 %, respectively. Following 90 days of continuous application in the soil, the recovery rate of Fe2O3@LH remains above 75 %. The toxicity assay using zebrafish larvae indicates that Fe2O3@LH demonstrates good biosafety. This study demonstrates the considerable potential of Fe2O3@LH hydrogel for practical application in reducing Pb(II) levels in contaminated soil.
Collapse
Affiliation(s)
- Tian Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingkai Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiujiao Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Deyun Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jianbin Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Yulong Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Xueming Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jinjin Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China.
| |
Collapse
|
2
|
Aurell J, Holder AL, Gullett BK, Sowers TD, Weinstein J, Kariher P, McNesby K, Kim YH, Gilmour MI. Gas and particle emissions from rifle and pistol firing. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135196. [PMID: 39018594 PMCID: PMC11459210 DOI: 10.1016/j.jhazmat.2024.135196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Emissions were sampled from firing an M4 carbine rifle and a M9 (military issue of Beretta 75 FS 9 mm pistol) to develop sampling methods and assess potential exposures and range contamination issues. Breech and muzzle emissions were sampled from the rifle when firing M855A1 ammunition (lead (Pb)-free slugs) in single- and triple-shot burst mode and from single pistol shots when firing 9 mm XM1152 ammunition (not Pb-free). Emissions were sampled for carbon monoxide (CO), carbon dioxide (CO2), methane, hydrogen cyanide, ammonia, particulate matter by size, polycylic aromatic hydrocarbons, and volatile organics. Analyses on the particles included elemental composition, size distribution, carbon composition (black, total, organic, and elemental carbon), and particle composition and morphology. Emission concentrations from both the rifle and pistol were characterized by CO/CO2 ratios between, approximately, 1/1 and 2/1, respectfully, indicating incomplete carbon oxidation. The initial particle size distribution was dominated in number by particles smaller than 40 nm but the high particle concentrations led to rapid agglomeration. The abundance of CO and metals of inhalable particle size are noteworthy and indicate that further assessment of exposure would determine potential inhalation health hazards, particularly in indoor firing ranges.
Collapse
Affiliation(s)
- Johanna Aurell
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling (E343-04), Research Triangle Park, NC 27711, USA.
| | - Amara L Holder
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling (E343-04), Research Triangle Park, NC 27711, USA
| | - Brian K Gullett
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling (E343-04), Research Triangle Park, NC 27711, USA
| | - Tyler D Sowers
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling (E343-04), Research Triangle Park, NC 27711, USA
| | - Jason Weinstein
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27711, USA
| | - Peter Kariher
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling (E343-04), Research Triangle Park, NC 27711, USA
| | - Kevin McNesby
- US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA
| | - Yong Ho Kim
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27711, USA
| | - M Ian Gilmour
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27711, USA
| |
Collapse
|
3
|
Madsen J, Dascalos Z, Ramsey K, Mayer F, Wong C, Raposo Z, Hunter R, Reinhart M, Carlson A, Catlin A, Mihelic T, Pfahler Z, Carroll A, Angelich K, Stubler C, Sun D, Betts A, Appel C. Impacts of phosphorus amendments on legacy soil contamination from lead-based paint on a California, USA university campus. CHEMOSPHERE 2024; 362:142645. [PMID: 38897327 PMCID: PMC11441423 DOI: 10.1016/j.chemosphere.2024.142645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Lead (Pb) is one of the most common heavy metal urban soil contaminants with well-known toxicity to humans. This incubation study (2-159 d) compared the ability of bone meal (BM), potassium hydrogen phosphate (KP), and triple superphosphate (TSP), at phosphorus:lead (P:Pb) molar ratios of 7.5:1, 15:1, and 22.5:1, to reduce bioaccessible Pb in soil contaminated by Pb-based paint relative to control soil to which no P amendment was added. Soil pH and Mehlich 3 bioaccessible Pb and P were measured as a function of incubation time and amount and type of P amendment. XAS assessed Pb speciation after 30 and 159 d of incubation. The greatest reductions in bioaccessible Pb at 159 d were measured for TSP at the 7.5:1 and 15:1 P:Pb molar ratios. The 7.5:1 KP treatment was the only other treatment with significant reductions in bioaccessible Pb compared to the control soil. It is unclear why greater reductions of bioaccessible Pb occurred with lower P additions, but it strongly suggests that the amount of P added was not a controlling factor in reducing bioaccessible Pb. This was further supported because Pb-phosphates were not detected in any samples using XAS. The most notable difference in the effect of TSP versus other amendments was the reduction in pH. However, the relationship between increasing TSP additions, resulting in decreasing pH and decreasing Pb bioaccessibility was not consistent. The 22.5:1 P:Pb TSP treatment had the lowest pH but did not significantly reduce bioaccessible Pb compared to the control soil. The 7.5:1 and 15:1 P:Pb TSP treatments significantly reduced bioaccessible Pb relative to the control and had significantly higher pH than the 22.5:1 P:Pb treatment. Clearly, impacts of P additions and soil pH on Pb bioaccessibility require further investigation to decipher mechanisms governing Pb speciation in Pb-based paint contaminated soils.
Collapse
Affiliation(s)
- Julia Madsen
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zoe Dascalos
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kristina Ramsey
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Freddie Mayer
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Connie Wong
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zach Raposo
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Rachel Hunter
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Mac Reinhart
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Alexandra Carlson
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Austin Catlin
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Tanner Mihelic
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zoe Pfahler
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Alec Carroll
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kyle Angelich
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Craig Stubler
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Dennis Sun
- Department of Statistics, Stanford University, Stanford, CA, 94305, USA
| | - Aaron Betts
- U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| | - Chip Appel
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
4
|
Sowers TD, Nelson CM, Blackmon MD, Li K, Jerden ML, Kirby AM, Kovalcik K, Cox D, Dewalt G, Friedman W, Pinzer EA, Ashley PJ, Bradham KD. United States house dust Pb concentrations are influenced by soil, paint, and house age: insights from a national survey. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:709-717. [PMID: 38548929 PMCID: PMC11303246 DOI: 10.1038/s41370-024-00655-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Lead (Pb) in house dust contributes significantly to blood lead levels (BLLs) in children which may result in dire health consequences. Assessment of house dust Pb in the United States, relationships with Pb in soil and paint, and residential factors influencing Pb concentrations are essential to probing drivers of house dust Pb exposure. OBJECTIVE Pb concentrations in vacuum-collected house dust are characterized across 346 homes participating in the American Health Homes Survey II (AHHS II), a US survey (2018-2019) evaluating residential Pb hazards. Connections between house dust Pb and soil Pb, paint Pb, and other residential factors are evaluated, and dust Pb concentration data are compared to paired loading data to understand Pb hazard standard implications. RESULTS Mean and median vacuum dust Pb concentrations were 124 µg Pb g-1 and 34 µg Pb g-1, respectively. Vacuum-collected dust concentrations and dust wipe Pb loading rates were significantly correlated within homes (α < 0.001; r ≥ 0.4). At least one wipe sample exceeded current house dust Pb loading hazard standards (10 µg ft-2 or 100 µg Pb ft-2 for floors and windowsills, respectively) in 75 of 346 homes (22%). House dust Pb concentrations were correlated with soil Pb (r = 0.64) and Pb paint (r = 0.57). Soil Pb and paint Pb were also correlated (r = 0.6). IMPACT The AHHS II provides a window into the current state of Pb in and around residences. We evaluated the relationship between house dust Pb concentrations and two common residential Pb sources: soil and Pb-based paint. Here, we identify relationships between Pb concentrations from vacuum-collected dust and paired Pb wipe loading data, enabling dust Pb concentrations to be evaluated in the context of hazard standards. This relationship, along with direct ties to Pb in soil and interior/exterior paint, provides a comprehensive assessment of dust Pb for US homes, crucial for formulating effective strategies to mitigate Pb exposure risks in households.
Collapse
Affiliation(s)
- Tyler D Sowers
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | | | - Matthew D Blackmon
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Kevin Li
- Independent Researcher, Lansing, MI, 48915, USA
| | - Marissa L Jerden
- Jacobs Technology, Inc., 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Alicia M Kirby
- Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
| | - Kasey Kovalcik
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - David Cox
- QuanTech, 6110 Executive Blvd Suite 206, Rockville, MD, 20852, USA
| | - Gary Dewalt
- QuanTech, 6110 Executive Blvd Suite 206, Rockville, MD, 20852, USA
| | - Warren Friedman
- Office of Lead Hazard Control and Healthy Homes, Department of Housing and Urban Development, Washington, DC, 20410, USA
| | - Eugene A Pinzer
- Office of Lead Hazard Control and Healthy Homes, Department of Housing and Urban Development, Washington, DC, 20410, USA
| | - Peter J Ashley
- Office of Lead Hazard Control and Healthy Homes, Department of Housing and Urban Development, Washington, DC, 20410, USA
| | - Karen D Bradham
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
5
|
Sowers TD, Blackmon MD, Wilkin RT, Rovero M, Bone SE, Jerden ML, Nelson CM, Bradham KD. Lead Speciation, Bioaccessibility, and Sources for a Contaminated Subset of House Dust and Soils Collected from Similar United States Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9339-9349. [PMID: 38748567 DOI: 10.1021/acs.est.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Residential lead (Pb) exposure is of critical concern to families globally as Pb promotes severe neurological effects in children, especially those less than 5 years old, and no blood lead level is deemed safe by the US Center for Disease Control. House dust and soils are commonly thought to be important sources of Pb exposure. Probing the relationship between house dust and soil Pb is critical to understanding residential exposure, as Pb bioavailability is highly influenced by Pb sources and/or species. We investigated paired house dust and soil collected from homes built before 1978 to determine Pb speciation, source, and bioaccessibility with the primary goal of assessing chemical factors driving Pb exposure in residential media. House dust was predominately found to contain (hydro)cerussite (i.e., Pb (hydroxy)carbonate) phases commonly used in Pb-based paint that, in-turn, promoted elevated bioaccessibility (>60%). Pb X-ray absorption spectroscopy, μ-XRF mapping, and Pb isotope ratio analysis for house dust and soils support house dust Pb as chemically unique compared to exterior soils, although paint Pb is expected to be a major source for both. Soil pedogenesis and increased protection from environmental conditions (e.g., weathering) in households is expected to greatly impact Pb phase differences between house dust and soils, subsequently dictating differences in Pb exposure.
Collapse
Affiliation(s)
- Tyler D Sowers
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Matthew D Blackmon
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Richard T Wilkin
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma 74820, United States
| | - Matt Rovero
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma 74820, United States
| | - Sharon E Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Marissa L Jerden
- Jacobs Technology, Inc., 109 T.W. Alexander Drive, RTP, North Carolina 27711, United States
| | - Clay M Nelson
- BioGeoChem Scientific, Austin, Texas 78748, United States
| | - Karen D Bradham
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
6
|
Cao Y, Liu M, Zhang W, Zhang X, Li X, Wang C, Zhang W, Liu H, Wang X. Characterization and childhood exposure assessment of toxic heavy metals in household dust under true living conditions from 10 China cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171669. [PMID: 38494014 DOI: 10.1016/j.scitotenv.2024.171669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Health hazards caused by metal exposure in household dust are concerning environmental health problems. Exposure to toxic metals in household dust imposes unclear but solid health risks, especially for children. In this multicenter cross-sectional study, a total of 250 household dust samples were collected from ten stratified cities in China (Panjin, Shijiazhuang, Qingdao, Lanzhou, Luoyang, Ningbo, Xi'an, Wuxi, Mianyang, Shenzhen) between April 2018 and March 2019. Questionnaire was conducted to gather information on individuals' living environment and health status in real-life situations. Multivariate logistic regression and principal component analysis were conducted to identify risk factors and determine the sources of metals in household dust. The median concentration of five metals in household dust from 10 cities ranged from 0.03 to 73.18 μg/g. Among the five heavy metals, only chromium in household dust of Mianyang was observed significantly both higher in the cold season and from the downwind households. Mercury, cadmium, and chromium were higher in the third-tier cities, with levels of 0.08, 0.30 and 97.28 μg/g, respectively. There were two sources with a contribution rate of 38.3 % and 25.8 %, respectively. Potential risk factors for increased metal concentration include long residence time, close to the motorway, decoration within five years, and purchase of new furniture within one year. Under both moderate and high exposure scenarios, chromium showed the highest level of exposure with 6.77 × 10-4 and 2.28 × 10-3 mg·kg-1·d-1, and arsenic imposed the highest lifetime carcinogenic risk at 1.67 × 10-4 and 3.17 × 10-4, respectively. The finding highlighted the priority to minimize childhood exposure of arsenic from household dust.
Collapse
Affiliation(s)
- Yun Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mengmeng Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenying Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaotong Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Weiyi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
7
|
Starr JM, Valentini E, Parker B, Graham SE, Waldron F. In vitro modeling of the post-ingestion mobilization and bioaccessibility of pesticides sorbed to soil and house dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123295. [PMID: 38184152 DOI: 10.1016/j.envpol.2024.123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Soils and dusts can act as sinks for semivolatile lipophilic organic compounds and children ingest relatively large amounts of both soils and dusts. Following intake, sorbed chemicals may desorb (mobilize) and become available for intestinal absorption (bioaccessible). When chemicals are not degraded in the digestive tract, mobilization can approximate bioaccessibility. Alternatively, when gastrointestinal degradation of mobilized chemicals does occur, it can be useful to separate mobilization from bioaccessibility. In this study we used synthetic digestive fluids in a sequential, three-compartment (saliva, gastric, and intestinal) in vitro assay to construct mobilization and bioaccessibility models for 16 pesticides (log Kow 2.5-6.8) sorbed to 32 characterized soils and house dusts. To address the potential loss of mobilized pesticides due to absorption, the assays were repeated using a solid phase sorbent (tenax) added to the digestive fluid immediately after addition of the intestinal fluid components. We found that pesticide mobilization was predicted by pesticide log Kow and the carbon content of the soils and dusts. Pesticide loss measurably reduced the bioaccessibility of most pesticides, and bioaccessibility was largely predicted by log Kow and pesticide loss rate constants. Introduction of the sink increased mobilization by x̄ = 4 ± 6% (soil) and x̄ = 9 ± 7% (dust) while bioaccessibility increases were x̄ = 41 ± 21% (soil) and x̄ = 24 ± 12% (dust). The physicochemical properties of the soils, dusts, and pesticides used in this study successfully predicted the in vitro mobilization and bioaccessibility of the pesticides. This suggests that modeling of pesticide mobilization and bioaccessibility could reduce uncertainty in exposure and risk assessments.
Collapse
Affiliation(s)
- James M Starr
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA.
| | - Evelyn Valentini
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Bethany Parker
- Oak Ridge Institute for Science and Education Fellow at the United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Stephen E Graham
- United States Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention, Research Triangle Park, NC 27711, USA
| | - Faith Waldron
- Oak Ridge Institute for Science and Education Fellow at the United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| |
Collapse
|
8
|
Parker BA, Valentini E, Graham SE, Starr JM. In vitro modeling of the post-ingestion bioaccessibility of per- and polyfluoroalkyl substances sorbed to soil and house dust. Toxicol Sci 2023; 197:95-103. [PMID: 37740396 PMCID: PMC10942096 DOI: 10.1093/toxsci/kfad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are regularly found in soils and dusts, both of which can be consumed by children at relatively high amounts. However, there is little data available to model the bioaccessibility of PFAS in soils and dusts when consumed or to describe how the physiochemical properties of PFAS and soils/dusts might affect bioaccessibility of these chemicals. Because bioaccessibility is an important consideration in estimating absorbed dose for exposure and risk assessments, in the current study, in vitro assays were used to determine bioaccessibility of 14 PFAS in 33 sets of soils and dusts. Bioaccessibility assays were conducted with and without a sink, which was used to account for the removal of PFAS due to their movement across the human intestine. Multiple linear regression with backward elimination showed that a segmented model using PFAS chain length, number of branches, and percent total organic carbon explained 78.0%-88.9% of the variability in PFAS bioaccessibility. In general, PFAS had significantly greater bioaccessibility in soils relative to dusts and the addition of a sink increased bioaccessibility in the test system by as much as 10.8% for soils and 20.3% for dusts. The results from this study indicate that PFAS bioaccessibility in soils and dusts can be predicted using a limited set of physical chemical characteristics and could be used to inform risk assessment models.
Collapse
Affiliation(s)
- Bethany A Parker
- Office of Research and Development, Oak Ridge Institute for Science and Education Fellow at the United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Evelyn Valentini
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Stephen E Graham
- Office of Pesticide Programs, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - James M Starr
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
9
|
Sowers TD, Blackmon MD, Betts AR, Jerden ML, Scheckel KG, Bradham KD. Potassium jarosite seeding of soils decreases lead and arsenic bioaccessibility: A path toward concomitant remediation. Proc Natl Acad Sci U S A 2023; 120:e2311564120. [PMID: 38048468 PMCID: PMC10723135 DOI: 10.1073/pnas.2311564120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
Soils are common sources of metal(loid) contaminant exposure globally. Lead (Pb) and arsenic (As) are of paramount concern due to detrimental neurological and carcinogenic health effects, respectively. Pb and/or As contaminated soils require remediation, typically leading to excavation, a costly and environmentally damaging practice of removing soil to a central location (e.g., hazardous landfill) that may not be a viable option in low-income countries. Chemical remediation techniques may allow for in situ conversion of soil contaminants to phases that are not easily mobilized upon ingestion; however, effective chemical remediation options are limited. Here, we have successfully tested a soil remediation technology using potted soils that relies on converting soil Pb and As into jarosite-group minerals, such as plumbojarosite (PLJ) and beudantite, possessing exceptionally low bioaccessibility [i.e., solubility at gastric pH conditions (pH 1.5 to 3)]. Across all experiments conducted, all new treatment methods successfully promoted PLJ and/or beudantite conversion, resulting in a proportional decrease in Pb and As bioaccessibility. Increasing temperature resulted in increased conversion to jarosite-group minerals, but addition of potassium (K) jarosite was most critical to Pb and As bioaccessibility decreases. Our methods of K-jarosite treatment yielded <10% Pb and As bioaccessibility compared to unamended soil values of approximately 70% and 60%, respectively. The proposed treatment is a rare dual remediation option that effectively treats soil Pb and As such that potential exposure is considerably reduced. Research presented here lays the foundation for ongoing field application.
Collapse
Affiliation(s)
- Tyler D. Sowers
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Durham, NC27711
| | - Matthew D. Blackmon
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Durham, NC27711
| | - Aaron R. Betts
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH45268
| | | | - Kirk G. Scheckel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH45268
| | - Karen D. Bradham
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Durham, NC27711
| |
Collapse
|
10
|
Li L, Cao Y, Ippolito JA, Xing W, Qiu K, Li H, Zhao D, Wang Y, Wang Y. Cadmium and lead bioavailability to poultry fed with contaminated soil-spiked feed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163036. [PMID: 36972887 DOI: 10.1016/j.scitotenv.2023.163036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Geophagy is common for free-range chickens, however, the relative bioavailability (RBA) of heavy metals in contaminated soils consumed by chickens has not fully investigated. In this work, chickens were fed diets increasingly spiked with a contaminated soil (Cd = 105, Pb = 4840 mg kg-1; 3, 5, 10, 20 and 30 % of overall feed by weight), or Cd/Pb reagent spikes (from CdCl2 or Pb(Ac)2), for 23 d. After the study period, chicken liver, kidney, femur and gizzard samples were analyzed for Cd and Pb concentrations, and organ/tissue metal concentrations were used to calculate Cd and Pb RBA. Linear dose response curves (DRCs) were established for both Cd/Pb reagents-spiked and soil-spiked treatments. Femur Cd concentrations of soil-spiked treatments were two times of Cd-spiked treatments with similar feed Cd levels, while feed spiked with Cd or Pb also resulted in elevated Pb or Cd concentrations in some organ/tissues. Metal RBA was calculated using three different methods. Most Cd and Pb RBA values were in the range 50-70 %, with the chicken gizzard as a potential endpoint for bioaccessible Cd and Pb. Cadmium and Pb bioavailability values can help with more precise estimation of Cd and Pb accumulation in chicken following heavy metal-contaminated soil ingestion, with overall results helping to protect human health.
Collapse
Affiliation(s)
- Liping Li
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China.
| | - Yongxin Cao
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - James A Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Weiqin Xing
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Kunyan Qiu
- Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, Henan 459000, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Di Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yali Wang
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Yale Wang
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| |
Collapse
|
11
|
Chen X, Cao S, Wen D, Zhang Y, Wang B, Duan X. Domestic dogs as sentinels of children lead exposure: Multi-pathway identification and source apportionment based on isotope technique. CHEMOSPHERE 2023; 316:137787. [PMID: 36623594 DOI: 10.1016/j.chemosphere.2023.137787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Environmental lead exposure poses risks to children' health, thus exposure sources and pathways identification remain important concern and research scope. Due to sharing the same environment, domestic animals, especially dogs, have been used as useful sentinels to identify human lead exposure. However, more evidence is needed on whether domestic dogs could be used to identify the lead exposure pathways and sources of children. Thus, this study investigated the dietary habits, behaviors, and household environment of children and dogs in a typical coal-fired area in China. The lead levels and lead isotope ratios (Acronym: LIRs, expressed as 208Pb/206Pb and 207Pb/206Pb) in dogs' and children's blood, as well as in environmental media (food, PM2.5, indoor/outdoor dust, drinking water and soil) were measured to explore the predominant lead pollution sources and exposure pathways of children. The results showed that the LIRs of children's blood (208Pb/206Pb = 2.0703 ± 0.0076, 207Pb/206Pb = 0.8501 ± 0.0052) were similar to those of dogs' blood (208Pb/206Pb = 2.0696 ± 0.0085, 207Pb/206Pb = 0.8499 ± 0.0052), as well as similar to the LIRs of environmental media, i.e. children's food (208Pb/206Pb = 2.0731 ± 0.0057, 207Pb/206Pb = 0.8491 ± 0.0036) and coal (208Pb/206Pb = 2.0683 ± 0.017, 207Pb/206Pb = 0.8515 ± 0.01). Children and dogs had similar lead exposure pathways, but the contributions of each exposure pathway were different, i.e., 83.1% vs. 76.9% for children and dogs via food ingestion, 1.4% vs. 5.6% via particulate matter exposure, and 15.5% vs. 17.5% via household dust exposure, respectively. The contribution of food via ingestion to lead exposure remains dominant, and coal combustion is a main lead exposure source for children and domestic dogs.
Collapse
Affiliation(s)
- Xing Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - SuZhen Cao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongsen Wen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yaqun Zhang
- Gansu Academy of Eco-environmental Sciences, Lanzhou, 730000, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
12
|
Ibañez-Del Rivero C, Fry KL, Gillings MM, Barlow CF, Aelion CM, Taylor MP. Sources, pathways and concentrations of potentially toxic trace metals in home environments. ENVIRONMENTAL RESEARCH 2023; 220:115173. [PMID: 36584841 DOI: 10.1016/j.envres.2022.115173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Despite ongoing concerns about trace metal and metalloid (trace metals) exposure risks from indoor dust, there has been limited research examining their sources and relationship to outdoor soils. Here we determine the concentrations and sources for potentially toxic trace metals arsenic (As), chromium (Cr), copper (Cu), manganese (Mn), lead (Pb) and zinc (Zn) and their pathways into homes in Sydney, Australia, using home-matched indoor dust (n = 166), garden soil (n = 166), and road dust samples (n = 51). All trace metals were more elevated indoors versus their matched garden soil counterparts. Indoor Cu and Zn dust concentrations were significantly more enriched than outdoor dusts and soils, indicating indoor sources were more relevant for these elements. By contrast, even though Pb was elevated in indoor dust, garden soil concentrations were correspondingly high, indicating that it remains an important source and pathway for indoor contamination. Elevated concentrations of As, Pb and Zn in garden soil and indoor dust were associated with home age (>50 years), construction materials, recent renovations and deteriorating interior paint. Significant correlations (p < 0.05) between road dust and garden soil Cu concentrations, and those of As and Zn in soil and indoor dust, and Pb across all three media suggest common sources. Scanning electron microscopy (SEM) analysis of indoor dust samples (n = 6) showed that 57% of particles were derived from outdoor sources. Lead isotopic compositions of soil (n = 21) and indoor dust (n = 21) were moderately correlated, confirming the relevance of outdoor contaminants to indoor environments. This study illustrates the source, relationship and fate of trace metals between outdoor and indoor environments. The findings provide insight into understanding and responding to potentially toxic trace metal exposures in the home environment.
Collapse
Affiliation(s)
- Carlos Ibañez-Del Rivero
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Kara L Fry
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia
| | - Max M Gillings
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Cynthia F Barlow
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; The Australian Centre for Housing Research, Faculty of Arts, Business, Law and Economics, University of Adelaide, SA, 5000, Australia
| | - C Marjorie Aelion
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Mark Patrick Taylor
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia.
| |
Collapse
|
13
|
Wekumbura C, Hettiarachchi GM, Sobin C. Estimating the proportion of bioaccessible lead (BaPb) in household dust wipe samples: a comparison of IVBA and PBET methods. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:127-138. [PMID: 36840601 DOI: 10.1080/10934529.2023.2178206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Established methods for using standardized dust wipes to collect and measure total lead in household dust are readily available but the use of dust wipes to measure bioaccessible lead (BaPb) is less clear. This study compared two in vitro methods for estimating the proportion of BaPb in dust collected into dust wipes including the US-EPA's in-vitro bioaccessible assay (IVBA) method at two pH (1.5 and 2.5) values; and the physiologically based extraction test (PBET 2.5 pH). Two types of simulated household dust samples (Pb-soil contaminated and Pb-paint contaminated) each with three Pb concentrations were created. Equal amounts of simulated dust were applied to a smooth surface and collected following the standard EPA dust wipe protocol and were analyzed for BaPb and total Pb (ASTM-E1644-17, ICP-OES). Estimated BaPb levels differed significantly by the method of extraction. Mean percent BaPb were IVBA pH 1.5, > 90% (Pb-paint) and 59-63% (Pb-soil); IVBA pH 2.5 78-86% (Pb-paint) and 45-50% (Pb-soil); PBET pH 2.5 56 to 61% (Pb-paint) and 41-50% Pb-soil). Particularly for lead-paint contaminated dust, PBET showed significantly greater discrimination as suggested by the broader range of BaPb values and closer approximation to total lead concentrations in simulated household dust samples.
Collapse
Affiliation(s)
| | | | - Christina Sobin
- Department of Public Health Sciences, University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
14
|
Huang X, Chang M, Han L, Li J, Li SW, Li HB. Variation of lead bioaccessibility in soil reference materials: Intra- and inter-laboratory assessments. CHEMOSPHERE 2023; 312:137293. [PMID: 36403811 DOI: 10.1016/j.chemosphere.2022.137293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Standard reference materials (SRMs) have been commonly used to perform quality assurance and quality control (QA/QC) in soil total metal concentration analyses or bioaccessibility assessment. In this study, 10 experimenters from 4 laboratories determined bioaccessibility of lead (Pb) in 4 widely-used SRMs (NIST 2710a, NIST 2587, BGS 102, and GBW 07405). Based on the gastric phase (GP) of the unified BARGE bioaccessibility method (UBM) and the Solubility Bioavailability Research Consortium procedure (SBRC), Pb bioaccessibility in SRMs was compared within and between laboratories to assess their intra-laboratory repeatability and inter-laboratory reproducibility. Lead bioaccessibility was 14.1 ± 2.44%-101 ± 2.48% in the 4 SRMs. The values were in vivo validated based on a mouse model in previous studies (R2 = 0.97-0.98), suggesting the reliability of Pb bioaccessibility data. Strong correlations were observed for Pb bioaccessibility among 7 experimenters (R2 = 0.94-0.99) at the Nanjing University (NJU) laboratory and similar strong correlations were also found between each two of the 4 laboratories (R2 = 0.94-0.98), illustrating consistency in intra- and inter-laboratory performance. The intra-laboratory repeatability and inter-laboratory reproducibility were generally acceptable with relative standard deviations (RSDs) of Pb bioaccessibility being ≤10% within laboratory and ≤20% between laboratories, except in a soil with low bioaccessible Pb (BSG 102). Our study suggested that measurements of Pb bioaccessibility in SRMs based on the two in vivo validated methods were repeatable and reproducible within and between laboratories, further verified their reliability being used as QA/QC samples during Pb bioaccessibility assessment.
Collapse
Affiliation(s)
- Xiaoyue Huang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Minghui Chang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lei Han
- Jinan Environmental Research Institute (Jinan Yellow River Basin Ecological Protection Promotion Center), Jinan, 250102, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250399, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Li HB, Xue RY, Chen XQ, Lin XY, Shi XX, Du HY, Yin NY, Cui YS, Li LN, Scheckel KG, Juhasz AL, Xue XM, Zhu YG, Ma LQ. Ca Minerals and Oral Bioavailability of Pb, Cd, and As from Indoor Dust in Mice: Mechanisms and Health Implications. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:127004. [PMID: 36541774 PMCID: PMC9769408 DOI: 10.1289/ehp11730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Elevating dietary calcium (Ca) intake can reduce metal(loid)oral bioavailability. However, the ability of a range of Ca minerals to reduce oral bioavailability of lead (Pb), cadmium (Cd), and arsenic (As) from indoor dust remains unclear. OBJECTIVES This study evaluated the ability of Ca minerals to reduce Pb, Cd, and As oral bioavailability from indoor dust and associated mechanisms. METHODS A mouse bioassay was conducted to assess Pb, Cd, and As relative bioavailability (RBA) in three indoor dust samples, which were amended into mouse chow without and with addition of CaHPO 4 , CaCO 3 , Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate at 200 - 5,000 μ g / g Ca . The mRNA expression of Ca and phosphate (P) transporters involved in transcellular Pb, Cd and As transport in the duodenum of mice was quantified using real-time polymerase chain reaction. Serum 1,25-Dihydroxyvitamin D3 [1,25 ( OH ) 2 D 3 ], parathyroid hormone (PTH), and renal CYP27B1 activity controlling 1,25 ( OH ) 2 D 3 synthesis were measured using ELISA kits. Metal(loid) speciation in the feces of mice was characterized using X-ray absorption near-edge structure (XANES) spectroscopy. RESULTS In general, mice exposed to each of the Ca minerals exhibited lower Pb-, Cd-, and As-RBA for three dusts. However, RBAs with the different Ca minerals varied. Among minerals, mice fed dietary CaHPO 4 did not exhibit lower duodenal mRNA expression of Ca transporters but did have the lowest Pb and Cd oral bioavailability at the highest Ca concentration (5,000 μ g / g Ca ; 51%-95% and 52%-74% lower in comparison with the control). Lead phosphate precipitates (e.g., chloropyromorphite) were observed in feces of mice fed dietary CaHPO 4 . In comparison, mice fed organic Ca minerals (Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate) had lower duodenal mRNA expression of Ca transporters, but Pb and Cd oral bioavailability was higher than in mice fed CaHPO 4 . In terms of As, mice fed Ca aspartate exhibited the lowest As oral bioavailability at the highest Ca concentration (5,000 μ g / g Ca ; 41%-72% lower) and the lowest duodenal expression of P transporter (88% lower). The presence of aspartate was not associated with higher As solubility in the intestine. DISCUSSION Our study used a mouse model of exposure to household dust with various concentrations and species of Ca to determine whether different Ca minerals can reduce bioavailability of Pb, Cd, and As in mice and elucidate the mechanism(s) involved. This study can contribute to the practical application of optimal Ca minerals to protect humans from Pb, Cd, and As coexposure in the environment. https://doi.org/10.1289/EHP11730.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Xiao-Qiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Xiao-Xia Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Hai-Yan Du
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Nai-Yi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Shan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Na Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Kirk G. Scheckel
- National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Sowers TD, Blackmon MD, Bone SE, Kirby AM, Jerden ML, Noerpel MR, Scheckel KG, Bradham KD. Successful Conversion of Pb-Contaminated Soils to Low-Bioaccessibility Plumbojarosite Using Potassium-Jarosite at Ambient Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15718-15727. [PMID: 36239028 PMCID: PMC10398550 DOI: 10.1021/acs.est.2c05606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of <1%, compared to original soils possessing bioaccessibility of >70%. However, this technique requires heat (95-100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (<10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. μ-X-ray fluorescence (μ-XRF) and μ-X-ray absorption near-edge structure (μ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.
Collapse
Affiliation(s)
- Tyler D Sowers
- Center of Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Matthew D Blackmon
- Center of Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Sharon E Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alicia M Kirby
- Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830, United States
| | - Marissa L Jerden
- Jacobs Technology, Inc., 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Matthew R Noerpel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Kirk G Scheckel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Karen D Bradham
- Center of Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
17
|
Haque E, Jing X, Bostick BC, Thorne PS. In vitro and in silico bioaccessibility of urban dusts contaminated by multiple legacy sources of lead (Pb). JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100178. [PMID: 36926421 PMCID: PMC10016194 DOI: 10.1016/j.hazadv.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lead contamination from gasoline, paint, pesticides, and smelting have unique chemical structures. Recent investigations into Pb speciation in urban soils and dusts from multiple sources have revealed emerging forms which differ from the initial sources. This results from reactions with soil constituents leading to transformation to new forms for which the bioaccessibilities remain uninvestigated. We investigated the in vitro and in silico bioaccessibility of these emerging forms in three physiologically relevant milieux: artificial lysosomal fluid (ALF), simulated epithelial lung fluid (SELF), and simulated gastric fluid (SGF). Species were validated using extended X-ray absorption fine structure spectroscopy. Results highlight diverse bioaccessibilities which are form and compartmentally-dependent. In ALF the bioaccessibility trend was humate-bound Pb (86%) > hydrocerussite (79%) > Fe oxide-bound Pb (47%) > galena (10%) > pyromorphite (4%) > Mn oxide-bound Pb (2%). Humate-bound Pb, hydrocerussite, Fe and Mn oxide-bound Pb were 100% bioaccessible in SGF while pyromorphite and galena were 26%, and 8%, respectively. Bioaccessibility in SELF was very low (< 1%) and significantly lower than ALF and SGF (p < 0.001). In silico bioaccessibilities modeled using equilibrium solubilities in extraction solutions were in good agreement with empirical measurements. These emerging forms of Pb have a wide range of bioaccessibilities that can influence their toxicity and impact on human health.
Collapse
Affiliation(s)
- Ezazul Haque
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| | | | - Peter S. Thorne
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| |
Collapse
|
18
|
Zhou L, Liu G, Shen M, Liu Y. Potential ecological and health risks of heavy metals for indoor and corresponding outdoor dust in Hefei, Central China. CHEMOSPHERE 2022; 302:134864. [PMID: 35537633 DOI: 10.1016/j.chemosphere.2022.134864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 05/28/2023]
Abstract
The harm caused by indoor dust has received increasing attention in recent years. However, current studies have ignored comparisons with the corresponding outdoor dust. This study aimed to investigate the distribution of heavy metals in indoor and corresponding outdoor dust and the ecological and health risks they pose in Hefei, Central China. We analyzed O/I (outdoor/indoor concentration ratios) values, background comparison, and correlation analysis (heavy metal concentrations vs. particle size) and found that Cu, Zn, and Cd mainly existed in indoor sources, while V, Co, and As mainly existed in outdoor sources, and both family sizes and floor number influenced the variation of O/I. Through a new potential ecological risk assessment method, we determined that Cd risk levels in indoor and outdoor dust were extreme and high to extreme, respectively. Additionally, the carcinogenic risks of Ni, As, and Cr were not negligible. The risk of indoor dust was higher than that of outdoor dust for the heavy metals studied, implying a poor indoor environment. Notably, indoor dust from families with smaller sizes, lower floors, and smokers had higher ecological and carcinogenic risks.
Collapse
Affiliation(s)
- Li Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China; State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Mengchen Shen
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
19
|
Wang R, Zou H, Zheng R, Feng X, Xu J, Shangguan Y, Luo S, Wei W, Yang D, Luo W, Duan L, Chen H. Molecular Dynamics Beyond the Monolayer Adsorption as Derived from Langmuir Curve Fitting. Inorg Chem 2022; 61:7804-7812. [PMID: 35522893 DOI: 10.1021/acs.inorgchem.2c00301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Langmuir adsorption model is a classic physical-chemical adsorption model and is widely used to describe the monolayer adsorption behavior at the material interface in environmental chemistry. Traditional adsorption dynamic modeling solely considered the surface physiochemical interaction between the adsorbent and adsorbate. The surface reaction dynamics resulting from the heterogeneous surface and intrinsic electronic structure of absorbents were rarely considered within the reported adsorption experiments. Herein, by employing the chlorine hybrid graphene oxide (GO-Cl) to adsorb Ag+ in an aqueous solution, complicated molecular dynamics significantly deviated from the monolayer adsorption mechanism, as suggested by Langmuir adsorption curve fitting, has been elucidated down to atomic scale. In the time-dependent Ag adsorption experiments, both Ag single atoms and Ag/AgCl nanoparticle heterostructures are observed to be formed sequentially on GO-Cl. These observations indicate that for the surface adsorption dynamics, not only the surface chemical adsorption process involved but also photoreduction and the C-Cl bond cleavage reaction has been heavily engaged within the GO-Cl interface, suggesting a much more complicated vision rather than the monolayered adsorption algorithm as derived from curve fitting. This study uses GO-Cl as a simple example to disclose the complicated adsorption dynamic process underneath Langmuir adsorption curve fitting. It advocates the necessity of imaging the interfacial atomic-scale dynamic structure with high-resolution microscopy techniques in modern adsorption studies, rather than simply explaining the adsorption dynamics relying on the curve fitting results due to the complicated physiochemical reactivity of the adsorbents.
Collapse
Affiliation(s)
- Ranhao Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiyuan Zou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Renji Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaoyan Xu
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Yangzi Shangguan
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Luo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfei Wei
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhong Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Luo
- Department of Materials Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lele Duan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Isley CF, Fry KL, Liu X, Filippelli GM, Entwistle JA, Martin AP, Kah M, Meza-Figueroa D, Shukle JT, Jabeen K, Famuyiwa AO, Wu L, Sharifi-Soltani N, Doyi INY, Argyraki A, Ho KF, Dong C, Gunkel-Grillon P, Aelion CM, Taylor MP. International Analysis of Sources and Human Health Risk Associated with Trace Metal Contaminants in Residential Indoor Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1053-1068. [PMID: 34942073 DOI: 10.1021/acs.est.1c04494] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
People spend increasing amounts of time at home, yet the indoor home environment remains understudied in terms of potential exposure to toxic trace metals. We evaluated trace metal (and metalloid) concentrations (As, Cu, Cr, Mn, Ni, Pb, and Zn) and health risks in indoor dust from homes from 35 countries, along with a suite of potentially contributory residential characteristics. The objective was to determine trace metal source inputs and home environment conditions associated with increasing exposure risk across a range of international communities. For all countries, enrichments compared to global crustal values were Zn > Pb > Cu > As > Cr > Ni; with the greatest health risk from Cr, followed by As > Pb > Mn > Cu > Ni > Zn. Three main indoor dust sources were identified, with a Pb-Zn-As factor related to legacy Pb sources, a Zn-Cu factor reflecting building materials, and a Mn factor indicative of natural soil sources. Increasing home age was associated with greater Pb and As concentrations (5.0 and 0.48 mg/kg per year of home age, respectively), as were peeling paint and garden access. Therefore, these factors form important considerations for the development of evidence-based management strategies to reduce potential risks posed by indoor house dust. Recent findings indicate neurocognitive effects from low concentrations of metal exposures; hence, an understanding of the home exposome is vital.
Collapse
Affiliation(s)
- Cynthia Faye Isley
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kara L Fry
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiaochi Liu
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Gabriel Michael Filippelli
- Department of Earth Sciences and Center for Urban Health, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, United States
| | - Jane A Entwistle
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, U.K
| | | | - Melanie Kah
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | | | - John T Shukle
- Department of Earth Sciences and Center for Urban Health, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, United States
| | - Khadija Jabeen
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, U.K
| | - Abimbola O Famuyiwa
- Department of Science Laboratory Technology, Moshood Abiola Polytechnic, Abeokuta, Ogun State P.M.B 2210, Nigeria
| | - Liqin Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Neda Sharifi-Soltani
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Israel N Y Doyi
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment National & Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| | - Kin Fai Ho
- Institute of Environment, Energy, and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Peggy Gunkel-Grillon
- Institute of Exact and Applied Sciences (ISEA), University of New Caledonia, BPR4, 98851 Nouméa cedex, New Caledonia, France
| | - C Marjorie Aelion
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Patrick Taylor
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Environment Protection Authority, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria 3085, Australia
| |
Collapse
|
21
|
Sowers TD, Bone SE, Noerpel MR, Blackmon MD, Karna RR, Scheckel KG, Juhasz AL, Diamond GL, Thomas DJ, Bradham KD. Plumbojarosite Remediation of Soil Affects Lead Speciation and Elemental Interactions in Soil and in Mice Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15950-15960. [PMID: 34806356 PMCID: PMC9606633 DOI: 10.1021/acs.est.1c06067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lead (Pb) contamination of soils is of global concern due to the devastating impacts of Pb exposure in children. Because early-life exposure to Pb has long-lasting health effects, reducing exposure in children is a critical public health goal that has intensified research on the conversion of soil Pb to low bioavailability phases. Recently, plumbojarosite (PLJ) conversion of highly available soil Pb was found to decrease Pb relative bioavailability (RBA <10%). However, there is sparse information concerning interactions between Pb and other elements when contaminated soil, pre- and post-remediation, is ingested and moves through the gastrointestinal tract (GIT). Addressing this may inform drivers of effective chemical remediation strategies. Here, we utilize bulk and micro-focused Pb X-ray absorption spectroscopy to probe elemental interactions and Pb speciation in mouse diet, cecum, and feces samples following ingestion of contaminated soils pre- and post-PLJ treatment. RBA of treated soils was less than 1% with PLJ phases transiting the GIT with little absorption. In contrast, Pb associated with organics was predominantly found in the cecum. These results are consistent with transit of insoluble PLJ to feces following ingestion. The expanded understanding of Pb interactions during GIT transit complements our knowledge of elemental interactions with Pb that occur at higher levels of biological organization.
Collapse
Affiliation(s)
- Tyler D Sowers
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Sharon E Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R Noerpel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Matthew D Blackmon
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Ranju R Karna
- Bennett Aerospace, Inc., Engineer Research and Development Center, USACE, Vicksburg, Mississippi 39183, United States
| | - Kirk G Scheckel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Gary L Diamond
- SRC, Inc., North Syracuse, New York 13212, United States
| | - David J Thomas
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Karen D Bradham
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
22
|
Li HB, Ning H, Li SW, Li J, Xue RY, Li MY, Wang MY, Liang JH, Juhasz AL, Ma LQ. An interlaboratory evaluation of the variability in arsenic and lead relative bioavailability when assessed using a mouse bioassay. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:593-607. [PMID: 33952142 DOI: 10.1080/15287394.2021.1919947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Animal bioassays have been developed to estimate oral relative bioavailability (RBA) of metals in soil, dust, or food for accurate health risk assessment. However, the comparability in RBA estimates from different labs remains largely unclear. Using 12 soil and soil-like standard reference materials (SRMs), this study investigated variability in lead (Pb) and arsenic (As) RBA estimates employing a mouse bioassay in 3 labs at Nanjing University, University of Jinan, and Shandong Normal University. Two performances of the bioassay at Nanjing University in 2019 and 2020 showed reproducible Pb and As RBA estimates, but increasing the number of mouse replicates in 2020 produced more precise RBA measurements. Although there were inter-lab variations in diet consumption rate and metal accumulation in mouse liver and kidneys following SRM ingestion due to differences in diet composition, bioassays at 3 labs in 2019 yielded overall similar Pb and As RBA estimates for the 12 SRMs with strong linear correlations between each 2 of the 3 labs for Pb (R2 = 0.95-0.98 and slope = 0.85-1.02) and As RBA outcomes (R2 = 0.46-0.86 and slope = 0.56-0.79). The consistency in RBA estimates was attributed to the relative nature of the final bioavailability outcome, which might overcome the inter-lab variation in diet consumption and metal uptake in mice. These results increased the confidence of use of mouse bioassays in bioavailability studies.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Han Ning
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, People's Republic of China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jia-Hui Liang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Wade AM, Richter DD, Craft CB, Bao NY, Heine PR, Osteen MC, Tan KG. Urban-Soil Pedogenesis Drives Contrasting Legacies of Lead from Paint and Gasoline in City Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7981-7989. [PMID: 34019756 DOI: 10.1021/acs.est.1c00546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study analyzed the impact of urban-soil pedogenesis on soil lead (Pb) contamination from paint and gasoline in the historic core of Durham, North Carolina. Total soil Pb in 1000 samples from streetsides, residential properties, and residual upland and floodplains ranged from 6 to 8825 mg/kg (mean = 211 mg/kg), with 50% of samples between 50 and 200 mg/kg soil Pb. The highest Pb concentrations were within 1 m of pre-1978 residential foundations, with concentrations inversely correlated with house age. Streetside soil Pb concentrations were elevated over the geologic background of <30 mg/kg and correlated with traffic flow. Streetside soil Pb concentrations were lower than Durham streetside soils collected in the 1970s, which was attributed to urban pedogenesis, the complex of natural and human processes that change soils over time. Accelerated erosion redistributes legacy Pb and floodplain sampling indicates sedimentation rates of up to 4 mm/year. Mixing and burial of soil with elevated Pb are also lowering soil Pb concentrations over time. These mechanisms are likely of greater significance on streetsides than near foundation soils. The development of an urban-pedogenesis framework can help guide public health approaches to Pb exposure by incorporating pedogenic processes that reduce and dissipate soil Pb contamination.
Collapse
Affiliation(s)
- Anna M Wade
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| | - Daniel D Richter
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| | - Christopher B Craft
- School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Nancy Y Bao
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| | - Paul R Heine
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| | - Mary C Osteen
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| | - Kevin G Tan
- Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, North Carolina 27708, United States
| |
Collapse
|